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Abstract

This thesis is about calculating and comparing metrics for credit exposures of path-dependent

financial derivatives, which are used to quantify counterparty credit risk. Thereby, the work

of Lomibao and Zhu [2005] is taken as a basis for calculating future mark-to-market values,

which includes the use of Brownian bridges to describe the evolution of underlying risk factors

over time. Several path-dependent derivatives are examined in order to calculate their exposure

profiles via scenario generation.

keywords: potential future exposures, path-dependent derivatives, Brownian bridge,

Black-Scholes model
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1 Introduction

For the last two centuries, the volume of the OTC market, and consequently credit exposure,

has grown dramatically even though the market has experienced some of the most devastating

financial crises during this time-span. The total combined notional amount outstanding of in-

terest rate, credit, and equity derivatives has peaked to 466.8 trillion USD up to 2010∗.

The first form of financial instruments were bonds, whose value mainly depended on the mar-

ket’s view of how creditworthy the issuer of these bonds were. Up to 2012, the complexity

of such instruments has risen to a level where the process of estimating counterparty credit

risk requires highly sophisticated mathematical models. In case of financial derivatives, it is as

important to accurately model and estimate the value of future transactions as having a way

to assess the counterparty’s ability to meet its obligations.

It is crucial for a risk department to obtain a clear insight about prices of transactions in po-

tential future scenarios, measuring the risk of the derivative to default. Consequently, there are

obvious parallels between exposure calculations and computing value-at-risk with stress testing.

Instead of measuring how much the value of a transaction could drop, counterparty risk depart-

ments are interested in calculating how high its value could go, or how much a counterparty

would owe respectively.

Therefore, the main goal of this thesis is to calculate potential future exposure profiles of path

depending derivatives - similar to a value-at-risk approach for potential losses. Thereby, scenar-

ios are generated within the Black-Scholes model in order to calculate future transaction values

of those derivatives by simulating the according risk factor for several future points in time.

The idea behind this is to calculate the exposure, which depends on the whole evolution of the

risk factor, by evaluating the expected value conditioned on a single future value. Lomibao and

Zhu [2005] provide the basis for this idea by introducing the concept of the Brownian bridge to

the existing models - the following calculations are largely based on their work. Therefore, this

thesis can also be interpreted as a stress test for their ideas and results, where all the calcu-

lations are broken down and set right. In the course of this work, drawbacks and unfavorable

assumptions are pointed out and suggestions for improvement are given in order to make the

framework work more reliably.

Before calculating exposure profiles, however, it is crucial to understand the subject of credit

∗ISDA Margin Survey 1987-2010, see published surveys on ISDA’s website, www.isda.org
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exposure first. Therefore, the opening chapter deals with the general idea of counterparty credit

risk and introduces the simulation framework, as well as risk measures that are going to be used

later on.

Figure 1.1: Gross Credit Exposure of OTC Derivatives (USD billions)

Source: ISDA Margin Survey 2010
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2 Counterparty Credit Risk

Counterparty risk is the risk that a party involved in an over-the-counter (OTC) derivative con-

tract may fail to perform on its contractual obligations, resulting in losses to the other party. As

such contracts a bilateral, every party runs the risk of its counterparty not being able to make

all the payments it is obliged to do. This eventually leads to losses depending on the value of

the positions they hold against each other. In order to measure such losses, the costs of replac-

ing the defaulted derivative are derived and taken into account. The idea behind this method

is to mirror the losses with the costs of getting into the same position again as before the default.

Obviously, counterparty risk mainly occurs in the OTC market. Unlike security financing trans-

actions (SFT), OTC contracts do not make use of any clearinghouse like an exchange that not

only controls the execution of each obligation, but also guarantees the cash flows defined in the

derivative’s contract. Over-the-counter derivatives are non standard but individual contracts

that are negotiated privately between two parties. So, if a counterparty of an OTC trade de-

faults, there is no guarantee that the other party will ever get its outstanding payments back,

which is contrary to a trade on a stock exchange.

The first step of a market participant to quantify credit risk accurately is to get an idea of

the exposures that result from all the trades with its counterparty. For this purpose, a lot of

effort has to be put into the collection of all positions. Having consolidated all transactions,

the institution can start to apply its models and measures. Of course, it is important to know

ones current exposure, however, the key to have a reliable indicator for counterparty credit risk

is to measure potential future exposures, as De Prisco and Rosen [2005] explain. Exposures are

likely to change substantially over time, along with its underlying derivatives. For that reason,

a solid stochastic model has to be adapted in order to describe future development. Moreover,

exposure curves do not have to be continuous, because expiry dates, exercise dates and discrete

payoff patterns lead to a discontinuous value of the derivative over time, and consequently, to

a discontinuous credit exposure.

After establishing the mathematical framework, Monte Carlo simulation is often applied as it

remains the most general and reliable approach to capture the complex stochastic nature of

exposure profiles. For the purpose of this thesis, explicit probabilities of default, recovery rates,

credit spreads and correlations of credit events are going to be largely ignored, since it merely
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concentrates on calculating exposure profiles of single path-dependent OTC derivatives. Like

Gregory [2010] points out, exposure is the loss, as defined by the replacement cost that would

be incurred assuming zero recovery value. Hence, credit exposure is conditional on counterparty

default.

2.1 Counterparty Exposures

As mentioned in the previous section, the loss of an OTC trade due to default has to be quan-

tified in order to capture the counterparty credit risk. Assuming that a party would have to

close out its position with its counterparty, it would be supposed to enter a similar contract in

order to maintain its market position. Therefore, the loss of the party would be the value of

the contracts replacement costs at the time of default.

If the value of the derivative is positive, it corresponds to a claim on the defaulting counterparty,

whereas a negative value does not release the party of its liabilities. This means that an insti-

tution will incur loss if it is owed money and its counterparty defaults. In the reverse situation,

however, they will not be able to gain from the default if they have remaining obligations. At

this point, it is again referred to Gregory [2010] for a deeper insight into the subject. Since a

portfolio of several positions is generally considered, the maximum loss for a party is equal to

the sum of the contract-level credit exposures.

Definition The counterparty credit exposure of contract i at time t is given by

Ei(t) = max (MtMi(t),0) , (2.1.1)

where MtMi(t) is the mark-to-market value of the ith contract at time t.

This is a very general definition that should help to understand the concept of credit exposure.

The mark-to-market value (MtM) is a measure of the fair value of the contract that can change

over time and that aims to provide a realistic estimate over the development of the future value.

It can be described as the present value of all the payments an institution is expecting to receive

minus those it has to make. As those payments can be rather uncertain - depending on future

market variables - the mark-to-market value can either be positive or negative. In context to

the topic of counterparty credit risk, it represents the replacement costs of an institution to even
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out its position with a counterparty after a default. Thereby, bid-offer spreads and transaction

cost are ignored since they are more appropriately treated as liquidity risk. So, exposure is

based solely on the current MtM value of a transaction in this thesis.

2.1.1 Metrics for Credit Exposures

As the goal of this thesis is to calculate stochastic future exposures via Monte-Carlo simulation,

reliable metrics to measure credit exposure have to be introduced. The following section is

closely tied to the explanations of Gregory [2010], who followes the definitions of the Basel

Committee on Banking Supervision [2005] himself. Following points have to be considered

when choosing a measure for exposures:

• The general idea behind counterparty credit risk measures is to monitor the future expo-

sure over multiple time horizons in order to fully capture the impact on ones portfolio. On

the other hand, more traditional risk measures like the value-at-risk merely concentrates

on one single date in the future - mostly with maturities of a couple of days/weeks.

• Both departments of risk management and pricing take a look at counterparty credit risk,

however, either of them has different applications. The second one is able to put lots of

effort into pricing credit risk as precise as possible, whereas the first one generally deals

with an overwhelming number of portfolios, which forces the department to make use of

more efficient measures to decrease the runtime of the calculations.

The potential future exposure (PFE) is a useful measure to derive potential losses and is well

explained by De Prisco and Rosen [2005]. Consider a portfolio of transactions with a single

counterparty and a discrete set of times {t0, t1, . . . , tN = T}. Furthermore, Sj(tk) describes the

state of scenario j at time tk as the path of the scenario up time tk, k ∈ {1,2, . . . ,N}, which

contains all the information up to this date.

Definition For a single position p with a counterparty, the potential future exposure at time tk

and scenario Sj is defined as the maximum of zero and the contract value (if it was replaced in

the market)

PFE (p,Sj , Tk) = max (V (p,Sj(tk), tk),0) , (2.1.2)
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where V (p,Sj(tk), tk) is the mark-to-market value of the contract at tk.

The Scenario Sj is based on all market conditions realised by the time tk and is going to refer to

the underlying of the derivative that is going to be modeled and simulated. Further, netting is

going to be largely ignored as this thesis solely focuses on individual contracts, and the notation

of the potential future exposure at time t is going to be shortened to PFE(t).

Often, the PFE is connected to a certain high degree of statistical confidence, making it similar

to a value-at-risk approach, but with longer time horizon and an association with a gain instead

of a loss. Figure 2.1 shows the potential future exposure for several scenarios generated. Only

the shaded area is taken into account as exposures are strictly positive. In practice, worst case

scenarios with a high confidence level are usually drawn to capture the worst exposure the party

could have at a certain time in the future. For example, the PFE at a 95%-confidence level will

define an exposure that would be exceeded with a probability of no more than 5%. Generally, it

is going to be computed through simulation models for each future date tk , which the following

chapters are going to show.

Definition The α-percentile of the PFE at time t is the value PFE(t)α such that

P(PFE(t) ≥ PFE(t)α) ≤ 1 − α . (2.1.3)
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Figure 2.1: Illustration of potential future exposure (Source: Gregory [2010])

The expected exposure (EE) represents the amount expected to be lost if the counterparty

defaults. As the exposure is the positive part of the MtM, it is obvious that the EE is always

greater than the expected MtM. It differs greatly from the current exposure due to the specifics

of cash flows.

Definition The expected exposure at time t is defined as

EE(t) = E[PFE(t)] , (2.1.4)

where the expectation is taken on all the scenarios of the PFE at time t.
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Figure 2.2: Example for the exposure metrics EE and PFE (Source: Gregory [2010])

Figure 2.2 illustrates the differences between MtM, EE and PFE with high confidence interval

α (usually α is 95% or 99%).

2.2 Modelling Credit Exposure

This section deals with establishing a framework for calculating the expected exposures and

potential future exposures on OTC derivatives.

The mark-to-future framework is an adaptable, multi-step simulation framework to measure

risk and reward introduced by Dembo et al. [2000]. They propose the so-called mark-to-future

(MtF) value, which equals the future MtM value, as a tool to link market, credit and liquidity

risk.

This approach focuses on simulated future scenarios rather than being constrained by narrow

assumptions on the shape of the distributions.
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2.2.1 Mark-to-Future Methodology

This framework introduces the three-dimensional MtF Cube which stores simulated MtFs from

each instrument at each time step under every scenario generated. Figure 2.3 from Dembo et

al. [2000] shows a simplified representation of this concept.

Figure 2.3: Illustration of MtF Cube (Source: Dembo et al. [2000])

In this thesis, each instrument is going to be taken care of individually, so the cube is going to

be turned into a table for each instrument, containing the MtF values for each scenario at any

point in time. After computing the cube/table, the risk analysis and exposure measures are

derived by post-processing the generated numbers. So, the framework can basically be divided

into two stages:

• The pre-cube stage

• The post-cube stage

Each of them consists of three different steps. Dembo et al. [2000] list them as follows:

Pre-cube stage:

1. Define the scenario paths and time steps.

2. Define the basis instruments.

3. Simulate the instruments over the scenarios and time steps to generate a MtF Cube.
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Post-cube stage:

1. Map the MtF Cube into portfolios to produce a portfolio MtF table.

2. Aggregate across dimensions of the portfolio MtF table to produce risk/reward measures.

3. Incorporate portfolio MtF tables into advanced applications.

Thereby, the pre-cube stage is the CPU-intensive part: Simulating thousands of scenarios of a

certain risk factor over many years and a small day count fraction and computing the MtF of

complex OTC derivatives afterwards is fairly time-consuming. However, it merely needs to be

performed once - the remaining steps can be performed with minimal additional processing.

2.2.2 Definition of Scenarios

Scenarios contain all the information of the market and its risk factors up to a certain point

in time and describe the development of the market over time, giving a joint realisation of all

the relevant financial risk factors at a given discrete time grid. Therefore, it is crucial to find

and define a model that captures all the circumstances that influence the market. The future

uncertainty with its joint evolution of risk factors through time is the key point for modelling

counterparty credit exposure. Interest rates, securities, exchange rates and other potential un-

derlyings have to be fit into a framework that not only is able to capture all their properties,

but is also ”handy” enough to be simulated within reasonable time. Therefore, a proper repre-

sentation of the future relies on the selection of the distribution of the underlying risk factors.

Hence, three trains of thought basically have to be considered when choosing a framework for

the scenario:

1. The scenario must take all relevant historical data into account. Parameters have to be

estimated from past scenarios in order to calibrate the model appropriately - history does

not mirror the future, but is a good indication for the events that might happen. Thereby,

the period of historical data should be chosen with regard to its relevance and purpose

for the scenario.

2. The scenario should be able to render past events that may be plausible under the current

circumstances.
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3. The scenario generation method must be tested out of sample. Values that were derived

the day before can be compared with today’s mark-to-market values. This back-testing is

a very important regulatory requirement and determines the performance of the method.

Both pricing and risk management make use of models that describe the evolution of coun-

terparty risk factors, however, a single model will not meet the needs of both departments.

Generally, risk management tend to use true probabilities and has to calibrate scenarios using

historical and current data. Pricing models, on the other hand, work under the risk-neutral

measure that provides a no-arbitrage condition. The discounted expected values under this mea-

sure represents the price of the derivative. Implied volatilities and other parameters that are

calculated from current prices and market perception are used to calibrate these kind of models.

Another difference between those models is the number of dimensions they use. Whereas risk

management tends to use high-dimensional models in order to capture the joint behavior of

several instruments in a portfolio, pricing models usually consist of one or two risk factors.

Finally, it has to be said that risk management has a bigger focus on the tails of the portfolio

distribution. Rare but extreme events are the biggest concern in risk departments, as they

account for the biggest part of an annual loss. Those events can make any financial institution

struggle because of their rarity and uncertainty. Pricing derivatives, though, requires the com-

putation of expected values for future pay-offs and may be less concerned with extreme events.

In order to achieve mathematical tractability, restrictions and simplified assumptions have to

be made traditionally. For the purpose of modelling OTC derivatives, a single risk factor is

going to be modelled within the Black-Scholes framework. The underlying, a stock price for

instance, is going to follow a geometric Brownian motion, which is a stochastic process that is

widely used, even though it is arguably not the most accurate description of certain risk factors

over a longer period of time.

2.2.3 Defining the Basis Instrument

After establishing the scenario, the next step is to define the basis instrument. As stated before,

the MtF cube consists of several MtF tables, each representing an individual basis instrument.

There is a nearly unlimited amount of OTC products on the market, however, most of them

can fortunately be divided into a composition of more basic instruments such as stocks, bonds

or options.
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In order to go along with previous notation, the MtF value at time tk of scenario Sj can be

written as a function f of risk factors um(Sj(tk), tk), m ∈ {1, . . . ,N}, where N is the number

of risk factors in the model and pi the position of the ith instrument:

V (pi, Sj(tk), tk) = fpi(u1(Sj(tk), tk), . . . , uN(Sj(tk), tk)) . (2.2.1)

In the case of a synthetic instrument like certain OTC derivatives, it is merely a function of a

single risk factor. Then the MtF value of the portfolio is quantified by applying a function g

after simulating all the MtF values. If the portfolio simply consisted of the basis instrument,

g would obviously be the identity. This routine has to be provided for every derivative and is

perfectly displayed by Dembo et al. [2000], which is the source of figure 2.4.

Figure 2.4: Relationship between risk factors, basis instruments, financial products and

portfolios

2.3 Simulating MtF Cube and Post-Processing

In order to calculate potential future exposures of credit derivatives, the next step is the actual

simulation itself. Monte-Carlo simulation is the most reliable approach and therefore widely

used in the financial sector. Its benefit is that it can capture complex stochastic structures

without knowing the actual distribution of the MtF value over time by repeatedly generating

possible scenarios and applying qualified measures afterwards. Those methods form a class of

computational algorithms that rely on repeated random sampling in order to compute their

results. Risk management certainly is an area of application, where Monte-Carlo methods are

useful for modelling phenomena with significant uncertainty in inputs. The general idea behind

these methods is to solve a problem by directly simulating the process and then calculating the

average results. They simulate the value of an instrument, portfolio or underlying by including
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the uncertainty that affects them, and therefore very suitable for calculating profiles of PFEs.

The trade-off of these methods is its highly computational complexity if the algorithms used to

simulate risk factors and calculate MtF values are not well optimised.

Again, consider a discrete set of times {t0, t1, . . . , tN = T}. Further, Sj(tk) describes the state

of scenario j at time tk as the path of the scenario up time tk, k ∈ {1,2, . . . ,N}. The set of

scenarios up to T is {S1(T ), S2(T ), . . . , SM(T )}, where M is the number of scenarios generated

(usually several thousands).

Thus, each derivative is evaluated over every scenario for any time step, which makes the use

of efficient methods and algorithms crucial. After simulating the MtF tables, which then are

filled with all the MtF values at any given date, the measures established in section 2.1.1 can

be applied in order to evaluate and estimate future credit exposure.
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3 Mathematical Theory

This chapter of this thesis deals with the mathematical background that is needed to implement

the theory discussed and explained in previous sections. The best idea of a model is worthless

if it cannot be backed up with a solid mathematical framework.

First of all, it has to be mentioned that most of the theory discussed below refers to the

work and books of Øksendal [2007] and Karatzas and Shreve [1988]. All the definitions and

theorems in this section are set in probability space (Ω,F,P) with set Ω, σ-algebra F and prob-

ability measure P. It is called a complete probability space if F contains all subsets G of Ω with

P-outer measure zero, i.e. with

P∗(G) ∶= inf{P(F ); F ∈ F,G ⊂ F} = 0 .

Further, a filtration {F}t≥0 is added to complete a filtrated probability space.

3.1 Brownian Motion

The Brownian motion is the name given to a random movement first discovered by Scottish

botanist Robert Brown. He observed in 1828 that pollen grains suspended in liquid performed

an irregular motion. However, the application was not restricted to the studying of microscopic

particles, but has been used to model stock prices, thermal noise in electrical circuits and other

fields of application ever since discovered.

This movement was put into a mathematical concept, introducing a stochastic process Wt called

Brownian motion, alternatively known as Wiener process.

Definition Let (Ω,F,{Ft}t≥0,P) be a filtrated probability space. Then, an adaptive stochas-

tic process with values in Rd is called a d-dimensional standard Brownian motion (SBM) with

respect to {F}t≥0 and P, if

a) P(W0 = 0) = 1

b) For all s, t ∈ [0,∞), Wt −Ws is independent of Fs

(independent increments)
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c) For all s, t ∈ [0,∞), Ws+t −Ws ∼Wt −W0 ∼Wt

(stationary increments)

d) For all t ∈ [0,∞), Wt −W0 ∼ N(0, Id) with (d × d) identity matrix Id

e) {Wt}t≥0 has continuous paths P-a.s.

If Ft = σ(Bs ∶ s ∈ [0, t]), t ≥ 0, b) in the definition of the Brownian Motion can be replaced by

b’) For all n ∈ N and 0 = t0 < t1 < . . . < tn, Wt1 −Wt0 , Wt2 −Wt1 , . . . ,

Wtn −Wtn−1 are independent.

If d) is dropped and e) altered to {Wt}t≥0 to be continuous from the right at 0 (in probability),

the process becomes a Lévy process. Furthermore, it is important to know that the Brownian

motion Wt in Rn is a martingale with respect to the σ-algebras Ft generated by {Bs ∶ s ≤ t}.

Time

W
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Figure 3.1: Path of a standard Brownian motion

15



For more information about the Brownian motion and proofs of its existence, it is referred to

either Øksendal [2007] or Karatzas and Shreve [1988].

One of the most useful attributes of a Brownian motion it that is a Markov process, as Karatzas

and Shreve [1988] show. The process is defined as follows:

Definition Let d be a positive integer and µ a probability measure on (Rd,B(Rd)). Then,

an {Ft}t≥0-adapted, d-dimensional stochastic process X = {Xt}t≥0 on some probability space

(Ω,F,Pµ) is said to be a Markov process with initial distribution µ if

a) Pµ(X0 ∈ B) = µ(B), ∀B ∈B(Rd)

b) For s, t ≥ 0 and B ∈B(Rd)

Pµ(Xt+s ∈ B ∣ Fs) = Pµ(Xt+s ∈ B ∣Xs)

The second requirement is called Markov property and ensures that a Markov process merely

depends on its last state instead of the whole history of the process. For an in-depth view on

this topic, it is referred to David Meintrup and Stefan Schäffler [2005].

3.1.1 Brownian Bridge

The Brownian bridge (BB) is a very useful transformation of the Brownian motion and can be

interpreted as a Brownian motion W (t) conditioned on its start value x at time t0 and its end

value y at time T , t0 ≤ t ≤ T . It is the process {Wt ∣Wt0 = x,WT = y}t0≤t≤T and is defined as

W T,z
t0,x

(t) = x +Wt−t0 −
t − t0
T − t0

(WT−t0 − z + x) , (3.1.1)

where W (t) is a Brownian motion and t0 ≤ t ≤ T (see Iacus [2008]).

The density of the Brownian bridge for t ∈ [t0, T ] is calculated as follows

P[Wt = y ∣Wt0 = x,WT = z] = P [W T,z
t0,x

(t) = y] = P [x +Wt−t0 −
t − t0
T − t0

(WT−t0 − z + x) = y]

= P [
√
t − t0W1 −

t − t0√
T − t0

W1 = y − x(1 − t − t0
T − t0

) − t − t0
T − t0

z]

= 1
√

2π(t − t0) (1 − t−t0
T−t0 )

exp

⎡⎢⎢⎢⎢⎢⎣
−1

2

(y − (x + t−t0
T−t0 (z − x)))

2

(t − t0) (1 − t−t0
T−t0 )

⎤⎥⎥⎥⎥⎥⎦
.
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Consequently, W T,z
t0,x

(t) ∼ N (x + t−t0
T−t0 (z − x) , (t − t0) (1 − t−t0

T−t0 )).

Time

B
B

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Figure 3.2: Paths of multiple Brownian bridges with initial value 0 and end value 1

For the purpose of this thesis, it is especially focused on Brownian Bridges that starts at 0 with

value 0. The following result is a very useful one as it is going to be used fairly often in the

course of evaluating exposures later on. For any σ > 0,

E[exp[σW T,z
0,0 ]] = E[exp[σWt] ∣W0 = 0,Wt = z] = E[exp[σ(Wt −

t

T
(WT − z))]]

= exp [σzt
T

] E[ exp [σWt] exp [ − σt
T

(WT−t +Wt)]]

= exp [σzt
T

] E[ exp [σWt(1 − t

T
)] exp [ − σt

T
WT−t]]

= exp [σzt
T

] E[ exp [σWt(1 − t

T
)]] E[ exp [ − σt

T
WT−t]]

= exp [σzt
T
+ σ2 t(1 − t

T
)2

2
+ σ2 t

2(T − t)
2T 2

]

× ∫
R
φ(x − σ

√
t(1 − t

T
)) dx∫

R
φ(y + σ t

√
T − t
T

) dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1
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= exp [σ
2t

2
(1 − t

T
) + σtz

T
] . (3.1.2)

The expected value is allowed to be split up because of WT−t áWt. From now on, it is always

assumed that t0 = 0 and Wt0 = 0 when speaking of Brownian bridges. Hence, the condition on

Wt0 = 0 is ultimately dropped within the notation of the conditional expected value.

3.1.2 Reflection Principle

This section deals with the reflection principle and its use in the calculation of the distribution

of the maximum and minimum of a Brownian motion. The results of the following paragraphs

turn out to be very useful for further valuations of path-dependent derivatives.

The Brownian motion has many useful qualities that make it suitable for describing certain

processes. An important one is the fact that the distribution of many of its functionals can be

derived in closed form. One of it is the passage time Tb to a level b ∈ R, defined by

Tb(ω) = inf{t ≥ 0; Wt(ω) = b} , (3.1.3)

which is a stopping time (see Karatzas and Shreve [1988]). Its density function can be obtained

by using the reflection principle, which was first introduced by Désiré André (Lévy [1948]).

Let {Wt}0≤t<∞ be a standard one-dimensional Brownian motion with respect to filtration Ft on

(Ω,F,{Ft}t≥0,P). For b > 0,

P[Tb < t] = P[Tb < t, WT > b] + P[Tb < t, WT < b] . (3.1.4)

Obviously, P[Tb < t, WT > b] = P[Wt > b]. Looking at the second term, one can argue that if

Tb < t and Bt < b, then the path of the Brownian motion has reached level b sometime before

time t and has ended up at a point c < b. Since the Brownian motion starting at b is symmetric

with respect to b, the probability of it falling off to c is the same as the probability of travelling

to point 2c − b. Karatzas and Shreve [1988] call this second path the ”shadow path”, which

is just a reflection about b of the initial path - both having the same probability. Keep in

mind that this is merely a heuristic argument, since the probability for the occurrence of any

particular path is zero. Anyway, this principle leads to

P[Tb < t, Wt < b] = P[Tb < t, Wt > b] = P[Wt > b] (3.1.5)
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and

P[Tb < t] = 2 P[Wt > b] =
√

2

π

∞
∫

bt−1/2

exp [−x
2

2
] dx . (3.1.6)

Time

W

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.5

0
.0

0
.5  

 

Brownian motion

Shadow path

Figure 3.3: Brownian motion and its ”shadow path”

The Brownian motion ”starts fresh” at stopping time Tb, meaning that the process {Wt+Tb −

WTb}0≤t<∞ is independent of filtration FTB . This is a consequence of the strong Markov property

of the Brownian motion. Chen, Wang and Shyu [2010] sum it up in the following theorem:

Theorem Let the stochastic process {Wt}0≤t<∞, t ∈ R+, follow a Brownian motion on (Ω,F)

with stopping time Tb(ω) = inf{t ≥ 0; Wt(ω) = b}. Define

W̃t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Wt if Tb > t

2b −Wt if Tb ≤ t .

(3.1.7)

Then the process {W̃t}0≤t<∞ is also a Brownian motion that has the same distribution as

{Wt}0≤t<∞.

This knowledge can be applied on a more general process, namely a Brownian motion with

non-zero drift. The following results are going to be very useful for calculating the value of bar-

rier options in section 4.2. The next paragraphs represent the result of Musiela and Rutkowski
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[2005].

Let X = {Xt}t≥0 be a process such that

Xt = vt + σWt , (3.1.8)

where v ∈ R, σ > 0 and Wt is a standard Brownian motion under P. For the maximum and the

minimum of this process,

MX
t ∶= max

u∈[0,t]
Xu , mX

t ∶= min
u∈[0,t]

Xu . (3.1.9)

According to Girsanov’s theorem (see section 3.2.2), X is a Brownian motion under an equivalent

probability measure and therefore, P[MX
t > 0] = 1 for every t ≥ 0.

Lemma For every t > 0, the joint distribution of Xt and MX
t is given by the formula

P[Xt ≤ x, MX
t ≥ y] = exp [2vy

σ2
] P[Xt ≥ 2y − x + 2vt] , (3.1.10)

for every x, y ∈ R such that y ≥ 0 and x ≤ y.

In order to proof this lemma, the reflection principle and Girsanov’s theorem are used (see

Musiela and Rutkowski [2005]). As a consequence, the joint distribution of a Brownian motion

with non-zero drift and its maximum value - (Xt,M
X
t ) - is

P[Xt ≤ x, MX
t ≥ y] = exp [2vy

σ2
] Φ(x − 2y − vt

σ
√
t

) , (3.1.11)

for every x, y ∈ R such that y ≥ 0 and x ≤ y.

For the minimum value of X and y < 0,

P[ max
u∈[0,t]

−Xu ≥ −y] = P[ max
u∈[0,t]

(−vu + σWu) ≥ −y] = P[ min
u∈[0,t]

(−vu + σWu) ≤ y]

= P[ min
u∈[0,t]

Xu ≤ y] ,

because of the symmetry of the Brownian motion. Hence, P[mX
t ≤ y] = P[M X̂

t ≥ −y] for y ≤ 0,

t > 0 and process X̂ = −vt + σWt.

Consequently, the joint distribution of (Xt,m
X
t ) satisfies

P[Xt ≥ x, mX
t ≥ y] = Φ(−x + vt

σ
√
t

) − exp [2vy

σ2
] Φ(2y − x + vt

σ
√
t

) (3.1.12)
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for every x, y ∈ R such that y ≤ 0 and y ≤ x.

Now that the basic concept of Brownian motions is explained, the next step is to implement

the random walk into a mathematical model that is able to describe risk factor developments

and evaluate prices for assets and derivatives.

3.2 Black-Scholes Model

The Black-Scholes model was issued in 1973 and since then, has proofed to be a reliable frame-

work to price options, future and other derivatives. It had a huge impact on the valuation and

hedging of options and largely contributed to the growth and success of financial engendering.

Ultimately, Robert Merton and Myron Scholes won the Nobel prize for economics for in 1997

for their achievements.

Its major assumption is that asset prices, or risk factors, are log-normal distributed, meaning

that they follow a geometric Brownian motion.

3.2.1 General Assumptions on the Market

In order to apply the mathematical theory of the Black-Scholes model, several simplifying

assumptions have to be made. On the one hand, they prevent the model to become too complex

to be used in option pricing as well as risk management. On the other hand, these assumptions

are needed to make use of the beneficial properties the model provides in order to analytically

derive formulas for different scenarios in the financial market.

Hence, the following simplifications for the market are assumed:

• Continuous time trading possible

• No restrictions on trades (short-selling allowed)

• Deposit and lending rates are equal

• No transaction costs

• No taxes
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The next restriction that comes along with the model is that it only provides two financial

instruments - a risk-free and and a risky one.

Risk-free Financial Instrument

The risk-free security is represented by a bond or bank account, which are assumed to have no

default risk. In a real market, there is no such thing as a risk-free financial instrument, because

even banks, companies or governments with the best credit worthiness have strictly positive

default probabilities.

Anyway, it is assumed that the interest rate r > 0 on this bank account is constant. Hence, the

value of the risk-free bond at time t ≥ 0 is

Bt = B0 exp[rt] (3.2.1)

where B0 = 1. Consequently, the derivative at time t is

B′
t = rBt .

Alternatively, the risk-free bond between [0, T ] can also be described as a zero-coupon bond at

time t ∈ [0, T ] with maturity T and face value 1:

P (t, T ) = exp[−r(T − t)] . (3.2.2)

Obviously, Bt = exp[rT ]P (t, T ) and P (t, T ) = Bt
BT

, t ∈ [0, T ].

Risky Financial Instrument

The risky financial instrument is the counterpart of the risk free one and represents a stock,

swap rate or any other risk factor that underlies any random value fluctuation. It is none neg-

ative and driven by a standard Brownian motion.

Let (Ω,F,{Ft}t≥0,P) be a filtrated probability space, where F = {Ft}t≥0 is a filtration on F

which contains all null sets of F and is continuous from the right. Further, let σ > 0 be the
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volatility, µ ∈ R the appreciation rate, S0 the price of the risky security at time 0 and {Wt}t≥0

a one-dimensional, standard Brownian motion with respect to F and P. Then

St ∶= S0 exp [(µ − 1

2
σ2) t + σWt] (3.2.3)

is the stock price at time t ≥ 0.

This kind of stochastic process is called a geometric Brownian motion (GBM) and follows a

log-normal distribution. It is a very handy assumption, because many properties of the normal

distribution can be applied. Furthermore, it provides the stock price to be non-negative all the

time. However, it has to be said that is not the most realistic assumption, because it does not

allow the stock price to perform jumps in prices at any time. If weekends are considered, the

continuous path of a geometric Brownian motion might not seem to be an adequate approxi-

mation. In addition, price fluctuations will not be heavy tailed if they are assumed to be driven

by a Brownian motion, hence, the probability of huge and drastic price changes is generally

underestimated by this model.

Lemma {St}t≥0 is the unique strong solution of the stochastic differential equation (SDE)

dSt = µSt dt + σSt dWt , t ≥ 0 (3.2.4)

with initial value S0, respectively, the one of the stochastic integral equation

St = S0 + ∫
t

0
µSs ds + ∫

t

0
σSs dWs , t ≥ 0 . (3.2.5)

For the proof of this lemma, which makes use of Ito’s theorem with function f(t, x) = S0 exp [(µ − 1
2σ

2) t + σx],

x ∈ R, t > 0, it is referred to Øksendal [2007].

Remark For all t ≥ 0, ft(x) ∶= S0 exp [(µ − 1
2σ

2) t + σx] is strictly monotonically non-decreasing

and surjective, hence invertible. For all n ∈ N and 0 ≤ t1 < t2 < . . . < tn, y1, y2, . . . , yn ∈ (0,∞),

the following holds: {ω ∈ Ω ∣ St1 ≤ y1, St2 ≤ y2, . . . , Stn ≤ yn} = {ω ∈ Ω ∣ Wt1 ≤ f−1(y1),Wt2 ≤

f−1(y2), . . . ,Wtn ≤ f−1(yn)}. Hence, the σ-algebra generated by St equals the one generated by

Wt, t ∈ [0, t]: σ(St ∶ t ∈ [0, T ]) = σ(Wt ∶ t ∈ [0, T ]). This means that the Brownian motion and

the stock price contain the same information.
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The next step is to calculate its moments which are going to be very useful in later chapters.

The expected value of (3.2.3) is obtained as follows:

E [St] = E [S0 exp [(µ − 1

2
σ2) t + σWt]] = S0 exp [(µ − 1

2
σ2) t]E [exp [σWt]]

= S0 exp [(µ − 1

2
σ2) t] ∫

R
exp [σx

√
t]φ(x) dx

= S0 exp [(µ − 1

2
σ2) t + σ

2t

2
] ∫

R
φ (x − σ

√
t) dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= S0 exp[µt] , (3.2.6)

where φ(x) is the probability density function of a standard normal distribution. For the

variance, the second moment has to be calculated:

E [S2
t ] = E [S2

0 exp [(2µ − σ2) t + 2σWt]] = S2
0 exp [(2µ − σ2) t + 2σ2t] ∫

R
φ(x − 2σ

√
t) dx

= S2
0 exp [(2µ + σ2) t] .

Thus, the variance of the stock price is

V[St] = E[S2
t ] −E[St]2 = S2

0 exp[2µ] ( exp[σ2t] − 1) . (3.2.7)

Lemma Mt = exp [σWt − 1
2σ

2t] , t ≥ 0 is a (F,P) martingale.

As a consequence, St = exp[µt]Mt, t ≥ 0, is generally not a (F,P)-martingale, because for t > s,

E[St ∣ Fs] = exp[µt]Ms = exp[µ(t − s)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≠1 for µ≠0

Ss a.s.

Finally, it can easily be observed that {St}t≥0 is a (F,P)-Markov process that is homogeneous

regarding time.

3.2.2 Martingale Measures

The term martingale has previously been mentioned without being explained properly. However,

the fact that a Brownian motion and, in certain circumstances, a geometric Brownian motion is

a martingale is essential for the valuation of option prices. Øksendal [2007] is going to be taken

as reference for the following paragraphs.
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Definition An n-dimensional stochastic process {Mt}t≥0 on (Ω,F,P) is called a martingale

with respect to a filtration {Ft}t≥0 and P if

a) Mt is Ft-measurable for all t,

b) E[∣Mt∣] < ∞ for all t and

c) E[Mt ∣ Fs] =Ms for all t ≥ s .

As mentioned before, a geometric Brownian motion is a martingale if the drift term µ = 0.

However, this is generally not the case in real world. Therefore it is always important to find

an equivalent martingale measure. Brigo and Mercurio [2001] defines it as follows

Definition An equivalent martingale measure Q is a probability measure on the space (Ω,F)

such that

a) P and Q are equivalent measures, that is P(A) = 0⇔ Q(A) = 0, for every A ∈ F;

b) the Radon-Nikodym derivative dQ
dP ∈ L2(Ω,F,P);

c) the discounted asset price process St
Bt

is an (F,Q)-martingale, that is EQ [ StBt ∣Fu] =

exp[−ru]Su, 0 ≤ u ≤ t ≤ T .

S̃t =
St
Bt

= exp[−rt]St =

=S0ª
S̃0 exp [(µ − r − 1

2
σ2)t + σWt] (3.2.8)

is the discounted stock price, t, r ≥ 0, and is the unique strong solution of the stochastic differ-

ential equation

dS̃t = (µ − r)S̃t dt + σS̃t dWt , t, r ≥ 0, S̃0 = S0 .

Then, S̃ is a P-martingale if µ = r. The next step is to find an equivalent probability measure

to P such that S̃ becomes a martingale for µ ≠ r.

The next theorem is probably the most fundamental one in the general theory of stochastic

analysis and very important in many applications. It basically says that if the drift coefficient

of a given Itô process is changed, then the law of the new process will be absolutely continuous

with respect to the law of the original one and an explicit Radon-Nikodym derivative is given.
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Theorem (Girsanov’s theorem)

Let {Yt}t≥0 ∈ Rn, n ∈ N be an Itô process of the form

dYt = a(t, ω) dt + dWt ; t ≤ T, Y0 = 0 ,

where T ≤ ∞ is a given constant and Wt a n-dimensional Brownian motion. Put

Mt = exp [−∫
t

0
a(s,ω) dWs −

1

2
∫

t

0
a2(s,ω) ds] ; 0 ≤ t ≤ T . (3.2.9)

Assume that Mt is a martingale with respect to FT and P. Define the measure Q on FT by

dQ(ω) =MT (ω) dP(ω) . (3.2.10)

Then, Q is a probability measure on FT , and Yt an n-dimensional Brownian motion with respect

to Q, for 0 ≤ t ≤ T .

Remark The transformation P→ Q given by (3.2.10) is called the Girsanov transformation of

measures.

The following condition is called Novikov condition and is sufficient to guarantee that {Mt}t≤T
is a martingale with respect to FT and P:

EP [exp [1

2
∫

T

0
a2(s,ω) ds]] < ∞ . (3.2.11)

Girsanov also introduced a second theorem that works as a follow up of the one mentioned

above. For an detailed explanation of both of them and proofs, the reader is encouraged to take

a look into Øksendal [2007].

Girsanov’s theorems motivates the following lemma that puts all the gained information into an

applicable form. Let F ∶= {Ft}t∈[0,T ∗] be a complete, continuous from the right filtration that is

generated by the one dimensional Brownian motion {Wt}t∈[0,T ∗], T ∗ < ∞.

Lemma Under the premise of Girsnaov’s theorem, a unique martingale measure for S̃ exists

with Radon-Nikodyn derivative

dQ
dP

= exp [r − µ
σ

WT ∗ −
1

2

(r − µ)2

σ2
T ∗] .

Further, dS̃t = σS̃t dW ∗
t with W ∗

t ∶=Wt − r−µ
σ t, t ∈ [0, T ∗] being a Brownian motion with respect

to F ∶= {Ft}t∈[0,T ∗] and Q.
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Generally, the bank account {Bt}t≥0 is taken as numeraire. However, more convenient nu-

meraires can be introduced in order to calculate claims of financial derivatives. Brigo and

Mercurio [2001] list the following fundamental tool for pricing financial instruments.

Proposition Assume there exists a numeraire N and a probability measure QN , equivalent to

the initial P, such that the price of any traded asset X relative to N is a martingale under QN ,

i.e.,

Xt

Nt
= EQN [XT

NT
∣Ft] 0 ≤ t ≤ T . (3.2.12)

Let U be an arbitrary numeraire. Then there exists a probability measure QU , equivalent to the

initial P, such that the price of any attainable claim Y normalised by U is a martingale under

P, i.e.,

Yt
Ut

= EQU [YT
UT

∣Ft] 0 ≤ t ≤ T . (3.2.13)

Moreover, the Radon-Nikodym derivative defining the measure QU is given by

dQU

dQN
= UTN0

U0NT
. (3.2.14)

So, for any asset price Z,

EQN [ZT
NT

] = EQU [ZT
NT

dQN

dQU
] . (3.2.15)

3.2.3 Black-Scholes Formula

The purpose of the Black-Scholes model is to evaluate option prices based on a market with

certain assumption mentioned in section 3.2.1.

Consider an European call option that gives the owner the right, not the obligation, to buy the

underlying asset at a fixed price K ≥ 0 (=strike) at maturity T ≤ T ∗ < ∞. It is assumed that the

underlying stock described by (3.2.3) pays a dividend rate q ≥ 0, hence follow the price process

St = S0 exp [(µ − q − 1

2
σ2) t + σWt]
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Then, the arbitrage free price process of the European call option in the Black-Scholes Model

∀t ∈ [0, T ] is

ct = ct(St,K,T − t, σ, r, q) = BS(St,K,T − t, σ, r, q,1)

= St exp[−q(T − t)] Φ(d1(St, T − t)) −K exp[−r(T − t)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= Bt
BT

Φ(d2(St, T − t)) a.s. , (3.2.16)

with

d1,2(s, u) =
log [ S

K
] + (r − q ± 1

2σ
2)u

σ
√
u

(3.2.17)

and the distribution function of the normal distribution

Φ(x) = 1√
2π
∫

x

−∞
exp [−1

2
y2] dy , x ∈ R . (3.2.18)

As usual, it is rather referred to the literature if anyone is interested in the proof of the formula,

Hull [2009], for example, has listed one that uses the risk-neutral pricing method, though it can

also be shown using stochastic differential equations.

In order to obtain the formula for an European put option, either the same derivation as for the

call can be used, or the call-put-parity can be applied. It says that in a non-arbitrary world,

ct − pt = St −K
Bt
BT

a.s. , t ∈ [0, T ] , (3.2.19)

where ct and pt are the corresponding prices for call and put with similar strike and maturity.

Thus, (3.2.16) and (3.2.19) result in the arbitrage free price process of an European put option

with strike K ≥ 0 and maturity T ≤ T ∗ < ∞ in the Black-Scholes Model: ∀t ∈ [0, T ],

pt = pt(St,K,T − t, σ, r, q) = BS(St,K,T − t, σ, r, q,−1)

= St exp[−q(T − t)] Φ(d1(St, T − t)) −K exp[−r(T − t)] Φ(d2(St, T − t))

− (St −K exp[−r(T − t)])

=K exp[−r(T − t)]Φ( − d2(St, T − t)) − St exp[−q(T − t)]Φ( − d1(St, T − t)) a.s. .

(3.2.20)

The Black-Scholes model can be applied to many different derivatives, resulting in similar

formulas than those mentioned above. If the underlying instrument can be described as a

geometric Brownian motion, the model is a very powerful and solid tool to draw price processes

for financial derivatives. Therefore, the Black-Scholes model is going to be used throughout the

whole thesis in order to simulate exposure profiles over the course of time.
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4 Lomibao and Zhu Model

The goal of this thesis is to quantify the counterparty credit risk of specific, path depending

OTC derivatives. To do so, the risk factor evolution is described by a geometric Brownian

motion, which provides the advantage of using results from the Black-Scholes framework (see

figure 4.1). The basic motivation comes from Lomibao and Zhu [2005] introducing a model and

algorithm based on the conditional valuation of MtF values. Therefore, this section is closely

tied to this paper, where most of the following ideas originate. However, calculations are going

to be done in more detail and results compared to other approaches later on.

The finesse of the approach proposed by Lomibao and Zhu [2005] is to simulate a single un-

derlying Stk at time tk and use it to calculate the mark-to-market value of a path-dependent

derivative, although none of the risk factor’s path is known. For example, an up-and-out barrier

option gives the owner the right to buy a stock for a pre-defined price at exercise date T unless

the stock price crosses an upper, fixed barrier on its way. If only knowing the stock price Stk

at tk, it is uncertain whether the underlying stock price has previously exceeded this barrier or

not. In order to overcome this issue, the Brownian bridge introduced in section 3.1.1 is used

to derive the mark-to-future values of path-dependent financial derivatives. The parameters of

the stochastic process are calibrated for each derivative by using historical data. However, some

instruments require the calculation of implied volatilities that are taken from at-the-money op-

tions, representing the market’s perception on the evolution.

Before potential future exposures can be calculated, closed formulas of the future values have

to be derived analytically. Thereby, the value-at-future is described by expected values condi-

tioned on the simulated future scenario. Thereby, the properties of the Brownian bridge are

used when calculating the expected values of the pay-off functions conditioned on Stk , which

occupies the biggest part of the analytical calculation.

4.1 Scenario Generation

Having finished the analytical part, the simulation of the MtF values for each of the thousands

of scenarios has to be done via R, a language and environment for statistical computing and

graphics. The basic problem of evaluating path-dependent instruments in this framework is

that future scenarios con only be simulated at discrete set of dates {t1, t2, . . . , tN}, while the

value of the actual instrument may depend on the full continuous path prior to the simulation
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date. Thereby, an equidistant time grid , with step-size ∆t = tl+1 − tl, l ∈ {0,1, . . . ,N − 1}, is

assumed for all simulations.

In order to generate market scenarios like FX rates, stock prices and interest rates at certain

future points in time, a reliable framework has to be found that is build on a real measure

based on historical data. Therefore, the use of a log-normal model is proposed that can easily

be embedded into the Black-Scholes framework. The underlying prices are described by a

geometric Brownian motion:

St = S0 exp [(µ − 1

2
σ2)t + σWt] , (4.1.1)

where S0 is the initial price at t0, µ the appreciation rate, σ its volatility and Wt a standard

Brownian motion. In case of option pricing, the volatility σ = σiv, which is the implied volatility

driven by the market perception of the risk of the instrument. Under the real measure, the two

parameters are estimated from historical data as follows:

σh =

¿
ÁÁÀ 1

T

T

∑
t=1

(log [ St
St−1

] − µh)
2

, µh =
1

T

T

∑
t=1

log [ St
St−1

] . (4.1.2)

In order to derive the parameters of (4.1.1), the drift has to be adjusted to µ = µh + 1
2σ

2.

The next subsection deals with the different approaches to simulate possible future values. The

first one is to simulate the whole path from t0, describing the whole trajectory. The other

method is to directly simulate to the time tk. The first approach is called Path-Depending

Simulation (PDS), the second one Direct Jump to Simulation Date (DJS).
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Figure 4.1: Illustration of generated GBMs for different future scenarios

4.1.1 Path-Depending Simulation

Path-depending simulation (PDS) captures the whole evolution through discrete time intervals,

which means that each value depends on the previous values simulated. It is a step by step

generation of the risk factor over time and each simulation is expressed in term of the previous

simulated values and the differences in times.

Taking a look at the log-normal evolution, this means that a risk factor X(ti+1) at time ti+1 is

written as

X(ti+1) =X(ti) exp [(µ − 1

2
σ2)(ti+1 − ti) + σ

√
ti+1 − tiW1]

=X(ti) exp [(µ − 1

2
σ2)(ti+1 − ti) + σWti+1−ti] , (4.1.3)

where Wt is a standard Brownian motion.
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Figure 4.2: Path-Dependent Simulation (PDS)

4.1.2 Direct-Jump to Simulation Date

In contrast to PDS, the direct-jump to simulation date method (DJS) describes an evolution

process that merely depends on the initial value, X(t0), and its distance to the future date.

In case of the lognormal evolution function, the risk factor process is

X(t) =X(0) exp [(µ − 1

2
σ2)t + σ

√
tW1]

=X(0) exp [(µ − 1

2
σ2)t + σWt] , (4.1.4)

where, again, Wt is the standard Brownian motion at t.

In order to illustrate the two different methods, it is referred to figure 4.2 and 4.3 .
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Figure 4.3: Direct-Jump to Simulation Date (DJS)

The concept of conditional valuation is all about the distribution of the market factor scenarios

rather than the trajectory.

4.1.3 Conditional Valuation

In order to evaluate future mark-to-market prices of path-dependent derivatives, the conditional

valuation is a reliable technique it is applicable to any instrument across the range of derivatives.

The limitation of computational resources merely allows the valuation at a discrete set of times,

however, the MtF might depend on the full path over the continuum of dates prior to the

simulation date. Therefore, this chapter deals with establishing a general formulation of the

conditional valuation approach that can be adapted for all financial instruments. Thereby,

either the DJS approach from section 4.1.2 or the PDS approach form section 4.1.1 can be used

for generating the market scenarios. First of all, the notation taken from Lomibao and Zhu

[2005] is introduced:

{tk = t1, t2, . . . , tN} . . . discrete simulation dates

{X(tk) =X(t1),X(t2), . . . ,X(tN)} . . . market risk factor scenarios

{V (tk) = V (t1), V (t2), . . . , V (tN)} . . . mark-to-future value /

future value of the transaction

33



As mentioned before, certain instruments can not be determined strictly by the state of the

underlying at simulation the date. Therefore, those path-dependent derivatives have to be eval-

uated considering not only the scenario at time tk, but also the path leading to the simulation

date. Hence, using the expected value of the pay-off function of the financial derivative, condi-

tioned on the underlying market risk factor at time tk, the future value of instrument i and its

position pi can generally be formulated as

V (j, tk, x) = E [f (tk,{X(t)}0≤t<tk) ∣Xj(tk) = x] , (4.1.5)

where the expected value is conditioned on the simulated risk factor Xj(tk) = x at tk for scenario

j ∈ {1,2, . . . ,M}. Furthermore, M > 0 is the number of scenarios/simulations, {X(t)}0≤t<tk is

the path of the risk factor evolution and f the pay-off function of the financial derivative. If

the instrument was not path-dependent, the expected value at (4.1.5) would degenerate to its

MtM value at tk:

V (j, tk, x) = f (tk,Xj(tk) = x)

It is important to be aware of the difference between the future MtM value and the MtF

value introduced by Demob et al. [2000], which essentially equals the value-at-future (VaF)

notation used by Lomibao and Zhu [2005]. Last one therefore shows an example that illustrated

the difference between the two terms, considering two cases where the valuation function is

separable:

f (tk,{X(t)}0≤t<tk) = g (tk,X(tk)) ⋅ h (tk,{X(t)}0≤t<tk) (4.1.6)

f (tk,{X(t)}0≤t<tk) = g (tk,X(tk)) + h (tk,{X(t)}0≤t<tk) . (4.1.7)

Hence, the expected valuation conditioned on the simulated risk factor at tk is

V (tk, x) = g (tk, x) ⋅E [h (tk,{X(t)}0≤t<tk) ∣X(tk) = x] (4.1.8)

V (tk, x) = g (tk, x) +E [h (tk,{X(t)}0≤t<tk) ∣X(tk) = x] , (4.1.9)

where g(tk, x) determines the MtM value of the transaction and h (tk,{X(t)}0≤t<tk) a payoff

function for a path-dependent instrument that strictly depends on the evolution of the risk

factor up to tk. For instance, the up-and-out barrier option is an example for case (??) with

h (tk,{X(t)}0≤t<tk) = 1(X(t)<H ∶ 0≤t<tk) ,
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whereas the average option is an example of (??) with

h (tk,{X(t)}0≤t<tk) =
1

tk

k

∑
j=0

X(tj) .

4.2 Barrier Option

Barrier options are options whose payments strictly depend on whether the price of the un-

derlying passes a certain barrier within a given time period. The event when the underlying

crosses the barrier level is called barrier event. They are traded OTC and multiple variations

exists, mainly divided into knock-out options and knock-in options. The first ones expire if the

price of the underlying crosses a certain level, called barrier, whereas second ones become valid

after breaching the barrier. They are always cheaper than their vanilla counterpart as there is

always a strictly positive probability of the stock price to be above or below the barrier level

and thus, making the option extinguish. For example, if an investor believes that a certain stock

will go up within a certain period of time, but will not reach a certain height H, then he will

buy a knock-out barrier option with upper level H and pay less premium than for the vanilla

call option. As the pay-off at maturity completely depending whether the stock price reaches

a certain level, barrier options are perfect examples for path-dependent derivatives. Figure 4.4

shows two trajectories of stock prices modeled by geometric Brownian motions. The first one,

the solid black line, breaches the barrier, which is represented by the dotted green line, on its

way to maturity 1, but still remains above the strike (solid blue line). However, the owner would

not be allowed to exercise the option, because the upper barrier was crossed at least once. On

the other hand, the second path, which is illustrated by the black dashed line, never hits the

barrier, but still remains above the strike. Therefore, the option would remain intact and the

owner would exercise the call.
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Figure 4.4: Illustration of Up-and-Out Call Option

4.2.1 Pricing of Barrier Options

As shown in chapter 3.2, the value of a plain vanilla call or put at time t is

c(t) = St exp [ − q(T − t)]Φ(d1) −K exp [ − r(T − t)]Φ(d2) (4.2.1)

p(t) =K exp [ − r(T − t)]Φ(−d2) − St exp [ − q(T − t)]Φ(−d1) , (4.2.2)

with

d1 =
log St

K + (r − q + σ2

2 )(T − t)
σ
√
T − t

d2 =
log St

K + (r − q − σ2

2 )(T − t)
σ
√
T − t

= d1 − σ
√
T − t ,

where St is the price of the underlying stock at time t, K the strike of the option at maturity

T , r the risk-free interest rate p.a., q the dividend rate of the stock p.a., σ the volatility of the

stock and Φ the cumulative distribution function of the normal distribution (see (3.2.18)).

An example of a knock-out option is the down-and-out call option. It is basically a regular call

option with the condition that the stock price must not reach a certain barrier H - otherwise

the option vanishes. Obviously, the barrier H has to be below the level of the current stock

price. The corresponding knock-in option is the down-and-in call option, which will spring
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into existence if the stock price passes barrier H. According to Hull [2009], the value of a

down-and-in call for H >K at time t is

cdi(t) = St exp [ − q(T − t)] (H
St

)
2λ

Φ(y)

−K exp [ − r(T − t)] (H
St

)
2λ−2

Φ(y − σ
√
T − t) , (4.2.3)

where

λ =
r − q + σ2

2

σ2

y =
log [ H2

StK
]

σ
√
T − t

+ λσ
√
T − t ,

and zero if H ≤K.

Looking at a vanilla call option, one can easily observe that its value has to equal the value of

a down-and-out and a down-and-in call since the payoffs are the same. Hence, for H ≥K

cdo(t) = c(t) − cdi(t)

= StΦ(x1) exp [ − q(T − t)]

−K exp [ − r(t − t)]Φ(x1 − σ
√
T − t)

− St exp [ − q(T − t)] (H
St

)
2λ

Φ(y1)

+K exp [ − r(T − t)] (H
St

)
2λ−2

Φ(y1 − σ
√

(T − t)) , (4.2.4)

where

x1 =
log [St

H
]

σ
√
T − t

+ λσ
√
T − t

y1 =
log [HSt ]

σ
√
T − t

+ λσ
√
T − t .

An up-and-out call option is a plain vanilla call option that expires if the stock price hits

a barrier above the current level. Its counterpart consequently is the up-and-in call option,

analogue to the down-and-in and down-and-out calls above.

For H ≤K, the value of an up-and-out call cuo(t) = 0 and that of an up-and-in call cui(t) = c(t).

If H > k,

cui(t) = StΦ(x1) exp [ − q(T − t)]

−K exp [ − r(t − t)]Φ(x1 − σ
√
T − t)
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− St exp [ − q(T − t)] (H
St

)
2λ

[Φ(−y) −Φ(−y1)]

+K exp [ − r(T − t)] (H
St

)
2λ−2

× [Φ(−y + σ
√
T − t) −Φ(−y1 + σ

√
T − t)] , (4.2.5)

and

cuo = c − cui . (4.2.6)

For information on barrier put options as well as all the derivations of the valuation formulas

above, it is referred to Hull [2009]. For the purpose of this thesis, call options are chosen in

order to calculate their future exposures of which the calculations are similar to those of put

options.

Obviously, the evolution of the underlying is very important in order to evaluate the MtF values

of barrier options, because it is uncertain whether the option is still valid at any given time

tk. Anyway, let (Ω,F,{F}t≥0,P) be a filtered measure space and P∗ an equivalent martingale

measure to P for the discounted evolution process S̃t = St exp[−rt]. Then, the MtM values of a

up-and-out call and a down-and-out put under the risk neutral measure P∗ are given by

MtMuo(t) = Bt EP∗ [
1

BT
max{0, ST −K} 1(MS

t,T <H)] = cuo(t) (4.2.7)

MtMdo(t) = Bt EP∗ [
1

BT
max{0,K − ST } 1(mStk,T >L)

] = cdo(t) , (4.2.8)

where MS
t,T = max{Sτ ∣t < τ ≤ T}, mS

tk,T
= min{Sτ ∣t < τ ≤ T}, H is the up barrier, L the down

barrier and Bt the value of the bond under the assumptions of the Black-Scholes framework

at time t ≥ 0 (see section 3.2.1). In contrast to the calculations of Lomibao and Zhu [2005],

the discount factor is also considered here in order to go along with the Black-Scholes risk-

neutral valuation. This also leads to the first flaw of the paper this thesis as it does not clearly

state how to handle the risk-free interest rate. Unfortunately, Lomibao and Zhu [2005] do not

write their mark-to-market valuation formula of the corresponding barrier option down, which

should include the risk-free rate r if the Black-Scholes framework was used (see beginning of this

section). Hence, it is assumed that they probably used r = 0. . Furthermore, they do not clarify

under which measure the valuation is performed - the calculation above use the risk-neutral

measure as intended for the Black-Scholes framework.

Basically, formulas (4.2.7) and (4.2.8) describe the valuation formulas of plain vanilla call options

38



conditioned on the barrier event not occurring, which equals the condition that the maximum

of the stock has to be below H or the minimum above L. The evolution of the stock price is

assumed to follow a GBM, which under the actual measure P looks like

St = S0 exp [(µ − 1

2
σ2)t + σWt] , (4.2.9)

whose drift can be estimated by using historical data. Under the risk neutral measure P∗

St = S0 exp [ − 1

2
σ2t + σW ∗(t)] , (4.2.10)

where W ∗
t is a Brownian motion under P∗. For more information about the change of measure

and the application of the Girsanov theorem, it is referred to section 3.2.2.

For the purpose of illustrating the different possible paths the risk factor may pursue for a given

scenario Stk = x, Lomibao and Zhu [2005] describe the following example:

Figure 4.5: Example of different scenario paths (Source: Lomibao and Zhu [2005])

Figure 4.5 shows four different scenario paths for a given scenario Stk = x at simulation date

tk. The first one shows the evolution of the stock price that did not hit Stk at all. The second

trajectory does hit Stk = x at simulation date and stays below H for the whole tenor. In case

of the third path, the barrier is reached before the simulation date, and in the last one, H is

crossed before maturity but after the simulation date tk. The third path is an interesting one

as it will affect the calculation of exposure at tk, because it hits the barrier before simulation

39



date, which determines the existence or extinction of the underlying option.

For further calculations, the focus is going to be on down-and-out call and the up-and-out call as

representatives of all the other barrier option variations. Applying the conditional expectation

on formula (4.2.7) and (4.2.8) and using the independence of 1{MS
0,tk

<H} and 1{MS
tk,T

<H} , as

well as Wtk áWT −Wtk , the values-at-future are

VaFuo(tk, x) = EP∗ [
Btk
BT

max{0, ST −K} 1{MS
tk,T

<H} 1{MS
0,tk

<H} ∣ Stk = x]

= EP∗ [
Btk
BT

max{0, ST −K} 1{MS
tk,T

<H} ∣ Stk = x]EP∗ [1{MS
0,tk

<H} ∣ Stk = x]

= MtMuo(tk;x) × P∗ [MS
0,tk

<H ∣ Stk = x] (4.2.11)

VaFdo(tk, x) = EP∗ [
Btk
BT

max{0, ST −K} 1{mS0,tk>L}
1{mS0,tk>L}

∣ Stk = x]

= EP∗ [
Btk
BT

max{0, ST −K} 1{mS0,tk>L}
∣ Stk = x]EP∗ [1{mS0,tk>L}

∣ Stk = x]

= MtMdo(tk;x) × P∗ [mS
0,tk

> L ∣ Stk = x] (4.2.12)

So, the value-at-future of both the down-and-out and up-and-out call can be separated into its

mark-to-market value at tk, which can easily be calculated by using formula (4.2.6) and (4.2.4)

and the probability of the stock price to stay within the according borders. Note that Lomibao

and Zhu [2005] wrongly neglected the condition Stk = x of the first expected value in each of

the formulas above. However, they end up having the correct results at the end.

In order to derive the probability to stay either below or upon the barrier, the geometric

Brownian motion

St = S0 exp [(µ − 1

2
σ2)t + σWt]

has to be rewritten to a drifted Brownian motion

Xt ∶= log [St
S0

] = (µ − 1

2
σ2) t + σWt ,

with drift term c ∶= (µ − 1
2σ

2). In order to simplify the following calculations and ensure the

comparability with the results of Lomibao and Zhu [2005], r = 0 is assumed. The reason for the

transformation above is to use the results for the distribution of the maximum of a Brownian

motion with non-zero drift discussed in section 3.1.2. Furthermore, it is referred to Karatzas

and Shreve [1988], Shepp [1979], Buffet [2003] and Musiela and Rutkowski [2005], who provide
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a deep insight into the subject of maxima and mimima of Brownian motions.

In case of the up-and-out call option, the barrier H and the simulated scenario Stk = x have to

be transformed to H ′ = log [HS0
] and x′ = log [ x

S0
] respectively. For x > H, the barrier option is

obviously out-of-the money. Therefore, log [ x
H
] < 0 is assumed and the probability from (4.2.11)

is

P∗ [MS
0,tk

<H ∣ Stk = x] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 −P∗ [MS
0,tk

≥H ∣ Stk = x] if x <H

0 otherwise

(4.2.13)

Transforming the process into a Brownian motion with drift, (4.2.13) turns into

P∗ [MS
0,tk

<H ∣ Stk = x] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 −P∗ [MX
0,tk

≥H ′ ∣Xtk = x′] if x′ <H ′

0 otherwise

(4.2.14)

For x′ <H ′, the theory of section 3.1.2 can be applied, however, the density of (3.1.11) with re-

spect to x is needed. Thus, partially differentiating with respect to x and using the fundamental

theorem of calculus leads to

P∗[MX
0,tk

≥H ′,Xtk = x] =
∂

∂x
[P∗[MX

0,tk
≥H ′,Xtk ≤ x]] =

∂

∂x
[exp [2vy

σ2
] Φ(x − 2y − vtk

σ
√
tk

)]

= exp [2vy

σ2
] φ(x − 2y − vtk

σ
√
tk

)

This result is eventually used to calculate (4.2.14) for x′ <H ′:

P∗ [MS
0,tk

<H ∣ Stk = x] = 1 −
P
∗ [MX

0,tk
≥H ′,Xtk = x′]

P∗ [Xtk = x′]

= 1 −
exp [2(µ− 1

2
σ2)H′

σ2 ] φ(x
′−2H′−(µ− 1

2
σ2)tk

σ
√
tk

)

φ(x
′−(µ− 1

2
σ2)tk

σ
√
tk

)

= 1 − exp
⎡⎢⎢⎢⎣

2(µ − 1
2σ

2)H ′

σ2
−
−4H ′(x′ − (µ − 1

2σ
2)tk) + 4H ′2)

2σ2tk

⎤⎥⎥⎥⎦

= 1 − exp [2H ′(x′ −H ′)
σ2tk

] (4.2.15)
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So, using formula (4.2.15), the valuation formula (4.2.11) of the value-at-future of the up-and-out

barrier call option

VaFuo(tk, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MtMuo(tk;x) × (1 − exp [2H′(x′−H′)
σ2t

]) if x <H

0 otherwise

(4.2.16)

for H ′ = log [HS0
] and x′ = log [ x

S0
].

For the down-and-out barrier option whose value-at-future is (4.2.12), the probability for the

stock to stay above the barrier L < (x ∧ S0) can be derived in the same way as for up-and-out

barrier options in (4.2.15). With the help of (3.1.12) and the symmetry of the density of the

normal distribution about its mean,

P∗ [mS
0,tk

> L ∣ Stk = x] = P∗ [mX
0,tk

> L′ ∣ Xtk = x
′] =

P∗ [mX
0,tk

≥ L′, Xtk = x′]
P[Xtk = x′]

=
φ(−x

′+(µ− 1
2
σ2)tk

σ
√
tk

) − exp [2(µ− 1
2
σ2)L′

σ2 ] φ(2L′−x′+(µ− 1
2
σ2)tk

σ
√
tk

)

φ(x
′−(µ− 1

2
σ2)tk

σ
√
tk

)

= 1 − exp [2L′(x′ −L′)
σ2tk

]

for L′ = log [ LS0
] and x′ = log [ x

S0
].

So, combining (4.2.17) and (4.2.12) gives the value-at-future of the down-and-out call:

VaFdo(tk, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MtMdo(tk;x) × (1 − exp [2L′(x′−L′)
σ2tk

]) if x > L

0 otherwise

(4.2.17)

for L′ = log [ LS0
] and x′ = log [ x

S0
].

In the next section, the implementation and calculation of the potential future exposure of the

up-and-out call option is shown by generating scenarios with R.
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4.2.2 Implementation of Barrier Options

For the purpose of implementation, the statistic programming software R is used, which can

be downloaded for free for any given operating system. For all the path depending derivatives

listed and implemented in this thesis, the package SDE is used, which provides simulations for

geometric Brownian motion and Brownian bridge:

library(sde) # load sde package

Using the model introduced in section 4.1, the first step is to set the number M of scenarios

generated and the number of time intervals N used in the process of discretising the tenor up

to maturity T - M = 10000 scenarios and N = 100 time intervals are going to be generated.

Generally, parameters for the risk factor - the stock price in this case - are estimated based

on (4.1.2). However, for the demonstration of the implementation, a simple example is used in

which the parameters are predefined instead:

Let S be the stock price that follows a geometric Brownian motion with appreciation rate

µ = 0.05, volatility σ = 0.1 and initial value S0 = 100$ at t0 = 0. The up-and-out call option

has strike K = 100 at maturity T = 1 with an upper barrier H = 110$. For starters, the risk

free interested rate r used to discount the price process is assumed to be zero like intended by

Lomibao and Zhu [2005]. However, is changed to r > 0 for showcasing the difference later on .

The next step is to generate the stock price process up to T for every time node tk, k ∈

{0,1,2, . . . ,N}. As the indexing in R starts at one, t0 =̂ t[1] and tN = T =̂ t[N+1]. These

parameters are implemented as follows:

mu<-0.05 # appreciation rate

r<-0 # risk -free rate

sigma <-0.1 # volatility

T<-1 # maturity

S0<-100 # initial value

K<-100 # strike

H<-110 # upper barrier
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The function GBM of the SDE package generates a geometric Brownian motion for the given

parameters and is used to generate the path of the stock price evolution:

S<-GBM(S0 ,mu ,sigma ,T,N) # stock price

In order to calculate the value-at-future

VaFdo(tk, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MtMdo(tk;x) × (1 − exp [2L′(x′−L′)
σ2tk

]) if x > L

0 otherwise

(4.2.18)

the probability of the stock price to stay below barrier H has to be calculated first:

P<-rep(0,N+1) # probability to stay below H

P[( which(S<H))]<- 1-(S[(which(S<H))]/H)^(2*log(H/S0)/(sigma ^2*(t

[( which(S<H))])))

Afterwards, the mark-to-market values MtMuo(tk;x), k ∈ {0,1,2, . . . ,N}, have to be calculated,

which can easily be implemented according to chapter 4.2 and the results of Hull [2009]:

d1 <- (log(S/K)+(r+sigma^2/2)*(T-t))/(sigma*sqrt(T-t))

lambda <- (r+1/2*sigma ^2)/sigma^2

x1 <- log(S/H)/(sigma*sqrt(T-t)) + lambda*sigma*sqrt(T-t)

y <- log(H^2/(S*K))/(sigma*sqrt(T-t)) + lambda*sigma*sqrt(T-t)

c_uo<-S*pnorm(d1)-K*exp(-r*(T-t))*pnorm(d1 - sigma * sqrt(T-t))

- (S*pnorm(x1)-K*exp(-r*(T-t))*pnorm(x1 -sigma*sqrt(T-t))-S*

(H/S)^(2*lambda)*(pnorm(-y)-pnorm(x1-sigma*sqrt(T-t)))+K*exp

(-r*(T-t))*(H/S)^(2*lambda -2)*(pnorm(-y+sigma*sqrt(T-t))-

pnorm(x1))) # MtM of up-an-out barrier call option

Putting the pieces together, the value-at-future for the up-and-out call option is calculated by

multiplying the probability from above with the mark-to-market value of the barrier option.

The results for each scenario j, j ∈ {1,2, . . . ,M} and each time-step tk, k ∈ {0,1,2, . . . ,N} are

saved in a matrix:

VaF[j,]<-P*c_uo # value -at -future
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VaF[j,( which(VaF[j,]<0))]<-0 # exposure

The second line ensures that each negative value-at-risk equals zero in order to transfer the

values into exposures.

Finally, the metrics introduced in 2.1.1 have to be applied, merely concentrating on potential

future exposures. Thereby, the quantiles for the PFEs are set to 5%, 50% and 95% for all

examples in order to make the results comparable. Hence,

q<-apply(VaF , 2, quantile , probs = c(0.05 , 0.5, 0.95) , na.rm

= TRUE) # PFEs quantiles

Figure 4.6 shows the PFEs of the up-and-out call option with confidence levels of 5%, 50% and

95 %. The x-axis represents the tenor up to maturity T = 1. The PFE can be interpreted as

a value-at-risk from the investor’s profit perspective. One can easily recognize the difference

between the exposure profile of the barrier option and that of a vanilla call option with the same

parameters shown in figure 4.7. Taking a closer look at the peak exposure profile, the convex

shape of the barrier option’s PFEs stands in contrast with the concave profile of the quantiles of

the exposure of a plain vanilla option, which has to do with the likelihood of the barrier option

to be knocked out during the tenor. Furthermore, the fact that at any tk, k ∈ {0,1,2, . . . ,N},

the path up that point in time as well as the development up to maturity T are unknown has

a huge effect on the option price in general, as a significant discrepancy between the exposure

of the vanilla option and that of an up-and-out barrier option can be seen in figure 4.6 and .

Even at its peak, the potential future exposures of the barrier option are far lower than those
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of the vanilla option, providing that they use an equal strike and underlying asset.
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Figure 4.6: PFEs of up-and-out call option with µ = 0.05
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Figure 4.7: PFEs of vanilla call option with µ = 0.05

Furthermore, note that the 50%-quantile of the up-and-out barrier call option converges 0 zero,

whereas that of the vanilla option does not. That has to do with the fact that under these

parameters, the real probability of the vanilla option to be ”out-of-the-money” is lower than

50% - hence it stays above zero. On the other hand, if µ = 0 is assumed - like intended by

Lomibao and Zhu [2005] - the probability to be ”out-of-the-money” is greater or equal 50%,

which makes the corresponding quantile converging to zero (see figure 4.8. Since the barrier

option requires the stock price to stay within certain borders to have a positive payoff, its 50%

quantile converges to zero regardless.
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Figure 4.8: PFEs of vanilla call option

The next plot shows the expected exposure of the barrier option, though it has to be noted

that the plot is going to become smoother when altering the risk-free interest rate to any value

greater zero (figure 4.9).
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Figure 4.9: EE of up-and-out barrier option
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Setting the interest rate to r = 0.02 and leaving the appreciation rate at µ = 0.05, the value-at-

future turns negative for the first period of time, afterwards however, the exposures show the

same behavior as those that neglect the discount factor. Figure 4.10 and 4.11 show the different

exposure profiles taking a discount rate into account.
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Figure 4.10: PFEs of up-and-out call option with r = 0.02 and µ = 0.05
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Figure 4.11: EE of up-and-out call option with r = 0.02 and µ = 0.05
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4.3 Swap-Settled Swaption

The next path-dependent derivative of which the exposure profiles are going to be calculated

is the swap-settled swaption. The difference between this swaption and a regular one is the

settlement: Where the regular swaption is cash-settled at expiry date, a swap-settled swaption

settles into the underlying swap if the option is exercised at maturity. The crucial part of a

swap-settled swaption in the topic of credit exposure is the fact that its future credit exposure

does not stop at the expiry date, but will continue well beyond to the maturity of the swap if

the option is exercised. However, to understand the peculiarities of this derivative, the regular

swaption has to be explained first, referring to the work of Hull [2009].

The European swaption is an option on entering an interest-rate swap, which is a financial

instrument that obliges the owner to pay or receive cash flows in the amount of a predefined

interest rate (swap rate) on a fixed notional over a certain period. In exchange, he receives or

pays a floating interest rate (f.e. LIBOR, EURIBOR, . . . ) on the same notional over the same

timespan. These derivatives are called fixed-for-floating swaps and are basically an exchange of

different cash flows.

There are two possible positions:

• Payer swap: The party that has to pay the fixed interest rate calls the swap a payer swap.

It receives a floating rate in exchange.

• Receiver swap: The party that receives the fixed interest rate calls the swap a receiver

swap. It has to pay a floating rate in exchange.

In most cases, the London interbank offered rate (LIBOR) is taken for the floating interest

rate. It is the average rate estimated by leading banks in London at which banks can borrow

funds from other banks in London’s interbank market. It is fixed on a daily basis and is usually

offered as one, three or six months LIBOR, which refers to the maturity of the funds. In order

to understand swaps, assume a six months swap between company A and company B starting

at 5th March, 2012. Further, assume that A is obliged to pay a swap rate of 5% on a notional

of 100 million $ to company B, which itself has to pay six months LIBOR on the same notional

to company A in return. The exchange takes place every six months and to keep the example
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simple, the swap rate of 5% is semi-annual.

Figure 4.12: Illustration of interest rate swap between company A and B

Consequently, the first exchange of cash flows will occur on 5th September, 2012, exactly six

months after the swap started. Company A pays 100 × 0.05 = 2.5 million $, and company B,

assuming that the six months LIBOR is 4.2% at 5th March, 2012, 0.042×0.5×100 = 2.1 million $.

The floating interest rate for a swap period is always fixed at the end of the last period. Hence,

the first exchange of cash flows does not underlie any uncertainty since the first so-called fixing

date matches the date the contract is signed. The second exchange is going to take place at 5th

March, 2013 - this pattern is going to continue until expiry date. It has to be noted though that

only the margin of the two cash flows is transferred from one party to the other. Relating to

the example, company A has to pay 2.5−2.1 = 0.4 million $ to company B at 5th September, 2012.

Hence, the value of a payer swap is

Vswap = Bfl −Bfix (4.3.1)

where Bfl is the value of the floating Bond and Bfix that of the fixed one. For more information

on swaps, it is referred to Hull [2009].

Anyway, now that a swap has been established, the motivation behind an option on a swap is

much clearer. So, the owner of an European swaption has the right, but not the obligation, to

enter an interest rate swap at a specific date. Similar to swaps, it is distinguished between a

payer swaption and a receiver swaption which determines the underlying swap.

• Payer swaption: The right, but not the obligation, to pay fixed rate and receive floating

rate throughout the tenor of the underlying swap.

• Receiver swaption: The right, but not the obligation, to receive fixed rate and pay floating

rate throughout the tenor of the underlying swap.
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Several factors and parameters have to be fixed in such a contract:

• the premium of the swaption (price)

• the strike of the swaption which equals the swap rate of the underlying swap

• the exercise/expiry date of the option

• the tenor of the swap

• the swap periods and their frequency

• the notional amount

However, when does an investor want to buy a swaption and if so, when does he want to exercise

his option?

Swaptions provide their owner the security that the fixed rate, which he has to pay for future

funds, does not exceed a certain level. It is an alternative to a forward swap, which, in contrast

to a swaption, obliges the owner to enter the swap at a future time - not giving the owner any

choice. However, the option makes the swaption also more expensive than a simple forward swap,

which does not need a premium to be paid upfront, because the forward does not protect the

owner from unfavorable interest rate developments. The owner of payer swaption will exercise

his option at exercise date, if the floating rate, f.e. LIBOR, is higher than the predefined swap

rate at that date. If LIBOR is below the fixed swap rate, the investor has no interest in entering

the underlying swap at expiry date, since a regular swap will be cheaper. Therefore, he will

buy the regular one which has a present value of zero (no-arbitrage) in contrast to the negative

value of underlying swap (see formula (4.3.1)).

4.3.1 Pricing of Swap-Settled Swaptions

In order to evaluate a swaption, it first has to be constructed from more basic instruments,

whereby following definitions and notations are closely tied to Brigo and Mercurio [2001]. The

forward rate agreement (FRA) is a contract that gives its owner an interest-rate payment for

the period between Tα and Tβ, where Tα is the expiry time and Tβ > Tα the maturity. At

maturity Tβ, a fixed rate K is exchanged against a floating payment based on the spot rate

L(Tα, Tβ) resetting in Tα with maturity Tβ, which is defined as

L(t, T ) ∶= 1 − P (t, T )
τ(t, T ) P (t, T )

, (4.3.2)
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where P (t, T ) is the value of a zero-coupon bond at t defined in (3.2.2), and τ(t, T ) the year

fraction between t and T . For a notional L̂, the value of the contract at maturity is therefore

L̂τ(Tα, Tβ)(K −L(Tα, Tβ)) .

Hence, the value of the forward rate agreement at time t < Tα < Tβ is

FRA(t, Tα, Tβ, τ(Tα, Tβ), L̂,K) = L̂P (t, T )τ(Tα, Tβ)(K − F (t;Tα, Tβ)) , (4.3.3)

with F (t;Tα, Tβ) ∶= 1
τ(Tα,Tβ) (

P (t,Tα)
P (t;T ) − 1) being the forward interest rate, which is the value of

the fixed rate in the FRA that renders it a fair contract at time t.

The next step is to calculate an interest-rate swap starting from Tα and ending at Tβ by using

the results above. At every Ti in a prespecified set of dates Tα+1, Tα+2, . . . Tβ, with Tα and Tβ,

the fixed leg pays out

L̂τiK

and the floating one

L̂τiL(Ti−1, Ti) ,

with τi being the year fraction between Ti−1 and Ti and L(Ti−1, Ti) resetting at dates Tα, Tα+1, . . . Tβ−1.

Consequently, the value of the payer interest rate swap (PFS) at time t is the discounted sum

of the values of all the cash-flow exchanges, hence

PFS(t,T , τ, L̂,K) =
β

∑
i=α+1

−FRA(t, Ti−1, Ti, τi, L̂,K)

= L̂
β

∑
i=α+1

τiP (t, Ti)(F (t;Ti−1, Ti) −K) , (4.3.4)

where T ∶= {Tα, Tα+1, . . . , Tβ} and τ = {τα+1, τα+2, . . . , τβ}.

Analogously, for an according receiver interest rate swap (RFS),

RFS(t,T , τ, L̂,K) =
β

∑
i=α+1

FRA(t, Ti−1, Ti, τi, L̂,K)

= L̂
β

∑
i=α+1

τiP (t, Ti)(K − F (t;Ti−1, Ti)) . (4.3.5)
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The forward swap rate Sα,βt at time t for the sets of times T and year fractions τ is defined

as the rate in the fixed leg of the IRS that makes it a fair contract at t. Basically, it is the fixed

rate K from above that provides that RFS(t,T , τ, L̂,K) = 0 = PFS(t,T , τ, L̂,K). Hence,

Sα,βt =
P (t, Tα) − P (t, Tβ)
∑βi=α+1 τiP (t, Ti)

. (4.3.6)

In order to lead over to swaptions, the discounted pay-off of a payer swaption with maturity Tα

and Tenor Tα − Tβ, can be written by considering the value of the underlying payer IRS at the

swaptions maturity Tα. This value is

L̂
β

∑
i=α+1

τiP (Tα,Ti)(F (Tα;Ti−1, Ti) −K) .

Obviously, the option will only be exercised when upper value is positive at Tα. Hence, the

payer swaption pay-off, discounted from Tα to the current time t equals to

MtMps(t) = L̂ D(t, Tα) max (0,
β

∑
i=α+1

τiP (Tα, Ti)(F (Tα;Ti−1, Ti) −K)) . (4.3.7)

Thereby

D(t, T ) = Bt
BT

= exp [−∫
T

t
rs ds]

is the (stochastic) discount factor between t and T .

In order to evaluate a swaption analytically from formula (4.3.7), the Black-Scholes framework

is chosen again. However, the forward swap measure has to be defined, under which the swap

forward swap rate is a martingale.

Let (Ω,F,{Ft}t≥0,P) be introduced like in section 3. The forward swap measure Pα,β is defined

on Fα+1 as the equivalent martingale measure associated to the annuity numeraire

Aα,βt ∶=
β

∑
i=α+1

τiP (t, Ti) (4.3.8)

under which the forward swap rate Sα,βt from (4.3.6) is a martingale.

By assuming a log-normal dynamic,

dSα,βt = σSα,βt dWα,β
t , (4.3.9)

where σ > 0 and Wα,β
t is a standard Brownian motion under Pα,β. Consequently,

Sα,βt = Sα,β0 exp [−1

2
σ2t + σWα,β

t ] ,
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Under this assumption, the results of the Black-Scholes model from section 3.2.3 can be applied

on (4.3.7). A change of numeraire from bond B under the equivalent martingale measure P∗ to

the annuity Aα,β under Pα,β (see (3.2.13)) leads to a mark-to-market value of the payer swaption

of

MtMps(t;K,T , τ) = EP∗[L̂ D(t, Tα) max (0,Aα,βTα (Sα,βTα
−K)) ∣ Sα,βt ]

= L̂ EP∗[
Bt
BTα

Aα,βTα max (0, Sα,βTα
−K) ∣ Sα,βt ]

= L̂ EPα,β[
Aα,βt

Aα,βTα

Aα,βTα max (0, Sα,βTα
−K) ∣ Sα,βt ]

= L̂ Aα,βt BS(Sα,βt ,K,Tα − t, σ,0,0,1) a.s. , (4.3.10)

where BS(Sα,βt ,K,Tα − t, σ,0,0,1) is the value of the Black-Scholes formula defined in section

3.2.3).

For a receiver-swaption, the mark-to-market value is calculated similarly, hence

MtMrs(t;K,T , τ) = EP∗[L̂ D(t, Tα) max (0,Aα,βTα (K − Sα,βTα
)) ∣ Sα,βt ]

= L̂ Aα,βt BS(Sα,βt ,K,Tα − t, σ,0,0,−1) a.s. . (4.3.11)

These formulas hold for every tk < Tα, where Sα,βtk
is going to be the simulated swap rate in

the MtF model. Comparing them with those given by Lomibao and Zhu [2005], it is clear that

they did not take the notional into account, hence assuming L̂ = 1. Furthermore, they use the

Black-Scholes formula with parameter S0 for the valuation at time t, although the St has to be

used since the stock price at time t is known.

For any t > Tα, Lomibao and Zhu [2005] proposed to continue calculating the potential future

exposures, because if the swaption was exercised and the owner settled into the underlying

swap, the exposure would have to be calculated continuously up to Tβ. They argued that for

the simulated scenario Sα,βt , Tα < t < Tβ, there are two possibilities for the trajectory of the

swap rate:

1. The swap rate, starting at Sα,β0 , follows a path that hits Sα,βTα
>K > 0 at exercise date Tα,

and proceeds until reaching Sα,βtk
, Tα < tk < Tβ.

2. The swap rate, starting at Sα,β0 , follows a path that hits Sα,βTα
<K at exercise date Tα, and

proceeds until reaching Sα,βtk
, Tα < tk < Tβ.
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In case of the first path, the swaption would be exercised, the owner would then enter the

swap and exposure calculations would have to be continued up to maturity Tβ. However, if the

simulated swap rate takes the second path, the swaption would not be exercised and therefore,

no exposure would have to be calculated for any tk > Tα.

However, they do not realize that for any Tα < t ≤ Tβ, the forward swap rate Sα,βt does not exist.

Therefore, trying to model any swap rates above exercise date Tα does not make any sense,

especially if the forward swap rate is considered. Thus, the potential future exposures can only

be calculated up to the first settlement date of the underlying swap, which equals the exercise

date of the swaption. That also means that the exposure profile of a swap-settled swaption in

the framework of Black-Scholes equals that of a cash-settled one. Thereby, Brigo and Mercurio

[2001] gives a good insight into the so-called log-normal forward-swap model (LSM).

4.3.2 Implementation of Swap-Settled-Swaptions

The implementation of a swap-settled swaption is going to be shown on a simple example of

an European payer swaption introduced in the section before. Again, a geometric Brownian

motion is used to model the risk factor, which, in this case, is the forward swap rate Sα,βt . The

sde package provides all the simulation that are needed for this model.

library(sde) # load sde package

The following Monte-Carlo simulation contains M = 10000 scenarios. Let S be the swap rate

that follows a geometric Brownian motion with appreciation rate µ = 0.05 volatility σ = 0.1 and

initial value S0 = 0.05 at t0 = 0. The swaption with fixed rate K = 0.05 has an exercise date

of Tα = 1 and if exercised, lets the owner enter the underlying swap at Tα with tenor T = 5.

Therefore, underlying swap with notional L = 100$ starts at Tα and will end at Talpha+T = Tβ.

Finally, the risk-free interest rate is r = 0.02.

mu<-0.05 # appreciation rate

sigma <-0.1 # volatility

T<-5 # tenor of swap

T_a<-1 # exercise date of swaption

S0<-0.05 # initial value
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K<-0.05 # fixed swap rate (= strike)

L<-100 # Nominale of swap in $

r<-0.02 # risk -free rate

The next step is to generate the time grid, which again is equidistant. Thereby, the tenor of

the option on the swap is divided into n = 100 intervals and it is assumed that the swap pays

quarterly, hence four swap periods per year.

M<-10000 # number of generated scenarios

n<-100 # number of time intervals up to exercise date

m<-4 # number of swap periods per year

N<-floor(m*T) # total number of swap periods

t<-c(seq(0,T_a-1/n, by=1/n) , seq(T_a,(T_a+T),by=1/m)) #

time nodes

A<-rep(0,(T_a)*n+1)

for (k in 1:((T_a)*n+1)) {

A[k] <- sum(1/m*exp( -r*(t[(T_a*n+2):(T_a*n+T*m+1)] - t[k])))

# annuity

}

For every scenario j out of the 10000 simulations, the risk factor is generated and both the

value-at-future (4.3.10) for time nodes before Tα.

S<-GBM(S0 ,mu ,sigma ,T_a,(T_a)*n) # swap rate

d1 <- (log(S[(1:(T_a*n+1))]/K)+( sigma^2/2)*(T_a-t[(1:(T_a*n+1))])

)/(sigma*sqrt(T_a-t[(1:(T_a*n+1))]))

MtM[j,]<- L*A*(S[(1:(T_a*n+1))]*pnorm(d1)-K*pnorm(d1 -sigma*sqrt(T

_a-t[(1:(T_a*n+1))]))) # mark -to-market value

ifelse(MtM <0, 0, MtM) # exposure

After the computer-intense simulation is done, the exposure measures have to be applied on the

results of the VaF table. For several different input parameters, the expected exposure (EE)

and the quantiles of the potential future exposures are calculated and plotted.
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ExpExposure <-apply(MtM [,(1:(T_a*n+1))],2,mean) # expected

exposure

Quantile_vanilla <-apply(MtM ,2, quantile , probs = c(0.05, 0.5,

0.95), na.rm = TRUE) # PFEs

Figure 4.13 shows the potential future exposures for the quantiles 0.05, 0.5 and 0.95. Unsur-

prisingly, the profile of the exposures in figure 4.13 is similar to that of a vanilla call option on

a stock - see figure 4.9. That is due to the fact the swaption simply is a vanilla option on a

swap, where the forward swap rate under the forward swap measure is modeled similar to the

stock price under the risk-neutral measure with the bond as numeraire.
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Figure 4.13: PFEs of Swap-Settled-Swaption (Payer) with µ = 0.05 and r = 0.02
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Figure 4.14: EE of Swap-Settled-Swaption (Payer) with µ = 0.05 and r = 0,02

Again, if µ = 0 is chosen, as apparently done by Lomibao and Zhu [2005], the 50%-quantile

will converge to zero like its vanilla counterpart. This behavior has already been discussed in

section 4.2.2 and can be seen in figure 4.15.
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Figure 4.15: PFEs of Swap-Settled-Swaption (Payer) with µ = 0 and r = 0.02
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Figure 4.16: EE of Swap-Settled-Swaption (Payer) with µ = 0 r = 0,02
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4.4 Asian Option

Asian options are options where the payoff depends on the average price of the underlying

within the tenor of the option. Thereby, daily, weekly or even monthly stock prices are taken

into account for calculating either an arithmetic average, or a geometric one. Considering the

stock prices of the discrete set of which the average is taken, time of a discrete set of time, the

two averages are defined as

An =
n

∑
i=0

Sti
n

(4.4.1)

and

Gn =
n

∏
i=0

S
1
n
ti

(4.4.2)

where n is the number of stock prices Sti , i ∈ {0, . . . , n}, taken into account.

For the purpose of this paper, it is focused on the arithmetic average only, as the geometric one

can simply be calculated by using the convolution of normal distributed random variables.

The payoff of an average price call is

max(0,An −K) ,

and that of an according put option

max(0,K −An) .

Both of them have in common that they are cheaper to buy than their plain vanilla counterparts,

which makes them more appealing in some situations. As Hull [2009] points out, a manager

that expects certain, evenly distributed cash flows over the course of a year, is surely interested

in an option that provides the security of the average cash flows to be higher than a certain

limit (strike). Thus, an average option becomes handy. Alternatively, an average strike option

with payoff

max(0, ST −An)

for the call, and

max(0,An − ST )

for the put option can also be obtained. They provide that the average price of a heavily traded

asset stays above or below the price at maturity.

61



To trace an arc to the methods used in this thesis, it is assumed that the price S of the

underlying follows a geometric Brownian motion

St = S0 exp [(µ − 1

2
σ2)t + σWt]

with An being its arithmetic average.

Unfortunately, the distribution of the arithmetic average of log-normal distributed random

variables does not have any properties allowing to derive the valuation analytically, hence,

there is no closed form of it. However, Fenton [1960] proposed to approximate the sum of log-

normal distributed random variables with another log-normal distributed random variable using

moment matching. This method accordingly is called Fenton-Wilkinson method. Additionally,

Schwartz and Yeh [1981] provide a good approach to evaluate the moments for the resulting

random variate. These observation are going to be very useful when pricing an Asian option in

the following section.

4.4.1 Pricing of Asian Options

For the purpose of calculating the exposure profiles of an Asian option, the value-at-future

has to be derived first, similar to the other derivatives that are focused on in this thesis. For

simulation, a discrete time grid {t0, t1, . . . , tN} is used. Note that tN does not have to equal the

maturity T , since the last date the average is taken from does not need to fall on the date of

maturity. For example, if a weekly basis is considered, an Asian option with the maturity of one

year á 360 days does meet this requirement, because 7× 51 = 357. Hence, tN = ⌊360/7⌋×7
360 ≠ 1 = T ,

which shows that the day count conversion is crucial.

As the concept of the Brownian bridge is going to be applied, it is crucial to divide the arithmetic

average into one part that deals with the average from [t0, tk] and another one for [tk+1, tN ]

- with simulation date tk,. That is important as for any t ∈ {t0, t1, . . . tk}, the concept of the

Brownian Bridge applies, and for t ∈ {tk+1, . . . , tN}, the common valuation formulas conditioned

on the information at tk is used. Therefore, the following notation for the discrete case is

introduced:

A(tm, tl) =
1

l −m + 1

l

∑
i=m

Sti , 0 ≤m < l ≤ n
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It has to be mentioned though that it is merely concentrated on the discrete case, totally

abandoning the continuous arithmetic average. As the model is based on a discrete set of time

and Monte-Carlo simulation, it is quite plausible to do so. As a consequence, the value-at-future

of the Asian option with arithmetic average at time tk ∈ {t0, t1, . . . , tN−1} is given by

VaF(tk, Stk ;ψ) = E [
Btk
BT

max (0, ψ (A(t0, tN) −K)) ∣Stk]

=
Btk
BT

E [max(0, ψ ( k + 1

N + 1
A(t0, tk) +

N − k
N + 1

A(tk+1, tN) −K)) ∣ Wtk] (4.4.3)

where Wtk =
log[Stk

S0
]−(µ− 1

2
σ2)tk

σ is generated accordingly and Bt is the value of a risk-free bond

at time t introduced in section 3.2.1. For tk = tN , A(tk+1, tN) ∶= 0 such that N−k
N+1A(tk+1, tN) = 0.

The next step is to split up the joint conditional expectation, whereby A(t0, tk) is independent

from A(tk+1, tN) under the condition that Wtk is known. Be aware that Lomibao and Zhu

[2005] have falsely rewritten the expected value above, because they made a false assumption

on the independence of A(t0, tk), A(tk+1, tN) and Wtk . Unfortunately, it seems to be impossible

to find an analytical solution for upper expected value for arithmetic average option, which re-

quires a proper semi-analytical approach. However, as mentioned before, the distribution of the

sum of log-normal distributed random variables comes fairly close to be log-normal distributed

again. Therefore, Lomibao and Zhu [2005] introduced an approximation where the averages

are assumed to be log-normal distributed to reach accord with previously used Black-Scholes

model. However, they assumed that both approximations are correlated, which is not a plau-

sible assumption on the averages. Since the stock prices, and consequently, their averages are

solely driven by a Brownian motion, which has independent increments, the following random

variables are chosen to be independent from each other:

Ã(t0, tk;Z) = exp [M(t0, tk) +
√
V (t0, tk) Z] (4.4.4)

Ã(tk+1, tN ;U) = exp [M(tk+1, tN) +
√
V (tk+1, tN) U] , (4.4.5)

where U,Z ∼ N(0,1) i.i.d., and (M(t0, tk), V (t0, tk)), (M(tk+1, tN), V (tk+1, tN)) are the param-

eters of the log-normal distributed approximation such that

A(t0, tk) ∣Wtk ≈ Ã(t0, tk;Z)

A(tk+1, tN) ∣Wtk ≈ Ã(tk+1, tN ;U)

with

E[Ã(t0, tk;Z)i] = E[A(t0, tk)i ∣Wtk]
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E[Ã(tk+1, tN ;U)i] = E[A(tk+1, tN)i ∣Wtk] , i ∈ {1,2} .

The parameters of the approximated arithmetic averages can be calculated by deriving their first

and second moments for both time intervals, [t0, tk] and [tk+1, tN ] - tk being fixed. However,

note that with time interval, the discrete set of time within the limits is meant. Thereby, the

common formulas for the calculations of the parameters for a log-normal distributed random

variable are used:

E[Ã(tk+1, tN ;U) ∣Wtk] = exp [M(tk+1, tN) + 1

2
V (tk+1, tN)] ⇔

V (tk+1, tN) = 2 (log [E[Ã(tk+1, tN ;U) ∣Wtk]] −M(tk+1, tN))

V[Ã(tk+1, tN ;U) ∣Wtk] = ( exp [V (tk+1, tN)] − 1) exp [2M(tk+1, tN) + V (tk+1, tN)] .

Hence, the parameters for Ã(tk+1, tN ;U) are

M(tk+1, tN) = 2 log [E[Ã(tk+1, tN ;U) ∣Wtk]] −
1

2
log [E[Ã(tk+1, tN ;U)2 ∣Wtk]]

V (tk+1, tN) = log [E[Ã(tk+1, tN ;U)2 ∣Wtk]] − 2 log [E[Ã(tk+1, tN ;U) ∣Wtk]] ,

and for Ã(t1, tk;Z) - analogically -

M(t0, tk) = 2 log [E[Ã(t0, tk;Z) ∣Wtk]] −
1

2
log [E[Ã(t0, tk;Z)2 ∣Wtk]]

V (t0, tk) = log [E[Ã(t0, tk;Z)2 ∣Wtk]] − 2 log [E[Ã(t0, tk;Z) ∣Wtk]] .

Therefore, the next steps are to calculate the moments of A(tk+1, tN) and A(t1, tk), match

them with those of the approximations Ã(t1, tk) and Ã(tk+1, tN), and eventually calculate the

parameters according to the formulas above. Splitting the average up into two time intervals

is crucial, however, as the knowledge of Wtk has a great impact on the conditional valuation.

For time interval [tk+1, tN ] and ∆t = ti − ti−1, i ∈ {1, . . . ,N}, both moments of A(tk+1, tN) can

be calculated using familiar calculations seen in section 3.2.1:

E[A(tk+1, tN) ∣Wtk] = E
⎡⎢⎢⎢⎢⎣

1

N − k

N−k
∑
j=1

Stk+j

RRRRRRRRRRR
Wtk

⎤⎥⎥⎥⎥⎦
= 1

N − k

N−k
∑
j=1

E [Stk+j ∣ Wtk]
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=
Stk
N − k

N−k
∑
j=1

exp [(µ − 1

2
σ2) (tk+j − tk)]E [exp [σWtk+j−tk]]

=
Stk
N − k

N−k
∑
j=1

exp [(µ − 1

2
σ2) (tk+j − tk)] exp [σ

2

2
(tk+j − tk)]

× ∫
R
φ(x − σ

√
tk+j − tk)

=
Stk
N − k

N−k
∑
j=1

exp [µ(tk+j − tk)] a.s. (4.4.6)

E[A(tk+1, tN)2 ∣Wtk] = E
⎡⎢⎢⎢⎢⎣

⎛
⎝

1

N − k

N−k
∑
j=1

Stk+j
⎞
⎠

2 RRRRRRRRRRRRR
Wtk

⎤⎥⎥⎥⎥⎦

= 1

(N − k)2

N−k
∑
j=1

⎛
⎝
E [S2

tk+j ∣ Wtk] + 2
j−1

∑
i=1

E [Stk+jStk+i ∣ Wtk]
⎞
⎠

= 1

(N − k)2

N−k
∑
j=1

{E [S2
tk

exp [2(µ − 1

2
σ2) (tk+j − tk) + 2σWtk+j−tk]]

+ 2
j−1

∑
i=1

E[S2
tk

exp [(µ − 1

2
σ2)(tk+j − tk + tk+i − tk)

+ σ(Wtk+j−tk +Wtk+i−tk)]]}

= (
Stk
N − k

)
2 N−k
∑
j=1

{ exp [2(µ − 1

2
σ2) (tk+j − tk)]E [exp [2σWtk+j−tk]]

+ 2
j−1

∑
i=1

exp [(µ − 1

2
σ2)(tk+j + tk+i − 2tk)]

×E[ exp [σ(Wtk+j−tk +Wtk+i−tk)]]}

= (
Stk
N − k

)
2 N−k
∑
j=1

{ exp [2(µ − 1

2
σ2) (tk+j − tk) + 2σ2(tk+j − tk)]

+ 2
j−1

∑
i=1

exp [(µ − 1

2
σ2)(tk+j + tk+i − 2tk)]

×E[ exp [σ(Wtk+j−tk+i + 2Wtk+i−tk)]]}

= (
Stk
N − k

)
2 N−k
∑
j=1

{ exp [(2µ + σ2) (tk+j − tk)]

+ 2
j−1

∑
i=1

exp [(µ − 1

2
σ2)(tk+j + tk+i − 2tk)

+ 1

2
σ2(tk+j − tk+i) + 2σ2(tk+i − tk)]}

= (
Stk
N − k

)
2 N−k
∑
j=1

{ exp [(2µ + σ2) (tk+j − tk)]
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+ 2
j−1

∑
i=1

exp [µ(tk+j + tk+i − 2tk) + σ2(tk+i − tk)]} a.s. , (4.4.7)

where the independence of Ws and Wt−s provides

Ws +Wt ∼Ws + [Ws +Wt−s] = 2Ws +Wt−s , t > s .

However, the moments for [t0, tk] are a little bit more difficult to derive as a repeated use of the

Brownian Bridge is essential. In the following calculations, the result of (3.1.2) is used multiple

times:

E[A(t0, tk) ∣Wtk] = E
⎡⎢⎢⎢⎢⎣

1

k + 1

k

∑
j=0

Stj

RRRRRRRRRRR
Wtk

⎤⎥⎥⎥⎥⎦

= S0

k + 1

k

∑
j=0

exp [(µ − 1

2
σ2) tj] E [exp [σWtj ] ∣ Wtk]

= S0

k + 1

k

∑
j=0

exp [(µ − 1

2
σ2) tj] exp [

σ2tj

2
(1 −

tj

tk
) +

σtjWtk

tk
]

= S0

k + 1

k

∑
j=0

exp
⎡⎢⎢⎢⎣
µtj −

σ2t2j

2tk
+
σtjWtk

tk

⎤⎥⎥⎥⎦
(4.4.8)

and

E[A(t0, tk)2 ∣Wtk] = E
⎡⎢⎢⎢⎢⎣

⎛
⎝

1

k + 1

k

∑
j=0

Stj
⎞
⎠

2 RRRRRRRRRRRRR
Wtk

⎤⎥⎥⎥⎥⎦

= ( S0

k + 1
)

2 k

∑
j=0

{exp [(µ − 1

2
σ2)2tj] E[ exp [2σWtj ] ∣Wtk]

+ 2
j−1

∑
i=0

exp [(µ − 1

2
σ2) (ti + tj)] E[ exp [σ (Wti +Wtj)] ∣Wtk]

⎫⎪⎪⎬⎪⎪⎭

= ( S0

k + 1
)

2 k

∑
j=0

{exp [(µ − 1

2
σ2)2tj] exp [2σ2tj(1 −

tj

tk
) +

2σtjWtk

tk
]

+ 2
j−1

∑
i=0

exp [(µ − 1

2
σ2) (ti + tj)] E[ exp [σ (2Wti +Wtj−ti)] ∣ Wtk]

⎫⎪⎪⎬⎪⎪⎭

= ( S0

k + 1
)

2 k

∑
j=0

{ exp [(µ − 1

2
σ2)2tj] exp [2σ2tj(1 −

tj

tk
) + 2σ

tjWtk

tk
]

+ 2
j−1

∑
i=0

exp [(µ − 1

2
σ2) (ti + tj)] E[ exp [2σWti] ∣ Wtk]

×E[ exp [σWtj−ti] ∣ Wtk]}

66



= ( S0

k + 1
)

2 k

∑
j=0

{ exp
⎡⎢⎢⎢⎣
(2µ + σ2) tj + 2σ2

t2j

tk
+ 2σ

tjWtk

tk

⎤⎥⎥⎥⎦

+ 2
j−1

∑
i=0

exp [(µ − 1

2
σ2) (ti + tj)] exp [2σ2 (1 − ti

tk
) − 2σ

Wtkti

tk

+ σ2 tj − ti
2

(1 −
tj − ti
tk

) + σWtk

tj − ti
tk

]}

= ( S0

k + 1
)

2 k

∑
j=0

{ exp [(2µ + σ2) tj + 2σ
tj

tk
(σtj +Wtk)]

+ 2
j−1

∑
i=0

exp [µ(ti + tj) + σ2ti −
σ2

tk
(2t2i +

(tj − ti)2

2
) + σ

Wtk

tk
(ti + tj)]} .a.s.

(4.4.9)

Let ψ = 1, meaning that a call option on the average is considered. As U á Z ,

VaF(tk, Stk ; 1) =
Btk
BT

E [max(0,
k + 1

N + 1
A(t0, tk) +

N − k
N + 1

A(tk+1, tN) −K) ∣ Wtk]

≈
Btk
BT

E [max(0,
k + 1

N + 1
Ã(t0, tk;Z) + N − k

N + 1
Ã(tk+1, tN ;U) −K)]

= exp [−r(T − tk)]∫
R
∫
R

max(0,
k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(z)φ(u) dz du

In order to get rid of the maximum function, the integral is split up at the point where

K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] = 0⇔

u =
log [K(N+1)

N−k ] −M(tk+1, tN)
√
V (tk+1, tN)

=∶ du

and restricted with an indicator function on the set

{ k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z] >K − N − k

N + 1
exp [M(tk+1, tN) +

√
V (tk+1, tN) u]} ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z ≥
log [

(N+1)(K−N−k
N+1 exp[M(tk+1,tN )+

√
V (tk+1,tN ) u])

k+1 ] −M(t0, tk)
√
V (t0, tk)

=∶ −dz(u)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Thus,

VaF(tk, Stk ; 1) ≈ exp [−r(T − tk)]{∫
du

−∞ ∫
∞

−∞
max(0,

k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z]
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− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(z)φ(u) dz du

+ ∫
∞

du
∫

∞

−∞
( k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(z)φ(u) dz du}

The first double integral is calculated as follows:

∫
du

−∞ ∫
∞

−∞
max(0,

k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(z)φ(u) dz du =

∫
du

−∞ ∫
∞

−∞
( k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] ))1{−z≤dz(u)} φ(z)φ(u) dz du =

∫
du

−∞ ∫
dz(u)

−∞
( k + 1

N + 1
exp [M(t0, tk) −

√
V (t0, tk) z]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(z)φ(u) dz du =

∫
du

−∞
( k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

]∫
dz(u)

−∞
φ(z +

√
V (t0, tk)) dz

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )Φ(dz(u))) φ(u) du =

∫
du

−∞
( k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

]Φ(dz(u) +
√
V (t0, tk))

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )Φ(dz(u))) φ(u) du .

Apparently, the integral does not have any closed form, thus has to be calculated numerically

with R. The second integral, however, has the following explicit form:

∫
∞

du
∫

∞

−∞
( k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(z)φ(u) dz du =

∫
∞

du
( k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

]

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] )) φ(u) du =
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k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

]Φ(−du) −KΦ(−du)

+ N − k
N + 1

exp [M(tk+1, tN) + V (tk+1, tN)
2

]Φ( − du +
√
V (tk+1, tN))

Hence, value-at-future of the approximated arithmetic average call option is

VaF(tk, Stk ; 1) ≈ exp [−r(T − tk)]{

∫
du

−∞
( k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

]Φ(dz(u) +
√
V (t0, tk))

− (K − N − k
N + 1

exp [M(tk+1, tN) +
√
V (tk+1, tN) u] ) Φ(dz(u))) φ(u) du

+ ( k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

] −K) Φ(−du)

+ N − k
N + 1

exp [M(tk+1, tN) + V (tk+1, tN)
2

]Φ( − du +
√
V (tk+1, tN))} (4.4.10)

For an according put option, meaning that ψ = −1, similar steps and calculations can be applied,

resulting in

VaF(tk, Stk ;−1) ≈ exp [−r(T − tk)]{

∫
du

−∞ ∫
∞

−∞
max(0, (K − N − k

N + 1
exp [M(tk+1, tN) +

√
V (tk+1, tN) u] )

− k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z] ) φ(z)φ(u) dz du}

= exp [−r(T − tk)]{

∫
du

−∞ ∫
∞

dz(u)
((K − N − k

N + 1
exp [M(tk+1, tN) −

√
V (tk+1, tN) u] )

− k + 1

N + 1
exp [M(t0, tk) +

√
V (t0, tk) z] ) φ(z)φ(u) dz du}

= exp [−r(T − tk)]{

∫
du

−∞
((K − N − k

N + 1
exp [M(tk+1, tN) +

√
V (tk+1, tN) u] ) Φ( − dz(u))

− k + 1

N + 1
exp [M(t0, tk) +

V (t0, tk)
2

] Φ( − dz(u) −
√
V (t0, tk))) φ(u) du} .

(4.4.11)
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Again, a closed form of which the values can be calculated analytically does not exist. There-

fore, the value-at-future and hence, the exposure profiles again have to be calculated numerically.

The next section deals with a small, simplified example of the application of these formulas. It

is going to show the steps in order to implement an Asian call option into R and calculating its

potential future exposures.

4.4.2 Implementation of Asian Options

Now that the valuation formulas are obtained, a small example of an Asian option with arith-

metic average should illustrate the exposure evaluation over time. Package wise, the sde package

is used again in order to generate the geometric Brownian motion

library(sde) # load sde package

As it is assumed that Consider an Asian call option on a stock with initial price S0 = 100$,

parameters µ = 0.05 and σ = 0.1, strike K = 100$, maturity T = 1 and a weekly averaging

frequency. Besides, the risk-free interest rate is considered to be r = 0.02. In R, the variables

are defined as follows:

mu<-0.05 # drift term

r<-0.02 # risk -free interest rate

sigma <-0.1 # volatility

T<-1 # maturity

S0<-100 # initial stock value in dollars

K<-100 # strike in dollars

Like simulating the barrier option in section 4.2.2, the the first step is to set the number M of

scenarios generated and the number of time intervals N used in the process of discretizing the

time to maturity T . In case of the Asian option, M = 10000 scenarios with a 7/360 day count

conversion are generated.
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The discrete time grid is generally not required to be equidistant, however, it is assumed for

this example. Hence, calculating the arithmetic average on a weekly basis,

N<-floor (360/7) *T # number of time intervals

t<-seq(0, N*7/360,by=7/360) # day count conversion = 7/360

The next step is to generate the stock price process up to T at every time node tk, k ∈

{1,2, . . . ,N}. The function GBM of the sde package, which generates the path of a geomet-

ric Brownian motion with the given input parameters, is used in order to do so. Since the

indexing in R starts at 1, 0 = t0 =̂ t[1], t1 =̂ t[2], . . . tN =̂ t[N+1]. The same is true for the

stock price process generated by the GBM function, starting with S0 =̂ S[1] and ending with

Stn =̂ S[N+1]:

S<-GBM(S0,mu,sigma ,1,N) # stock price

X<-(log(S/S0) -(mu -1/2*sigma ^2)*t)/sigma # according BM

The next step is to calculated the parameters of approximations (4.4.4) and (4.4.4). Therefore,

the first two moments conditioned on the simulated stock price have to be calculated, which

are implemented according to the results of section 4.4.1:

for (k in (1:(N+1))) {

# 1st moment of A(t_1,t_k) | W_{t_k}

if (k==1){ M1[1,k] <- S0/k*exp(sigma*X[k]) } else {

M1[1,k] <- S0/(k)* (sum(exp(mu*t[1:(k)] - sigma^2*t[1:(k)]^2/

(2*t[k]) + sigma * t[1:(k)]*X[k]/t[k])))

}

# 1st moment of A(t_{k+1},t_N) | W_{t_k}

if (k==(N+1)) { M1[2,k] <- 0 }

else {

M1[2,k] <- S[k]/(N-k+1) * sum(exp(mu*(t[(k+1):(N+1)] - t[k

])))

}
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# 2st moment of A(t_1,t_k) | W_{t_k}

if (k==1) {M2[1,k]<- (S0/(k))^2 }

# else if (k==2) {

# M2[1,k] <- (S0/(k))^2*(1+( exp((2*mu + sigma ^2)*t[1] + 2 *

sigma*t[1]/t[k] * (sigma*t[1] + X[k])))+2*exp(mu*t[k] -

sigma^2*t[k]/2+sigma*X[k]) )}

else {

#j=1

M2[1,k] <- (S0/(k))^2*(1+( exp ((2*mu + sigma ^2)*t[1] + 2 *

sigma*t[1]/t[k] * (sigma*t[1] + X[k]))+2*exp(mu*t[1] -

sigma ^2*t[1]/t[k]/2+sigma*X[k]/t[k]*t[1]) ) )

for (j in (2:k)){

M2[1,k]<- M2[1,k] + (S0/(k))^2*(exp ((2*mu + sigma ^2)*t[j]

+ 2*sigma*t[j]/t[k] * (sigma*t[j] + X[k])) + 2*sum(

exp(mu*(t[1:(j-1)] + t[j]) + sigma^2 * t[1:(j-1)] -

sigma^2/t[k]*(2*t[1:(j-1)]^2 + (t[j]-t[1:(j-1)])^2/2 )

+ sigma*X[k]/t[k]*(t[1:(j-1)]+t[j]) )) )

}

}

# 2st moment of A(t_{k+1},t_N) | W_{t_k}

if (k==(N)){

M2[2,k]<-(S[k]/(N-k+1))^2 * (exp ((2*mu + sigma ^2)*(t[k+1]-t

[k])))}

# else if (k==N){M2[2,k]<-(S[k]/(N-k+1))^2 }

else if (k==(N+1)) {}

else {

#j=1

M2[2,k]<-(S[k]/(N-k+1))^2 * (exp ((2*mu + sigma ^2)*(t[k+1]-t

[k])))

for (j in (2:(N-k+1))){
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M2[2,k]<-M2[2,k] + (S[k]/(N-k+1))^2 * (exp ((2*mu + sigma^

2)*(t[k+j]-t[k])) + 2*sum(exp(mu*(t[(k+1):(k+j-1) ] +

t[k+j] -2*t[k]) + sigma ^2*(t[(k+1):(k+j-1)] - t[k])))

)

}

}

}

These moments are eventually applied on the formulas for calculating the parameters of the

approximations, which were derived in the last subsection.

# parameters of approximations

Mz <- 2*log(M1)-1/2*log(M2)

Vz <- log(M2)-2*log(M1)

Finally, the value-at-future of the Asian call option can be calculated for each tk, k ∈ {0,1,2, . . . ,N}.

As discussed in the last section, (4.4.10) can merely be derived numerically, because no closed

form of the integral of the cumulative normal distribution function exists. Additionally, the

value-at-future is transformed to exposures by setting its negative part to zero.

for (k in (1:(N))){

VaF[m,k]<-exp(-r*(T-t[k]))*(integrate(function(u) {(((k)/(N

+1))*exp(Mz[1,k] + Vz[1,k]/2)* pnorm(-1*(log((N+1)*(K-(N

-k+1)/(N+1)*exp(Mz[2,k]+ sqrt(Vz[2,k])*u ))/k)-Mz[1,k] )

/sqrt(Vz[1,k]) + sqrt(Vz[1,k])) - (K-(N-k+1)/(N+1) * exp

(Mz[2,k] + sqrt(Vz[2,k]) *u ) )*pnorm(-1*(log((N+1)*(K-(

N-k+1)/(N+1)*exp(Mz[2,k]+ sqrt(Vz[2,k])*u ))/k)-Mz[1,k]

)/sqrt(Vz[1,k]))) * dnorm(u) },lower=-10, upper =(log(K*

(N+1)/(N-k+1) )-Mz[2,k] )/sqrt(Vz[2,k]))$val + ((k)/(N

+1)*exp(Mz[1,k]+ Vz[1,k]/2)-K) *pnorm(-1*(log(K*(N+1)/(N

-k+1) )-Mz[2,k] )/sqrt(Vz[2,k])) + (N-k+1)/(N+1)*exp(Mz

[2,k] + Vz[2,k]/2)*pnorm(-1*(log(K*(N+1)/(N-k+1) )-Mz[2,

k] )/sqrt(Vz[2,k]) +sqrt(Vz[2,k])))
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}

VaF[m,N+1] <- exp(Mz[1,N+1] + (Vz[1,N+1])/2 )* pnorm( -1*((log(

K)-Mz[1,N+1])/sqrt(Vz[1,N+1]) ) + sqrt(Vz[1,N+1]) )-K *

pnorm(-1*((log(K)-Mz[1,N+1])/sqrt(Vz[1,N+1]) ))

VaF[j,( which(VaF[j,]<0))] <-0 # replacing negative

values with zeros

Obviously, this has to be done for all min{1,2, . . . ,10000. Finally, the exposure profiles are

calculated. Again, the quantiles for the PFEs are set to 5%, 50% and 95%.

q<-apply(VaF , 2, quantile , probs = c(0.05 , 0.5, 0.95) , na.rm

= TRUE) # PFEs

Plot 4.17 shows the results of this implementation with µ = 0.05 and r = 0.02. Comparing its

exposure profiles with those of a vanilla call option with the same parameters and same maturity

T = 1, which can be seen in figure 4.18, the exposure profile of the Asian option apparently

has a lower peak exposure, hitting its highest points before maturity, whereas a vanilla option

peaks way at the end of the tenor. This concave profile is the result of the gaining knowledge

over the course of time that effects the value of an Asian option more than that of a vanilla

one. They start out with the same uncertainty of the payoff at maturity, however, whereas the

vanilla option solely rely on the last value at maturity T and therefore is very vulnerable for

”surprising” changes within a short period of time, it is harder for an Asian option to make big

changes the more the stock price progressed up to maturity. Assuming that the Asian option is

in-the-money well within its tenor, it will be more likely for it to stay in-the-money due to its

nature of taking the average over the whole path of the stock price evolution than for a plain

vanilla option. The more is known about the underlying over time, the lower the uncertainty

of the payoff of the path-dependent Asian option is and hence, its exposure.

74



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0

PFEs of Asian Call Option (Arithemtic Average)

Time (years)

E
x
p

o
s
u

re
 (

$
)

 

 

Quantiles

5%

50%

95%

Figure 4.17: PFEs of Asian call option with T = 1
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Figure 4.18: PFEs of vanilla call option with T = 1
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5 Conclusion

This thesis started out to take the work of Lomibao and Zhu [2005] as a basis for a gradual

enhancement of the existing knowledge in order to both list more precise and slicker calcula-

tions and apply the model on other path-dependent derivatives. However, during the analysis

of the paper and consulting its references, more and more flaws of the basic idea, as well as its

application on the chosen financial derivatives have emerged.

Generally, the paper appears to be considerable inaccurate in its assumptions, nomenclature

and implementation. Often the authors take conditions and assumptions for granted without

explaining or even mentioning, which, combined with their often misleading naming of variables

and functions, and the lack of references, leads to a very vague picture of their intentions. A

deeper examination has often revealed severe flaws of their ideas which makes further calcula-

tions obsolete.

Two out of three derivatives that are discussed in detail are simply incorrect, even though sim-

plifying assumptions have already been taken. Where the barrier option lacks any precise listing

of the steps of calculation, which are necessary to understand the model, the idea behind the

swap-settled swaption to calculate exposures after the exercise date is plainly wrong. If there

was a way to derive those additional exposures, it would certainly not work with the use of

the forward swap rate and the log-normal forward-swap model. Therefore, the concept of the

Brownian bridge cannot be applied on this financial instrument and the calculated exposure

profiles equal those of a cash-settled swaption, unless a more refined approach to derive the

exposures connected to the underlying swap is developed.

Finally, the concept is applied on the Asian option: Unfortunately, the readers of Lomibao and

Zhu [2005] are firstly confused by their so-called
√

3-rule, which does not seem to be from any

importance for the rest of the calculations. Additionally, they often forget to take ”todays”

stock price into account which results in a wrong weighting of the split arithmetic averages and

often do not define their functions and variables correctly or intuitively. Although it is plausible

to approximate the sum of log-normal distributed random variables with another log-normal

distributed random variable (see Fenton [1960]), their approach to assume that the approxima-

tion of the average before simulation date tk and that of the average after tk are correlated is

not adequate. That is the main mistake they make in their section about Asian options, hence,

their results greatly differ from those of section 4.4.2 in this thesis.

Another inaccuracy within the paper is the inconsistence regarding discounting and choosing
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the probability measure. On the one hand they properly use the right numeraire when calcu-

lating the swap-settled swaption under the forward swap measure. On other occasions, they do

not integrate the risk-free bonds for discounting while calculating mark-to-market values, but

eventually use Black-Scholes formulas that strictly rely on risk-neutral valuation. In general,

they never state which measure they actually use for calculating the expected values, which is

crucial for the reliability of the results. That and the fact that Lomibao and Zhu [2005] never

declares the parameter they use for plotting their potential future exposure quantiles makes the

results difficult to compare and forces anyone that tries to mirror their results to guess which

parameters they could have used.

Although the idea of Lomibao and Zhu [2005] to use the Brownian bridge in oder to capture

the uncertainty of a risk factor evolution over a certain time is a highly interesting one, all

in all, their execution lacks a little bit of preciseness and sophistication. As the main goal

of this thesis is to prove the correctness of the model and provide additional mathematical

background, the results listed in the sections above hopefully give a better understanding of

the topic of evaluating exposures of path-dependent derivatives via Monte-Carlo simulation.

Obviously, no one is freed from any mistake and this thesis is not be an exception. It should

also be stated that the work of Lomibao and Zhu [2005], though having some flaws, is highly

appreciated and greatly helped to calculate the exposure profiles listed the last chapters. The

reader should use this thesis to make himself aware of the difficulty and problems that occur

when trying to quantify probabilities of certain trajectories of general Brownian motions while

only knowing a single future value.

Since OTC-derivatives are going to continue to play an important role in the financial market,

the models to capture their risk are going to become more sophisticated during the following

years. The more exotic the derivatives are, the more difficult are they to evaluate, which can

easily be seen in this thesis. Although the approach of Lomibao and Zhu is limited in its way to

capture certain developments - take a look at swap-settled swaptions for instance - it certainly is

a good starting point to develop a procedure that can calculate future exposures more reliably.

Hopefully, this thesis has helped to give a good presentation of these problems in order to find

a way to apply the concept on other financial derivatives as well.
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