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Ein großes Dankeschön möchte ich meiner Familie aussprechen, die mich immer un-
terstützt hat. Ganz besonderer Dank gilt dabei meinen Eltern, Karl und Regina, die
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2.1.2 Itô’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Change of measure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Black-Scholes formula . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Asian Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Arithmetic Asian Option . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Geometric Asian Option . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Introduction to Large Deviations . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Cramér’s Theorem for the empirical average . . . . . . . . . . . . 14

2.3.2 The large deviation principle . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Schilder’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Variance reduction techniques . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 The method of control variates . . . . . . . . . . . . . . . . . . . 19

2.5 Euler-Lagrange equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 The one dimensional Euler-Lagrange equation . . . . . . . . . . . 21

2.5.2 The Euler-Lagrange equation for a functional with two occurrences
of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Price of geometric average Asian options . . . . . . . . . . . . . . . . . . 24

3 Optimal Importance Sampling 28

3.1 The optimal change of drift . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Proof of Theorem 3.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Optimal change of drift for Asian options . . . . . . . . . . . . . . . . . . 36

3.3.1 Optimal change of drift for the geometric average Asian call option 36

3.3.2 Optimal change of drift for the geometric average Asian put option 39

3.3.3 Optimal change of drift for the arithmetic average Asian call option 41

3.3.4 Optimal change of drift for the arithmetic average Asian put option 45

4



4 Different Monte Carlo estimators 47
4.1 Monte Carlo estimator without importance sampling . . . . . . . . . . . 47
4.2 Monte Carlo estimator with importance sampling . . . . . . . . . . . . . 48

4.2.1 Using the asymptotically optimal drift of a geometric average Asian
option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Using the asymptotically optimal drift of an arithmetic average
Asian option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Monte Carlo estimator using the method of control variates . . . . . . . . 50

5 Results 52
5.1 Arithmetic average Asian call option . . . . . . . . . . . . . . . . . . . . 52
5.2 Arithmetic average Asian put option . . . . . . . . . . . . . . . . . . . . 56

Appendix 63
Maple codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5



Chapter 1

Introduction

Consider an arithmetic average Asian option. This is a kind of option, whose pay-off
depends not just on the value of the underlying at maturity but on all values during the
contract period(path-dependent option). Monte Carlo simulation is the method of choice
for pricing complex derivatives, such as path-dependent options. The main reason for
the popularity of this method is ease of implementation, which only requires the ability
to generate sample paths of the asset price and to evaluate the corresponding derivative
payoffs.
Now consider the option to be way out-of-money, which means that it is very unlikely
for the option to be valuable at maturity. Then an event with small probability accounts
for most of the option price. In this case an asymptotic confidence interval given by
the central limit theorem can be very unreliable, since even a relatively large sample
size can miss rare but large payoffs, generating a low estimate for the payoff combined
with a low variance. This means that it is likely to underestimate the value of such
an option. Therefore we try to improve the Monte Carlo estimator by using variance
reduction techniques such as importance sampling or the method of control variates.
While for using the method of control variates nothing very special has to be wondered
about, to use importance sampling one has to derive the change of drift, that minimizes
variance. To find the optimal change of drift for Asian options we will use some large
deviations techniques, as in [4].
After that we will be able to accomplish the aim of this thesis, which is to compare the
results of pricing way out-of-money arithmetic average Asian call respectively put options
by using different Monte Carlo estimators. While the case of the call option has already
been treated in [4], the case of the put option will be investigated for the first time.
In chapter 2 basic theory is given, such as the Black-Scholes model, Itô’s formula, some
results of large deviations techniques, variance reduction techniques and the closed form
solution for the price of a geometric average Asian option in the Black-Scholes model.
Chapter 3 shows how to derive the optimal change of drift in theory and for the case of
geometric and arithmetic average Asian options.
The different Monte Carlo estimators, which will be used to price the option are stated
in chapter 4, while the final results are given in the last chapter.
In the appendix one can find the used Maple codes.
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Chapter 2

Theory

This chapter provides the basic theory for what will be needed later on. At first we will
take a look at the Black-Scholes model, which we will use for determining the price of
Asian options. Therefore the second section will be an introduction to this kind of options.
The following section gives an overview of large deviations techniques. Combined with
importance sampling, what will be investigated in the fourth section, large deviations
will help us to reduce variance significantly while trying to price way out-of-money Asian
options. In section five some theory about Euler-Lagrange equations is provided, while in
the last section we show how to derive the expected payoff of a geometric average Asian
option in the Black-Scholes model.

2.1 Black-Scholes model1

This section provides a short introduction into the Black-Scholes or Samuelson model as
far as it is important for our work later on. We start with the definition of a Brownian
motion and present Itô’s formula. After that the actual model is presented.

2.1.1 Brownian motion

At first consider some basic definitions to achieve the probability space on which we will
define Brownian motions.

Definition 2.1.1. Let Ω be a non-empty set and P(Ω) its power set. A subset F ⊂ P(Ω)
is called σ-algebra with respect to Ω, if it satisfies the following properties:

1. Ω ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. A1, A2, . . . ∈ F ⇒
⋃
n∈NAn ∈ F .

Definition 2.1.2. A sequence of σ-algebras F = {F}t≥0 is called filtration, if ∀s, t ≥ 0,
s < t, it holds that Fs ⊆ Ft.

1 cf. [7] and [9]
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A filtration is often used to represent the increasing amount of information one gains by
time.

Definition 2.1.3. A stochastic process {Xt}t≥0 is said to be adapted to the filtration
{F}t≥0 if any random variable Xt is Ft-measurable.

Definition 2.1.4. Let (Ω,F ,F,P) be a filtered probability space. An Rd-valued stochastic
process {Wt}t≥0, adapted to F, is called a d-dimensional Brownian motion with respect to
F and P, if it satisfies

1. Wt −Ws is independent of Fs, ∀s, t ∈ [0,∞), s < t (independence of increments),

2. ∀s, t ∈ [0,∞), s < t, it holds that (Ws+t − Ws)
d
= (Wt − W0) (stationarity of

increments),

3. ∀s, t ∈ [0,∞), s < t, it holds that Wt −Ws ∼ N(0, (t− s)Id),

4. {Wt}t≥0 has continuous paths a.s.,

where Id is the (d× d)-identity matrix and
d
= means to have the same distribution.

If additionally P(W0 = 0) = 1 holds, then {Wt}t≥0 is called a standard Brownian motion.

Note that P is called Wiener measure, the probability law on the space of continuous
functions, vanishing at zero and that if Ft contains the information of {Ws}s∈[0,T ], {F}t≥0

is called the natural filtration of the Brownian motion.

2.1.2 Itô’s formula2

This section will recall Itô’s formula for the one-dimensional case. The detailed theory
about how to derive that result is not provided. For more information about this topic
one can have a look at [8].

Let (Ω,F ,P) be a probability space with filtration F = {F}t≥0, {Wt}t≥0 a one-dimensional
(F,P)-Brownian motion and I ⊂ [0,∞) an interval of the form I = [a, b], I = [a, b) or
I = [a,∞) with a < b.

Definition 2.1.5. Let WF(I) be the set of all functions f : I × Ω→ R satisfying

1. f is progressively measurable, i.e. f |[a,t]×Ω is B([a, t])⊗Ft-measurable ∀ t ∈ I,

2. P(
∫ t
a
f 2(s, ω)ds <∞ ∀ t ∈ I) = 1.

Now we can define a special kind of process.

Definition 2.1.6. Let v ∈WF([0,∞)) and u : [0,∞)×Ω→ R be progressively measurable
satisfying P(

∫ t
0
|u(s, ·)| ds <∞, ∀ t ≥ 0) = 1. Let X0 be F0-measurable. Then

Xt(ω) := X0(ω) +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dWs(ω), t ≥ 0, ω ∈ Ω

is called Itô-process. An abbreviated version is given by

dXt = u(t)dt+ v(t)dWt.

2 cf. [8]
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Now we can formulate:

Theorem 2.1.7 (Itô-formula). Let U ⊂ R be open and {Xt}t≥0 an Itô-process with values
in U . Let g : [0,∞) × U → R be continuous differentiable once with respect to the first
argument and twice with respect to the second argument(g ∈ C1,2) and let these partial
derivatives be continuous on [0,∞)× U .
Then Yt := g(t,Xt), t ≥ 0, is an Itô-process and for almost all ω ∈ Ω it holds that

Yt (ω) = g (0, X0 (ω))

+

∫ t

0

(
∂g

∂s
(s,Xs (ω)) +

∂g

∂x
(s,Xs (ω))u (s, ω) +

1

2

∂2g

∂x2
(s,Xs (ω)) v2 (s, ω)

)
ds

+

∫ t

0

∂g

∂x
(s,Xs (ω)) v (s, ω) dWs (ω) , t ≥ 0.

(2.1)
An abbreviated version is given by

dYt =
∂g

∂t
(t,Xt (ω)) dt+

∂g

∂x
(t,Xt (ω)) dXt +

1

2

∂2g

∂x2
(t,Xt (ω)) (dXt)

2 ,

with (dt)2 = 0, dtdWt = 0 = dWtdt and (dWt)
2 = dt.

Now we can begin to present the actual Black-Scholes model.

2.1.3 Market

At first we have to mention, that we have to make several assumptions on the financial
market, to be able to derive the Black-Scholes model:

• Trading is possible in continuous time.

• There are no trading restrictions.

• Interest rates for lending and borrowing money are equal.

• There are no costs or taxes.

This is called a complete market.

2.1.4 Assets

In this model there exist two types of assets, a riskless and a risky one. The price of
the riskless asset(bond) is denoted by Bt and is described by the ordinary differential
equation

dBt = rBtdt, (2.2)

where the constant r determines the instantaneous interest rate.
Let B0 = 1, then Bt = B0e

rt for t ≥ 0 solves 2.2.

Let(Ω,F ,F,P) be a filtered probability space, where Ω is a non-empty set, F a σ-algebra,
F = {F}t≥0 a filtration of F and P a probability measure.
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Then the price of the risky asset(stock) St is described by the stochastic differential
equation

dSt
St

= µdt+ σdWt, (2.3)

where µ ∈ R is the appreciation rate, σ > 0 the volatility and {Wt}t>0 a one-dimensional
standard (F,P)-Brownian motion. The part in front of dt (in this case µ) is called drift
of the risky asset.
Using Itô’s formula one can proof that St = S0e

σWt+(µ− 1
2
σ2)t is a solution to 2.3. St is

called a geometric Brownian motion.
S̃t = St

Bt
= e−rtSt = S0e

σWt+(µ−r− 1
2
σ2)t determines the discounted price of the risky asset

and is described by the stochastic differential equation

dS̃t

S̃t
= (µ− r)dt+ σdWt. (2.4)

2.1.5 Change of measure

The intention of the model is now to find a probability measure Q, equivalent to P, so
that {S̃t}t∈[0,T ], T > 0, becomes a martingale with respect to the new measure. Thereby
equivalent means that Q has the same null sets as P.
At first consider some definitions and theorems:

Definition 2.1.8. Let T be an index set. A stochastic process {Mt}t∈[0,T ] on a probability
space (Ω,F ,P) is called martingale with respect to the filtration {Ft}t∈[0,T ], if

1. {Mt}t∈[0,T ] is adapted to {Ft}t∈[0,T ],

2. E[|Mt|] <∞, ∀t ∈ [0, T ],

3. E[Mt|Fs] = Ms, ∀s, t ∈ [0, T ], s < t (martingale property).

The special case of the Radon-Nikodym theorem for probability measures states the
following

Theorem 2.1.9. Let (Ω,F ,P) be a probability space and Q a probability measure equiva-
lent to P. Then there exists an integrable random variable Z with dQ

dP = Z and E[Z] = 1.

Last but not least we formulate Girsanov’s theorem, which will be very important for the
rest of the section.

Theorem 2.1.10 (Girsanov’s theorem). Let (Ω,F ,F,P) be a filtered probability space
with F = {Ft}0≤t≤T the natural filtration of the standard (F,P)-Brownian motion {Wt}0≤t≤T .

Let (θt)0≤t≤T be an adapted process satisfying
∫ T

0
θ2
sds <∞ and that the process {Lt}0≤t≤T ,

defined by

Lt = exp

(
−
∫ T

0

θsdWs −
1

2

∫ T

0

θ2
sds

)
,

is a martingale. Consider the probability measure Q, equivalent to P, with Radon-Nikodym
derivative

dQ
dP

= exp

(
−
∫ T

0

θsdWs −
1

2

∫ T

0

θ2
sds

)
,

then {W ∗
t }0≤t≤T with W ∗

t = Wt +
∫ t

0
θsds is a (F,Q)-standard Brownian motion.
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Now recall that we want to find a probability measure Q that makes {S̃t}t∈[0,T ] a martin-
gale. In the Black-Scholes model there exists an explicit measure satisfying this condition.
A Radon-Nikodym derivative is given by

dQ
dP

= exp

(∫ T

0

r − µ
σ

dWt −
1

2

∫ T

0

(r − µ)2

σ2
dt

)
= exp

(
r − µ
σ

WT −
1

2

(r − µ)2

σ2
T

)
.

(2.5)
Because of Girsanov’s Theorem we know, that we receive a new standard (F,Q)-Brownian
motion {W ∗

t }t∈[0,T ], where W ∗
t = Wt −

∫ t
0
r−µ
σ

= Wt − r−µ
σ
t, t ∈ [0, T ]. With respect to Q,

the discounted price of the risky asset {S̃t}t∈[0,T ] is a martingale and is described by the
stochastic differential equation

dS̃t

S̃t
= σdW ∗

t . (2.6)

Using Itô’s formula one can proof that S̃t = S0e
σW ∗t −

1
2
σ2t is a solution to 2.6.

The ordinary price of the risky asset St with respect to Q is described by the stochastic
differential equation

dSt
St

= rdt+ σdW ∗
t . (2.7)

The solution to 2.7 is given by St = S0e
σW ∗t +(r− 1

2
σ2)t.

As one can see in 2.7 the drift of the risky asset changed from µ to r by changing the
probability measure. Later on we will use a variance reduction technique called impor-
tance sampling, which takes advantage of the fact that changing the probability measure
also changes the drift.
Note that Q is called the risk-neutral measure. If we talk about St under the risk-neutral
measure, St is always meant to be like the solution to 2.7. In this case the appreciation
rate µ has no impact on the price of the risky asset anymore, St only depends on the
volatility σ and the instantaneous interest rate r.

2.1.6 Black-Scholes formula

This subsection provides the Black-Scholes formula for pricing an European option, since
we will need it to derive a closed form solution for the price of the geometric average
Asian option in the Black-Scholes model.

Theorem 2.1.11 (Black-Scholes formula). Consider a European call option with strike
K ≥ 0 and maturity T > 0. Then the price of the option at time t ∈ [0, T ] is given by

Ct = Ct(St, T − t,K, r, σ) = StΦ(d1(St, T − t,K, r, σ))−Ke−r(T−t)Φ(d2(St, T − t,K, r, σ)),
(2.8)

where Φ denotes the distribution function of the standard normal distribution and

d1,2(St, T − t,K, r, σ) =
log(St

K
) + (r ± σ2

2
)(T − t)

σ
√
T − t

.
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Consider now a European put option. Then the price is given by

Pt = Pt(St, T−t,K, r, σ) = Ke−r(T−t)Φ(−d2(St, T−t,K, r, σ))−StΦ(−d1(St, T−t,K, r, σ)).
(2.9)

2.2 Asian Options3

Asian options belong to the group of so-called ”exotic options”, meaning that they do
not have that big impact on the market, though Asian options are the most popular
options among this group. The difference between Asian options and their European
counterparts is that the pay-off does not just depend on the value of the underlying asset
at the maturity date, but on an average of all values during the contract period. Therefore
one has to simulate the whole path and not just a single value, if one wants to estimate
the price of an Asian option by doing a Monte Carlo simulation.

2.2.1 Arithmetic Asian Option

The average value of the underlying asset in discrete respectively continuous time is
determined by the arithmetic average

S =
1

n

n∑
i=1

Sti ,

S =
1

T

∫ T

0

St,

where T is the duration of the contract, t1 < t2 < ... < tn = T are the associated trading
dates in discrete time and St the price of the underlying of the option at time t.

Therefore the pay-off of an arithmetic Asian call respectively put option is given by(
S −K

)+
,(

K − S
)+
,

where K determines the strike price.

Thus the price of the option at time 0 is denoted by

e−rTE
[(
S −K

)+
]
,

e−rTE
[(
K − S

)+
]
.

3 cf. [10]
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2.2.2 Geometric Asian Option

The average value of the underlying asset in discrete time is determined by the geometric
average

Ŝ =

(
n∏
i=1

Sti

) 1
n

, (2.10)

where t1 < t2 < ... < tn = T are the associated trading dates in discrete time, T the
duration of the contract and St the price of the underlying of the option at time t.

Since 2.10 can be rewritten as

Ŝ = e
ln

(
(
∏n
i=1 Sti)

1
n

)
= e

1
n

∑n
i=1 ln(Sti),

the average value of the underlying asset in continuous time is determined by

Ŝ = e
1
T

∫ T
0 ln(St).

Therefore the pay-off of an arithmetic Asian call respectively put option is

(Ŝ −K)+,

(K − Ŝ)+,

where K determines the strike price.
Thus the price of the option at time 0 is denoted by

e−rTE
[(
Ŝ −K

)+
]
,

e−rTE
[(
K − Ŝ

)+
]
.

2.3 Introduction to Large Deviations4

Large deviations theory is a part of probability theory that deals with the description of
so-called rare events, where rare means that random variables differ from its mean by
more than a ”normal” amount. Normal usually means what is described by the central
limit theorem.
The area of large deviations covers a set of asymptotic results on rare event probabilities
and a set of methods to derive such results.
Among other topics large deviations find important applications in finance, where rare
events play an important role. Approximations, done for pricing options, in particular for
pricing barrier options and way out-of-money options, are good examples and also in the
scope of this thesis. Therefore large deviations techniques aim to quantify the probability
of rare events on exponential scale.

4 cf. [1] and [2]
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Let us start with a short example:
Consider a probability space (R,B(R),P), where B(R) is the Borel σ-algebra on R and
let X1, X2, ... be i.i.d. random variables with

EX1 = µ ∈ R,
V arX1 = σ2 ∈ (0,∞)

and let Sn = X1 + · · ·+Xn (n ∈ N) be the partial sums.

There are two fundamental theorems dealing with such sequences:

Strong Law of Large Numbers(SLLT)

1

n
Sn

n→∞−−−→ µ P-a.s.

Central Limit Theorem(CLT)

1

σ
√
n

(Sn − µn)
n→∞−−−→ Z in law w.r.t. P,

where Z is a standard normal random variable.
The CLT quantifies the probability that Sn differs from µn by an amount of order

√
n,

what we call a ”normal” deviation.
Events where Sn differs from µn by an amount of order n lead to deviations that are
called ”large” (large deviations).
As an example consider the following event

{Sn ≥ (µ+ a)n}, a > 0,

whose probability tends to zero as n→∞. The question now is to determine how quick
this happens. Therefore our task is to quantify the rate at which the probability tends
to zero.

2.3.1 Cramér’s Theorem for the empirical average

Theorem 2.3.1. 5 Let (Xi) be i.i.d. R-valued random variables with φ(t) = EetX1 <∞,
∀t ∈ R, where φ denotes the generating function.
Let Sn =

∑n
i=1Xi.Then for all a > EX1,

lim
n→∞

1

n
ln(P(Sn ≥ an)) = −I(a), (2.11)

where
I(z) = sup

t∈R
(zt− ln(φ(t))), z ∈ R (2.12)

is called a rate function.

5 cf. [1, Theorem I.4]
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Note that 2.11 also holds for P(Sn ≤ an) with a < EX1, that I(z) is called the Fenchel-
Legendre transform of lnφ(t) and that lnφ is the cumulant generating function.
Assuming that the conditions of Cramér’s Theorem are satisfied, the rate function 2.12
has the following properties6:

1. I is lower semi-continuous and convex on R.

2. I has compact level sets.

3. I is continuous and strictly convex on int(DI), where DI = {z ∈ R : I(z) < ∞}
and int(DI) is the interior of DI .

4. I is smooth on int(DI).

5. I(z) ≥ 0 with equality if and only if z = µ.

6. I ′′(µ) = 1
σ2

Remarks:

• The level sets of I are the sets I−1([0, c]) = {z ∈ R : I(z) ≤ c} with c ∈ [0,∞).

• Lower semi-continuity is equivalent to the level sets being closed.

• The convexity of I implies, that DI is an interval (possibly infinite).

2.3.2 The large deviation principle

Now we do not consider i.i.d. random variables any longer, but formulate a more general
theory.

Let X be a Polish space, i.e. a separable completely metrizable topological space, with
distance(metric) d : X × X → [0,∞).

Definition 2.3.2. f : X → [−∞,∞] is lower semi-continuous if it satisfies any of the
following equivalent properties:

1. lim inf
n→∞

f(xn) ≥ f(x) for all (xn), x such that xn → x in X .

2. lim
ε↓0

inf
y∈Bε(x)

f(y) = f(x) with Bε(x) = {y ∈ X : d(x, y) < ε}.

3. f has closed level sets, i.e. f−1([−∞, c]) = {x ∈ X : f(x) ≤ c} is closed for all
c ∈ R.

Now we can define a rate function.

Definition 2.3.3. I : X → [0,∞] is a rate function if:

1. I 6≡ ∞
6 cf. [1, exercise I.16]
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2. I is lower semi-continuous.

3. I has compact level sets.

Theorem 2.3.4. 7 A lower semi-continuous function achieves a minimum on every non-
empty compact set.

Definition 2.3.5. A sequence of probability measures (Pn) on X is said to satisfy the
large deviation principle(LDP) with rate n and rate function I if

1. I is a rate function in the sense of Definition 2.3.3.

2. lim sup
n→∞

1
n

ln Pn(C) ≤ −I(C) ∀C ⊂ X closed.

3. lim inf
n→∞

1
n

ln Pn(O) ≥ −I(O) ∀O ⊂ X open.

where for S ⊆ X I(S) is defined as I(S) = inf
x∈S

I(x).

Theorem 2.3.6. 8 Let (Pn) satisfy the LDP. Then the associated rate function I is
unique.

The next result, known as Varadhan’s Lemma, is the extension of the Laplace approxi-
mation for integrals to a general (infinite-dimensional) setting.

Lemma 2.3.7 (Varadhan’s Lemma). 9 Let (Pn) satisfy the LDP on X with rate n and
rate function I. Let H : X → R be continuous and bounded from above.Then

lim
n→∞

1

n
ln

∫
X
enH(x)dPn(x) = sup

x∈X
[H(x)− I(x)] (2.13)

2.3.3 Schilder’s Theorem

In this section we will take a closer look to a more specific result, namely Schilder’s The-
orem for Sample Path Large Deviations.

Let (Wt)t∈[0,T ] denote a standard Brownian motion in Rd. Consider the process

Wε(t) =
√
εWt.

Theorem 2.3.8. 10 For any integer d and any τ, ε, δ > 0,

P
(

sup
0≤t≤τ

‖Wε(t)‖ ≥ δ

)
≤ 4d exp

(
−δ2

2dτε

)
. (2.14)

7 cf. [1, exercise III.4]
8 cf. [1]
9 cf. [1] or [2, Theorem 4.3.1]

10 cf. [2, Lemma 5.2.1]
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Now let
H0([0, T ]) = {f : [0, T ] → R : f is absolutely continuous on [0, T ], f ′ ∈ L2, f(0) = 0}
denote the space of all absolutely continuous functions with square integrable derivative,
vanishing at zero.
Let µε be the probability measure induced by Wε(·) on C[0, T ], the space of all continuous
functions, vanishing at zero, equipped with the supremum norm topology.

Theorem 2.3.9 (Schilder). 11 {µε} satisfies an LDP on C[0, T ] with rate function

I(h) =


1

2

∫ T

0

‖ḣ(t)‖2dt, if h ∈ H0

∞ otherwise

(2.15)

Let us show the lower bound of this LDP.

Proof. Consider G a nonempty open set of C([0, T ]), h ∈ G and δ > 0 s.t. B(h, δ) ⊂ G.
We want to prove that

lim inf
ε→0

ε ln P
[√
εW ∈ B(h, δ)

]
≥ −I(h).

For h /∈ H0([0, T ]), this inequality is trivial since I(h) =∞. Suppose now h ∈ H0([0, T ]),
and consider the probability measure:

dQh

dP
= exp

(∫ T

0

ḣt√
ε
dWt −

1

2ε

∫ T

0

∣∣∣ḣt∣∣∣2 dt) ,
so that by Girsanov’s Theorem, W h := W − h√

ε
is a Brownian motion under Qh. Then,

we have

P
[√
εW ∈ B (h, δ)

]
= P

[∣∣W h
∣∣ < δ√

ε

]
= EQh

[
exp

(
−
∫ T

0

ḣt√
ε
dW h

t −
1

2ε

∫ T

0

∣∣∣ḣt∣∣∣2 dt) 11|Wh|< δ√
ε

]
(
W hQh −BM

)
= E

[
exp

(
−
∫ T

0

ḣt√
ε
dWt −

1

2ε

∫ T

0

∣∣∣ḣt∣∣∣2 dt) 11|W |< δ√
ε

]
(
W −̃W

)
= E

[
exp

(
+

∫ T

0

ḣt√
ε
dWt −

1

2ε

∫ T

0

∣∣∣ḣt∣∣∣2 dt) 11|W |< δ√
ε

]

= E

[
exp

(
− 1

2ε

∫ T

0

∣∣∣ḣt∣∣∣2 dt) cosh

(∫ T

0

ḣt√
ε
dWt

)
11|W |< δ√

ε

]

≥ exp

(
− 1

2ε

∫ T

0

∣∣∣ḣt∣∣∣2 dt)P
[
|W | < δ√

ε

]
.

This implies

ε ln P
[√
εW ∈ B (h, δ)

]
≥ −I (h) + ε ln P

[
|W | < δ√

ε

]
,

and thus the required lower bound.

11 cf. [2, Theorem 5.2.3]
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Since it is much more complicated to show the upper bound, the proof is not given here.
For more information one can have a look at [2, Lemma 5.2.3].

2.4 Variance reduction techniques

There are several different types of so-called variance reduction techniques, but all of
them intend to increase the efficiency of Monte Carlo methods by reducing the variance
of simulation estimates. In the following sections we will take a closer look at two of them.
At first the method called importance sampling is presented, followed by the method of
control variates.

2.4.1 Importance sampling12

Importance sampling attempts to reduce variance by changing the probability measure
from which paths are generated. The idea is to try to give more weight to ”important”
outcomes of the simulation. For example if one investigates barrier options, one can make
it more probable that the price of an asset exceeds or falls below a specific value.
Thereby the expected value will be unchanged under the new measure, but the variance
will ”hopefully” decrease.

Now let us have a look at a short example:
Let

µ = E[h(X)] =

∫
h(x)f(x)dx (2.16)

be the term we want to estimate, where X is a random variable of Rd with probability
density f and h is a function from Rd to R. Therefore we get the following Monte Carlo
estimator for n independent draws X1, ..., Xn of f :

µ̂(n) =
1

n

n∑
i=1

h(Xi).

Let g be any other probability density on Rd satisfying f(x) > 0 ⇒ g(x) > 0, ∀x ∈ Rd.
Then we can rewrite 2.16 as

µ =

∫
h(x)

f(x)

g(x)
g(x)dx = Ẽ

[
h(X)

f(X)

g(X)

]
, (2.17)

where Ẽ indicates that the expectation is taken with X distributed according to g and
f(x)
g(x)

is a Radon-Nikodym derivative. Therefore we get a new Monte Carlo estimator, this
time for n independent draws X1, ..., Xn of g:

µ̂g(n) =
1

n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)
.

With 2.17 we see that Ẽ[µ̂g] = µ and thus that µ̂g is an unbiased estimator of µ.
Since the expected value is equal with and without Importance Sampling, the difference

12 cf. [3, section 4.6]

18



of the variance has to be found by comparing the second moments. With importance
sampling, we get

Ẽ

[(
h(X)

f(X)

g(X)

)2
]

= E
[
h(X)2f(X)

g(X)

]
.

Since the second moment without importance sampling is E[h(X)2], one can see, that
the change of variance depends on the choice of g. Therefore achieving a rise of variance
is as possible as achieving a reduction. So we see that the success of this method lies in
the art of selecting an effective density g.

Note the following:
Consider the special case in which h is nonnegative. Then h(x)f(x) is also nonnegative
and may be normalized to a probability density. Then

g(x) =
h(x)f(x)∫
h(x)f(x)dx

would be the perfect choice, leading to a zero-variance estimator µ̂g. Unfortunately∫
h(x)f(x)dx = µ is what we wanted to estimate in the first place. Therefore in practice

we try to find an approximately optimal g.

This was an easy example to illustrate the idea of importance sampling. Later on, when
we calculate the price of an Asian option in the Black-Scholes model, we will take advan-
tage of this method. Since underlying assets then are represented by geometric Brownian
motions, changing the probability measure will result in changing the drift of the Brow-
nian motion.

2.4.2 The method of control variates13

Now we take a look at another variance reduction technique, the method of control vari-
ates. It exploits information about the errors in estimates of known quantities to reduce
the error in an estimate of an unknown quantity.
For example let Y1, . . . , Yn be the payoffs of an option with respect to sample path
i. Supposing that all Yi are i.i.d., the usual estimator of E[Yi] is the sample mean
Ȳ = (Y1 + · · ·+ Yn)/n. This estimator is unbiased and converges with probability 1 as
n→∞.
Suppose now that for each sample path we compute the output Xi along with Yi. Sup-
pose that the pairs (Xi, Yi) are i.i.d. for i = 1, . . . , n and the expectation E[X] of the Xi

is known.(We use (X,Y) to denote a pair of random variables with the same distribution
as each (Xi, Yi).) Then for any fixed b we can calculate

Yi(b) = Yi − b(Xi − E[X])

from the ith sample path and then compute the sample mean

Ȳ (b) = Ȳ − b(X̄ − E[X]) =
1

n

n∑
i=1

(Yi − b(Xi − E[X])). (2.18)

13 cf. [3, section 4.1]
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This is a control variate estimator; the observed error X̄ − E[X] serves as a control in
estimating E[Y ]. Since

E[Ȳ (b)] = E[Ȳ − b(X̄ − E[X])] = E[Ȳ ] = E[Y ]

the control variate estimator 2.18 is unbiased and it is consistent, with probability 1,
because of

lim
n→∞

1

n

n∑
i=1

Yi(b) = lim
n→∞

1

n

n∑
i=1

(Yi − b(Xi − E[X]))

= E[Y − b(X − E[X])]

= E[Y ]

Each Yi(b) has the following variance

V ar(Yi(b)) = V ar(Yi − b(Xi − E[X])) (2.19)

= σ2
Y − 2bσXσY ρXY + b2σ2

X ≡ σ2(b), (2.20)

where ρXY is the correlation between X and Y , σ2
X = V ar(X) and σ2

Y = V ar(Y ).
The control variate estimator Ȳ (b) has variance σ2

Y /n and the ordinary sample mean
Ȳ (b = 0) has variance σ2

Y /n. Thus the control variate estimator has smaller variance
than the standard one if b2σ2

X < 2bσXσY ρXY .
The optimal coefficient b∗ minimizes the variance 2.20 and is given by

b∗ =
σY
σX

ρXY =
Cov(X, Y )

V ar(X)
.

Since in practice it is unlikely that σY or ρXY is known, if E[Y ] is unknown, we have to
estimate b∗. Therefore we get

b̂n =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
.

Now we got everything to use this method.

Since in the Black-Scholes model there exists a closed form solution for the price of
an geometric average Asian option, we can use this price as a control variate for the price
of an arithmetic average Asian option.

2.5 Euler-Lagrange equation14

Since later on we will have to determine the Euler-Lagrange equation(or Euler’s equation),
this section provides what we need to know.
The Euler-Lagrange equation belongs to the field of Variations of Functionals, where the
concept of the variation(or differential) of a functional is analogous to the concept of a

14 cf. [6, Chapter 1]

20



differential of a function.
Consider a functional of the form

J [y] =

∫ b

a

L(x, y(x), y′(x))dx, (2.21)

and let
∆J [h] = J [y + h]− J [y]

be its increment, corresponding to the increment h = h(x) of the ”independent variable”
y = y(x). If y is fixed, ∆J [h] is a functional of h. Suppose that

∆J [h] = φ[h] + ε‖h‖, (2.22)

where φ[h] is a linear functional and ε→ 0 as ‖h‖ → 0. Then the functional J [y] is said
to be differentiable and the principal linear part of the increment ∆J [h], i.e. the linear
functional φ[h] which differs from ∆J [h] by an infinitesimal of order higher than 1 relative
to ‖h‖, is called the variation(or differential) of J [h] and is denoted by δJ [h].

Problems involving the determination of maxima and minima of functionals are called
variational problems. Consider the ”simplest” variational problem, which is formulated
as follows:

. Let L(x, y, y′) be a function with continuous first and second (partial) derivatives with
respect to all its arguments. Then, among all the functions y(x) which are continuously
differentiable for a ≤ x ≤ b and satisfy the boundary conditions

y(a) = A, y(b) = B,

find the function for which the functional

J [y] =

∫ b

a

L(x, y(x), y′(x))dx (2.23)

has a weak extremum.

In other words, the simplest variational problem consists of finding the weak extremum
of a functional of the form 2.23. This can be done by solving Euler’s equation 2.24, which
is denoted as follows.

2.5.1 The one dimensional Euler-Lagrange equation

Theorem 2.5.1 (Euler’s equation). 15 Let J [y] be a functional of the form

J [y] =

∫ b

a

L(x, y(x), y′(x))dx,

defined on the set of functions y(x) which have continuous first derivatives in [a, b] and
satisfy the boundary conditions y(a) = A, y(b) = B. Then a necessary condition for J [y]
to have an extremum for a given function y(x) is that y(x) satisfy Euler’s equation

∂L

∂y
− d

dx

∂L

∂y′
= 0. (2.24)

15 cf. [6, Theorem 1]

21



Proof. Suppose we give y(x) an increment h(x) with yε(x) = y(x) + εh(x) and y′ε(x) =
y′(x) + εh′(x), where h(x) is a differentiable function and ε is small. Since we want the
function yε to continue to satisfy the boundary conditions, we must have h to satisfy
h(a) = h(b) = 0.
Define

Jε[y] =

∫ b

a

L(x, yε, y
′
ε)dx =

∫ b

a

Lεdx,

where Lε = L(x, yε, y
′
ε).

The total derivative of a function f of several variables x, y, z with respect to one of its
input variables, e.g. x, is given by

df

dx
=
∂f

∂x

dx

dx
+
∂f

∂y

dy

dx
+
∂f

∂z

dz

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
+
∂f

∂z

dz

dx
.

Now we calculate the total derivative of Jε[y] with respect to ε, which is

dJε
dε

=
d

dε

∫ b

a

Lεdx =

∫ b

a

dLε
dε

dx.

With
dLε
dε

=
∂Lε
∂ε

+
∂Lε
∂x

dx

dε
+
∂Lε
∂yε

dyε
dε

+
∂Lε
∂y′ε

dy′ε
dε
,

where

∂Lε
∂ε

=
∂

∂ε
L(x, yε, y

′
ε) = 0, since L does not depend explicitly on ε,

∂Lε
∂x

dx

dε
= 0, since

dx

dε
= 0,

dyε
dε

= h and

dy′ε
dε

= h′

and with ε = 0 we get

dJε
dε

=

∫ b

a

[
h(x)

∂Lε
∂yε

+ h′(x)
∂Lε
∂y′ε

]
dx =

∫ b

a

[
h(x)

∂L

∂y
+ h′(x)

∂L

∂y′

]
dx. (2.25)

According to [6, Sec. 3.2, Theorem 2] a necessary condition for J [y] to have an extremum
for y = y(x) is that

dJε
dε

= 0,

therefore we get ∫ b

a

[
h(x)

∂L

∂y
+ h′(x)

∂L

∂y′

]
dx = 0. (2.26)

Applying the following lemma to 2.26 yields the Euler-Lagrange equation.

22



Lemma 2.5.2. 16 If α(x) and β(x) are continuous in [a, b] and if∫ b

a

[α(x)h(x) + β(x)h′(x)]dx = 0

for every function h(x), defined on [a, b], continuous and with continuous first derivatives,
such that h(a) = h(b) = 0, then β(x) is differentiable and β′(x) = α(x), ∀x ∈ [a, b].

2.5.2 The Euler-Lagrange equation for a functional with two
occurrences of integrals

This was the standard case. Now the method of the proof will be used once again
to derive the Euler-Lagrange equation for a functional with two occurrences of inte-
grals. Therefore consider the functions L1(x, y, y′) and L2(x, y, y′) as L before and let

J1[y] =
∫ b
a
L1(x, y, y′)dx and J2[y] =

∫ b
a
L2(x, y, y′)dx be functionals of the form as J [y].

Define yε, y
′
ε, h and h′ as before and let J1,ε[y] =

∫ b
a
L1,εdx and J2,ε[y] =

∫ b
a
L2,εdx, where

Li,ε = Li(x, yε, y
′
ε), i = 1, 2.

Now define F [J1, J2] as a functional of the two integrals J1 and J2. For this functional
we want to find the corresponding Euler-Lagrange equation. Therefore we calculate the
total derivative of Fε = F [J1,ε, J2,ε] with respect to ε, which is given by

dFε
dε

=
∂Fε
∂ε

+
∂Fε
∂J1,ε

dJ1,ε

dε
+

∂Fε
∂J2,ε

dJ2,ε

dε
, (2.27)

where
∂Fε
∂ε

= 0, since Fε does not depend explicitly on ε.

Since J1,ε and J2,ε are of the form of Jε in the standard case, we get, as in 2.25,

dJ1,ε

dε
=

∫ b

a

[
h(x)

∂L1,ε

∂yε
+ h′(x)

∂L1,ε

∂y′ε

]
dx,

dJ2,ε

dε
=

∫ b

a

[
h(x)

∂L2,ε

∂yε
+ h′(x)

∂L2,ε

∂y′ε

]
dx.

Using integration by parts for the second term of the integral yields∫ b

a

h′(x)
∂L

∂y′
dx = h(x)

∂L

∂y′

∣∣∣∣b
a

−
∫ b

a

h(x)
d

dt

∂L

∂y′
dx = −

∫ b

a

h(x)
d

dt

∂L

∂y′
dx,

where the last equality holds because h(a) = h(b) = 0. Applying this result gives

dJ1,ε

dε
=

∫ b

a

h(x)

(
∂L1,ε

∂yε
− d

dt

∂L1,ε

∂y′ε

)
dx,

dJ2,ε

dε
=

∫ b

a

h(x)

(
∂L2,ε

∂yε
− d

dt

∂L2,ε

∂y′ε

)
dx.

16 cf. [6, Lemma 4]
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Substituting this into 2.27 yields

dFε
dε

=
∂Fε
∂J1,ε

∫ b

a

h(x)

(
∂L1,ε

∂yε
− d

dt

∂L1,ε

∂y′ε

)
dx+

∂Fε
∂J2,ε

∫ b

a

h(x)

(
∂L2,ε

∂yε
− d

dt

∂L2,ε

∂y′ε

)
dx

=

∫ b

a

h(x)

(
∂Fε
∂J1,ε

(
∂L1,ε

∂yε
− d

dt

∂L1,ε

∂y′ε

)
+

∂Fε
∂J2,ε

(
∂L2,ε

∂yε
− d

dt

∂L2,ε

∂y′ε

))
dx

According to [6, Sec. 3.2, Theorem 2] a necessary condition for F [J1, J2] to have an
extremum for y = y(x) is that

dFε
dε

= 0,

hence we get for ε = 0

dFε
dε

=

∫ b

a

h(x)

(
∂F

∂J1

(
∂L1

∂y
− d

dt

∂L1

∂y′

)
+
∂F

∂J2

(
∂L2

∂y
− d

dt

∂L2

∂y′

))
dx = 0.

Since this integral has to be equal to zero for any increment h, it is the rest of the
integrand who has to be equal to zero. Therefore we get

∂F

∂J1

(
∂L1

∂y
− d

dt

∂L1

∂y′

)
+
∂F

∂J2

(
∂L2

∂y
− d

dt

∂L2

∂y′

)
= 0,

what is equvialent to the following Euler-Lagrange equation

∂L2

∂y
− d

dx
∂L2

∂y′

∂L1

∂y
− d

dx
∂L1

∂y′

= −
∂F
∂J1

∂F
∂J2

. (2.28)

2.6 Price of geometric average Asian options17

As mentioned before there exists a closed form solution for the price of geometric average
Asian options in the Black-Scholes model. Since we will need this expectation later on to
use the method of control variates, the formula for the price is provided in this section.

At first note that for arithmetic average Asian options there is no such solution. The
reason why the geometric case is easier to handle, is that the product, other than the
sum, of log-normal distributed random variables is also log-normal distributed. This of
course is very helpful, since, as we know, the geometric Brownian motion St is log-normal
distributed.
The payoff function for the discrete geometric average Asian call option is given by

(
exp

(
1

m+ 1

m∑
i=0

log(S(ti))

)
−K

)+

=

( m∏
i=0

S(ti)

)1/(m+1)

−K

+

,

17 cf. [11, Section 3.2]
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where m is the number of time points and 0 = t0 < . . . < tm = T with ti = iT
m

.
Note that

m∏
i=0

S(ti) =
S(tm)

S(tm−1)
(
S(tm−1)

S(tm−2)
)2(
S(tm−2)

S(tm−3)
)3

· · · (S(t3)

S(t2)
)m−2(

S(t2)

S(t1)
)m−1(

S(t1)

S(t0)
)mSm+1

0 .

Since St = S0e
σW ∗t +(r− 1

2
σ2)t and ti − ti−1 = T

m
, i = 1, . . . ,m it follows that

S(tm)

S(tm−1)
= exp(σ(W ∗

tm −W
∗
tm−1

) +

(
r − σ2

2

)
(tm − tm−1)

= exp(σ
√
T/mX1 +

(
r − σ2

2

)
T/m),

S(tm−1)

S(tm−2)
= exp(σ

√
T/mX2 +

(
r − σ2

2

)
T/m),

...

S(t1)

S(t0)
= exp(σ

√
T/mXm +

(
r − σ2

2

)
T/m),

where {Xi}mi=1 are independent, standard normal distributed random variables.
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With the above results we get

log

(
(
∏m

i=0 S (ti))
1/(m+1)

S0

)
= log

((∏m
i=0 S (ti)

Sm+1
0

)1/(m+1)
)

=
1

m+ 1
log

(∏m
i=0 S (ti)

Sm+1
0

)
=

1

m+ 1
log

(
S (tm)

S (tm−1)

(
S (tm−1)

S (tm−2)

)2

· · ·
(
S (t2)

S (t1)

)m−1(
S (t1)

S (t0)

)m)

=
1

m+ 1

(
log

(
S (tm)

S (tm−1)

)
+ 2 log

(
S (tm−1)

S (tm−2)

)
+

· · ·+ (m− 1) log

(
S (t2)

S (t1)

)
+m log

(
S (t1)

S (t0)

))

=
1

m+ 1

((
σ
√
T/mX1 +

(
r − σ2

2

)
T/m

)
+ 2

(
σ
√
T/mX2 +

(
r − σ2

2

)
T/m

)
+

· · ·+ (m− 1)

(
σ
√
T/mXm−1 +

(
r − σ2

2

)
T/m

)
+m

(
σ
√
T/mXm +

(
r − σ2

2

)
T/m

))

=
1

m+ 1

(
σ
√
T/m

m∑
i=1

iXi + (1 + 2 + · · ·+m)

(
r − σ2

2

)
T

m

)

=
σ
√
T/m

∑m
i=1 iXi

m+ 1
+

(
r − σ2

2

)
T

2
.

(2.29)
Caused by the additive mean and variance of independent normal random variables, we
know that

σ
√
T/m

∑m
i=1 iXi

m+ 1
∼ N

0,
σ2T (12 + 22 + . . .+m2)

m(m+ 1)2︸ ︷︷ ︸
(2m+1)σ2T

6(m+1)

 .

Therefore we have

σ
√
T/m

∑m
i=1 iXi

m+ 1
= σ

√
(2m+ 1)T

6(m+ 1)
Z, (2.30)

where Z is standard normal distributed.
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Plugging 2.30 in 2.29 we get

log

(
(
∏m

i=0 S(ti))
1/(m+1)

S0

)
=

(
ρ− σ2

Z

2

)
T + σZ

√
TZ,

where σZ = σ
√

2m+1
6(m+1)

and ρ =

(
r−σ

2

2

)
+σ2

Z

2
.

Hence, we can obtain the price of the geometric average Asian call option:

Cg
0 (S0, T,K, r, σ) = exp (−rT ) E

( m∏
i=0

S (ti)

)1/(m+1)

−K

+
= exp ((ρ− r)T ) exp (−ρT ) E

[(
S0 exp

((
ρ− σ2

Z

2

)
T + σZ

√
TZ

)
−K

)+
]

= exp ((ρ− r)T )C0 (S0, T,K, ρ, σZ) ,

where C0(S0, T,K, ρ, σZ) is the price of an European call option with interest rate ρ and
volatility σZ .

By the Black-Scholes formula 2.8 we get

C0(S0, T,K, ρ, σZ) = S0Φ(d1(S0, T,K, ρ, σZ))−Ke−ρTΦ(d2(S0, T,K, ρ, σZ)),

where Φ denotes the distribution function of the normal distribution and

d1,2 (S0, T,K, ρ, σZ) =
log
(
S0

K

)
+
(
ρ± σ2

Z

2

)
T

√
TσZ

.

Therefore we have

Cg
0 (S0, T,K, r, σ) = exp((ρ− r)T )(S0Φ(d1(S0, T,K, ρ, σZ))−Ke−ρTΦ(d2(S0, T,K, ρ, σZ)))

= exp(−rT )(S0e
ρTΦ(d1(S0, T,K, ρ, σZ))−KΦ(d2(S0, T,K, ρ, σZ)))

(2.31)
Let P respectively P g be the price of the corresponding European respectively geometric
average Asian put option. Then the price of the European one is given by

P0(S0, T,K, ρ, σZ) = Ke−ρTΦ(−d2(S0, T,K, ρ, σZ))− S0Φ(−d1(S0, T,K, ρ, σZ)).

Hence we have

P g
0 (S0, T,K, r, σ) = exp((ρ− r)T )(Ke−ρTΦ(−d2(S0, T,K, ρ, σZ))− S0Φ(−d1(S0, T,K, ρ, σZ)))

= exp(−rT )(KΦ(−d2(S0, T,K, ρ, σZ))− S0e
ρTΦ(−d1(S0, T,K, ρ, σZ))).

(2.32)
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Chapter 3

Optimal Importance Sampling1

This chapter provides the theory Paolo Guasoni and Scott Robertson used in their paper
to derive the optimal change of drift of an underlying asset in the Black-Scholes model,
where optimal is meant in the sense of reducing variance via importance sampling, as
well as the practical example for a geometric respectively an arithmetic average Asian
option.

3.1 The optimal change of drift2

Consider the Black-Scholes model and let P determine the risk-neutral probability mea-
sure. Then the risky asset is, as mentioned before,

St = S0e
σWt+(r− 1

2
σ2)t,

where Wt is a standard Brownian motion under P, r the interest rate and σ the volatility.

Now we want to describe the payoff of a derivative by a functional depending on the
shocks process (Wt)t∈[0,T ]. Therefore denote by

WT ≡ {x ∈ C([0, T ],R) : x(0) = 0}

the Wiener space of continuous functions on [0, T ] vanishing at zero.
This space is endowed with the topology of uniform convergence and with the usual
Wiener measure P, defined on the completion of the Borel σ-field FT , under which the
coordinate process Wt(x) = xt is a standard Brownian motion with respect to (Ft)t∈[0,T ],
the usual augmentation of the natural filtration of W .
Roughly spoken, WT contains the paths of (Wt)t∈[0,T ].

Definition 3.1.1. A payoff is a non-negative functional G : WT → R+, continuous in
the uniform topology.

1 cf. [4]
2 cf. [4, chapter 3]
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Example 3.1.2. Consider the arithmetic average Asian call option. Its payoff is given

by
(

1
T

∫ T
0
Stdt−K

)+

, which corresponds to the functional

G(x) =

(
1

T

∫ T

0

S0e
σxt+(r− 1

2
σ2)tdt−K

)+

.

Let F = logG, taking values in R ∪ {−∞}, and define by

HT ≡ {h ∈ AC[0, T ] : h(0) = 0,

∫ T

0

ḣ2
tdt <∞}

the Cameron-Martin space of absolutely continuous functions vanishing at zero with
square integrable derivative.

Now for any deterministic h ∈ HT , the Radon-Nikodym derivative

dQh

dP
= exp(

∫ T

0

ḣtdWt −
1

2

∫ T

0

ḣ2
tdt)

induces an equivalent probability measure Qh. Under Qh the process W ∗
t ≡ Wt − ht is a

standard Brownian motion as we learned in section 2.1.5.
So we see that HT contains the possible changes of drift of St.

Since we want to minimize

V arQh

(
G
dP
dQh

)
= EQh

[(
G
dP
dQh

)2
]
− EQh

[
G
dP
dQh

]2

= EP

[
G2 dP
dQh

]
− EP [G]2 ,

we have to minimize

EP

[
G2 dP
dQh

]
= EP

[
e2F (W )−

∫ T
0 ḣtdWt+

1
2

∫ T
0 ḣ2

tdt
]
.

When Monte Carlo simulation is necessary to estimate EP [G], the above quantity is, in
general, intractable.

Instead, as in [5], we consider the small-noise asymptotics

L(h) = lim sup
ε↓0

ε log
(
EP

[
e

1
ε (2F (

√
εW )−

∫ T
0

√
εḣtdWt+

1
2

∫ T
0 ḣ2

tdt)
])
,

which correspond to approximating V arQh
(
G dP
dQh

)
with eL(h). So instead of minimizing

the variance, we minimize eL(h), particularly L(h). Note that since we use this approxi-
mation, the minimizer h will ”just” be asymptotically optimal.

Definition 3.1.3. An asymptotically optimal drift is a solution to the problem

min
h∈HT

L(h).
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Now we have to find a deterministic expression for L(h), which becomes suitable for
optimization. This is possible under the following

Assumption 3.1.4. F : WT → R ∪ {−∞} is continuous and satisfies

F (x) ≤ K1 +K2 max
t∈[0,T ]

|xt|α (3.1)

for some constants K1, K2 > 0 and α ∈ (0, 2).

Note that condition 3.1 is fulfilled for virtually all options of practical interest.

Theorem 3.1.5. Let F satisfy Assumption 3.1.4. Then:

1. If h ∈ HT , and ḣ has finite variation, then

L(h) = sup
x∈HT

(
2F (x) +

1

2

∫ T

0

(ẋt − ḣt)2dt−
∫ T

0

ẋ2
tdt

)
(3.2)

2. For all h ∈ HT , there exist maximizers to both 3.2 and 3.3 below:

sup
x∈HT

(
2F (x)−

∫ T

0

ẋ2
tdt

)
(3.3)

3. If ĥ is a solution to 3.3, then ĥ is asymptotically optimal if

L(ĥ) = 2F (ĥ)−
∫ T

0

˙̂
h2
tdt. (3.4)

Furthermore, if 3.4 holds, then ĥ is the unique solution of 3.3.

A proof is provided in the next section. This Theorem yields that if Assumption 3.1.4 is
satisfied, an asymptotically optimal drift ĥ can be determined by solving 3.3, particularly
by solving the corresponding Euler-Lagrange ordinary differential equation of 3.3. If this
ĥ has a derivative with finite variation and satisfies condition 3.4, then it actually is an
asymptotically optimal drift.
Note that condition 3.4 certainly holds when F is a concave functional, since then we
have a unique maximum, but in general, one has to solve a new variational problem to
evaluate L(ĥ), which also reduces to an Euler-Lagrange ODE.

Once ĥ is found, and since

dWt = d(W ∗
t + ĥt) = dW ∗

t +
˙̂
htdt (3.5)

we achieve

EP [G] = EQĥ

[
G
dP
dQĥ

]
= EQĥ

[
eF (W )e−

∫ T
0

˙̂
htdWt+

1
2

∫ T
0

˙̂
h2
tdt
]

= EQĥ

[
eF(W ∗+ĥ)−

∫ T
0

˙̂
htdW ∗t −

∫ T
0

˙̂
h2
tdt+

1
2

∫ T
0

˙̂
h2
tdt
]

= EQĥ

[
eF(W ∗+ĥ)−

∫ T
0

˙̂
htdW ∗t −

1
2

∫ T
0

˙̂
h2
tdt
]

= EQĥ

[
G
(
W ∗ + ĥ

)
e−

∫ T
0

˙̂
htdW ∗t −

1
2

∫ T
0

˙̂
h2
tdt
]
,

(3.6)
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where W ∗ is a standard Brownian motion under Qĥ.

As one can see, in a new Monte Carlo simulation the payoff has to be rescaled by the

factor e−
∫ T
0

˙̂
htdW ∗t −

1
2

∫ T
0

˙̂
h2
tdt, while with 3.5 we get

dSt
St

= rdt+ σdWt

⇔ dSt
St

= rdt+ σ(dW ∗
t +

˙̂
htdt)

⇔ dSt
St

= (r + σ
˙̂
ht)dt+ σdW ∗

t .

for the stochastic differential equation of the risky asset St. Here we can see that the

drift of St changes from r to r + σ
˙̂
ht. Using Itô’s formula one can proof that a solution

is given by St = S0e
σ(W ∗t +ĥt)+(r− 1

2
σ2)t.

3.2 Proof of Theorem 3.1.53

The proof of Theorem 3.1.5 is divided into several lemmas.The first one shows the exis-
tence of solutions to the problems 3.2 and 3.3, using a standard variational argument.

Lemma 3.2.1. Let F satisfy Assumption 3.1.4. Then for any h ∈ HT and M > 0 there
exists a maximizer for the problem

max
x∈HT

(
2F (x) +M

∫ T

0

(ẋt − ḣt)2dt− 2M

∫ T

0

ẋ2
tdt+ (1− 2M)

∫ T

0

ḣ2
tdt

)
. (3.7)

Proof. Recall that if ġn → ġ weakly in L2[0, T ], then gn → g uniformly in [0, T ]. Since
F is continuous in the uniform norm, it follows that it is also weakly continuous. Let
M > 0 and fix h ∈ HT . Rewrite 3.7 as

max
x∈HT

(
2F (x)−M‖h+ x|2HT + ‖h‖2

HT

)
. (3.8)

As a function of x, M‖h + x|2HT is convex and finite, hence norm-continuous. Thus,
it is also weakly lower semi-continuous. Since F is weakly continuous, the function
x→ 2F (x)−M‖h+ x|2HT + ‖h‖2

HT is then weakly upper semi-continuous.
Assumption 3.1.4 implies that

2F (x)−M‖h+ x|2HT + ‖h‖2
HT ≤ 2K1 + 2K2‖x‖α∞ −M‖h+ x|2HT + ‖h‖2

HT

≤ 2K1 + 2K2T
α/2‖x‖αHT −M‖h+ x|2HT + ‖h‖2

HT .

Since α < 2, the coercivity property follows, i.e.

lim
‖x‖HT→∞

(
2F (x)−M‖h+ x|2HT + ‖h‖2

HT

)
= −∞,

and the existence of a maximizer follows by upper semi-continuity.

3 cf. [4, Appendix]
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The remaining part of the proof of Theorem 3.1.5 now requires the theory on large
deviations, which we treated in section 2.3. Therefore recall Schilder’s Theorem 2.15 and
Varadhan’s Lemma 2.13 and consider them adjusted for our case:

Theorem 3.2.2 (Schilder). Let X = WT and µε be the probability on WT induced by
the process

√
εW , where W is a standard Brownian motion. Then {(µε}ε∈(0,δ) satisfies

an LDP with rate function

I(x) =


1

2

∫ T

0

‖ẋ(t)‖2dt, if x ∈ HT

∞ ifx ∈WT\HT

(3.9)

Lemma 3.2.3 (Varadhan’s Lemma). Let (Zε)ε∈(0,δ) be a family of X-valued random
variables, whose laws µε satisfy a large deviations principle rate function I. If H : X → R
is a continuous function which satisfies

lim sup
ε→0

ε log E
[
exp

(γ
ε
H(Zε)

)]
<∞, (3.10)

for some γ > 1, then

lim
ε→0

ε log E
[
exp

(
1

ε
H(Zε)

)]
= sup

x∈X
[H(x)− I(x)] (3.11)

The following Lemma states a slight generalization of the result of Varadhan’s Lemma in
order to allow H : X → [−∞,∞) instead of H : X → R.

Lemma 3.2.4. 4 Let H : X → [−∞,∞). Under the assumptions of Varadhan’s Lemma
2.13, the following holds for any A ∈ B:

sup
x∈A◦

(H (x)− I (x)) ≤ lim inf
ε→0

ε log

(∫
A◦

exp

(
1

ε
H (Zε)

)
dµε

)
≤ lim sup

ε→0
ε log

(∫
Ā

exp

(
1

ε
H (Zε)

)
dµε

)
≤ sup

x∈Ā
(H (x)− I (x)) .

Proof. The second inequality is trivial, while the first one is the result of [2, Lemma 4.3.4],
fixing x ∈ A◦ instead of x ∈ X .
For the third inequality, note that if H ≡ −∞ the result holds trivially. Assum-
ing the other case, let C be a closed subset of X . For M > 0, consider the set
CM = C ∩ {H(x) ≥ −M}, which is closed by the continuity of H. Thus, one has that∫

C

exp

(
1

ε
H (Zε)

)
dµε =

∫
CM

exp

(
1

ε
H (Zε)

)
dµε +

∫
C\CM

exp

(
1

ε
H (Zε)

)
dµε

≤
∫
CM

exp

(
1

ε
H (Zε)

)
dµε + exp

(
−M
ε

)
µε (C\CM)

4 cf. [5, Lemma 2.1]
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Since (µε)ε∈(0,δ) satisfy the LDP with rate function I,

lim sup
ε→0

ε log

(
exp

(
−M
ε

)
µε(C\CM)

)
≤ −M − inf

x∈C\CM
I(x).

Using Varadhan’s Lemma 2.13 on H11CM as in [2, Exercise 4.3.11],

lim sup
ε→0

ε log

(∫
CM

exp

(
1

ε
H(Zε)dµε

))
≤ sup

x∈CM
(H(x)− I(x)) (3.12)

and hence [2, Lemma 1.2.15]

lim sup
ε→0

ε log

(∫
CM

exp

(
1

ε
H (Zε)

)
dµε + exp

(
−M
ε

)
µε (C\CM)

)
≤ max

(
sup
x∈CM

(H (x)− I (x)) ,−M − inf
x∈C\CM

I (x)

)

≤ max

(
sup
x∈C

(H (x)− I (x)) ,−M
)
.

The claim follows, as M →∞.

Lemma 3.2.5. Let F satisfy Assumption 3.1.4, and define Fh : W→ R as

Fh(x) = 2F (x)−
∫ T

0

ḣtdxt +
1

2

∫ T

0

ḣ2
t .

Then Fh is well-defined, norm-continuous and satisfies 3.10 for any h ∈ HT and γ > 1.

Proof. Since F is continuous, the continuity of Fh will follow from the continuity of
x 7→

∫ T
0
ḣdxt. Since ḣ has finite variation on [0, T ] for each h ∈ HT , the integral

∫ T
0
ḣdxt

is defined path-wise in the Stieltjes sense. For any f ∈WT , integration by parts and the
continuity of f imply that∣∣∣∣∫ T

0

ḣdft

∣∣∣∣ =

∣∣∣∣ḣ(T )f(T )−
∫ T

0

ftdḣt

∣∣∣∣ ≤ ‖f‖WT
V ar(ḣ),

where V ar(ḣ) denotes the total variation of ḣ. Thus, continuity follows by the finite vari-
ation assumption. To check the integrability condition 3.10, apply the Cauchy-Schwarz
inequality to see that

ε log EP

[
exp

(
γ

ε

(
2F
(√

εW
)
−
∫ T

0

ḣtd
(√

εW
)
t
+

1

2

∫ T

0

ḣ2
tdt

))]
≤ γ

2

∫ T

0

ḣ2
tdt+

ε

2
log EP

[
exp

(
− 2γ√

ε

∫ T

0

ḣtdWt

)]
+
ε

2
log EP

[
exp

(
4γ

ε
F
(√

εW
))]

.

(3.13)
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The first term is finite. For the second, observe that
∫ T

0
ḣtdWt ∼ N

(
0,
∫ T

0
ḣ2
tdt
)

, whence

lim sup
ε→0

ε

2
log EP

[
exp

(
− 2γ√

ε

∫ T

0

ḣtdWt

)]
= γ2

∫ T

0

ḣ2
tdt <∞

It remains to consider the last term in 3.13. Assumption 3.4 implies that

ε

2
log

(
EP

[
exp

(
4γ

ε
F (
√
εx)

)])
≤ 2γK1+

ε

2
log

(
EP

[
exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T
|W (t)|

)α)])
,

and one has to check that the last term is finite. To see this, observe that

EP

[
exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T
|W (t)|

)α)]
≤ 2EP

[
exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T
x (t)

)α)]
≤ 4

√
2

πT

∫ ∞
0

exp

(
4γK2

ε1−α/2
bα − 1

2T
b2

)
db,

where the first inequality follows from the formula EP[X] =
∫∞

0
P(X ≥ b)db, combined

with the elementary estimate

P( sup
0≤t≤T

|W (t)| ≥ b) ≤ 2P( sup
0≤t≤T

W (t) ≥ b).

The second inequality follows from the classical distribution

P( sup
0≤t≤T

W (t) ∈ db) =

√
2

πT
exp

(
− b2

2T

)
db.

Applying Lemma 3.2.6 below, for A = 4γK2

ε1−α/2
, B = 1

2T
, yields∫ ∞

0

exp

(
4γ

ε1−α/2
K2b

α − 1

2T
b2

)
db

≤ exp

(
4γK2

ε1−α/2
(4γK2αT )

α
2−α ε−α/2 +

1

2T
(4γK2αT )

2
2−α ε−1

)
×

(
(4γK2αT )

1
2−α ε−1/2 +

√
2π

min
(

1
T
, 1
T

(2− α)
)) ,

which, after letting N = 4γK2αT and M = min( 1
T
, 1
T

(2− α)), reduces to

exp

(
1

ε

1

T
N

2
2−α

(
1

α
− 1

2

))(
N

1
2−α ε−1/2 +

√
2π

M

)
.

Thus,

lim sup
ε→0

ε log

(
2

√
2

πT

∫ ∞
0

exp

(
4γ

ε1−α/2
K2b

α − 1

2T
b2

)
db

)1/2

≤ 1

2

1

T
N

2
2−α

(
1

α
− 1

2

)
<∞,

which proves the claim.
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Lemma 3.2.6. Let A, B > 0, α ∈ (0, 2) and set b = (αA
2B

)
1

2−α . Then the function
f(b) = Abα −Bb2 satisfies the estimate∫ ∞

0

exp(f(b))db ≤ exp(Abα −Bb2)

(
b+

√
2π

min(2B, 2B(2− α))

)
. (3.14)

Proof. Note that

f ′(b) = αAbα−1 − 2Bb,

f ′′(b) = α(α− 1)Abα−2 − 2B,

f ′′′(b) = α(α− 1)(α− 2)Abα−3.

Let b be as given in statement of the lemma and note that f ′(b) = 0 for b = b, f ′(b) > 0
for b < b and f ′(b) < 0 for b > b. Thus, b is the unique global maximum of f(b). Upon
inspecting the derivatives of f , it follows that f ′′(b) < −2B < 0 for α ≤ 1, and f ′′′(b) < 0
for 1 < α < 2. This implies that for b > b,

f ′′(b) < f ′′(b) = −2B(2− α),

and taking the Taylor expansion of f around b gives

f(b) = Abα −Bb2 +
1

2
(b− b)2f ′′(ξ(b))

for some ξ(b) ∈ [b, b] if b < b and ξ(b) ∈ [b, b] if b > b. Note that for b > b, f ′′(ξ(b)) <
max(−2B,−2B(2− α)). Thus,∫ ∞

0

exp(Abα −Bb2)db

=

∫ b

0

exp(Abα −Bb2)db+

∫ ∞
b

exp(Abα −Bb2)db

≤ exp(Abα −Bb2)

(
b+

∫ ∞
b

exp

(
−1

2
(b− b)2 min(2B, 2B(2− α))

)
db

)
≤ exp(Abα −Bb2)

(
b+

∫ ∞
−∞

exp

(
− (b− b)2

2(1/min(2B, 2B(2− α)))

)
db

)
= exp(Abα −Bb2)

(
b+

√
2π

min(2B, 2B(2− α))

)
.

Proof. (of Theorem 3.6) By Lemma 3.2.5, Lemma 3.2.4 can be applied to set A = WT ,
which implies (i). To prove (ii), set M = 1

2
in Lemma 3.2.1 to prove the existence of a

maximizer for 3.2. Analogously, h ≡ 0, M = 1 yield a maximizer for 3.3.
It remains to prove (iii). In view of (i), and since

∫ T
0

(ḣt − ẋt)2dt ≥ 0, for any h ∈ HT it
follows that

L(h) = sup
x∈HT

(
2F (x) +

1

2

∫ T

0

(ẋt − ḣt)2dt−
∫ T

0

ẋ2
tdt

)
≥ sup

x∈HT

(
2F (x)−

∫ T

0

ẋ2
tdt

)
,

(3.15)
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which implies the inequality

inf
h∈HT

L(h) ≥ 2F (ĥ)−
∫ T

0

˙̂
h2
tdt, (3.16)

and hence ĥ is asymptotically optimal if 3.4 is satisfied. For the uniqueness part, consider
two distinct solutions h, g to 3.3. Strict convexity implies that

L(h) ≥ 2F (g) +
1

2

∫ T

0

(ġt − ḣt)2dt−
∫ T

0

ġ2
t dt > 2F (g)−

∫ T

0

ġ2
t dt

= 2F (h)−
∫ T

0

ḣ2
tdt,

which contradicts the optimality of h, and the uniqueness follows.

3.3 Optimal change of drift for Asian options

This section employs Theorem 3.1.5 to find explicit formulas for the asymptotically op-
timal changes of drift, for geometric and arithmetic average Asian call and put options.

3.3.1 Optimal change of drift for the geometric average Asian
call option5

Denoting by St the asset price at time t and by K the strike price, the payoff of a geometric
average Asian call option is given by

(e
1
T

∫ T
0 logStdt −K)+.

Let a = σ/T and c = K
S0

exp(−(r − σ2

2
)T

2
). With

(
e

1
T

∫ T
0 logStdt −K

)+

=

e 1
T

∫ T
0 log

(
S0e

σWt+

(
r−σ

2

2

)
t
)
dt

−K

+

=

(
S0e

1
T

∫ T
0 σWtdt+

1
T

∫ T
0

(
r−σ

2

2

)
tdt −K

)+

=

(
S0e

σ
T

∫ T
0 Wtdt+

(
r−σ

2

2

)
T
2 −K

)+

= K
S0

K
e

(
r−σ

2

2

)
T
2︸ ︷︷ ︸

1/c

(
e
σ
T

∫ T
0 Wtdt − c

)+

=
K

c

(
ea
∫ T
0 Wtdt − c

)+

5 cf. [4, example 4.1]
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the payoff can be rewritten as functional G : WT → R+, depending on x, the path of the
Brownian motion of the asset price

G(x) =
K

c

(
ea
∫ T
0 xtdt − c

)+

. (3.17)

Before we can use Theorem 3.1.5 we have to check Assumption 3.1.4. Therefore note that
F (x) = −∞,∀x with G(x) = 0, while on the set G(x) > 0, choosing α = 1, K1 = log K

c

and K2 = aT gives log(K
c

) + log(ea
∫ T
0 xtdt − c) ≤ log(K

c
) + aT max

t∈[0,T ]
|xt|, which holds. So

the requirement for the Theorem is satisfied.
Also note that condition 3.4 is certainly satisfied since F is concave. So if we find a
solution for 3.3, this will be the unique and asymptotically optimal change of drift.

Now substitute 3.17 into 3.3, disregarding 2 log(K
c

), since it gives no contribution to
finding the maximizer

max
x∈HT

(
2 log(ea

∫ T
0 xtdt − c)−

∫ T

0

ẋ2
tdt

)
. (3.18)

Now we have to find the corresponding Euler-Lagrange equation. Therefore recall 2.28
and let

L1(t, x, ẋ) = x,

L2(t, x, ẋ) = ẋ2,

J1[x] =

∫ T

0

L1(t, x, ẋ)dt,

J2[x] =

∫ T

0

L2(t, x, ẋ)dt,

F [J1, J2] = 2 log(eaJ1 − c)− J2.

With

∂L1

∂x
= 1,

∂L1

∂ẋ
= 0,

d

dt

∂L1

∂ẋ
= 0

,
∂L2

∂x
= 0

∂L2

∂ẋ
= 2ẋ,

d

dt

∂L2

∂ẋ
= 2ẍ,

we get
−2ẍ
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on the left hand side, while with

∂F

∂J1

=
2aeaJ1

eaJ1 − c
,

∂F

∂J2

= −1,

we get
2aeaJ1

eaJ1 − c
on the right hand side.

Thus we get the Euler-Lagrange ordinary differential equation

ẍt = −β, (3.19)

with

β = a
ea
∫ T
0 xtdt

ea
∫ T
0 xtdt − c

. (3.20)

Note that [4, 4.4] states β by mistake without a in front of the integrals.
Hence, all solutions are of the form

xt = −β
2
t2 + γt (3.21)

and therefore belong to HT .

Now we want to find an expression for γ just depending on β. Substituting 3.21 into 3.20
gives

β = a
e−

aβT3

6
+aγT2

2

e−
aβT3

6
+aγT2

2 − c
.

Solving this equation for γ gives the wanted expression

γ(β) =
aβT 3 − 6 log(β−a

cβ
)

3aT 2
(3.22)

Now we try to find the maximum of 3.18. Therefore we substitute 3.21 into 3.18, which
gives

2 log
(
e−

aT2

6
(βT−3γ) − c

)
− β2T 3

3
+ βγT 2 − γ2T.

Substituting 3.22 into the last result gives

−1

9
β2T 3 + 2 log

(
ac

β − a

)
+

2β log
(

βc
β−a

)
3a

−
4
(

log
(

βc
β−a

))2

a2T 3
,

what is well-defined for β > a.
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Now taking the derivative with respect to β gives

2

9aT 3

−12aβT 3 − aβ2T 6 (β − a)− 3βT 3 log
(
β−a
cβ

)
(β − a)− 36 log

(
β−a
cβ

)
β (β − a)

 .

Let the result above be equal to zero. Then it reduces to

aβT 3 + 3 log

(
β − a
cβ

)
= 0, (3.23)

where solving for β over β > a gives the optimal β̂, which is unique by strict concavity
of F .
Substituting 3.23 into 3.22 gives γ(β̂) = β̂T and therefore the optimal change of drift for
the geometric average Asian call option is given by

x̂t = − β̂
2
t2 + β̂T t. (3.24)

3.3.2 Optimal change of drift for the geometric average Asian
put option

Now we want to find the asymptotically optimal change of drift for a geometric average
Asian put option. This is done for the first time and can not be found in [4]. Consider
St and K as before, then the payoff is given by(

K − e
1
T

∫ T
0 logStdt

)+

.

With a = σ/T and c = K
S0

exp(−(r − σ2

2
)T

2
), the payoff can be rewritten as functional

G : WT → R+, depending on x, the path of the Brownian motion of the asset price

G(x) =
K

c

(
c− ea

∫ T
0 xtdt

)+

. (3.25)

To check Assumption 3.1.4. recall that F (x) = −∞,∀x with G(x) = 0. On the set
G(x) > 0, choosing α = 1, K1 = log K

c
+ log(c) and K2 = 1 gives log(K

c
) + log(c −

ea
∫ T
0 xtdt) ≤ log(K

c
) + log(c) + max

t∈[0,T ]
|xt|, which holds. So the requirement for Theorem

3.1.5 is satisfied.
Since F is a reflection of the concave function of the case of the call option across a line
through log(K

c
) parallel to the y-axis, it is again concave. So if we find a solution for 3.3,

this will be the unique and asymptotically optimal change of drift, since condition 3.4 is
certainly satisfied.

Substituting 3.25 into 3.3, disregarding 2 log(K
c

), since it gives no contribution to finding
the maximizer, yields

max
x∈HT

(
2 log(c− ea

∫ T
0 xtdt)−

∫ T

0

ẋ2
tdt

)
. (3.26)
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Now we have to find the corresponding Euler-Lagrange equation. Since the only difference
to the case of the call option is that F [J1, J2] = 2 log(c− eaJ1)− J2 instead of F [J1, J2] =
2 log(eaJ1 − c)− J2, there is no change on the left hand side, but we have to take a look
at the right hand side. With

∂F

∂J1

= − 2aeaJ1

c− eaJ1
=

2aeaJ1

eaJ1 − c
,

∂F

∂J2

= −1,

we get
2aeaJ1

eaJ1 − c
on the right hand side. As one can see, also the right hand side did not change, therefore
we get the same Euler-Lagrange ordinary differential equation

ẍt = −β, (3.27)

with the same β

β = a
ea
∫ T
0 xtdt

ea
∫ T
0 xtdt−c

. (3.28)

Hence we get the same family of solutions

xt = −β
2
t2 + γt (3.29)

and the same γ

γ(β) =
aβT 3 − 6 log(β−a

cβ
)

3aT 2
. (3.30)

Now we try to find the maximum of 3.26. Therefore we substitute 3.29 into 3.26, which
gives

2 log
(
c− e−

aT2

6
(βT−3γ)

)
− β2T 3

3
+ βγT 2 − γ2T.

Substituting 3.30 into the last result yields

−1

9
β2T 3 + 2 log

(
ac

a− β

)
+

2β log
(

βc
β−a

)
3a

−
4
(

log
(

βc
β−a

))2

a2T 3
.

Here one can see that this time β < 0 has to be satisfied. Now taking the derivative with
respect to β states

2

9aT 3

−12aβT 3 − aβ2T 6 (β − a)− 3βT 3 log
(
β−a
cβ

)
(β − a)− 36 log

(
β−a
cβ

)
β (β − a)

 ,

which is identical to the result at this level in the case of the call option. Therefore it
reduces to the same equation

aβT 3 + 3 log

(
β − a
cβ

)
= 0, (3.31)
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where solving for β over β < 0 gives the optimal β̂, which is unique by strict concavity
of F .
Hence, by substituting 3.31 into 3.30, again we get γ(β̂) = β̂T and the optimal change of
drift for the geometric average Asian put option

x̂t = − β̂
2
t2 + β̂T t. (3.32)

As one can see, we mainly achieved the same results for calculating the asymptotically
optimal change of drift for a geometric average Asian call and put option. Since the
functionals 3.18 and 3.26, that have to be maximized, are not the same, one gets different
optimal values β̂ for those cases, even if all other parameters, like T, σ, S0, K, r, would be
the same. This means that the optimal change of drift for geometric average Asian call
and put options belong to the same family of solutions 3.21, but in fact differs depending
on the choice of the type of option(call,put) as well as of the choice of the parameters
T, σ, S0, K, r, since the optimal value β̂ always changes.

3.3.3 Optimal change of drift for the arithmetic average Asian
call option6

Denoting by St the asset price at time t and by K the strike price, the payoff of an
arithmetic average Asian call option is(

1

T

∫ T

0

Stdt−K
)+

.

Let a = σ, b = r − 1
2
σ2, c = K T

S0
and d = S0

T
. With(

1

T

∫ T

0

Stdt−K
)+

=

(
1

T

∫ T

0

S0e
σWt+

(
r−σ

2

2

)
t
dt−K

)+

=
S0

T

(∫ T

0

e
σWt+

(
r−σ

2

2

)
t
dt−K T

S0

)+

the payoff can be rewritten as functional G : WT → R+ depending on x, the path of the
Brownian motion of the asset price

G(x) = d

(∫ T

0

eaxt+btdt− c
)+

. (3.33)

To check Assumption 3.1.4., let α = 1, K1 = log d + log( e
bT−1
b

), K2 = a, which gives

log(d) + log(
∫ T

0
axt + btdt − c) ≤ log(d) + log( e

bT−1
b

) + a max
t∈[0,T ]

|xt|, which holds. So the

requirement for Theorem 3.1.5 is satisfied.
Now substitute 3.33 into 3.3, then we have

max
x∈HT

(
2 log d+ 2 log

(∫ T

0

eaxt+btdt− c
)
−
∫ T

0

ẋ2
tdt

)
. (3.34)

6 cf. [4, example 4.2]
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Now we have to find the corresponding Euler-Lagrange equation. Therefore recall 2.28
and let

L1(t, x, ẋ) = eax+bt,

L2(t, x, ẋ) = ẋ2,

J1[x] =

∫ T

0

L1(t, x, ẋ)dt,

J2[x] =

∫ T

0

L2(t, x, ẋ)dt,

F [J1, J2] = 2 log(J1 − c)− J2.

With

∂L1

∂x
= aeax+bt,

∂L1

∂ẋ
= 0,

d

dt

∂L1

∂ẋ
= 0

,
∂L2

∂x
= 0

∂L2

∂ẋ
= 2ẋ,

d

dt

∂L2

∂ẋ
= 2ẍ,

we get
−2ẍ

aeax+bt

on the left hand side, while with

∂F

∂J1

=
2

J1 − c
,

∂F

∂J2

= −1,

we get
2

J1 − c
on the right hand side.

Thus we get the Euler-Lagrange ordinary differential equation

ẍt = λeaxt+bt, (3.35)

with
λ = − a∫ T

0
eaxt+btdt− c

. (3.36)
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Equation 3.35 admits the family of solutions

xt =
β − b
a

t− 2

a
log

(
eβt + γ

1 + γ

)
(3.37)

which belongs to HT .

Taking the second derivative of 3.37 with respect to t gives

∂2xt
∂t2

= −2

a

β2γeβt

(eβt + γ)2
.

Substituting this result and 3.37 into 3.35, we find out how the pair of parameters (β, γ)
are linked to λ

ẍt = λeaxt+bt

⇔ −2

a

β2γeβt

(eβt + γ)2
= λeβt−2 log( e

βt+γ
1+γ

)

⇔ −2

a

β2γeβt

(eβt + γ)2
= λeβt

(1 + γ)2

(eβt + γ)2

⇔ −2

a
β2γ = λ(1 + γ)2

⇔ λ = − 2β2γ

a(1 + γ)2

(3.38)

Note that in [4] it says that substituting (4.12) into (4.11) gives the above result, but
(4.12) should be substituted into (4.10).

Since
∫ T

0
eaxt+btdt = (eβt−1)(γ+1)

β(eβT+γ)
, eliminating λ from 3.36 and 3.38 yields

aβ(eβT + γ)

(γ + 1)(eβT − 1)− βc(eβT + γ)
=

2β2γ

a(1 + γ)2
. (3.39)

Note that in [4, 4.14] there should be a T instead of the t.

Now for fixed β, the above equation defines a cubic polynomial in γ, which yields three
solutions γ1, γ2, γ3, all of them depending on β. These solutions are explicit, but not what
one would call nice expressions, therefore they are not presented here. Substituting each
γi into 3.34, one can find the corresponding maximizing βi, which serves to evaluate γi.
Then choose β̂ and γ̂ to be the pair (βi, γi), which gives the highest value of 3.34 under
the condition that <(γ) > 0 and |=(γ)| < 0.0000001(numerically zero).
To check condition 3.4, maximize the functional

2 log d+ 2 log

(∫ T

0

exp (axt + bt) dt− c
)

+
1

2

∫ T

0

(
ẋt − ˙̂xt

)2

dt−
∫ T

0

ẋ2
tdt

over x ∈ HT . Again we have to find the corresponding Euler-Lagrange equation. There-
fore recall 2.28 and let
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L1(t, x, ẋ) = eax+bt,

L2(t, x, ẋ) = −ẋ2 − 2ẋ ˙̂x+ ˙̂x2,

J1[x] =

∫ T

0

L1(t, x, ẋ)dt,

J2[x] =

∫ T

0

L2(t, x, ẋ)dt,

F [J1, J2] = 2 log(J1 − c)−
1

2
J2.

With

∂L1

∂x
= aeax+bt,

∂L1

∂ẋ
= 0,

d

dt

∂L1

∂ẋ
= 0

,
∂L2

∂x
= 0

∂L2

∂ẋ
= −2ẋ− 2 ˙̂x,

d

dt

∂L2

∂ẋ
= −2ẍ− 2¨̂x,

we get
2ẍ+ 2¨̂x

aeax+bt

on the left hand side, while with

∂F

∂J1

=
2

J1 − c
,

∂F

∂J2

=
1

2
,

we get

− 4

J1 − c
,

on the right hand side.

Thus we get the Euler-Lagrange ordinary differential equation

ẍt = 2λeaxt+bt − ¨̂xt,

where λ is defined as in 3.36. This ordinary differential equation does not admit an
explicit solution, except in the trivial case λ = 0. However, a numerical integration of
the Euler-Lagrange equation shows that 3.4 holds with several significant digits.

44



3.3.4 Optimal change of drift for the arithmetic average Asian
put option

Now we want to find the asymptotically optimal change of drift for an arithmetic average
Asian put option. Since this is done for the first time, it cannot be found in [4]. Consider
St and K as before., then the payoff is given by(

K − 1

T

∫ T

0

Stdt

)+

.

With a = σ, b = r − 1
2
σ2, c = K T

S0
and d = S0

T
the payoff can be rewritten as functional

G : WT → R+ depending on x, the path of the Brownian motion of the asset price

G(x) = d

(
c−

∫ T

0

eaxt+btdt

)+

. (3.40)

To check Assumption 3.1.4., let α = 1, K1 = log d+ log(c), K2 = 1, which gives log(d) +

log(c−
∫ T

0
axt + btdt) ≤ log(d) + log(c) + max

t∈[0,T ]
|xt|, which holds. So the requirement for

Theorem 3.1.5 is satisfied.
Now substitute 3.40 into 3.3, then we have

max
x∈HT

(
2 log d+ 2 log

(
c−

∫ T

0

eaxt+btdt

)
−
∫ T

0

ẋ2
tdt

)
. (3.41)

Now we have to find the corresponding Euler-Lagrange equation. Since the only difference
to the case of the call option is that F [J1, J2] = 2 log(c− J1)− J2 instead of F [J1, J2] =
2 log(J1 − c)− J2, there is no change on the left hand side. With

∂F

∂J1

= − 2

c− J1

=
2

J1 − c
,

∂F

∂J2

= −1,

we get
2

J1 − c
on the right hand side, which is equal to the one in the case of the call option. Thus we
get the same Euler-Lagrange ordinary differential equation

ẍt = λeaxt+bt, (3.42)

with the same λ
λ = − a∫ T

0
eaxt+btdt− c

. (3.43)

Hence the same family of solutions is admitted

xt =
β − b
a

t− 2

a
log

(
eβt + γ

1 + γ

)
. (3.44)
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Substituting 3.44 and the second derivative of it into 3.42, shows that the parameters
(β, γ) are linked to λ as before

λ = − 2β2γ

a(1 + γ)2
. (3.45)

Also eliminating λ from 3.43 and 3.45 yields an already known result

aβ(eβT + γ)

(γ + 1)(eβT − 1)− βc(eβT + γ)
=

2β2γ

a(1 + γ)2
, (3.46)

which delivers γ1, γ2, γ3 by solving the cubic polynomial for a fixed β. These solutions are
explicit, but not what one would call nice expressions, therefore they are not presented
here. Substituting each γi into 3.34, one can find the corresponding maximizing βi, which
serves to evaluate γi. Then choose β̂ and γ̂ to be the pair (βi, γi), which gives the highest
value of 3.34 under the condition that <(γ) < 0 and |=(γ)| < 0.0000001(numerically
zero).
Also in this case we have to check condition 3.4, therefore maximize the functional

2 log d+ 2 log(c−
∫ T

0

exp(axt + bt)dt) +
1

2

∫ T

0

(ẋt − ˙̂xt)
2dt−

∫ T

0

ẋ2
tdt

over x ∈ HT . Hence we have to derive the corresponding Euler-Lagrange equation. Here
the difference to the case of the call option is that F [J1, J2] = 2 log(c− J1)− 1

2
J2 instead

of F [J1, J2] = 2 log(J1 − c) − 1
2
J2, which means that just the right hand side has to be

looked at. With

∂F

∂J1

= − 2

c− J1

=
2

J1 − c
,

∂F

∂J2

=
1

2
,

we get

− 4

J1 − c
,

on the right hand side.

Thus we get the Euler-Lagrange equation

ẍt = 2λeaxt+bt − ¨̂xt,

where λ is defined as in 3.43. So again we have the same equation as in the case of
the call option. Therefore also in this case this ordinary differential equation does not
admit an explicit solution, except in the trivial case λ = 0. However, a numerical inte-
gration of the Euler-Lagrange equation shows that 3.4 holds with several significant digits.

Also for arithmetic average Asian options we got mainly the same results for call op-
tions as well as for put options. What makes the difference is again the achieved pair of
optimal values (β̂, γ̂).
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Chapter 4

Different Monte Carlo estimators

In this chapter the different Monte Carlo estimators - the ordinary one, the one using
importance sampling and the one using the method of control variates - for arithmetic
average Asian call and put options will be derived.

4.1 Monte Carlo estimator without importance sam-

pling

The price of an option is, as we know, equal to the discounted expectation of the payoff.
Since the payoff of an arithmetic average Asian call respectively put option is(

1

n

n∑
i=1

Sti −K

)+

,(
K − 1

n

n∑
i=1

Sti

)+

,

and the underlying asset in the Black-Scholes model under the risk-neutral measure is
given by

St = S0e
σWt+

(
r−σ

2

2

)
t
,

we achieve the Monte Carlo estimator of the price of an arithmetic Asian call respectively
put option

1

N

N∑
i=1

e−rtn

(
1

n+ 1

n∑
j=0

S0e
σx

(i)
tj

+
(
r−σ

2

2

)
tj −K

)+

,

1

N

N∑
i=1

e−rtn

(
K − 1

n+ 1

n∑
j=0

S0e
σx

(i)
tj

+
(
r−σ

2

2

)
tj

)+

,

where K is the strike, T the maturity, N the number of sample paths, n+ 1 the number
of trading days, 0 = t0 < t1 < . . . < tn = T the corresponding trading days and
x

(i)
tj , i = 1, . . . , N, j = 0, . . . , n the value of sample path i at time tj.

47



4.2 Monte Carlo estimator with importance sampling

Recall that the expectation of a payoff G after using importance sampling is given(as in
3.6) by

EP [G] = EQĥ

[
G
(
W ∗ + ĥ

)
e−

∫ T
0

˙̂
htdW ∗t −

1
2

∫ T
0

˙̂
h2
tdt
]
,

where P denotes the risk-neutral measure in the Black-Scholes model, Qĥ the equivalent

measure, leading to a change of drift from r to r +
˙̂
h, when changing the probability

measure from P to Qĥ, W ∗ a standard Brownian motion with respect to Qĥ and ĥ the
solution to 3.3.

Therefore we get the following Monte Carlo estimator for an arithmetic average Asian
call respectively put option
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4.2.1 Using the asymptotically optimal drift of a geometric av-
erage Asian option

In section 3.3.1 and 3.3.2 the optimal change of drift for a geometric average Asian option
was computed as

ĥt = − β̂
2
t2 + β̂T t, (4.3)

where solving

aβT 3 + 3 log

(
β − a
cβ

)
= 0, (4.4)

numerically over β > a respectively β < 0 gives β̂. The first and second derivatives of ĥt
with respect to t are given by

˙̂
ht = β̂(T − t),

¨̂
ht = −β̂.

While the second integral of 4.1 respectively 4.2,
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try to simplify the first integral,
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t , by using Itô’s formula.

Consider g ∈ C1,2 with g(t, x) = x
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ht and note that a standard Brownian motion is an Itô

process for u = 0 and v = 1. Then we get with Itô’s formula
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Substituting
˙̂
h and

¨̂
h into 4.5 yields∫ T

0
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tj , i = 1, 2, . . . , N.

Substituting the results of this subsection into 4.1 respectively 4.2, we derive the follow-
ing Monte Carlo estimator for an arithmetic average Asian call respectively put option
using Importance Sampling and the asymptotically optimal change of drift of a geometric
average Asian option
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4.2.2 Using the asymptotically optimal drift of an arithmetic
average Asian option

In section 3.3.3 and 3.3.4 the optimal change of drift for an arithmetic average Asian
option was computed as

ĥt =
β − b
a

t− 2

a
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)
, (4.8)

where β and γ can be found as described in those sections.
The first and second derivatives of ĥt with respect to t are given by
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Again we can achieve a simplification of the first integral of 4.1respectively 4.2,
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Hence we have∫ T
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Substituting the results of this subsection into 4.1 respectively 4.2, we derive the following
Monte Carlo estimator for an arithmetic average Asian call respectively put option using
importance sampling and the asymptotically optimal change of drift of an arithmetic
average Asian option
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4.3 Monte Carlo estimator using the method of con-

trol variates

In section 2.4.2 we derived the control variate estimator 2.18, which is

Ȳ (b) = Ȳ − b(X̄ − E[X]) =
1

n

n∑
i=1

(Yi − b(Xi − E[X])),

with optimal coefficient b given by

b̂n =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
.

Let Xi, i = 1, . . . , N be the price of a geometric average Asian call respectively put op-
tion according to the ith sample path x(i) and Yi, i = 1, . . . , N the price of an arithmetic
average Asian call respectively put option according to the same sample path. Further-
more let X̄ = 1

N

∑N
i=1Xi be the sample mean of all Xi and Ȳ = 1

N

∑N
i=1 Yi the sample

mean of all Yi. Let Cg
0 respectively P g

0 denote the price of a geometric average Asian call
respectively put option given by the closed form solution under the Black-Scholes modell
as examined in section 2.6.
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Then the estimator of the price of an arithmetic average Asian call respectively put option
using the price of a geometric average Asian call respectively put option as control variate
is denoted for both cases by
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Chapter 5

Results

In this chapter numerical results for pricing arithmetic average Asian call and put options
will be presented. The price will be determined by the Monte Carlo estimators, which
were derived in chapter 4. Hence we do a usual Monte Carlo simulation under the
risk-neutral drift, two using importance sampling and the asymptotically optimal drifts
for Asian options of geometric and arithmetic average type, and in the end one more
simulation using the method of control variates.

5.1 Arithmetic average Asian call option

At first consider an arithmetic average Asian call option. With parameters T = 1, r = 5%,
σ = 25%, S0 = 50 and K = 70 this option may be called way out-of-money.
Figure 5.1 shows the price paths of the asset in the absence of random shocks, i.e. St
without a Brownian motion, under the different drifts. What one can see here is that the
changed drifts really move the asset price into a region, where it makes the option valuable.
Also one sees that the price path corresponding to the geometric drift is very similar to
the path corresponding to the arithmetic one, although the closed form expression is
much simpler in the geometric case.
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Figure 5.1: price path in absence of random shocks under risk-neutral drift(dotted line),
geometric drift(solid line) and arithmetic drift(dashed line)

Figure 5.2 shows the value of 3.18, the functional that has to be maximized to find the
optimal change of drift for a geometric average Asian call option, depending on β.
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Figure 5.2: value of 3.18 depending on β

Figure 5.3 shows the value of 3.34, the functional that has to be maximized to find the
optimal change of drift for an arithmetic average Asian call option, depending on β.
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Figure 5.3: value of 3.34 depending on β

Table 5.1 compares the prices and standard errors according to the different Monte Carlo
simulations and to different choices of sample size. Here one can see, that the estimator
using the arithmetic drift has the lowest standard error, what seems logical, since the
option is of arithmetic type. The estimator using the geometric drift follows immediately
after it, also for smaller sample sizes, but it offers a much simpler alternative. The
estimator using the method of control variates achieves a slightly higher standard error,
but still a much better one than the usual estimator.

Sample size Risk-neutral Geometric drift Arithmetic drift Control variate

100000 5.92 5.74 5.74 5.78
(0,212) (0.019) (0.018) (0.033)

20000 6.16 5.73 5.74 5.82
(0.472) (0.041) (0.041) (0.074)

5000 6.51 5.72 5.73 5.90
(0.898) (0.084) (0.082) (0.141)

Table 5.1: Monte Carlo estimators of an arithmetic average Asian call option price using
different drifts. Prices are in cents. Parameter values T = 1, r = 5%, σ = 25%, S0 = 50,
K = 70. Simulations are performed with a time-increment of 1/252, corresponding to
one business day.

Table 5.2 now compares the performance of the estimators in terms of variance reduction
over different strikes and volatilities. Therefore variance ratios, i.e. the variance of the
usual Monte Carlo estimator divided by the variance of the others, are given. Additionally
the corresponding prices are stated. As one can see the achieved variance reduction for
the estimators using importance sampling increases with the strike and decreases with
volatility. This means that the more unlikely it is for the option to be valuable, the
more efficient are the estimators using importance sampling. In the case of the estimator
using the method of control variates it is the other way around, the more likely it is for
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the option to be valuable, the more efficient is the estimator. So for pricing way out-of-
money average Asian call options, importance sampling seems to be the better choice.
Since the option is of arithmetic type, the estimator using the arithmetic drift achieves
more reduction of variance than the one using the geometric drift.

Volatility Strike Price(Variance Ratio)
geometric arithmetic control variate

10% 50 182.19(7.09) 182.18(7.12) 181.98(4692)
60 0.37(486) 0.37(487) 0.37(71)

15% 50 234.44(7.71) 234.43(7.77) 234.16(2255)
60 7.03(64.21) 7.03(64.24) 7.04(146)

20% 50 288.29(8.26) 288.26(8.33) 287.96(1305)
60 26.31(32.44) 26.30(32.51) 26.26(204)
70 0.98(458) 0.98(470) 0.98(28.4)

25% 50 342.73(8.78) 342.69(8.88) 342.35(846)
60 56.79(23.66) 56.78(23.77) 56.67(218)
70 5.74(131) 5.74(134) 5.78(40)

30% 50 397.41(9.30) 397.37(9.42) 396.99(588)
60 95.26(20.06) 95.24(20.23) 95.10(206)
70 16.99(69) 16.99(70) 17.08(53)
80 2.54(337) 2.55(356) 2.53(19.3)

35% 50 452.16(9.82) 452.10(9.99) 451.71(430)
60 139.14(18.31) 139.11(18.53) 138.88(189)
70 35.61(47) 35.61(48) 35.58(64)
80 8.21(151) 8.21(159) 8.27(23.9)
90 1.80(578) 1.80(637) 1.79(13)

40% 50 506.90(10.37) 506.82(10.57) 506.42(327)
60 186.76(17.4) 186.72(17.7) 186.44(168)
70 61.17(37.4) 61.15(38.3) 61.07(69.2)
80 18.82(92.2) 18.82(96.6) 19.03(28.3)
90 5.64(254) 5.64(277) 5.59(15.8)

Table 5.2: Prices and variance ratios of an arithmetic average Asian call option over
different volatilities and strikes corresponding to the different Monte Carlo estimators
over 100000 sample paths. Prices are in cents. Parameter values T = 1, r = 5%, S0 = 50.
Simulations are performed with a time-increment of 1/252, corresponding to one business
day.

Table 5.3 states the optimal value β̂geo for the optimal change of drift of a call option of
geometric type as well as the optimal values (β̂, γ̂) for the optimal change of drift for a
call option of arithmetic type corresponding to different values of K and σ.
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Volatility Strike β̂geo β̂ γ̂

10% 50 1.45743 0.5515 2.04397
60 5.35967 1.0635 3.15267

15% 50 1.59187 0.7075 2.26444
60 4.01956 -1.1325 0.301007

20% 50 1.67831 0.8415 2.49156
60 3.41506 1.2095 3.52442
70 5.38933 -1.5345 0.207195

25% 50 1.74409 -0.9625 0.367644
60 3.08833 1.2915 3.74261
70 4.59629 1.5895 5.02015

30% 50 1.79915 -1.0745 0.338734
60 2.893 1.3735 3,98098
70 4.09965 -1.6505 0.190965
80 5.26205 -1.8865 0.150906

35% 50 1.84799 1.1795 3.19304
60 2.76917 -1.4565 0.236498
70 3.7679 -1.7145 0.182575
80 4.73503 1.9375 6.86671
90 5.63593 2.1315 8.3396

40% 50 1.89291 -1.2805 0.291363
60 2.68821 1.5395 4.4847
70 3.53632 -1.7805 0.174208
80 4.35935 1.9935 7.12413
90 5.12978 2.1795 8.60169

Table 5.3: Optimal values for the optimal changes of drifts for call options of
geometric(β̂geo) and arithmetic(β̂,γ̂) type corresponding to different values of K and
σ. Parameter values T = 1, r = 5%, S0 = 50.

5.2 Arithmetic average Asian put option

Now consider an arithmetic average Asian put option with parameters T = 1, r = 5%,
σ = 25%, S0 = 50 and K = 35.
Figure 5.4 shows the price paths of the asset in the absence of random shocks under
the different drifts. This time the gap between the price paths under the geometric and
under the arithmetic drift is not that small as in the case of the call option, but again
the changed drifts move the asset price into a region, where it makes the option valuable.
Since the price under the arithmetic drift is lower, it is more likely for the option to be
valuable and will lead to a higher price of the option as under the geometric drift.
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Figure 5.4: price path in absence of random shocks under risk-neutral drift(dotted line),
geometric drift(solid line) and arithmetic drift(dashed line)

Figure 5.5 shows the value of 3.26, the functional that has to be maximized to find the
optimal change of drift for a geometric average Asian put option, depending on β.
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Figure 5.5: value of 3.26 depending on β

Figure 5.6 shows the value of 3.41, the functional that has to be maximized to find the
optimal change of drift for an arithmetic average Asian put option, depending on β.
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Figure 5.6: value of 3.41 depending on β

Table 5.4 compares the prices and standard errors according to the different Monte Carlo
simulations and to different choices of sample size. Surprisingly this time the estimator
using importance sampling and the geometric drift achieves the lowest standard error,
followed by the estimator using the method of control variates. Also the estimator using
importance sampling and the arithmetic drift has a lower standard error than the usual
estimator, but this method is not as effective in reducing variance as before.

Sample size Risk-neutral Geometric drift Arithmetic drift Control variate

100000 0.444 0.519 0.528 0.510
(0,0314) (0.0020) (0.0098) (0.0075)

20000 0.475 0.519 0.513 0.505
(0.0721) (0.0044) (0.0169) (0.0177)

5000 0.346 0.521 0.494 0.422
(0.1064) (0.0088) (0.0314) (0.0356)

Table 5.4: Monte Carlo estimators of an arithmetic average Asian put option price using
different drifts. Prices are in cents. Parameter values T = 1, r = 5%, σ = 25%, S0 = 50,
K = 35. Simulations are performed with a time-increment of 1/252, corresponding to
one business day.

Table 5.5 compares the performance of the estimators in terms of variance reduction over
different strikes and volatilities. Therefore again we take a look at variance ratios and the
corresponding prices. In this situation one can see that the achieved variance reduction
for the estimators using importance sampling decreases with the strike and with volatility.
This means that, as in the case of the call option, the more unlikely it is for the option
to be valuable, the more efficient are the estimators using importance sampling. In the
case of the estimator using the method of control variates it is the other way around, the
more likely it is for the option to be valuable, the more efficient is the estimator. So for
pricing way out-of-money average Asian put options, importance sampling seems to be
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the better choice, where the geometric drift achieves a way better result corresponding to
variance reduction. Also one can see, that some options can not be priced by the usual
estimator and therefore also not by the one using the method of control variates, while
the estimators using importance sampling achieve a result different from zero. This result
is way smaller than 1 cent and therefore not really helpful in practice, but it emphasizes
the advantage of the estimators using importance sampling.

59



Volatility Strike Price(Variance Ratio)
geometric arithmetic control variate

10% 50 61,04(8.81) 60,85(0.02) 61,07(6544)
45 1,02(112) 1,07(0.25) 1,02(364)
40 0,00029(2443) 0,00038(0.43) 0,00007(2.11)

15% 50 113,23(7.67) 114,78(0.07) 113,26(2907)
45 11,01(27.4) 11,17(0.35) 11,00(462)
40 0,181(474) 0,191(2.04) 0,179(39.6)

20% 50 167,02(7.05) 168,10(0.17) 167,07(1628)
45 33,16(15.9) 33,47(0.51) 33,16(455)
40 2,41(83.8) 2,48(1.80) 2,42(77.6)
35 0,0351(2063) 0,0365(25.7) 0,0382(16.3)
30 0,0000378(-) 0,0000379(-) 0(-)

25% 50 221,41(6.6) 222,33(0.31) 221,47(1035)
45 64,15(11.86) 64,69(0.69) 64,15(389)
40 9,68(35.6) 9,82(1.92) 9,65(93.0)
35 0,5186(253) 0,5276(10.2) 0,5104(17.5)
30 0,005219(11980) 0,005286(347) 0,006577(7.36)

30% 50 276,04(6.27) 277,03(0.47) 276,13(716)
45 100,88(9.83) 101,64(0.88) 100,91(324)
40 23,16(21.9) 23,39(2.02) 23,11(100.9)
35 2,57(87.8) 2,59(7.21) 2,58(27.5)
30 0,0885(961) 0,0899(55.8) 0,0907(6.57)
25 0,00042(5933) 0,00043(235.6) 0,00016(2.00)

35% 50 330,75(5.98) 332,01(0.63) 330,86(524)
45 141,34(8.60) 142,26(1.07) 141,39(272)
40 42,47(15.9) 42,78(2.13) 42,45(103.0)
35 7,41(44.6) 7,46(5.81) 7,38(31.9)
30 0,5421(245) 0,5473(24.9) 0,5295(8.43)
25 0,009203(6575) 0,009253(516) 0,012762(4.40)
20 0,0000111(-) 0,0000112(-) 0(-)

40% 50 385,45(5.72) 386,91(0.83) 385,58(400)
45 184,26(7.75) 185,27(1.29) 184,32(227)
40 66,65(12.72) 67,03(2.31) 66,61(99.2)
35 15,75(28.3) 15,84(4.98) 15,68(35.2)
30 1,895(106) 1,908(16.0) 1,897(12.0)
25 0,07359(1026) 0,07387(136) 0,07828(3.95)
20 0,000370(4474) 0,000372(514) 0,000155(1.87)
15 0,0000000283(-) 0,0000000287(-) 0(-)

Table 5.5: Prices and variance ratios of an arithmetic average Asian put option over
different volatilities and strikes corresponding to the different Monte Carlo estimators
over 100000 sample paths. Prices are in cents. Parameter values T = 1, r = 5%, S0 = 50.
Simulations are performed with a time-increment of 1/252, corresponding to one business
day.
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Table 5.6 states the optimal value β̂geo for the optimal change of drift of a put option of
geometric type as well as the optimal values (β̂, γ̂) for the optimal change of drift for a
put option of arithmetic type corresponding to different values of K and σ.
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Volatility Strike β̂geo β̂ γ̂

10% 50 -3.59663 -0.0005 -1.00102
45 -4.49579 -0.0005 -1.00213
40 -7.75374 -0.0005 -1.00153

15% 50 -1.90408 -0.0005 -1.00208
45 -3.36655 -0.0005 -1.00169
40 -5.3985 -0.0005 -1.00131

20% 50 -1.80295 -0.0005 -1.00169
45 -2.82978 -0.0005 -1.00142
40 -4.2603 -0.0005 -1.00114
35 -6.06202 -0.0005 -1.00088
30 -8.24682 -0.0005 -1.00065

25% 50 -1.73118 -0.0005 -1.00144
45 -2.51433 -0.0005 -1.00123
40 -3.59663 -0.0005 -1.00102
35 -4.98034 -0.0005 -1.00081
30 -6.68311 -0.0005 -1.00062

30% 50 -1.67372 -0.0005 -1.00126
45 -2.30308 -0.0005 -1.00109
40 -3.16267 -0.0005 -1.00092
35 -4.27064 -0.0005 -1.00075
30 -5.65056 -0.0005 -1.00058
25 -7.35619 -0.0005 -1.00044

35% 50 -1.62435 -0.0005 -1.00112
45 -2.14849 -0.0005 -1.00098
40 -2.85549 -0.0005 -1.00084
35 -3.76996 -0.0005 -1.0007
30 -4.9194 -0.0005 -1.00055
25 -6.35273 -0.0005 -1.00042
20 -8.16545 -0.0005 -1.0003

40% 50 -1.58002 -0.0005 -1.00102
45 -2.0279 -0.0005 -1.0009
40 -2.62486 -0.0005 -1.00078
35 -3.39737 -0.0005 -1.00065
30 -4.37487 -0.0005 -1.00052
25 -5.60326 -0.0005 -1.00041
20 -7.167 -0.0005 -1.0003
15 -9.2353 -0.0005 -1.0002

Table 5.6: Optimal values for the optimal changes of drifts for put options of
geometric(β̂geo) and arithmetic(β̂,γ̂) type corresponding to different values of K and
σ. Parameter values T = 1, r = 5%, S0 = 50.
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Appendix

Maple codes

To compute the results stated in the last chapter Maple 15 was used. In this section the
corresponding codes are given.

63



> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

> > 

> > 

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

5.924380005

0.211959047419500



> > 

> > 

(5)(5)

> > 

> > 

(6)(6)

> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(7)(7)

(4)(4)

> > 

> > 

> > 

> > 

6.160881101

0.471899710961524

6.510154867

0.898334155279336



> > 

> > 

> > 

> > 

(14)(14)

> > 

> > 

(15)(15)

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

(12)(12)

> > 

> > 

> > 

> > 

> > 

(11)(11)

> > 

> > 

(8)(8)

> > 

(9)(9)
> > 

> > 

> > 

> > 

> > 

> > 

> > 

(10)(10)

(13)(13)

> > 

5.737148757

0.0185039720588016

5.734282462

0.0414330718958574

5.720578536

0.0836469739471332



> > 

> > 

> > 

> > 

(20)(20)

> > 

(3)(3)

> > 

> > 

> > 

> > 

(21)(21)

(17)(17)

(18)(18)

> > 

> > 

> > 

> > 

> > 

> > 

(16)(16)

> > 

> > 

(19)(19)

> > 

> > 

5.738688869

0.0183120502045484

5.743829812

0.0409914097726682

5.734950026

0.0824966285807213



> > 

> > 

> > 

> > 

> > 

(24)(24)

(3)(3)

(22)(22)

> > 

> > 

(26)(26)

> > 

> > 

> > 

> > 

> > 

(23)(23)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(27)(27)

> > 

> > 

(25)(25)

0.040385618906451286000

5.7809611111382723646

0.033465479872684520483



(37)(37)

> > 

> > 

(35)(35)

(33)(33)

> > 

> > 

> > 

(3)(3)

> > 

> > 

> > 

> > 

(28)(28)

(30)(30)

(29)(29)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(31)(31)

(32)(32)

> > 

> > 

> > 

> > 

> > 

(34)(34)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(36)(36)

> > 

5.8190559473617269340

0.073904814857006632095

5.8995526798724722542

0.14074026319443596162



> > 

> > 

> > 

(38)(38)

> > 

> > 

> > 

(3)(3)

> > 



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(2)(2)

(1)(1)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

0.4442306452

0.0313849988042821



> > 

> > 

> > 

> > 

> > 

> > 

(6)(6)

> > 

> > 

> > 

> > 

> > 

> > 

(7)(7)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(4)(4)

> > 

(5)(5)

> > 

> > 

> > 

(3)(3)

> > 

0.4751316700

0.0720564485276888

0.3463105204

0.106391575173950



> > 

> > 

> > 

(12)(12)

> > 

(8)(8)

> > 

(10)(10)

> > 

> > 

> > 

> > 

(15)(15)

> > 

> > 

> > 

(14)(14)

> > 

(11)(11)

> > 

> > 

> > 

> > 

> > 

> > 

(9)(9)

> > 

> > 

> > 

> > 

> > 

> > 

(13)(13)

(3)(3)

> > 

> > 

> > 

0.5186146082

0.00197185470970393

0.5190723783

0.00440892932215184

0.5210854301

0.00882799166940856



> > 

(20)(20)

(21)(21)

> > 

> > 

> > 

(19)(19)

> > 

> > 

> > 

(18)(18)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(17)(17)

(16)(16)

> > 

> > 

> > 

> > 

(3)(3)

> > 

0.5276059876

0.00981343664412574

0.5126037718

0.0168597282865647

0.4942643426

0.0313799322651236



> > 

> > 

> > 

> > 

> > 

> > 

(26)(26)

> > 

(22)(22)

(23)(23)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(24)(24)
> > 

> > 

> > 

> > 

> > 

(25)(25)

(27)(27)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(3)(3)

> > 

0.008181550000

0.5103506326

0.00749325129650342



> > 

(32)(32)

> > 

> > 

> > 

> > 

(35)(35)

> > 

> > 

> > 

(31)(31)

> > 

> > 

(29)(29)

> > 

(30)(30)

> > 

> > 

> > 

> > 

(34)(34)

(37)(37)

(33)(33)

> > 

> > 

(36)(36)

(28)(28)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(38)(38)

> > 

> > 

> > 

(3)(3)

> > 

0.5052898665

0.0176975823201041

0.4219368849

0.0355755211768194



> > 

> > 

> > 

> > 

> > 

(38)(38)

> > 

(3)(3)

> > 

> > 
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