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Abstract

We determine the price of digital double barrier options with an arbitrary
number of barrier periods in the Black-Scholes model. This means that the
barriers are active during some time intervals, but are switched off in between.

As an application, we calculate the value of a structure floor for structured
notes whose individual coupons are digital double barrier options. This value
can also be approximated by the price of a corridor put. We also address
the issue which arises when using Monte Carlo simulation to price a barrier
option, namely the discretization bias inherent when using a discrete setting
in a continuously monitored model.

This work is largely based on the paper Digital Double Barrier Options:
Several Barrier Periods and Structure Floors of Altay, Gerhold, Haidinger
and Hirager, published in the International Journal of Theoretical and Ap-
plied Finance, Volume 16, 2013.[1] which the author has co-authored.

keywords: Double barrier option, digital option, binary option, structure
oor, occupation time, corridor option

IV



V



Contents
1 Preface 1

2 Mathematical Theory 3
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Stochastic Calculus . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Stochastic differential equations . . . . . . . . . . . . . 6
2.1.3 Partial Differential Equations . . . . . . . . . . . . . . 9

2.2 Black-Scholes equation . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Black-Scholes economy . . . . . . . . . . . . . . . . . . 11
2.2.2 Black-Scholes PDE . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Black-Scholes valuation formula . . . . . . . . . . . . . 13

2.3 Short introduction into large deviations theory . . . . . . . . . 18

3 Barrier Options 23
3.1 One Period Double Barrier Digital . . . . . . . . . . . . . . . 26
3.2 Multiple Period Double Barrier Digital . . . . . . . . . . . . . 28
3.3 Structure Floors . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Corridor Options . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Laplace inversion . . . . . . . . . . . . . . . . . . . . . 36
3.5 Approximation by a Corridor Option . . . . . . . . . . . . . . 37

4 Numerical Results 40
4.1 One Period Double Barrier Digital . . . . . . . . . . . . . . . 40
4.2 Multiple Period Double Barrier Digital . . . . . . . . . . . . . 41
4.3 Monte Carlo simulation of barrier digital prices . . . . . . . . 44
4.4 Structure Floor . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Appendix 47
A.1 Corridor option expressions . . . . . . . . . . . . . . . . . . . 47
A.2 Mathematica Code . . . . . . . . . . . . . . . . . . . . . . . . 49

VI



List of Figures
1 For an arbitrary number of barrier periods consider the co-

ordinate change (37) and solve the boundary value problem
by Fourier series within the barrier period and by convolving
with the heat kernel when the barriers are not active. . . . . . 29

2 Price of a one period barrier digital at different underlying prices 40
3 Price of a one period barrier digital as time goes by . . . . . . 41
4 Value function of a double barrier digital with two barrier

periods, [1, 3] and [6, 8]. Observe that the value outside of the
barriers is zero during a barrier period and takes on positive
values if the underlying stays within the barriers. . . . . . . . 43

5 Value function of a double barrier digital with two barrier
periods, [1, 3] and [6, 8], where the underlying is already out-
of-the-money. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Monte Carlo simulation of a Barrier option with two barrier
periods. The blue path is a valid path, because during barrier
times it stays within the corridor. . . . . . . . . . . . . . . . . 44

List of Tables
1 Approximation of a one period barrier digital with Monte-

Carlo simulation and increasing path size. The parameters
are the same as in the previous example. . . . . . . . . . . . . 41

2 A two period barrier digital is approximated using simple
Monte Carlo simulation and using the discretization bias cor-
rection. The results show that with the correction the error
due to overestimation is reduced . . . . . . . . . . . . . . . . . 46

3 Numerical approximation of the structure floor by the corridor
option (64) with maturity T = 4, structure floor level F = 10,
and n coupons. The other parameters are r = 0.01, σ = 0.15,
Blow = 80, and Bup = 120. This results show a reasonable
approximation to the corridor option for larger n. . . . . . . . 46

VII



1 Preface
Options with some kind of barrier feature have become quite popular in re-
cent years, especially in foreign exchange (FX) markets. Barrier options are
path-dependent, their price depends on whether the underlying has touched
a barrier during the life of the option.
They are usually structured as a modification of standard European options.
For example a common option is a front end single barrier up-and-out call
option. Up to time t in the life of the option there exists a barrier and if
the underlying crosses this barrier the option expires worthless, after time t
the option becomes a standard call option. Due to the additional feature the
premium is smaller compared to a standard European option. This is why
those options have become so popular, they offer the same level of protection
when used as a hedge but are considerably cheaper.
The value of such options can be obtaind by solving the Black-Scholes partial
differential equation with appropriate boundary conditions, for example Hui
[11].

We consider digital double barrier options with an arbitrary number of bar-
rier periods. This means that the holder receives the payoff only if the un-
derlying stays between the two barriers in certain specified time intervals.
While such contracts might make sense by themselves (e.g. as a weather or
energy derivative with seasonal barriers), the motivation is to use them for
the pricing of certain structured notes with several coupons. Such trades
often feature an aggregate floor at the final coupon date, which increases the
total payoff to a guaranteed amount if the sum of the coupons is less than
this amount. Pricing this terminal premium requires the law of the sum of
the coupons, which can be recovered from its moments. If the individual
coupons of the note are digital barrier options, then these moments can be
computed from the prices of options of the kind described above, where the
sets of barrier periods are subsets of the coupon periods of the note.

Recall that Monte Carlo pricing of barrier contracts is tricky, because the
discretization produces a downward bias for the barrier hitting probability.
For single barrier options, this difficulty can be overcome using the explicit
law of the maximum of the Brownian bridge [2, 4]. For double barrier op-
tions, the exit probability of the Brownian bridge is not known; see Baldi
et al. [3] for an approximate approach using sample path large deviations.
These numerical challenges led us to investigate exact valuation formulas.

The paper is structured as follows. In Section 2 we present the mathematical
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theory behind option pricing, some results from stochastic calculus and large
deviations theory. In Section 3 we define barrier options and barrier digital
for which we define the payoffs we are interested in and price them for a sin-
gle barrier period. Then we extend the result to arbitrarily many periods of
active barriers. The pricing of structure floors, is also presented in Section 3.
Numerical results showing an application of the derived theoretical pricing
functions can be found in Section 4. Finally we present the Mathematica
code used in this paper as well as the exact expression for a corridor option
in the Appendix .
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2 Mathematical Theory
In this part we state some basic results necessary for the later chapters.
Throughout this chapter we present only some fundamental proofs vital for
the purpose of this paper.

The results presented herein refer loosely to the works and books from
[16],[17] and [19].

2.1 Preliminaries

2.1.1 Stochastic Calculus

To derive the Black-Scholes equation in the next chapter we need a mathe-
matical framework in which we can work.

The next definitions state the probability space with which we work through-
out the paper.

Definition 2.1. The triple (Ω,A,P) is called a probability space, where Ω is
a non-empty set, A a σ-algebra and P a probability measure on (Ω,A).

The information up until a specific time is modelled by a filtration.

Definition 2.2. A filtration (Ft)t≥0 is a non-decreasing sequence of σ-algebras,
where ∀s, t ≥ 0, s < t, it holds that Fs ⊂ Ft.

(
Ω,A,P, (Ft)t≥0

)
is usually

called a filtered probability space.

If (Ft)t≥0 is right-continuous (i.e. Ft =
⋂
s<t

Fs, ∀t ) and complete (i.e. F0

contains all P-null sets) it is said that it satisfies the usual conditions.

Definition 2.3. A real valued stochastic Process (Bt)t≥0 on a probability
space

(
Ω,A,P, (Ft)t≥0

)
is called a standard Brownian motion if

• B0(ω) = 0 a.s.

• The map t 7→ Bt, t ∈ [0,∞), is a.s. a continuous function, i.e. ∃A ⊂
A,P [A] = 1 and A ⊂ {ω ∈ Ω : t 7→ Bt(ω) is continuous}.

• For all t ≥ 0 and h > 0 the increments Bt+h − Bt are normally dis-
tributed with mean 0 and variance h.
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• The increments are independent, i.e. for all 0 ≤ tt ≤ . . . ≤ tn the ran-
dom variables Btn−Btn−1 , Btn−1−Btn−2 , . . . , Bt2−Bt1 are independent.

For a proof of the existence of the Brownian motion see for example [17].

Definition 2.4. A Brownian motion (Bt)t≥0, or more generally a stochas-
tic process X = (Xt)t≥0 is adapted to the filtration (Ft)t≥0 if each random
variable Xt is Ft-measurable.

Now we want to give meaning to the following integral

T∫
0

f(t) dBt, (1)

where f(t) is a stochastic process and Bt a Brownian motion.

Since the paths of the Brownian motion can not be differentiated with re-
spect to time and have infinite variation over every interval1,expression (1)
can not be defined as an Riemann-Stieltjes integral.

Definition 2.5. Let V = V (S, T ) be the set of all functions
f(t, ω) : I × Ω→ R such that

• f is progressively measurable, i.e. (t, ω)→ f(t, ω) is B×Ft-measurable,
where B is the Borel σ-algebra on R+.

• f(t, ω) is Ft-adapted.

• E
[
T∫
S

f(t, ω)2dt

]
<∞.

The next definition shows how for functions f ∈ V (S, T ) expression (1) can
be defined.

Definition 2.6. Let f ∈ V (S, T ). The Itō integral of f (with respect to the
Brownian motion) is defined as

T∫
S

f(t)dBt = lim
n→∞

T∫
S

φn(t)dBt, (2)

1c.f. [15]
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where (φn)n∈N is a sequence of elementary functions satisfying

E

 T∫
S

(f(t)− φn(t))2 dt

→ 0, as n→∞, (3)

and the limit in (2) in L2(P).

The following lemma shows the most important properties of the Itō integral,
namely the Itō isometry and the martingale property. For a detailed proof
the interested reader should refer to [17].

Lemma 2.1. It holds that

E


 T∫
S

f(t)dBt

2
 = E

 T∫
S

f(t)2dt

 ∀f ∈ V (S, T ) . (4)

further an Itō Integral w.r.t. a Brownian motion is a martingale:

A stochastic process X = (Xt)t≥0 is called a martingale w.r.t. to a filtra-
tion Ft if
• Xt is Ft-measurable for all t,

• E [|Xt|] <∞ for all t,

• E [Xs|Ft] = Xt for all s>t.

Most of the time we are not only interested in an integral w.r.t. to the
Brownian motion, it is also interesting to find an expression for functions of
Brownian motions, i.e. f(Bt), here f(·) refers to a differentiable funtion. It is
worth noting that the following theorem not only applies to one-dimensional
processes but can be stated for higher dimensions, too.2

Theorem 2.1. Let g(t, x) ∈ C1,2 (I × R) and denote with gx, gt and gxx the
partial derivatives. Then for every t ≥ 0,

g(t, Bt) = g(0, B0) +

t∫
0

gt(t, Bt)dt+

t∫
0

gx(t, Bt)dBt +
1

2

t∫
0

gxx(t, Bt)dt. (5)

2cf [17].
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Usually the following short-hand notation is used

dg(t, Bt) = gt(t, Bt)dt+ gx(t, Bt)dBt +
1

2
gxx(t, Bt)dt.

Now we turn to the discussion of stochastic differential equations which are
interesting to study from a mathematical view and necessary to describe the
evolution of asset prices in mathematical finance.

2.1.2 Stochastic differential equations

A short introduction to stochastic differential equations (SDEs) which we will
need later on is presented in this chapter. Additionally, we show a rather
striking result that relates SDEs and partial differential equations.

Definition 2.7. A stochastic differential equation is an equation of the fol-
lowing form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt. (6)

The coefficients b(t, x) and σ(t, x) are called the drift coefficient and the diffu-
sion coefficient of the SDE. Similar to ordinary differential equations (ODEs)
an initial condition of the form X0 = x0, t ≤ 0, x0 ∈ R is needed.

The challenge is to find a solution for (6), which is unique, if possible. Most
SDEs are difficult to solve and do not admit an explicit solution. If the drift
and diffusion coefficients of (6) satisfy certain growth and continuous restric-
tions it can be shown that there exists a unique solution which is adapted to
the filtration generated by the Brownian motion.3

The following example shows an SDE where a unique explicit solution is
known.

Example 2.1. Let’s take a look at the following SDE:

dSt = µStdt+ StσdBt, t ≥ 0 (7)

Now we want to show that the unique strong solution to the SDE (given initial
condition S0 > 0) is given by

3cf [17] Theorem 5.2.1
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St = S0 exp

(
σBt +

(
µ− 1

2
σ2

)
t

)
, t ≥ 0. (8)

The solution is known as Geometric Brownian motion.

Proof. First we show that St is, indeed, a solution to the given SDE. Consider
the function g(x) = ln(x) and apply (2.1):

ln(St)− ln(S0) =

t∫
0

1

Su
dSu −

1

2

t∫
0

1

S2
u

(S2
uσ

2du)

=

t∫
0

1

Su
d(Suµdu+ SuσdBu)−

1

2

t∫
0

σ2du

=

t∫
0

σdBu +

t∫
0

(
µ− 1

2
σ2

)
du

= σBt +

(
µ− 1

2
σ2

)
t

⇒ St = S0 exp

(
σBt +

(
µ− 1

2
σ2

))
The solution is strong, because it is adapted.

To prove uniqueness assume that there exists another process Rt which ful-
fills the SDE. Then consider the function f(x, y) = y

x
the rest follows from

Itōs fomula and the properties of the quadratic covariation.

The geometric Brownian motion has a central role in mathematical finance
as we will see later.

Before we state an important result which connects stochastic differential
equations with partial differential equations we need the following two defi-
nitions.

Definition 2.8. A stochastic process Xt is called an Itō diffusion if it satisfies
a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s, X0 = x0 (9)
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and the coefficients are Lipschitz continuous, i.e.

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D |x− y| , x, y ∈ R. (10)

Definition 2.9. Let Xt be a Itō diffusion. The generator A of Xt is defined
by

Af(x) = lim
t↓0

E [f(Xt)]− f(x)

t
, x ∈ R. (11)

Theorem 2.2. Let Xt be an multidimensional Itō diffusion

dXt = b(Xt)dt+ σ(Xt)dBt. (12)

If f ∈ C2
0(Rn) then

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
. (13)

With this result we can derive the generator of the Brownian motion which
solves the stochastic differential equation

dXt = dBt, (14)

therefore we have b = 0 and σ = In, the n-dimensional identity matrix. The
generator of the Brownian motion Bt is

Af =
1

2
∆, (15)

where ∆ denotes the Laplace operator.
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The next theorem is known as the Feynmann-Kac formula, after the world-
renowned American physicist Richard Feynmann (1918-1988) and the Polish
mathematician Mark Kac (1914-1984).

Theorem 2.3. Let f ∈ C2
0(Rn) and q ∈ C(Rn). Assume that q is bounded

from below. Let

v(t, x) = E

exp

− t∫
0

q(Xs)ds

 f(Xt)

 , (16)

then

∂v

∂t
= Av − qv, t > 0, x ∈ Rn, (17)

v(0, x) = f(x), x ∈ Rn.

Furthermore, if w(t, x) ∈ C1,2 (R× Rn) is bounded on K ×Rn for each com-
pact K ⊂ R and w solves (17), then w(t, x) = v(t, x).

2.1.3 Partial Differential Equations

Essential tools for the analysis of partial differential equation (PDE) are
worked out here. We can only skim the surface of the theory of PDEs and
present the connection to SDEs, a thorough analysis is out of the scope of
this paper.

As we will see the so-called Black-Scholes partial differential equation is a
parabolic equation with a second derivative with respect to one variable and
a first derivative to the other. Equations of this type are usually called heat
equations, because they are used to model the flow of heat from one part of
an object to another.

The simplest heat equation for the temperature u = u(x, τ) over the domain
R× (0,∞) is

∂u

∂t
=
∂2u

∂x2
, u(·, 0) = u0 (18)

where x is a spatial coordinate and t the time. How do solutions of this
equation look like? The next theorem answers this question.
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Theorem 2.4. Let u be a solution of the heat equation (18) with u(·, t) ∈
L1(R) for all t ≥ 0. Then

u(x, t) =
1√
4πt

∫
R

exp

{
−|x− y|

2

4t

}
u0(y) dy. (19)

Proof. This proof is based on Fourier transform methods. It holds that

0 = ̂ut − uxx(k) = ût
∣∣k2∣∣ û.

The second equation follows from the properties of the Fourier transform.
Now we have an ordinary differential equation with initial condition û(k, 0) =
û0. Integrating this equation and applying the inverse Fourier theorem (c.f.
[15] (15.2)) gives us

u(x, t) =
1

2π

∫
R

e−|k|
2t û0 e

ikx dk.

sNow define w := ê−|k|
2t
−1
, then it follows easily using the fact that f̂ ∗ g = f̂ ĝ

for functions in L1(R) that

u(x, t) =
1

2π

∫
R

ŵ(k, t) û0 e
ikx dk = (w ∗ u0) (x, t).

Finally, the last step is to calculate w(x, t)

w(x, t) =
1

2π

∫
R

e−|k|
2teikx dk =

1√
4πt

e−|x|
2/4t.

For the rather technical proof that for t→ 0 (19) one gets the initial condition
refer to [8].
Two interesting properties of the heat-equation are worth mentioning. Even
for intial conditions which are not differentiable the solution has derivatives
of all orders for all positive times. Furthermore the solution has infinte speed
of propagation, even for small times t. The solution is positive even though
at time t = 0 it is only non negative.

Now we have all necessary tools to derive the classical Black-Scholes equation
for valuing option contracts.
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2.2 Black-Scholes equation

In order to derive the valuation formula we need to make some assumptions
about the market in which we will trade and value our option, i.e. we assume
"ideal conditions".

• Trading is possible at every instant, i.e. continuously.

• The interest rate r is known, constant and equal for borrowing and
lending.

• The volatility of the stock is constant.

• There are no transaction costs in buying and selling assets.

• It is possible to trade any fraction of an asset.

There are several ways to derive the Black-Scholes (BS) equation. We show
two ways. The first is based on the Feynman-Kac theorem and the second
one on the heat equation. Before doing this, we describe the market and the
assets we consider.

2.2.1 Black-Scholes economy

Let’s look at a market where two assets can be traded, a risky stock S and a
riskless bond B. The dynamics of these assets are governed by the following
SDEs

dSt = µStdt+ σStdWt, (20)
dBt = rtBtdt.

The inital values are B0 = 1 and S0 of the bond and the stock respectivly.

Remarks: Remember that the above equations are just an informal way

of expressing the integral equation St = S0 +
t∫
0

µSt dt +
t∫
0

σSt dWt. The

second point here is that we put Wt for the Brownian motion to distinguish
it from the bond process.

Now we introduce a derivative on the stock whose value Vt can be found
by applying Itō’s Lemma.
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dVt =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
σ2S2 dt

=
∂V

∂t
dt+

∂V

∂S
(µSt dt+ σSt dWt) +

1

2

∂2V

∂S2
σ2S2 dt

=

(
∂V

∂t
dt+ µSt

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+

(
σSt

∂V

∂S

)
dWt.

When forming a portfolio of a combination of these instruments we assume
that it is self-financing, which means that the portfolio values are due only
to changes in the value of the covered instruments, mathematically this is
called self-financing.

Definition 2.10. A trading strategy is a pair φ = (φ1, φ2) of progressively
measurable stochastic processes. A trading strategy on the interval [0, T ] is
self-financing if its wealth process Πt(φ) = φ1

tSt + φ2
tBt satisfies

Πt(φ) = Π0(0) +

t∫
0

φ1
u dSu +

t∫
0

φ2
u dBt (21)

At this point we have established all necessary conditions to derive the Black-
Scholes PDE.

2.2.2 Black-Scholes PDE

We derive the PDE in the same way Fischer Black and Myron Scholes did in
their seminal paper [5].

They looked at a portfolio composed of one share of the underlying stock
and δ = 1/∆ shares of an option V written on that stock. The value of
that portfolio at time t is Πt = θVt + St. Now, since we work only with
self-financing portfolios we can write

dΠ = θdV + dS

=

(
θ
∂V

∂t
dt+ θµSt

∂V

∂S
+

1

2
θσ2S2∂

2V

∂S2
+ µSt

)
dt+

(
θσSt

∂V

∂S
+ σSt

)
dWt

This particular portfolio must be riskless and it must earn the risk free rate
r. To be riskless the second term involving the Brownian motion dW must
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be zero, therefore θ = −
(
∂V
∂S

)−1. To earn the risk free rate the dynamics of
the portfolio has to be dΠ = rΠdt = r(θV + S)dt.

Considering this we arrive at the following equation

(
θ
∂V

∂t
+

1

2
θσ2S2∂

2V

∂S2

)
dt = r(θV + S)dt.

The only step left to arrive at the Black-Scholes PDE is to drop the dt and
divide by θ

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt = r(V + S)dt,

or in shorthand notation

Vt +
1

2
σ2S2VSS − rV + rSVS = 0. (22)

2.2.3 Black-Scholes valuation formula

The following theorem states the most common valuation formula for stan-
dard European type options.

Theorem 2.5. The time-t price C(St, K, T ) of a European call option with
strike K,maturity τ = T − t written on a non-dividend paying stock with spot
price St and volatility σ can be found by using the following formula

C(St, K, T ) = StΦ(d11)− e−rτKΦ(d2) (23)

where

d1,2 =
ln St

K
+
(
r ± σ2

2

)
τ

σ
√
τ

, (24)

and Φ(x) = 1√
2π

x∫
−∞

e−
1
2
t2 dt is the cumulative distribution function of the

standard normal distribution.

13



As mentioned above we show two derivations a rather short but elegant one
by Feynmann-Kac and a more detailed one based on the heat equation which
will be useful when deriving the value of a Digital Barrier Option later on.

Proof. Black-Scholes by the Feynmann-Kac Theorem
Note that C satisfies equation (17), with the generator of the geometric
brownian motion Af(x) = rStf

′(x) + 1
2
σ2S2

t f
′′(x) and boundary condition

C(ST , K, T ) = (ST − K)+. Therefore we can apply the theorem and the
value of the European call is

C(St, K, T? ) = EQ

[
e
−
T∫
t
r du

C(ST , K, T )|Ft
]

= e−rτEQ [(ST −K)+
]
.

The expectation can be evaluated by straightforward integration in the same
way as for example in [16].

Proof. Black-Scholes by the Heat Equation
To convert the BSM PDE into the heat equation we use the following trans-
formations:

x = ln
S

K
,

τ =
σ2

2
(T − t), and

u(x, τ) =
1

K
V (S, t) =

1

K
V (Kex, T − 2τ/σ2).

The next step is to convert the partial derivatives:

Vt = Kuττt =
−Kσ2

2
uτ ,

VS = KuxxS =
K

S
ux = e−xux,

VSS = −K
S2
ux +

K

S2
uxx

=
e−2x

K
(uxx − ux) .

Inserting into (22) and simplifying results in
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0 =
−Kσ2

2
uτ + rKexe−xux +

1

2
σ2K2e2x

e−2x

K
(uxx− ux)− ru

= −uτ + (
2r

σ2
− 1)ux + uxx −

2r

σ2
u. (25)

The final condition for V is naturally the final payoff V (ST , T ) = (ST −K)+,
which transforms into an inital condition for u we therefore get u(xT , 0) =
1
K
V (ST −K)+ = 1

K
(KexT −K)+ = (ext − 1)+.

Since (25) still does not resemble the heat equation we have to make an
additional transformation. Define α = 1

2
(k − 1) and β = 1

2
(k + 1), where

k = 2r
σ2 then set

w(x, τ) = eαx+β
2τu(x, τ). (26)

Again the partial derivatives of u in terms of w have to be calculated

ut = eαx+β
2τ
(
wτ − wβ2

)
,

uS = eαx+β
2τ (wx − αw) ,

uxx = eαx+β
2τ
(
α2w − 2αwx + wxx

)
.

Substituting back into (26)

β2w − wτ + (k − 1) [−αw + wx] + αw − 2αwx + wxx − kw = 0,

and simplifying we get the heat equation

wτ = wxx. (27)

The initial condition is w(xt, 0) = eαxTu(xT , 0) =
(
eβxT − eαxT

)+.
To get from V to w simply set

V (S, t) =
1

K
e−αx−β

2τw(x, τ). (28)

15



We have transformed the BS-PDE into the heat equation, so the solution to
this partial-differential equation is (19),hence

w(x, τ) =
1√
4πτ

∫
R

e−(x−y)
2/4τw0(y) dy

=
1√
4πτ

∫
R

e−(y−x)
2/4τ

(
eβy − eαy

)+
dy.

A change of variables helps evaluating this integral, set z = y−x√
2τ

so that
y =
√

2τz + x and dy =
√

2τdz.

w(x, τ) =
1√
2π

∫
R

exp

{
−1

2
z2
}

exp
{
β(
√

2τz + x)− α(
√

2τz + x)
}+

dz

Observe that the integral is non-zero only if the second exponent is greater
than zero, when z > −x√

2π
, therefore we can split the integral into two parts

w(x, τ) =
1√
2τ

∞∫
−x/
√
2τ

exp

{
−1

2
z2
}

exp
{
β(
√

2τz + x)
}
dz

− 1√
2π

∞∫
−x/
√
2τ

exp

{
−1

2
z2
}

exp
{
α(
√

2τz + x)
}
dz

= I1 − I2.

To evaluate the first integral I1 complete the square so that

I1 = eβx+β
2τ 1√

2π

∞∫
−x/
√
2τ

e−
1
2
(z−β

√
2τ)2 dz.

Finally for the last transformation set ν = z − β
√

2τ

16



I1 = eβx+β
2τ 1√

2π

∞∫
−x/
√
2τ−β

√
2τ

e−
1
2
y2 dy

= eβx+β
2τ

(
1− Φ

(
− x√

2τ
− β
√

2τ

))
= eβx+β

2τΦ

(
x√
2τ

+ β
√

2τ

)
.

The second integral I2 follows easily just replace β with α

I2 = eαx+α
2τΦ

(
x√
2τ

+ α
√

2τ

)
.

Let’s take a look at the term x√
2τ

+β
√

2τ , and transform them back into the
original variables, we get

x√
2τ

+ β
√

2τ =
ln S

K
+ (r + σ2

2
)(T − t)

σ
√
T − t = d1,

and

x√
2τ

+ α
√

2τ = d1 − σ
√
T − t = d2.

So the solution for the heat equation w reads

w(x, τ) = I1 − I2
= eβx+β

2τΦ(d1)− eαx+α
2τΦ(d2).

To obtain the price for a call option use (28)

V (S, t) = Ke−αx−β
2τw(x, τ)

= Ke−αx−β
2τ (I1 − I2)

= Ke−αx−β
2τeβx+β

2τΦ(d1)−Ke−αx−β
2τeαx+α

2τΦ(d2)

= Keβ−αΦ(d1)−Ke(α
2−β2)τΦ(d2)

= SΦ(d1)−Ke−r(T−t)Φ(d1),

since β − α = 1 and α2 − β2 = − 2r
σ2 .
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2.3 Short introduction into large deviations theory

For Monte Carlo simulation of the barrier digital we need to take into ac-
count that using a discrete setting our process can hit the barrier during two
time steps.

Baldi et al. [3] derived formulas for the exit probability using sharp large
deviation theory. In this chapter we will cover the basic theory behind large
deviation techniques and state Cramér’s theorem. Note that we do not give
an exhaustive overview of the methods Baldi et al. used to prove their the-
orem. The application to the Monte Carlo simulation of barrier options will
be stated in Chapter 4.

Large deviation is a part of probability theory that deals with the math-
ematics of rare events.

Consider a random variable X. Now we want to estimate the probability
p := P [X ≥ l]. For example X could be the value of a portfolio or for risk
management purposes we could be interested in a loss of at least l.

To estimate this probability we could resort to Monte Carlo simulation and
generate n iid r.v. X1, X2, . . . , Xn and look at the following estimator

Ŝn =
1

n

n∑
i=1

1(l,∞)(Xi)

The strong law of large numbers tells us that

Ŝn −→
n→∞

p, P a.s.

Due to the central limit theorem we can determine the rate of convergence
via

P
[∣∣∣Ŝn − p∣∣∣ ≥ a√

n

]
−→
n→∞

2Φ

(
− a√

p(1− p)

)

for every a > 0, and φ(·) is the cumulative distribution function of a standard
normal distribution.
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The theory of large deviations, i.e. Cramér’s theorem gives us a slightly
better approximation.

For every a > 0 there exists suitable constants C and γ such that

P
[∣∣∣Ŝn − p∣∣∣ ≥ a

]
' C · e−γn.

We now give a rigorous definition of Cramér’s theorem.

Theorem 2.6. Let X1, X2, . . . be independent and identically distributed ran-
dom variables with values in R. Define ϕ(t) := E

[
etX
]
< ∞ for all t ∈ R,

V [X] > 0 and Sn =
n∑
i=1

Xi. Then for every x > E [X] it holds that

lim
n→∞

1

n
logP [Sn ≥ nx] = −I(x), (29)

where I(·) is the Legendre transform4 of logϕ.

Proof. w.l.o.g. we can assume that x = 0 (consequently E [X] < 0). Other-
wise look at the family X1 − x,X2 − x, . . . and show that

lim
n→∞

1

n
logP [Sn ≥ 0] = log ρ,

where ρ = inf
t∈R

ϕ(t).

The rest of the proof is to consider three cases, (i) the r.v. are strictly neg-
ative, i.e. P [X1 < 0] = 1 (ii) the r.v. are not positive almost surely, i.e.
P [X1 ≤ 0] = 1 and (iii) the r.v. take positive values with positive probabil-
ity, i.e. P [X1 > 0] > 0.

(i) In this case t 7→ ϕ(t) is strictly decreasing and therefore lim
t→∞

ϕ(t) = 0.
Additionally P [Sn ≥ 0] = 0 whereby the statement follows.
(ii) Now ϕ is still decreasing however ρ = lim

t→∞
ϕ(t) = P [X1 = 0] > 0. Then

again

P [Sn ≥ 0] = P [X1 = 0, . . . , Xn = 0] = ρn,

4The map I : R→ R, x 7→ sup
t∈R

(tx− logϕ(t)) is called the Legendre transform
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from which it follows that 1
n

logP [Sn ≥ 0] →
n→∞

log ρ for n→∞.
(iii) Since E [X1] < 0 X1 can take negative values with postive probability.
Moreover ϕ is strictly convex and lim

t→±∞
ϕ(t) = ∞, ϕ has a minimum in a

point t0 and ϕ(t)′ = E
[
Xet0X

]
= 0.

"≤" For all t ∈ R:

P [Sn ≥ 0] = P
[
etSn ≤ 1

]
≤ ϕ(t)n,

thus lim sup
n→∞

1
n

logP [Sn ≥ 0] ≤ inf
t∈R

logϕ(t) = log ρ.

"≥" This is the hard part. We will only state the general idea and leave
the proof to the interested reader.

Consider a series of iid r.v. X̂1, X̂2, . . . whose distribution is given by the
Radon-Nikodym density

P
[
X̂1 ∈ dx

]
= ρ−1et0xP [Xi ∈ dx] .

The right side is indeed a probability distribution and we can write down
the moment generating function. Next we need to transform the sum Sn and
give a lower estimate of the inequality. The last step is to apply the central
limit theorem to complete the proof.

For the purpose of this paper we need a more abstract concept of large
deviations. Let (E, d) be a metrical space with B(E) the Borel-σ algebra on
E. Compared to the previous results we want to relax the iid assumption as
well as derive asymptotic results for sets other than [a,∞).

Definition 2.11. A function f : E → [−∞,∞] is called lower semi-continuous
if one of the following conditions is satisfied

(i) For all sequences (xn)n∈N with xn → x for n → ∞ and x ∈ E follows
that:

lim inf
n→∞

f(xn) ≥ f(x).
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(i) For all x ∈ E

lim
ε↓0

inf
B(x,ε)

f(y) = f(x).

where B(x, ε) is the open ball with radius ε.

(i) f has closed lower level sets, i.e. for all c ∈ R the following sets are
closed

f−1 ([−∞, c]) := {x ∈ E : f(x) ≥ c} .

Before we can state a large deviations principle the concept of a rate function
is introduced.

Definition 2.12. A function I : E → [0,∞] is called a rate function if

(a) I 6≡ ∞.

(a) I has compact lower level sets.

The next definition goes back to Varadhan [21] and is the main result in the
theory of large deviations

Definition 2.13. A sequence (µn)n∈N of probability measures on E is said to
follow the principle of large deviations with speed (γn)n∈N and rate function
I if

(LD1) I is a rate function as defined in (2.12).

(LD2) lim sup
n→∞

1
γn

log µ(C) ≤ −I(C) for all closed sets C ⊆ E.

(LD3) lim inf
n→∞

1
γn

log µ(O) ≥ −I(O) for all open sets O ⊆ E.

Lemma 2.2. If (µn)n∈N meets (LD1)-(LD3) with speed (γn)n∈N then the rate
function is uniquely determined.

Proof. Take two rate functions I and J which meet (2.13) with speed (γn)n∈N
and show I ≡ J using (LD1)-(LD3).
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These results form the basis of large deviation theory, Baldi et al.([3]) use
this theory in the following way.

Consider for a positive parameter ε the solution Xε of the following SDE

dXε
t = bε(Xε

t , t)dt,+
√
εσ(Xε

t )dBt s < t. (30)
Xε
s = x ∈ Rn (31)

We require the usual Lipschitz conditions for the drift and that the diffusion
σ : Rn → Rn ⊗ Rn is a Lipschitz continuous matrix field, ∀ξ ∈ Rn

〈a(x)ξ, ξ〉 ≥ a0〈ξ, ξ〉,

for some a0 > 0 and a(x) = σ(x)σT (x).

The law of the process is denoted by P ε
x, s. Now suppose that there exists a

Lipschitz continuous vector field b on Rn such that

lim
ε→0

bε = b,

uniformly on compact sets. In this setting, there holds a Large Deviation
principle for the familiy

{
P ε
x,s

}
, with speed ε−1 and rate function I = Ix,s :

C([s, T ],Rn) defined by

I(ϕ) =

T∫
s

L(t, ϕt, ϕ
′
t) dt

if ϕ(x) is absolutely continuous and ϕs = x, I(ϕ) = +∞ otherwise. The
integrand L(·) is

L(t, x, u) =
1

2
〈a−1(x)(u− b(x, r)), u− b(x, r)〉.

Based on this setting Baldi et al. [3] derived the probability that the un-
derlying S hits one of the barriers during an unobserved interval [T0, T0 + ε].
The exact expression for the exit probability is stated in Chapter 4.
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3 Barrier Options
In the previous section we derived the price of an standard European call
option, the aim of this section is to study more complicated options, namely
path-dependent options. The payoff of these instruments depends on whether
the underlying price stays under/over or inside a certain barrier, hence the
name barrier options.

Barrier options are mainly traded in foreign exchange markets and are con-
siderably cheaper than standard FX options. Let’s look at an example to
make things clear.

An investor believes that the USD will strengthen against the YEN over
the next six months (current spot $99). She purchases an ordinary 6 month
USD call option at a strike of $99. This would cost 350 basis points.
An alternative is to purchase a USD at the money call ($99) with a knockout
at $109,a so called up and out call. This would reduce the premium to only
100 basis points.

Now there are three possible outcomes:

• If the USD does strengthen but stays above $109 over the life of the
option, the call will expire worthless.

• If the USD strengthens, but never reaches $109 over the life of the
option, the call will behave like an ordinary call and the investor will
exercise the call and make the same profit as the ordinary call.

• If the USD does not close above the strike, the option will expire worth-
less.

An up and out call is very attractive for an investor with such believes.

Barrier options were first studied by Hui [12] who derived prices for two
types of barrier options in the Black-Scholes setting. These two types are
i) front-end knock-out options, i.e. options where the barrier is active from
start time to a certain time t and ii) rear-end knock-out options with an
active barrier from time t to option maturity T . He covers single barrier as
well as double barrier options.

As an example for a standard barrier option we provide the value function
of a rear-end double-barrier knock-out call option. The life of the option is
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divided into two segments, in the first period from t = 0 to time t it is an
standard call option, the second period from time t to maturity T there are
two barriers Blow and Bup with Blow < Bup. If the underlying crosses either
barrier the option becomes worthless.

Theorem 3.1. The value function of a rear-end double barrier knock-out
call option BCr(S,K, t, Blow, Bup) with barriers Blow and Bup and strike K
can be obtained by

case when K>Blow

BCr =
∞∑
n=1

K

(
S

K

)−(1/2)(k1−1) 2

L
[
1
4
(k1 + 1)2 +

(
nπ
L

)2][
1

2
(k1 + 1)sin

(
nπ

L
ln
Blow

K

)
+
nπ

L
cos

(
nπ

L
ln
Blow

K

)
− nπ

L
(−1)n

(
Bup

K

)(1/2)(k1+1)
]
− 2

L
[
1
4
(k1 − 1)2 +

(
nπ
L

)2]
[

1

2
(k1 −

1)sin

(
nπ

L
ln
Blow

K

)
+
nπ

L
cos

(
nπ

L
ln
Blow

K

)
− nπ

L
(−1)n

(
Bup

K

)(1/2)(k1−1)]
[
b1nsin

(
nπ

L
ln

S

Blow

)
+ b2ncos

(
nπ

L
ln

S

Blow

)]
exp

{
−(1/2)(nπ/L)2σ2(T − t) + (1/2)βσ2T

}
(32 )
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case when K<Blow

BCr =
∞∑
n=1

K

(
S

K

)−(1/2)(k1−1) 2nπ

L2
[
1
4
(k1 + 1)2 +

(
nπ
L

)2]
[((

Blow

K

)(1/2)(k1+1)

− (−1)n
(
Bup

K

)(1/2)(k1+1)
)]

− 2nπ

L2
[
1
4
(k1 − 1)2 +

(
nπ
L

)2]
[((

Blow

K

)(1/2)(k1−1)
− (−1)n

(
Bup

K

)(1/2)(k1−1))]
[
b1nsin

(
nπ

L
ln

S

Blow

)
+ b2ncos

(
nπ

L
ln

S

Blow

)]
exp

{
−(1/2)(nπ/L)2σ2(T − t) + (1/2)βσ2T

}
(33 )

where

L = ln

(
Bup

Blow

)
,

k =
2r

σ2

and

b1n =
a2∫
a1

cos
(
nπx
L

√
σ2t
)
e−(1/2)x

2
dx,

b2n =
a2∫
a1

sin
(
nπx
L

√
σ2t
)
e−(1/2)x

2
dx,

a1 = ln (Blow/S)√
σ2t

, a2 = ln (Bup/S)√
σ2t

(34)

Proof. The proof is to transform the BS PDE into the heat equation with
appropriate boundary conditions. For a detailed proof refer to Hui [12].

As in the case of standard options one can look at so-called digital (binary)
options. For example a cash-or-nothing digital call option pays a certain
amount of currency if the price of the underlying is greater than the strike
at maturity, DCCoN = X1{ST>K}.
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We now want to derive the value function for a digital barrier option with
two barriers, a double barrier digital. Such a contract pays an amount of
currency only if the underlying stays between the barriers during the time
period when the barriers are active. We will consider first the case where
the option has only one single period and afterwards we extend the results
to arbitrarily many barrier periods.

3.1 One Period Double Barrier Digital

A one period double barrier digital pays out one unit of currency at maturity
if the underlying has stayed within the barriers between a pre-specified time.
Denote by P > 0 the length of the barrier period and T0 the time when the
barriers are active, then the payoff at T0 + P is

C1 := 1{Blow<St<Bup, t∈[T0,T0+P ]}.

Then the price of this digital can be found by

BD(St, t; {T0}, P, Blow, Bup, r) := e−r(T0+P−t)E [C1|Ft] , (35)

where E is the expectation w.r.t. the pricing measure P.

The barriers are active towards the end of the contract so it can be viewed
as a rear-end barrier option, c.f. Hui ([12]).

For the multiple barrier case the derivation with PDE methods is more ap-
propriate so we present the idea for the one period case here.

Let us define the value function by

f(S, t) := BD(S, t; {T0}, P, Blow, Bup, r),

which satisfies the Black-Scholes PDE (22) with terminal condition f(S, T0 +
P ) = 1, for S ∈ (Blow, Bup) and boundary conditions f(Blow, t) = f(Bup, t) =
0 for t ∈ [T0, T0 + P ].

To transform the Black-Scholes PDE into the heat equation,

∂2U

∂x2
=
∂U

∂τ
. (36)

we apply the same transformations as before, e.g. f(S, t) = eαx+βτU(x, τ)
with
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x := log(S/Blow), τ := 1
2
σ2(T0 + P − t), (37)

α := −1

2

(
2

σ2
r − 1

)
, β := −2r

σ2
− α2.

The original time points (0, T0, T0+P ) are now mapped to (1
2
σ2(T0+P ), p, 0),

where p := 1
2
σ2P is the transformed barrier period length.

The boundary as well as the terminal condition need to be transformed as
well. Therefore in the new coordinates we get

U(0, τ) = U(L, τ) = 0, τ ∈ [0, p], (38)

where L := log(Bup/Blow), for the boundary condition and

U(x, 0) = e−αx, x ∈ (0, L). (39)

as initial condition.

The next proposition shows how to price a one-period digital barrier option.

Proposition 3.1. For 0 < t < T0, the price of a barrier digital with barrier
period [T0, T0 + P ] and payoff C1 at T0 + P is

BD(S, t; {T0}, P, Blow, Bup, r) =
√

2π

(
S

Blow

)α
·
∞∑
k=1

k
1− (−1)ke−αL

α2L2 + k2π2
e−(

kπ
L

)2p+βτ

·

L−x√
2(τ−p)∫

− x√
2(τ−p)

sin

(
kπ

L
(x+ y

√
2(τ − p))

)
e−y

2/2dy. (40)

Proof. We have to solve the problem (36)–(39). First consider the rectangle
(0, L)× (0, p). There the solution, which is unique [8, p. 358], can be found
by separation of variables [8, Section 4.1]:

U(x, τ) =
∞∑
k=1

bk sin

(
kπ

L
x

)
e−(

kπ
L

)2τ , (x, τ) ∈ (0, L)× (0, p), (41)
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where

bk :=
2

L

∫ L

0

e−αx1 sin

(
kπ

L
x1

)
dx1 = 2kπ

1− (−1)ke−αL

α2L2 + k2π2

are the Fourier coefficients of the boundary function U(x, 0) = e−αx. To
verify that this is indeed the solution, it suffices to appeal to the standard
criterion for exchanging derivative and series [18, p. 152].

At τ = p, the solution is given by (41) for 0 < x < L and vanishes oth-
erwise. Inserting τ = p into (41) yields

U(x, p) =

{∑∞
k=1 2kπ 1−(−1)ke−αL

α2L2+k2π2 sin(kπ
L
x)e−(

kπ
L

)2p, 0 < x < L

0, x ≤ 0 or x ≥ L.
(42)

Now we solve for U in the region R× (p, 1
2
σ2(T0 +P )). There are no bound-

ary conditions here, since the barriers are not active in the interval (0, T0)
(in the original time scale). A solution is found by convolving the initial
condition (42) with the heat kernel [8, p. 47]:

U(x, τ) =
1√
2π

∫ ∞
−∞

U(x+ y
√

2(τ − p), p)e−y2/2dy

=
1√
2π

∫ L−x√
2(τ−p)

− x√
2(τ−p)

U(x+ y
√

2(τ − p), p)e−y2/2dy. (43)

Inserting (42) and rearranging yields (40). It remains to argue that the solu-
tion (43) is the right one, i.e., that it indeed equals the transformation of the
value function (35). By Tikhonov’s classical uniqueness theorem [13, p. 216f],
the solution in the strip R× (p, 1

2
σ2(T0 +P )) is unique if we restrict attention

to functions admitting bounds of the form c1 exp(c2|x|2) with positive con-
stants c1 and c2. Now note that (42), and hence also (43), is bounded by a
constant, and that the solution U we seek is of at most exponential growth,
since our value function f(S, t) = eαx+βτU(x, τ) is bounded.

3.2 Multiple Period Double Barrier Digital

Consider a contract that pays one unit of currency at maturity if the underly-
ing has remained between the two barriers Blow and Bup during pre-specified
non-overlapping time intervals. This means we look at n tenor dates

0 < T0 < · · · < Tn−1
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and a fixed period length P > 0, the time intervals are in this notation
[Ti, Ti + P ], i = 0, . . . , n− 1.
By the risk-neutral pricing formula, the price of this “multi-period double
barrier digital” is given by

BD(St, t; {T0, . . . , Tn−1}, P, Blow, Bup, r) := e−r(Tn−1+P−t)E

[
n∏
i=1

Ci

∣∣∣∣Ft
]
,

(44)
where

Ci := 1{Blow<St<Bup, t∈[Ti−1,Ti−1+P ]}.

To calculate the price, we use once again the coordinate change (37) (with
Tn−1 in place of T0). The n barrier periods [Ti, Ti+P ] are mapped to [τi, τi+p],
where

τi := 1
2
σ2(Tn−1 − Ti−1), i = n, . . . , 1,

are the images of the barrier period endpoints under the coordinate change
(see Figure 1).

0 p τn−1 τn−1 + p
τ

x

L

Fourier se-
ries, coef-
ficients by
integrating
U(·, 0)

convolution
of U(·, τn +
p) with heat
kernel

Fourier series,
coefficients
by integrating
value at τn−1

convolution
of value at
τn−1 + p
with heat
kernel

U ≡ 0

U ≡ 0 U ≡ 0

Figure 1: For an arbitrary number of barrier periods consider the coordinate
change (37) and solve the boundary value problem by Fourier series within
the barrier period and by convolving with the heat kernel when the barriers
are not active.

The following proposition contains the pricing formula for the multiple period
case. The first formula (45) is for time points inside a barrier period, whereas
the second expression (46) holds for valuation times where the barriers are
not active.
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Proposition 3.2. The value function (44) equals eαx+βτU(x, τ), where for
0 ≤ j < n, τn−j ≤ τ ≤ τn−j + p, 0 < x < L, we have

U(x, τ) =

∞∫
−∞

. . .

∞∫
−∞︸ ︷︷ ︸

j

L∫
0

. . .

L∫
0︸ ︷︷ ︸

j+1

∞∑
k1=0

. . .

∞∑
kj+1=0

gj(k1, . . . , kj+1;x1, . . . , xj+1; y1, . . . , yj;x, τ)dx1 . . . dxj+1dy1 . . . dyj, (45)

whereas for 0 ≤ j < n, τn−j + p < τ < τn−(j+1) (with τ0 := ∞), x ∈ R, we
have

U(x, τ) =

∞∫
−∞

. . .

∞∫
−∞︸ ︷︷ ︸

j+1

L∫
0

. . .

L∫
0︸ ︷︷ ︸

j+1

∞∑
k1=0

. . .
∞∑

kj+1=0

hj(k1, . . . , kj+1;x1, . . . , xj+1; y1, . . . , yj+1;x, τ)dx1 . . . dxj+1dy1 . . . dyj+1. (46)

where the auxiliary functions are defined as follows:

hj(k1, . . . , kj+1;x1, . . . , xj+1; y1, . . . , yj+1;x, τ)

:= 1√
2π
e−y

2
j+1/2 1[

− x√
2(τ−(τn−j+p))

,
L−x√

2(τ−(τn−j+p))

](yj+1)

·gj(k1, . . . , kj+1;x1, . . . , xj+1; y1, . . . , yj;x+yj+1

√
2(τ − (τn−j + p)), τn−j+p)

and

gj(k1, . . . , kj+1;x1, . . . , xj+1; y1, . . . , yj;x, τ)

:= 2
L

sin
kj+1πxj+1

L
sin

kj+1πx

L
e−(kj+1π/L)

2(τ−τn−j)

· hj−1(k1, . . . , kj;x1, . . . , xj; y1, . . . , yj;xj+1, τn−j),

with the recursion starting at

g0(k1;x1; ;x, τ) := 2
L
e−αx1 sin k1πx1

L
sin k1πx

L
e−(k1π/L)

2τ . (47)

Proof. The idea is to iterate the argument of Proposition 3.1 (see Figure 1).
We use separation of variables in the barrier periods, and convolution with
the heat kernel for the periods in between. The required initial condition at
the left boundary comes from the previous step of the iteration (for j = 0
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also from the payoff, of course). The discussion of existence and uniqueness
is analogous to the proof of Proposition 3.1, and we omit the details.

For j = 0, formula (45) is identical to (41). To show (46) for j = 0, let
p < τ < τn−1 (recall that τn = 0) and x ∈ R, and use (43) and (41) to obtain

U(x, τ) =
1√
2π

L−x√
2(τ−p)∫

− x√
2(τ−p)

U(x+ y1
√

2(τ − p), p)e−y21/2dy1

=
1√
2π

∞∫
−∞

1[
− x√

2(τ−p)
,

L−x√
2(τ−p)

](y1)

L∫
0

∞∑
k1=0

g0(k1;x1; ;x+ y1
√

2(τ − p), p)e−y21/2dx1dy1

=

∞∫
−∞

L∫
0

∞∑
k1=0

h0(k1;x1; y1;x, τ)dx1dy1.

This is (46) for j = 0.

Next consider a rectangle

(τ, x) ∈ (τn−j, τn−j + p)× (0, L), 1 ≤ j < n. (48)

At the left boundary, the solution is xj+1 7→ U(xj+1, τn−j). By the induction
hypothesis, it equals (46) with j replaced by j − 1:

U(xj+1, τn−j) =

∞∫
−∞

. . .

∞∫
−∞︸ ︷︷ ︸

j

L∫
0

. . .

L∫
0︸ ︷︷ ︸

j

∞∑
k1=0

. . .
∞∑
kj=0

hj−1(k1, . . . , kj;x1, . . . , xj; y1, . . . , yj;xj+1, τn−j)dx1 . . . dxjdy1 . . . dyj. (49)

The solution in the rectangle (48) is thus obtained by separation of variables
as

U(x, τ) =
∞∑

kj+1=0

bkj+1
sin

(
kj+1π

L
x

)
e−(

kj+1π

L
)2(τ−τn−j), (50)
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where

bkj+1
:=

2

L

L∫
0

U(xj+1, τn−j) sin

(
kj+1π

L
xj+1

)
dxj+1 (51)

denote now the Fourier coefficients of xj+1 7→ U(xj+1, τn−j). Inserting (49)
into (51) and then (51) into (50) yields (45), by the definition of gj.

Finally, consider a strip

(τ, x) ∈ (τn−j + p, τn−(j+1))× R, 1 ≤ j < n. (52)

At the left boundary, we use (45) as induction hypothesis. The solution thus
vanishes for x /∈ (0, L), and for τ = τn−j + p and x ∈ (0, L) it is

U(x, τn−j + p) =

∞∫
−∞

. . .

∞∫
−∞︸ ︷︷ ︸

j

L∫
0

. . .

L∫
0︸ ︷︷ ︸

j+1

∞∑
k1=0

. . .
∞∑

kj+1=0

gj(k1, . . . , kj+1;x1, . . . , xj+1; y1, . . . , yj;x, τn−j + p)dx1 . . . dxj+1dy1 . . . dyj.
(53)

As above, the solution in the strip (52) is found by convolution with the heat
kernel:

U(x, τ) =
1√
2π

∞∫
−∞

1[
− x√

2(τ−(τn−j−p))
,

L−x√
2(τ−(τn−j−p))

](yj+1)

U(x+ yj+1

√
2(τ − (τn−j − p)), τn−j − p)e−y

2
j+1/2dyj+1.

Now insert (53), with x replaced by x+ yj+1

√
2(τ − (τn−j + p)), and use the

definition of hj to conclude (46).

The one-period case can be also be priced with Proposition 3.2, which is
simply (46) for j = 0.

A different option with the same barrier conditions can easily be priced by
replacing the quantity e−αx1 in (47) by the appropriate payoff U(x1, 0).

32



3.3 Structure Floors

As noted earlier a digital double barrier option makes sense as a stand-
alone product but a more practical contract is a structured note with several
coupons. Often these products feature an aggregate floor at maturity, i.e.
the final coupon date, where the holder receives an additional payoff depen-
dent on the coupons but in any case an agreed upon amount.

For this section we assume that the tenor structure satisfies Ti−1 + P = Ti
for 1 ≤ i < n, and define Tn := Tn−1 + P .

We consider a structured note with n coupons, where the i-th coupon is
similar to the payoff for double barrier digital and consists of a payment

Ci = 1{Blow<St<Bup, t∈[Ti−1,Ti]}, 1 ≤ i ≤ n, (54)

at time Ti. These coupons can be priced by Proposition 3.1 (replace T0 by
Ti−1). In addition, the holder receives the terminal premium(

F −
n∑
i=1

Ci

)+

(55)

at Tn, where F > 0. This means that the aggregate payoff A :=
n∑
i=1

Ci of the

note is floored at F .
While the individual coupons are straightforward to valuate, it is less obvious
how to get a handle on the law of A. We now show that this law is linked
to barrier options with several barrier periods. Indeed, the following result
is based on the fact that the moments

E [Aν ] =
n∑
i=0

iνP [A = i] , 1 ≤ ν < n, (56)

of A are linear combinations of multi-period double barrier option prices,
with coefficients

c(ν, J) :=
∑

0≤i1,...,in≤ν
supp(i)=J

(
ν

i1, . . . , in

)
, J ⊆ {1, . . . , n}. (57)

(The notation supp(i) = J means that J is the set of indices such that
the corresponding components of the vector i = (i1, . . . , in) are non-zero.)
W.l.o.g. we assume that the valuation time is t = 0.
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Theorem 3.2. The price of the structure floor (55) at time t = 0 can be
expressed as

e−rTnE
[
(F − A)+

]
= e−rTn

n∧bF c∑
i=0

(F − i)P [A = i] , (58)

where
P [A = n] = BD(S0, 0; {T0}, Tn − T0, Blow, Bup, 0). (59)

The other point masses P [A = i] in (58) can be recovered from the moments
of A by solving (56) (including ν = 0). The moments in turn can be computed
from barrier digital prices by (1 ≤ ν < n)

E [Aν ] =
∑

J⊆{1,...,n}

c(ν, J) ·BD(S0, 0; {Tj : j ∈ J}, P, Blow, Bup, 0), (60)

where the coefficients c(ν, J) are defined in (57).

Proof. The expression (58) is obvious. The event in (59) means that the un-
derlying stayed within the barriers and all of the n coupons (54) are paid. By
our assumption that Ti = Ti−1 +P , its risk-neutral probability is the (undis-
counted) price of a double barrier digital with one barrier period [T0, Tn],
which yields (59). To show (60), we calculate

E [Aν ] = E

[( n∑
i=1

Ci

)ν]
=
∑
i1,...,in

(
ν

i1, . . . , in

)
E
[
Ci1

1 . . . C
in
n

]
=
∑
i1,...,in

(
ν

i1, . . . , in

)
E
[ n∏
j=1
ij>0

Cj

]

=
∑

J⊆{1,...,n}

( ∑
i1,...,in

supp(i)=J

(
ν

i1, . . . , in

))
E

[∏
j∈J

Cj

]
.

Now observe that
∏

j∈J Cj is the payoff of a double barrier digital with barrier
periods [Tj, Tj + P ] for j ∈ J .

3.4 Corridor Options

Later in this section we show how the price of the structure floor (55) can be
approximated by another contract, namely a corridor option. For this pur-
pose we show how to price this instrument following the work of Fusai [9].
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A corridor option is a exotic derivative which pays at maturity an amount
that depends on the time spent by the underlying between two barriers or
inside a corridor.

The price of the underlying can be described by the usual SDE (20).
Now define a random variable by

τ(t, Blow, Bup) :=

t∫
0

1{Blow<S(z)<Bup} dz. (61)

Then a corridor (put) option has a payoff at maturity by (τ −K)+, with
strike K. Fusai [9] studied a call option of this type.

If we look at the integrand in (61) we notice that

1{Blow<S(z)<Bup} = 1{
Blow<S exp (r−σ2

2
)z+σW (z))<Bup

} =

= 1{
1
σ
log{Blow/S}< 1

σ
(r−σ2

2
)z+W (z)< 1

σ
log{Bup/S}

}.
So we can calculate the density function with the help of the occupation time
of the Brownian motion inside the barriers u = log(L)/σ, l = log(U)/σ and
starting value x = log(S)/σ.

Proposition 3.3. The price of a corridor option at time t is given by

P (t,K,Blow, Bup) :=

K∫
0

(K − τ) fτ (τ, x, t, u, l) dτ + (K − τ)+ (62)

× Px∈(l,u) [τ(t, u, l) = t] .

where fτ (τ, x, t, u, l) is the density function of the r.v. τ(·).

Since the expression for the density function f(·) is rather involved and for
our purpose we do not need an explicit expression we do not reproduce it at
this point.5 Let’s look at the first term in (62), we can apply the Laplace
transformation and using the fact that it transforms convolution into multi-
plication we get

5c.f. [10]
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LK
{ K∫

0

(K − τ) fτ (τ, x, t, u, l) dτ

}
(µ) =

Ω(t, µ, x, l, u,m)

µ
,

where

Ω(t, µ, x, l, u,m) :=

t∫
0

eiµτfτ (τ, x, t, u, l) dτ

= e−mx−
m2

2
tL−1γ

{
ω(γ, µ, x, l, u,m)

}
(t),

as defined in Appendix A.1. That means that the price of a put can be
found by a double Laplace inversion of ω(γ, µ) := ω(γ, µ, x, l, u,m)/µ2 plus
the probability that the underlying stays inside the corridor the whole time.

3.4.1 Laplace inversion

To price a corridor option we need a method for inverting Laplace trans-
forms in two dimensions. Since there are virtually no closed form inverses we
apply a very accurate and stable method to numerically invert Laplace trans-
forms by a Padé rational function proposed by Singhal et al. ([20]). Laplace
transforms are a useful method for finding solutions to partial differential
equation, too.

Definition 3.1. The two dimensional Laplace transform is simply an exten-
sion of of the standard well-known transformation. It is given as

F (s1, s2) = L [f(t1, t2), s1, s2] =

∞∫
0

∞∫
0

f(t1, t2)e
−s1t1−s2t2 dt1 dt2,

whereas the Laplace inversion formula has the following form

f(t1, t2) =

(
1

2πi

)2
c+i∞∫
c−i∞

c+i∞∫
c−i∞

F (s1, s2)e
s1t1+s2t2 ds1 ds2.
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Now as said before, closed form solutions are very hard to find so we need
a method to evaluate above expression. The idea behind the approach sug-
gested by [20] is to approximate the exponential function by a Padé rational
function

ezk '

Mk∑
i=0

(Mk +Nk − i)!
(
Nk
i

)
zik

Nk∑
i=0

(−1)i(Mk +Nk − i)!
(
Mk

i

)
zik

where Nk and Mk should be selected such that Nk < Mk. Using complex
calculus Singhal et al. [20] arrive at the following form which can be easily
implemented

f̂(t1, t2) =
1

t1t2

M1∑
i=1

M1∑
j=1

K1iK2jF

(
z1i
t1
,
z2j
tj

)
(63)

where znk, n ∈ {1, 2} are the poles of the approximation and Knk, n ∈ {1, 2}
the corresponding residues. In the next section we show that this method
works well for functions which are sufficiently smooth.

3.5 Approximation by a Corridor Option

Theorems 3.2 and 3.2 express the price of the structure floor (55) by iterated
sums and integrals. Due to the factors of order e−k

2
j , the infinite series

∑
kj

may be truncated after just a few terms. Still, numerical quadrature may be
too involved for a large number of coupons, so we present an approximation.
Let us fix a maturity T = Tn and assume that the n coupon periods

T ni := ] i−1
n
T, i

n
T ], 1 ≤ i ≤ n,

have length T/n. For large n, the proportion of intervals during which the
underlying stays inside the barrier interval

B := [Blow, Bup]

is similar to the proportion of time that the underlying spends inside B, i.e.,
the occupation time. A somewhat related problem has been studied in [10]
(continuous vs. discrete monitoring for occupation time derivatives). Our
reasoning is made precise in the following result, which holds not only for
the Black-Scholes model, but for virtually any continuous model. Note that
the level sets of geometric Brownian motion have a.s. measure zero (cf. [14,
Theorem 2.9.6]).
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Theorem 3.3. Let (St)t≥0 be a continuous stochastic process such that for
each real c the level set {t ≥ 0 : St = c} has a.s. Lebesgue measure zero.
Then we have a.s.

lim
n→∞

1

n

n∑
i=1

1{St∈B ∀t∈T ni } =
1

T

∫ T

0

1B(St)dt.

Proof. For 1 ≤ i ≤ n, define processes (Xni(t))0≤t≤T by

Xni(t) :=

{
1 if t ∈ T ni and Su ∈ B ∀u ∈ T ni
0 otherwise.

Put Xn :=
∑n

i=1Xni. We claim that, a.s., the function Xn(·) converges
pointwise on the set [0, T ] \ {t : St = Blow or St = Bup}, with limit 1B(S·).
Indeed, if t ∈ [0, T ] is such that St /∈ B, then Xn(t) = 0 for all n. If, on the
other hand, St ∈ int(B), then t has a neighborhood V such that Su ∈ B for all
u ∈ V, by continuity. Hence Xn(t) = 1 for large n. Since we have pointwise
convergence on a set of (a.s.) full measure, we can apply the dominated
convergence theorem to conclude

lim
n→∞

∫ T

0

Xn(t)dt =

∫ T

0

1B(St)dt, a.s.

But this is the desired result, since

∫ T

0

Xn(t)dt =
n∑
i=1

∫ T

0

Xni(t)dt

=
n∑
i=1

∫
T ni
Xni(t)dt

=
n∑
i=1

|T ni | 1{St∈B ∀t∈T ni } =
T

n

n∑
i=1

1{St∈B ∀t∈T ni }.

Theorem 3.3 suggests the approximation

e−rTE
[
(F − A)+

]
≈ e−rT

n

T
E

[(
FT

n
−
∫ T

0

1B(St)dt

)+
]

(64)
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for the price of the structure floor (55). It is obtained from replacing F by
F/n in the relation

E
[
(nF − A)+

]
∼ nE

[(
F − 1

T

∫ T

0

1B(St)dt

)+
]

], n→∞,

which follows from Theorem 3.3 (recall that A =
∑n

i=1Ci denotes the sum of
the coupons). On the right hand side of (64) we recognize the price of a put
on the occupation time of S, also called a corridor option. Fusai [9] studied
such options in the Black-Scholes model. In particular, his Theorem 1 gives
an expression for the characteristic function of

∫ T
0
1B(St)dt.

The approximation (64) holds for period lengths tending to zero. One could
also let the number of coupons tend to infinity for a fixed period length P , so
that maturity increases linearly with n. As seen from their definition in (54),
the dependence of the random variables Ci and Cj decreases for large |i− j|,
and so it is a natural question whether a central limit theorem holds, i.e.,
whether

A− E [A]√
Var[A]

converges in law to a standard normal random variable as n → ∞. Note
that E [A] =

∑n
i=1 E [Ci] and E [A2] = E [A] + 2

∑
i<j E [CiCj] can be easily

computed from Proposition 3.1 respectively Theorem 3.2. The structure
floor (55) could then be approximately valuated by a Bachelier-type put price
formula. We were not able, though, to verify any of the mixing conditions [6]
that could lead to a central limit result. Numerical experiments also cast
some doubt on the existence of a Gaussian limit law. This is therefore left
for future research.
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4 Numerical Results
Here we present numerical results to the theoretical concepts derived in the
previous chapters. We will price one and multi period double barrier digitals
by the semi-analytical formulas as well as with Monte-Carlo simulation to
compare the results. Furthermore we will also price a structured floor and
show the convergence to a corridor option. For the implementation of the
value function we have chosen the computer algebra system Mathematica. It
offers symbolic capabilities, which are especially helpful for defining the aux-
iliary functions hj and gj from Theorem 3.2, as well as fast multidimensional
numerical integration.
The corresponding code can be found in Appendix A.2

4.1 One Period Double Barrier Digital

For the first example of a one periode double barrier digital we chose the
following parameters, S = 100, t = 0, r = 0.01, σ = 0.15, P = 1, Blow = 80,
Bup = 120.

80 90 100 110 120 130
S

0.10

0.15

0.20

0.25

0.30

0.35

Price

Figure 2: Price of a one period barrier digital at different underlying prices

It is clearly visible that the price of the underlying is the highest at the
spot, which is the mean of the upper and lower boundary. At this point the
probability of reaching the barrier is the smallest and therefore the price the
highest.

The next plot shows the price of the option against time. As time passes
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the price goes up to 1, which is what we would expect since at maturity the
option pays out 1.

0.2 0.4 0.6 0.8 1.0
t

0.40

0.45

0.50

0.55

0.60

Price

Figure 3: Price of a one period barrier digital as time goes by

We checked the pricing formula (3.1) against a Monte-Carlo simulation of
the digital, the next table shows our result.

number of simulations price MC price standard error
100 0.37086 0.38228 0.18701
500 0.37086 0.37512 0.06893
1000 0.37086 0.37136 0.18701
5000 0.37086 0.37072 0.02156
10000 0.37086 0.37073 0.01536

Table 1: Approximation of a one period barrier digital with Monte-Carlo
simulation and increasing path size. The parameters are the same as in the
previous example.

4.2 Multiple Period Double Barrier Digital

The implementation of the pricing algorithm consists of the following steps:

• Define the auxiliary functions hj, gj as well as the first two functions
g0 and h0.

• Apply the coordinate change (37) to the input variables.
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• Determine in which period the valuation time lies, i.e., calculate j.

• Define the integration variables and the integration limits.

• Plug in the values and integrate the functions.

In the last step we used NIntegrate[] to avoid symbolic integration and
speed up the calculations. Furthermore, memoization should be used to save
computation time when calculating the recursion. (This means storing func-
tion return values instead of repeating function calls for the same input; see,
e.g., [7].) For the infinte sums we found that truncating after five summands
suffices to get a reasonably accurate value.

In Figure 4 the value of a double barrier digital with two barrier periods,
varying time-to-maturity and underlying price, is shown.6 The parameters
are r = 0.01, σ = 0.15, Blow = 80, Bup = 120, {T0, T1} = {1, 6}, and
P = 2. It is clearly visible that if the valuation takes place during a barrier
period, e.g. t ∈ [T1, T1 + P ] , then the value of the option is zero as soon as
the underlying moves beyond the barriers.

Otherwise, between the periods, for example at t = 4, we have a positive
value even if the price process is outside the barriers.

6With Mathematica 8.0 the calculation of one value takes about 15s on a 2.83 GHz
machine with four cores and 4 GB memory.
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Figure 4: Value function of a double barrier digital with two barrier periods,
[1, 3] and [6, 8]. Observe that the value outside of the barriers is zero during
a barrier period and takes on positive values if the underlying stays within
the barriers.

The next plots shows the value if the underlying is already outside the bar-
riers, e.g. S = 135. As in the plot above the price is zero during the barrier
periods but can be positive outside.

43



2 4 6

0.02

0.04

0.06

0.08

Time

Figure 5: Value function of a double barrier digital with two barrier periods,
[1, 3] and [6, 8], where the underlying is already out-of-the-money.

4.3 Monte Carlo simulation of barrier digital prices

Since the evaluation for multiple barrier periods is rather involved requires
long computing times another option is to price them with Monte Carlo
simulation. The idea is visualized by the following plot.

1 2 3 4 5
t

80

100

120

140

160

Price

Figure 6: Monte Carlo simulation of a Barrier option with two barrier pe-
riods. The blue path is a valid path, because during barrier times it stays
within the corridor.

If a path stays within the barriers during the barrier times its a valid path
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and we simply sum up the valid paths. Nevertheless Monte Carlo simulation
of barrier digitals, as well as plain vanilla barrier options poses the problem,
that because of the discrete monitoring of the underlying price process the
barrier might have been crossed without being observed.

Compared to continuously monitored, Monte Carlo simulation gives an over-
estimated hitting time and thus misprice the option. If we consider a barrier
option with only one barrier, e.g. a knock-out call, this problem has been
studied before and can be solved with the help of the Brownian bridge. The
idea is to use the law of the maximum of the Brownian bridge to evaluate
the probability that the process hits the barrier between each step of the
simulation. As mentioned this is not possible for double barrier options.

The paper of Baldi et al. [3] deals with this type of problem, they de-
rive, with large deviation methods, simple formulas to approximate the exit
probability for double barrier options where the underlying process is driven
by a diffusion process.

We recall here their main theorem, cf [3] Theorem 2.1.

Theorem 4.1. Consider a partition t0 = 0 < t1 < · · · < tn = T of the time
interval [0, T ] with ti − ti−1 = ε for i = 0, . . . n− 1.
For a time T0 ∈ [0, T ] denote by pεU,L(T0, ζ, y) the probability that the process
S, 20, hits one of the barriers in the interval [T0, T0+ε], given the observations
logST0 = ζ and logST0+ε = y. Then

pεU,L(T0, ζ, y) =

{
exp

{
− 2
σ2ε

(U − ζ)(U − y)
}

(1 + o(εk))) if ζ + y > U + L

exp
{
− 2
σ2ε

(ζ − L)(y − L)
}

(1 + o(εk))) if ζ + y < U + L

(65)

for every k ∈ N.

Using this theorem we can account for the discrete sampling and are able to
obtain a better estimate for the barrier digital.

The following table shows the value of a two period barrier option calculated
with standard Monte Carlo simulation and with Monte Carlo simulation us-
ing the above discretization bias correction. Here we discard a path if the
probability is bigger than .55. The value of the barrier option calculated with
theorem 3.2 is 0.03493.
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number of
simulations

simple MC standard
error

MC
correction

standard
error

100 0.04026 0.03785 0.18169 0.12051
500 0.03995 0.03755 0.09220 0.09232
1000 0.03812 0.03712 0.06634 0.05479
5000 0.03964 0.03586 0.02792 0.01271
10000 0.03739 0.03504 0.01998 0.00804

Table 2: A two period barrier digital is approximated using simple Monte
Carlo simulation and using the discretization bias correction. The results
show that with the correction the error due to overestimation is reduced

4.4 Structure Floor

Here we present the numerical results for the approximation of a structure
floor with a corridor option. We checked (64) numerically for up to ten
coupons, with reasonable results, see Table 3. The maturity is T = 4, and
the structure floor is at F = 10. The other model parameters are the same as
in Figure 4. The left hand side of (64) was evaluated by a Monte Carlo sim-
ulation with 10.000 paths, using the discretization bias correction mentioned
in the previous chapter (with a threshold probability of .55 for discarding a
path).

coupons structure floor corridor option relative error standard error
n = 1 7.63696 9.91563 0.22980 0.14436
n = 2 7.52979 9.24883 0.18586 0.16975
n = 3 7.42262 8.66698 0.14357 0.14522
n = 4 7.31545 8.06291 0.09270 0.15126
n = 5 7.20827 7.44886 0.03229 0.18958
n = 6 7.10110 7.31880 0.02974 0.20350
n = 7 6.99393 7.18558 0.02667 0.21811
n = 8 6.88677 7.03704 0.02135 0.24764
n = 9 6.77962 6.92288 0.02069 0.26579
n = 10 6.67232 6.80399 0.01935 0.28013

Table 3: Numerical approximation of the structure floor by the corridor
option (64) with maturity T = 4, structure floor level F = 10, and n coupons.
The other parameters are r = 0.01, σ = 0.15, Blow = 80, and Bup = 120.
This results show a reasonable approximation to the corridor option for larger
n.
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A Appendix

A.1 Corridor option expressions

In the following we give the expressions for the corridor option as described
in section 3.4. To price the corridor option a double Laplace inversion of the
expression ω(γ, µ, x, l, u,m) defined as follows

ω(γ, µ, x, l, u,m)

=



1x≥u exp
{
−
√

2(x− u)
√
γ
}
Lt {y(t, 1)} (γ)

1l<x<u
1

sinh(aπ)
[Lt {y(t, 0)} (γ) sinh

(
aπ u−x

u−l

)
+Lt {y(t, 1)} (γ) sinh

(
aπ x−l

u−l

)
]

1x≤l exp
{
−
√

2(l − x)
√
γ
}
Lt {y(t, 0)} (γ)

where

Lt {y(t, 1)} (γ) =
emu

√
γ(
√
γ −m/

√
2)
− c

2
√
γ

(s(γ) + d(γ)),

Lt {y(t, 0)} (γ) =
eml

√
γ(
√
γ +m/

√
2)

+
c

2
√
γ

(s(γ) + d(γ))

with

c√
γ
d(γ) =

√
γ + µ sinh(aπ)√

γ + µ sinh(aπ) +
√
γ(cosh(aπ) + 1)

×
(

emu
√
γ(
√
γ −m/

√
2)

+
eml

√
γ(
√
γ +m/

√
2)

+
1√

γ + µ sinh(aπ)(γ + µ−m2/2)

×
[−m√

2
(eml − emu)(cosh(aπ) + 1)−√γ + µ(emu − eml) sinh(aπ)

])
,
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c√
γ
s(γ) =

√
γ + µ sinh(aπ)√

γ + µ sinh(aπ) +
√
γ(cosh(aπ)− 1)

×
(

emu
√
γ(
√
γ −m/

√
2)

+
eml

√
γ(
√
γ +m/

√
2)

− 1√
γ + µ sinh(aπ)(γ + µ−m2/2)

×
[−m√

2
(eml + emu)(cosh(aπ)− 1)−√γ + µ(emu − eml) sinh(aπ)

])
,

aπ =

√
γ + µ

c2
; α = −m; β =

−m2

2
; c2 =

1

2(u− l)2
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A.2 Mathematica Code

Here we present the mathematica code used to compute the results in the
previous chapters.

One period double barrier digital

The following function calculates the value for a one period double barrier
digital. The input parameters are the underlying asset price S, the valuation
time t, the time when the barriers are activated T0, how long the barrier
period lasts P , the upper and lower barriers Blow and Bup, interest rate r,
volatiliy of the underlying σ and how many terms should be considered in
the summation lim.

BD@S_, t_, T0_, P_, Blow_, Bup_, r_, Σ_, lim_D :=

ModuleB:Α = -
1

2

2 r

Σ2
- 1 , Τ =

1

2
Σ2 HT0 + P - tL, x = NBLogB

S

Blow
FF,

Β = -
2 r

Σ2
- -

1

2

2 r

Σ2
- 1

2

, L = NBLogB
Bup

Blow
FF, p =

Σ2 P

2
>,

2 Π
S

Blow

Α

NSumB
1

Α2 L2 + k2 Π2
k I1 - H-1Lk Exp@-Α LDM ExpB-

k Π

L

2

p + Β ΤF

NIntegrateBSinB
k Π Ix + y 2 HΤ - pL M

L
F ExpB-

y2

2
F, :y, -

x

2 HΤ - pL
,

L - x

2 HΤ - pL
>F,

8k, 1, lim<FF

Monte Carlo one period double barrier digital

The function to price a one period barrier digital with monte carlo simu-
lation needs basically the same input parameters as well as the number of
simulations n.

BDMC@S_, t_, T0_, P_, Blow_, Bup_, r_, Σ_, n_D := Block@8data2, MC<,
data2 = RandomFunction@

GeometricBrownianMotionProcess@r, Σ, SD, 8t, T0 + P, .01<, nD;
MC = Select@ð, ð@@1DD >= T0 &D & �� data2@"Paths"D;
Return@
Exp@-r * HT0 + PLD * 1 � n * Total@Table@If@Max@Flatten@Table@MC@@jDD@@iDD@@2DD,

8i, 1, Length@MC@@1DDD<DDD < Bup &&

Min@Flatten@Table@MC@@jDD@@iDD@@2DD,
8i, 1, Length@MC@@1DDD<DDD > Blow, 1, 0D , 8j, 1, n<DDDD
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Multiple period double barrier digital

The following functions valuate a multiple barrier digital, first the auxiliary
functions as well as a helper function for determining the appropriate index
are defined and then the main function valuates the digital. Here again
lim is the number of summation steps, as already mentioned above for the
infinte sums we found that truncating after five summands suffices to get a
reasonably accurate value.

H*Define helper function for coordinate change*L
Τj@x_D := Module@8const = ConstantArray@xPLength@xDT, Length@xDD<, const - xD;
H*Auxiliary functions*L
g0@k1_, x1_, yi___, x_, Τ_, Τj_, p_, 0, Α_, L_D :=

2 Exp@-Α x1D SinB k1 Π x1

L
F SinB k1 Π x

L
F ExpB-J k1 Π

L
N2 ΤF

L
;

h0@k1_, x1_, y1_, x_, Τ_, Τj_, p_, 0, n_, Α_, L_D :=
1

2 Π
ExpB-

y12

2
F *

g0Bk1, x1, 0, x + y1 2 HΤ - HΤjPn - 0T + pLL , ΤjPn - 0T + p, Τ, p, 0, Α, LF;
gj@kj__, xj__, yj__, x_, Τ_, Τj_, p_, j_, Α_, L_, n_D :=

IfBj � 0, g0@kj, xj, yj, x, Τ, Τj, p, j, Α, LD,
gj@kj, xj, yj, x, Τ, Τj, p, j, Α, L, nD =
ModuleB8kjp1 = kjPj + 1T, xjp1 = xjPj + 1T, Τjnmj = ΤjPn - jT<,
1

L
2 SinB

kjp1 Π xjp1

L
F SinB

kjp1 Π x

L
F ExpB-

kjp1 Π

L

2

HΤ - ΤjnmjLF

hj@Most@kjD, Most@xjD, yj, xjp1, Τjnmj, Τj, p, j - 1, Α, L, nDFF;
hj@kj__, xj__, yj__, x_, Τ_, Τj_, p_, j_, Α_, L_, n_D :=

IfBj � 0, h0@kj, xj, yj, x, Τ, Τj, p, j, n, Α, LD,
hj@kj, xj, yj, x, Τ, Τj, p, j, Α, L, nD =
ModuleB8yjp1 = yjPj + 1T, Τjnmj = ΤjPn - jT<,

1

2 Π
ExpB-

yjp12

2
F * gjBkj, xj, Most@yjD, x + yjp1 2 HΤ - HΤjnmj + pLL ,

Τjnmj + p, Τj, p, j, Α, L, nFFF;
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H*Main Pricing Function

lim= ðTerms for sum*L
BDMult@S_, t_, Ti_, P_, Blow_, Bup_, r_, Σ_, lim_D :=
ModuleB8n, x, Τ, Α, Β, p, L, tj, gxvars, gxrange, gyvars,

gyrange, gkvars, gkrange, hxvars, hxrange, hyvars, hyrange, hkvars,

hkrange, expression0, expression1, j, value, i, k<,

n = Length@TiD; x = NBLogB
S

Blow
FF; Τ =

1.

2.
Σ2 HTiPnT + P - tL;

Α = -
1.

2.

2. r

Σ2
- 1 ; Β = -

2. r

Σ2
- Α2; p =

Σ2 P

2.
; L = NBLogB

Bup

Blow
FF;

tj = 1. � 2. * Σ^2 * Τj@TiD; If@Length@Pick@ð, tj@@n - Hð - 1LDD +
p < Τ < If@ð � n, Infinity,

tj@@n - HðLDDD & �� ðD &@Range@Length@tjDDD - 1D != 0,
j = Pick@ð, tj@@n - Hð - 1LDD + p < Τ < If@ð � n, Infinity, tj@@n - HðLDDD & �� ðD

&@Range@Length@tjDDD - 1,
j = Pick@ð, tj@@n - HðLDD <= Τ £ tj@@n - HðLDD + p & �� ðD

&@Range@0, Length@tjD - 1DDD;
j = j@@1DD; H*Define integration�summation variables for two cases*L
gxvars = Table@Symbol@"x" <> ToString@iDD, 8i, 1, j + 1<D;
gxrange = Table@8gxvars@@iDD, 0, L<, 8i, 1, j + 1<D;
gyvars = Table@Symbol@"y" <> ToString@iDD, 8i, 1, j<D;
gyrange =

Quiet@Diagonal@Table@8gyvars@@kDD, -x � Sqrt@2 * HΤ - Htj@@n - iDD + pLLD,
HL - xL � Sqrt@2 * HΤ - Htj@@n - iDD + pLLD<, 8k, 1, j<, 8i, 0, j - 1<DDD;

gkvars = Table@Symbol@"k" <> ToString@iDD, 8i, 1, j + 1<D;
gkrange = Table@8gkvars@@iDD, 0, lim<, 8i, 1, j + 1<D;
H*hj:*L
hxvars = Table@Symbol@"x" <> ToString@iDD, 8i, 1, j + 1<D;
hxrange = Table@8hxvars@@iDD, 0, L<, 8i, 1, j + 1<D;
hyvars = Table@Symbol@"y" <> ToString@iDD, 8i, 1, j + 1<D;
hyrange =

Quiet@Diagonal@Table@8hyvars@@kDD, -x � Sqrt@2 * HΤ - Htj@@n - iDD + pLLD,
HL - xL � Sqrt@2 * HΤ - Htj@@n - iDD + pLLD<, 8k, 1, j + 1<, 8i, 0, j<DDD;

hkvars = Table@Symbol@"k" <> ToString@iDD, 8i, 1, j + 1<D;
hkrange = Table@8hkvars@@iDD, 0, lim<, 8i, 1, j + 1<D;
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H*Main Pricing Expression*L
If@tj@@n - jDD £ Τ && tj@@n - jDD + p >= Τ, If@j � 0,

expression0 = Sum@gj@gkvars, gxvars, gyvars, x, Τ, tj, p, j, Α, L, nD,
Evaluate@Sequence �� gkrangeDD;

expression1 = Integrate@expression0, Sequence �� gxrangeD;
value = Re@Exp@Α * x + Β * ΤD * expression1D,
expression0 = Sum@gj@gkvars, gxvars, gyvars, x, Τ, tj, p, j, Α, L, nD,

Evaluate@Sequence �� gkrangeDD;
expression1 = Integrate@expression0, Sequence �� gxrangeD;
value =

Re@Exp@Α * x + Β * ΤD * NIntegrate@expression1, Evaluate@Sequence �� gyrangeD,
Method ® 8Automatic, "SymbolicProcessing" ® 0<DDD,

expression0 = Sum@hj@hkvars, hxvars, hyvars, x, Τ, tj, p, j, Α, L, nD,
Evaluate@Sequence �� hkrangeDD;

expression1 = Integrate@expression0, Evaluate@Sequence �� hxrangeDD;
value =

Re@Exp@Α * x + Β * ΤD * NIntegrate@expression1, Evaluate@Sequence �� hyrangeD,
Method ® 8Automatic, "SymbolicProcessing" ® 0<DDDD

Monte Carlo multiple period double barrier digital

The function prob calculates the exit probability as described in Chapter
4.3, HittingTime evaluates the simulated Brownian Motion (simulated by
function GBMPathCompiled) and if a certain probability (parameter ra) is
crossed dismisses the path. The same logic applies to PartialBarrierTest
which evaluates if the path stays inside the barriers during the times when
the barriers are active.
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prob@S0_, S1_, Blow_, Bup_, Σ_, dt_D := Module@8Ξ, y, l, u<, l = Log@BlowD;
u = Log@BupD; Ξ = Log@S0D; y = Log@S1D;
Return@Exp@-HPiecewise@882 � Σ^2 * Hu - ΞL * Hu - yL, HΞ + yL > Hu + lL<,
82 � Σ^2 * HΞ - lL * Hy - lL, HΞ + yL < Hu + lL<<DL � dtDD D;

HittingTime@path_, iSt_, iFn_, Blow_, Bup_, Σ_, dt_, ra_D :=

Module@8subpath = path@HiSt - 1L ;; HiFn + 1LD, probs, i<,
probs = Table@prob@subpath@@iDD, subpath@@i + 1DD, Blow, Bup, Σ, dtD,
8i, 1, Length@subpathD - 1<D; And@Max@probsD <= raDD;

GBMPathCompiled =

Compile@88S0, _Real<, 8drift, _Real<, 8diff, _Real<, 8nSteps, _Integer<<,
FoldList@Hð1 drift Exp@diff ð2DL &, S0,

RandomVariate@NormalDistribution@0, 1D, nStepsDDD;
PartialBarrierTest@path_, iSt_, iFn_, U_, L_D :=

Module@8subPath = path@@iSt ;; iFnDD, subMax, subMin<,
8subMax, subMin< = 8Max@subPathD, Min@subPathD<;
HAnd@Max@subPathD <= U, Min@subPathD >= LDLD;

BDMultMC@S_, t_, Ti_, P_, Blow_, Bup_, r_, Σ_, n_, dt_, ra_D :=

Module@8T, drift, diff, paths, Τ, remainingPaths, value, j<,
T = Last@TiD + P; 8drift, diff< = 8Exp@Hr - Σ^2 � 2L dtD, diff = Σ Sqrt@dtD<;
paths = Table@GBMPathCompiled@S, drift, diff, HT � dtLD, 8n<D;
Τ = Table@8Ti@@iDD � dt, HTi@@iDD + PL � dt<, 8i, 1, Length@TiD<D;
remainingPaths = paths;

For@j = 1, j <= Length@ΤD, j++,

remainingPaths =

Select@remainingPaths,
PartialBarrierTest@ð, Floor@Τ@@jDD@@1DDD, Floor@Τ@@jDD@@2DDD

, Bup, BlowD &D; remainingPaths = Select@remainingPaths,
HittingTime@ð, Floor@Τ@@jDD@@1DDD, Floor@Τ@@jDD@@2DDD,

Bup, Blow, Σ, dt, raD &D;D;
value = Exp@-r * TD * N@1 � n * Length@remainingPathsDDD;
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