Einladung zur Vortragsreihe aus Finanz- und VersicherungsmathematikUniv.Prof. Dr. Damir FilipovicMathematisches Institut, Ludwig-Maximilians-Universität München Equilibrium and optimality for monetary utility functions under constraints(Joint work with Michael Kupper.) We discuss an equilibrium theory for concave monetary utility functions under convex trading constraints. This class is characterized by the assumption of a fully fungible numeraire asset ("cash"). Each agent's utility is nominally shifted by exactly the amount of cash added to his endowment. Under this assumption we show that the existence of a Pareto optimal allocation implies the existence of an Arrow-Debreu equilibrium. Conversely, any equilibrium is Pareto optimal. Moreover, there always exists a well-specified optimal pricing rule which leads to an (approximate) equilibrium. We characterize the individual maximum utility that each agent is eligible for in an (approximate) equilibrium and provide a game theoretic point of view. This has applications for insurance group diversification.
Er studierte Mathematik an der ETH Zürich und promovierte dort 2000 mit einer Arbeit über stochastische Zinsmodelle. Danach war er für Forschungsaufenthalte an der TU Wien, Stanford University, Princeton University und Columbia University. Von 2002 bis 2003 war Damir Filipovic Assistant Professor am Department of Operations Research and Financial Engineering an der Princeton University. Im Sommer 2003 wechselte er zum Schweizerischen Bundesamt für Privatversicherungen in Bern, wo er als wissenschaftlicher Berater an der Entwicklung des Schweizer Solvenztests für Versicherungsunternehmen mitwirkte.
Mag. Dr. Klaus Wegenkittl Gen.-Dir. Dr. Siegfried Sellitsch o.Univ.-Prof. Dr. Walter Schachermayer |
||||||
(top of page) (print version) |
© by Financial and Actuarial Mathematics, TU Wien, 2002-2024 https://fam.tuwien.ac.at/events/vr/20051108.php Last modification: 2021-12-03 Imprint / Impressum — Privacy policy / Datenschutzerklärung |