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Chapter 1

Introduction

Consider an arithmetic average Asian option. This is a kind of option, whose pay-off
depends not just on the value of the underlying at maturity but on all values during the
contract period(path-dependent option). Monte Carlo simulation is the method of choice
for pricing complex derivatives, such as path-dependent options. The main reason for
the popularity of this method is ease of implementation, which only requires the ability
to generate sample paths of the asset price and to evaluate the corresponding derivative
payoffs.

Now consider the option to be way out-of-money, which means that it is very unlikely
for the option to be valuable at maturity. Then an event with small probability accounts
for most of the option price. In this case an asymptotic confidence interval given by
the central limit theorem can be very unreliable, since even a relatively large sample
size can miss rare but large payoffs, generating a low estimate for the payoff combined
with a low variance. This means that it is likely to underestimate the value of such
an option. Therefore we try to improve the Monte Carlo estimator by using variance
reduction techniques such as importance sampling or the method of control variates.
While for using the method of control variates nothing very special has to be wondered
about, to use importance sampling one has to derive the change of drift, that minimizes
variance. To find the optimal change of drift for Asian options we will use some large
deviations techniques, as in [4].

After that we will be able to accomplish the aim of this thesis, which is to compare the
results of pricing way out-of-money arithmetic average Asian call respectively put options
by using different Monte Carlo estimators. While the case of the call option has already
been treated in [4], the case of the put option will be investigated for the first time.

In chapter 2 basic theory is given, such as the Black-Scholes model, 1t6’s formula, some
results of large deviations techniques, variance reduction techniques and the closed form
solution for the price of a geometric average Asian option in the Black-Scholes model.
Chapter 3 shows how to derive the optimal change of drift in theory and for the case of
geometric and arithmetic average Asian options.

The different Monte Carlo estimators, which will be used to price the option are stated
in chapter 4, while the final results are given in the last chapter.

In the appendix one can find the used Maple codes.



Chapter 2

Theory

This chapter provides the basic theory for what will be needed later on. At first we will
take a look at the Black-Scholes model, which we will use for determining the price of
Asian options. Therefore the second section will be an introduction to this kind of options.
The following section gives an overview of large deviations techniques. Combined with
importance sampling, what will be investigated in the fourth section, large deviations
will help us to reduce variance significantly while trying to price way out-of-money Asian
options. In section five some theory about Euler-Lagrange equations is provided, while in
the last section we show how to derive the expected payoff of a geometric average Asian
option in the Black-Scholes model.

2.1 Black-Scholes modell

This section provides a short introduction into the Black-Scholes or Samuelson model as
far as it is important for our work later on. We start with the definition of a Brownian
motion and present Ito’s formula. After that the actual model is presented.

2.1.1 Brownian motion

At first consider some basic definitions to achieve the probability space on which we will
define Brownian motions.

Definition 2.1.1. Let Q be a non-empty set and P () its power set. A subset F C P(S2)
15 called o-algebra with respect to S0, if it satisfies the following properties:

1. Qe F
2. Ac F= A°e F
3. A Ay, € F=UpenAn € F.

Definition 2.1.2. A sequence of o-algebras F = {F}i>¢ is called filtration, if Vs, t > 0,
s < t, it holds that Fy C F;.

Lef. [7] and [9)



A filtration is often used to represent the increasing amount of information one gains by
time.

Definition 2.1.3. A stochastic process {Xi}i>0 is said to be adapted to the filtration
{Ftiso if any random variable X; is Fi-measurable.

Definition 2.1.4. Let (Q, F,F,P) be a filtered probability space. An R%-valued stochastic
process {W; >0, adapted to F, is called a d-dimensional Brownian motion with respect to
F and P, if it satisfies

1. Wy — Wy is independent of Fs, Vs,t € [0,00),s < t (independence of increments),

2. Vs,t € [0,00),s < t, it holds that (Wsi — W) < (W, — Wo) (stationarity of
increments),

3. Vs,t € [0,00), s < t, it holds that Wy — Wy ~ N(0,(t — s)I,),
4. {Wi}is0 has continuous paths a.s.,

where Iy is the (d x d)-identity matriz and 2 means to have the same distribution.
If additionally P(Wy = 0) = 1 holds, then {W}>¢ is called a standard Brownian motion.

Note that P is called Wiener measure, the probability law on the space of continuous
functions, vanishing at zero and that if F; contains the information of {W}sco.r1, {F }i=0
is called the natural filtration of the Brownian motion.

2.1.2 Tto’s formula?

This section will recall 1t6’s formula for the one-dimensional case. The detailed theory
about how to derive that result is not provided. For more information about this topic
one can have a look at [§].

Let (€2, F,P) be a probability space with filtration F = {F};>0, {W;}+>0 a one-dimensional
(F, P)-Brownian motion and I C [0,00) an interval of the form I = [a,b], I = [a,b) or
I = [a,00) with a < b.

Definition 2.1.5. Let Wy([) be the set of all functions f: I x Q — R satisfying
1. f is progressively measurable, i.e. f|qnxa s B([a,t]) @ Fi-measurable ¥V t € I,
2. IP’(fath(s,w)ds <ooVtel)=1.

Now we can define a special kind of process.

Definition 2.1.6. Let v € Wg([0,00)) and u : [0,00) xQ2 — R be progressively measurable
satisfying P(fg lu(s, )| ds < oo, Vt>0)=1. Let Xo be Fo-measurable. Then

Xi(w) := Xo(w) + /Otu(s,w)ds + /Otv(s,w)dWS(w), t>0, wel

is called Ito-process. An abbreviated version is given by

2 cf. [§]



Now we can formulate:

Theorem 2.1.7 (Ito-formula). Let U C R be open and {X:}i>o an Ité-process with values
inU. Let g :[0,00) x U — R be continuous differentiable once with respect to the first
argument and twice with respect to the second argument(g € C%?) and let these partial
derivatives be continuous on [0,00) x U.

Then Yy := g(t, Xy), t >0, is an [to-process and for almost all w € Q) it holds that

Yy (w) = g(0, X (w))

" (g dg 1% 2
+ /0 (% (s, X5 (w)) + e (s, Xs (W) u(s,w)+ 3922 (s, Xs(w))w (s,w)> ds

tag
+ [ = (s, X5 (w))v(s,w)dW (w), t>0.

0 Oz

(2.1)
An abbreviated version is given by
_ 99 g 10% 2

with (dt)? =0, dtdW; = 0 = dWdt and (dW;)? = dt.

Now we can begin to present the actual Black-Scholes model.

2.1.3 Market

At first we have to mention, that we have to make several assumptions on the financial
market, to be able to derive the Black-Scholes model:

e Trading is possible in continuous time.

e  There are no trading restrictions.

e Interest rates for lending and borrowing money are equal.
e There are no costs or taxes.

This is called a complete market.

2.1.4 Assets

In this model there exist two types of assets, a riskless and a risky one. The price of
the riskless asset(bond) is denoted by B; and is described by the ordinary differential
equation

dB; = rBdt, (2.2)

where the constant r determines the instantaneous interest rate.
Let By = 1, then B, = Bye™ for t > 0 solves

Let(Q2, F,F,P) be a filtered probability space, where € is a non-empty set, F a o-algebra,
F = {F}i>0 a filtration of F and PP a probability measure.

9



Then the price of the risky asset(stock) S; is described by the stochastic differential
equation
dSt
S
where p € R is the appreciation rate, o > 0 the volatility and {W, };~¢ a one-dimensional
standard (IF,P)-Brownian motion. The part in front of dt (in this case u) is called drift
of the risky asset.
Using Ito’s formula one can proof that S; = SOeUWtH“_%"Q)t is a solution to . S, is
called a geometric Brownian motlon
St = St — e "S, = SyeeWitln—r-3 37t determines the discounted price of the risky asset
and is descrlbed by the stochastic differential equation

d%gt = (u—r)dt + odW,. (2.4)

t

= pdt + odWy, (2.3)

2.1.5 Change of measure

The intention of the model is now to find a probability measure Q, equivalent to P, so
that {S”t}te[gj], T > 0, becomes a martingale with respect to the new measure. Thereby
equivalent means that Q has the same null sets as P.

At first consider some definitions and theorems:

Definition 2.1.8. Let T' be an index set. A stochastic process { My }icpm on a probability
space (2, F,P) is called martingale with respect to the filtration {F}icpo,r), if

1. {Mi}iejomy is adapted to {Fi}tico)s
2. E[|My]] < o0, Vt € [0,T],
3. E[M|Fs| = Mg, Vs, t € [0,T], s <t (martingale property).

The special case of the Radon-Nikodym theorem for probability measures states the
following

Theorem 2.1.9. Let (Q, F,P) be a probability space and Q a probability measure equiva-
lent to P. Then there exists an integrable random variable Z with le% =7 and E[Z] = 1.

Last but not least we formulate Girsanov’s theorem, which will be very important for the
rest of the section.

Theorem 2.1.10 (Girsanov’s theorem). Let (2, F,F,P) be a filtered probability space
with F = {F; }o<t<r the natural filtration of the standard (F, P )-Brownian motion {W; }o<i<r.

Let (0;)o<i<7 be an adapted process satisfying fOT 62ds < oo and that the process { L }o<i<T,

defined by
T 1 [T
L; = exp (—/ 0,dW, — —/ 93d8> ,
0 2 Jo

1s a martingale. Consider the probability measure Q, equivalent to P, with Radon-Nikodym

derivative
dQ 1 2
Fid = exp ( / 0,dW, 5/0 0 ds) ,

then {W}}o<i<r with W} =W, + fo 0sds is a (F,Q)-standard Brownian motion.

10



Now recall that we want to find a probability measure Q that makes {St}te[o,;p] a martin-
gale. In the Black-Scholes model there exists an explicit measure satisfying this condition.
A Radon-Nikodym derivative is given by

dQ Tr—u 1 (T (r—p)? r— [ 1(r—p)’
—_ = |/|/ _— = _— = |/|/ — ——T
dP P ( /0 o W 2 /0 o2 dt eXP o T 9 52

(2.5)
Because of Girsanov’s Theorem we know, that we receive a new standard (IF, Q)-Brownian
motion {W; }iepo ), where Wi = W, — fg =E =W, — =t t € [0,T]. With respect to Q,

(e

the discounted price of the risky asset {S;}icpo,r) is a martingale and is described by the
stochastic differential equation

%St = odW}. (2.6)

t

Using It6’s formula one can proof that S; = Spe?™7 27" is a solution to .

The ordinary price of the risky asset S; with respect to Q is described by the stochastic
differential equation

%St = rdt + odW;. (2.7)
t

The solution to [2.7]is given by S, = Spe?Wi +(r—20")1,

As one can see in the drift of the risky asset changed from p to r by changing the
probability measure. Later on we will use a variance reduction technique called impor-
tance sampling, which takes advantage of the fact that changing the probability measure
also changes the drift.

Note that Q is called the risk-neutral measure. If we talk about S; under the risk-neutral
measure, S; is always meant to be like the solution to [2.7} In this case the appreciation
rate ¢ has no impact on the price of the risky asset anymore, S; only depends on the
volatility o and the instantaneous interest rate r.

2.1.6 Black-Scholes formula

This subsection provides the Black-Scholes formula for pricing an European option, since
we will need it to derive a closed form solution for the price of the geometric average
Asian option in the Black-Scholes model.

Theorem 2.1.11 (Black-Scholes formula). Consider a European call option with strike
K > 0 and maturity T > 0. Then the price of the option at time t € [0,T] is given by

Cy = Cy(Si, T—t,K,r,0) = S;®(dy(S;, T —t, K,7,0)) — Ke " D®(dy(S;, T~ t, K, 7,0)),
(2.8)
where ® denotes the distribution function of the standard normal distribution and

log(%) + (r £ %)(T —t)

d172(5t,T—t,K,’I“,O'): o_m .

11



Consider now a European put option. Then the price is given by

P, = Py(S;, T—t,K,r,0) = Ke "I 0®(—dy(S,, T—t, K, r,0)) =S, ®(—dy(S;, T—t, K, r,0)).
(2.9)

2.2 Asian Options’

Asian options belong to the group of so-called ”exotic options”, meaning that they do
not have that big impact on the market, though Asian options are the most popular
options among this group. The difference between Asian options and their European
counterparts is that the pay-off does not just depend on the value of the underlying asset
at the maturity date, but on an average of all values during the contract period. Therefore
one has to simulate the whole path and not just a single value, if one wants to estimate
the price of an Asian option by doing a Monte Carlo simulation.

2.2.1 Arithmetic Asian Option

The average value of the underlying asset in discrete respectively continuous time is
determined by the arithmetic average

U
Il

1 n
Eizlstm

_ 1 [T
ST/OS“

where T is the duration of the contract, t; < ty < ... < t, =T are the associated trading
dates in discrete time and S; the price of the underlying of the option at time ¢.

Therefore the pay-off of an arithmetic Asian call respectively put option is given by
(5-K)".
(K-95)",
where K determines the strike price.
Thus the price of the option at time 0 is denoted by
TR (S - K)'],
TR |(K-39)"].

3 cf. [10]
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2.2.2 Geometric Asian Option

The average value of the underlying asset in discrete time is determined by the geometric
average

S = (ﬁ Sti> ' , (2.10)

where t; < ty < ... < t, = T are the associated trading dates in discrete time, 1" the
duration of the contract and S; the price of the underlying of the option at time t.

Since 2.10] can be rewritten as

& eln<( "1 Sh)

the average value of the underlying asset in continuous time is determined by

3=

) = 6% ?:1”‘(5%)’

S’ — 6% fOT 1n(St)‘
Therefore the pay-off of an arithmetic Asian call respectively put option is
(S - K)Jra
(K - S)+’

where K determines the strike price.
Thus the price of the option at time 0 is denoted by

e |(3-x)].
e |(x-5).

2.3 Introduction to Large Deviations’

Large deviations theory is a part of probability theory that deals with the description of
so-called rare events, where rare means that random variables differ from its mean by
more than a "normal” amount. Normal usually means what is described by the central
limit theorem.

The area of large deviations covers a set of asymptotic results on rare event probabilities
and a set of methods to derive such results.

Among other topics large deviations find important applications in finance, where rare
events play an important role. Approximations, done for pricing options, in particular for
pricing barrier options and way out-of-money options, are good examples and also in the
scope of this thesis. Therefore large deviations techniques aim to quantify the probability
of rare events on exponential scale.

4 cf. [1] and [2]
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Let us start with a short example:
Consider a probability space (R, B(R),P), where B(R) is the Borel o-algebra on R and
let X, Xo, ... be i.i.d. random variables with

EX, = 1 € R,
VarX, = o* € (0,00)

and let S, = Xj +---+ X,, (n € N) be the partial sums.
There are two fundamental theorems dealing with such sequences:

Strong Law of Large Numbers(SLLT)

n—oo

—S — u P-as.
Central Limit Theorem(CLT)

0\/_(5 —pn) 5 7 in law wor.t. P,
where Z is a standard normal random variable.

The CLT quantifies the probability that S,, differs from pn by an amount of order /n,
what we call a "normal” deviation.

Events where S,, differs from un by an amount of order n lead to deviations that are
called "large” (large deviations).

As an example consider the following event

{Sh = (n+a)n}, a>0,

whose probability tends to zero as n — oo. The question now is to determine how quick
this happens. Therefore our task is to quantify the rate at which the probability tends
to zero.

2.3.1 Cramér’s Theorem for the empirical average

Theorem 2.3.1. [| Let (X;) be i.i.d. R-valued random variables with ¢(t) = Eet™* < oo,
vVt € R, where ¢ denotes the generating function.
Let S, =" X;.Then for all a > EX;,

nll_{go % In(P(S,, > an)) = —I(a), (2.11)
where
I(z) = Stlelﬂg(Zt —1In(¢(t))), z€R (2.12)

1s called a rate function.

5 cf. [I, Theorem 1.4
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Note that also holds for P(S,, < an) with a < EX;, that I(z) is called the Fenchel-
Legendre transform of In ¢(¢) and that In ¢ is the cumulant generating function.
Assuming that the conditions of Cramér’s Theorem are satisfied, the rate function [2.12]
has the following properties}

1. I is lower semi-continuous and convex on R.
2. I has compact level sets.

3. I is continuous and strictly convex on int(Dz), where Dz = {z € R: I(z) < oo}
and int(Dr) is the interior of Dr.

4. I is smooth on int(D7).
5. I(z) > 0 with equality if and only if z = p.
6. I"(n) = 7
Remarks:
e The level sets of I are the sets I71([0,¢]) = {z € R: I(2) < ¢} with ¢ € [0, 00).
e Lower semi-continuity is equivalent to the level sets being closed.

e The convexity of I implies, that Dz is an interval (possibly infinite).

2.3.2 The large deviation principle

Now we do not consider i.i.d. random variables any longer, but formulate a more general
theory.

Let X be a Polish space, i.e. a separable completely metrizable topological space, with
distance(metric) d: X x X — [0, 00).

Definition 2.3.2. f : X — [—00,00] is lower semi-continuous if it satisfies any of the
following equivalent properties:

1. liminf f(x,) > f(x) for all (x,), x such that x,, — x in X.

2. lim inf f(y) = f(x) with B(z) ={y € X : d(z,y) < €}.

€l0 yeB(x)

3. f has closed level sets, i.e. [~ ([—o0,c]) = {z € X : f(x) < ¢} is closed for all
ceR.

Now we can define a rate function.
Definition 2.3.3. [ : X — [0, 00] is a rate function if:

1. I # 0

6 cf. [IL exercise 1.16]
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2. I is lower semi-continuous.
3. I has compact level sets.

Theorem 2.3.4. [Z]A lower semi-continuous function achieves a minimum on every non-
empty compact set.

Definition 2.3.5. A sequence of probability measures (P,) on X is said to satisfy the
large deviation principle(LDP) with rate n and rate function I if

1. I is a rate function in the sense of Definition 2.3.3.

2. limsup £ InP,(C) < —I(C) VC C X closed.

n—oo

3. liminf £ InP,(0) > —I1(0) YO C X open.

n—oo

where for S C X 1(S) is defined as 1(S) = inf I(x).

TE€S

Theorem 2.3.6. Ff] Let (P,) satisfy the LDP. Then the associated rate function I is
UNIQUE.

The next result, known as Varadhan’s Lemma, is the extension of the Laplace approxi-
mation for integrals to a general (infinite-dimensional) setting.

Lemma 2.3.7 (Varadhan’s Lemma). [| Let (P,) satisfy the LDP on X with rate n and
rate function I. Let H : X — R be continuous and bounded from above. Then

lim 1 hl/x e"T@ P, () = sup [H(z) — I(x)] (2.13)

n—0oo 1 zeX

2.3.3 Schilder’s Theorem

In this section we will take a closer look to a more specific result, namely Schilder’s The-
orem for Sample Path Large Deviations.

Let (Wt)te[(LT] denote a standard Brownian motion in R?. Consider the process
We(t) - \/EWt

Theorem 2.3.8. E For any integer d and any 7,¢,6 > 0,

P ( sup ||W.(t)|| > 5) < 4dexp ( il ) . (2.14)

0<t<r 2dTe

7 cf. [Tl exercise I11.4]

8 cf. [1]

9 ¢f. [1] or [2, Theorem 4.3.1]
10 ¢f. 2, Lemma 5.2.1]
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Now let

Ho([0,7]) = {f : [0,7] — R : f is absolutely continuous on [0,T], f' € Lo, f(0) = 0}
denote the space of all absolutely continuous functions with square integrable derivative,
vanishing at zero.

Let p. be the probability measure induced by W, () on C[0, T, the space of all continuous
functions, vanishing at zero, equipped with the supremum norm topology.

Theorem 2.3.9 (Schilder). [ {u.} satisfies an LDP on C[0,T) with rate function

[ .
I(h) = 5/0 |h(t)||?dt, if h € Hy (2.15)

oo otherwise
Let us show the lower bound of this LDP.

Proof. Consider G' a nonempty open set of C([0,7]), h € G and 6 > 0 s.t. B(h,0) C G.
We want to prove that

lim iglfelnIP’ [VeW € B(h,8)] > —I(h).

For h ¢ Hy([0,T)), this inequality is trivial since I(h) = co. Suppose now h € Hy([0,77),
and consider the probability measure:
2
dt |,

d h T h 1 T
g = exp —Law, — — /
0 2e Jo
so that by Girsanov’s Theorem, W" := W — \% is a Brownian motion under Q". Then,

dP hu
we have
ht 1 [T, 2
exp( \/_ W E/O ht dt) 1|W"|<\%]
1 [T
=E |exp (—2—6/0 dt) cosh \/_ ]l‘W‘<
)
elnlP [\/EW € B(h,é)] > —1(h)+e€elnP {|W\ < —1 ,

- EQh

[\

[\

h

h

This implies

P[veW € B (h,6)] =P Dvm < i}
(WhQ" — BM) =E _eXp ( / h—\/t_dm — i/T hy dt) ]1W|<$_
_ th)IP’ [|W| < %} |
\/E

NG
~ T . |
(W—W) =E [exp / th — —/ hy| dt ]l‘WK%
1 [T
> i
= P ( 2¢ /0
and thus the required lower bound. O

1 ¢f. [2, Theorem 5.2.3]
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Since it is much more complicated to show the upper bound, the proof is not given here.
For more information one can have a look at [2 Lemma 5.2.3].

2.4 Variance reduction techniques

There are several different types of so-called variance reduction techniques, but all of
them intend to increase the efficiency of Monte Carlo methods by reducing the variance
of simulation estimates. In the following sections we will take a closer look at two of them.
At first the method called importance sampling is presented, followed by the method of
control variates.

2.4.1 Importance sampling'}

Importance sampling attempts to reduce variance by changing the probability measure
from which paths are generated. The idea is to try to give more weight to ”important”
outcomes of the simulation. For example if one investigates barrier options, one can make
it more probable that the price of an asset exceeds or falls below a specific value.
Thereby the expected value will be unchanged under the new measure, but the variance
will "hopefully” decrease.

Now let us have a look at a short example:
Let

uzﬁwxnz/uwﬂmm (2.16)

be the term we want to estimate, where X is a random variable of R? with probability
density f and h is a function from R? to R. Therefore we get the following Monte Carlo
estimator for n independent draws X1, ..., X,, of f:

i) = - > (X0,

Let g be any other probability density on R? satisfying f(z) > 0 = g(z) > 0, Vo € R%
Then we can rewrite 2.16] as

P e = 5 [ 10
u= [ 1 2 gaya Eﬁmmﬂxj, (2.17)

where E indicates that the expectation is taken with X distributed according to ¢ and

% is a Radon-Nikodym derivative. Therefore we get a new Monte Carlo estimator, this

time for n independent draws X1, ..., X, of ¢:

NN b \S(XG)

With we see that I@[ﬂg] = p and thus that fi, is an unbiased estimator of .
Since the expected value is equal with and without Importance Sampling, the difference

12 ¢f. 3, section 4.6]
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of the variance has to be found by comparing the second moments. With importance

sampling, we get 2
<h(X)%) ] =E {h(X)Q%} :

Since the second moment without importance sampling is E[l(X)?], one can see, that
the change of variance depends on the choice of g. Therefore achieving a rise of variance
is as possible as achieving a reduction. So we see that the success of this method lies in
the art of selecting an effective density g.

E

Note the following:
Consider the special case in which h is nonnegative. Then h(x)f(z) is also nonnegative
and may be normalized to a probability density. Then

W) f(x)
9(x) = T h(z)f(x)dz

would be the perfect choice, leading to a zero-variance estimator ji;. Unfortunately
[ h(z)f(z)dx = pis what we wanted to estimate in the first place. Therefore in practice
we try to find an approximately optimal g.

This was an easy example to illustrate the idea of importance sampling. Later on, when
we calculate the price of an Asian option in the Black-Scholes model, we will take advan-
tage of this method. Since underlying assets then are represented by geometric Brownian
motions, changing the probability measure will result in changing the drift of the Brow-
nian motion.

2.4.2 The method of control variates™]

Now we take a look at another variance reduction technique, the method of control vari-
ates. It exploits information about the errors in estimates of known quantities to reduce
the error in an estimate of an unknown quantity.

For example let Yi,...,Y, be the payoffs of an option with respect to sample path
i. Supposing that all Y; are i.i.d., the usual estimator of E[Y;] is the sample mean
Y = (Y; +---+Y,)/n. This estimator is unbiased and converges with probability 1 as
n — oQ.

Suppose now that for each sample path we compute the output X; along with Y;. Sup-
pose that the pairs (X;,Y;) are i.i.d. for i = 1,...,n and the expectation E[X] of the X
is known.(We use (X,Y) to denote a pair of random variables with the same distribution

as each (X;,Y;).) Then for any fixed b we can calculate
Yi(b) = Y; — b(X; — E[X))

from the ith sample path and then compute the sample mean

V() = ¥ = bX — B[X]) = & 30— 00X, — EIX). (219

13 ¢f. [3} section 4.1]
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This is a control variate estimator; the observed error X — E[X] serves as a control in
estimating E[Y]. Since

E[Y(b)] = E[Y = b(X — E[X])] = E[Y] = E[Y]

the control variate estimator [2.18| is unbiased and it is consistent, with probability 1,
because of

n

tm S v = i Ly ax - L))

i=1
=E[Y —b(X — E[X])]
=E[Y]
Each Y;(b) has the following variance
Var(Y(b)) = Var(Y; — b(X, — EIX])) (2.19)
=03 — 2boxoypxy + b0y = o*(b), (2.20)
where pyy is the correlation between X and Y, 0% = Var(X) and 0% = Var(Y).

The control variate estimator Y (b) has variance o2 /n and the ordinary sample mean
Y(b = 0) has variance o2 /n. Thus the control variate estimator has smaller variance
than the standard one if b?*c% < 2boxoypxy-

The optimal coefficient b* minimizes the variance [2.20] and is given by

b Y _ Cou(X,Y)
oy  Var(X)

Since in practice it is unlikely that oy or pxy is known, if E[Y] is unknown, we have to
estimate b*. Therefore we get

(- X))

! Z?:1(Xi - X)2

Now we got everything to use this method.

Since in the Black-Scholes model there exists a closed form solution for the price of
an geometric average Asian option, we can use this price as a control variate for the price
of an arithmetic average Asian option.

2.5 Euler-Lagrange equation|']

Since later on we will have to determine the Euler-Lagrange equation(or Euler’s equation),
this section provides what we need to know.

The Euler-Lagrange equation belongs to the field of Variations of Functionals, where the
concept of the variation(or differential) of a functional is analogous to the concept of a

14 ¢f. [6, Chapter 1]
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differential of a function.
Consider a functional of the form

Ty = / Liz,y(z), o/ (@), (2.21)
and let
AJh] = Jly +h] = J[y|

be its increment, corresponding to the increment h = h(x) of the "independent variable”
y =y(x). If y is fixed, AJ[h] is a functional of h. Suppose that

AJ[] = GlH] + |l (2.22)

where ¢[h] is a linear functional and € — 0 as ||h|| — 0. Then the functional J[y| is said
to be differentiable and the principal linear part of the increment AJ[h], i.e. the linear
functional ¢[h] which differs from A.J[h] by an infinitesimal of order higher than 1 relative
to |||, is called the variation(or differential) of J[h] and is denoted by J[h].

Problems involving the determination of maxima and minima of functionals are called
variational problems. Consider the "simplest” variational problem, which is formulated
as follows:

. Let L(z,y,y') be a function with continuous first and second (partial) derivatives with
respect to all its arguments. Then, among all the functions y(x) which are continuously
differentiable for a < x < b and satisfy the boundary conditions

y(a) = A, y(b) = B,
find the function for which the functional

Ty = / L(z,y(x),y/(z))dz (2.23)

has a weak extremum.

In other words, the simplest variational problem consists of finding the weak extremum
of a functional of the form [2.23] This can be done by solving Euler’s equation [2.24] which
is denoted as follows.

2.5.1 The one dimensional Euler-Lagrange equation

Theorem 2.5.1 (Euler’s equation). E] Let Jly] be a functional of the form

b
Tyl = / Liz,y(x),y (2))dz.

defined on the set of functions y(x) which have continuous first derivatives in [a,b] and
satisfy the boundary conditions y(a) = A, y(b) = B. Then a necessary condition for Jy|
to have an extremum for a given function y(z) is that y(z) satisfy Euler’s equation

oL 4oLy (2.24)

15 ¢f. [6, Theorem 1]
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Proof. Suppose we give y(x) an increment h(x) with y.(x) = y(x) + eh(z) and y.(z) =
y'(x) + eh'(x), where h(z) is a differentiable function and € is small. Since we want the
function . to continue to satisfy the boundary conditions, we must have h to satisfy
h(a) = h(b) = 0.

Define

b b
Je[y] :/ L(a:,ye,yé)dx:/ L.dzx,

where L. = L(z, ye, y.).
The total derivative of a function f of several variables x,y, z with respect to one of its
input variables, e.g. x, is given by

df 6fdw+8fdy 8fdz_6f+8fdy of dz

dr ~ Oz dx Oydr Ozdxr Oxr Oydx Oz dx’

Now we calculate the total derivative of J[y] with respect to €, which is

dJ, d [* bdL
€ L d . €
de  de v . de
With
dL.  OL. N OLedx  OLcdy.  OLcdy,
de — Oe = Ox de Oy, de Oy de’
where
oL. 0 , . ..
5 = a—L(:U, Ye,y.) = 0, since L does not depend explicitly on e,
€ €
0L, dx dx
— 0, since — =0
oz de since de ’
dy.
dye = h and
dy!
e _ !
de

and with e = 0 we get

- [ veiglor oty erofr o

According to [6, Sec. 3.2, Theorem 2] a necessary condition for J[y] to have an extremum
for y = y(x) is that
dJe
de

= ()’
therefore we get
oL oL
h + 1 (x dr = 0. 2.26
[ [poGe s nwie] i (2.26)
Applying the following lemma to yields the Fuler-Lagrange equation.
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Lemma 2.5.2. [ If a(z) and B(z) are continuous in [a,b] and if

/ lo(@)h(z) + Bla)H (2)]dz = 0

for every function h(z), defined on [a,b], continuous and with continuous first derivatives,

such that h(a) = h(b) = 0, then B(z) is differentiable and ('(x) = a(x), Yz € [a,b).
[

2.5.2 The Euler-Lagrange equation for a functional with two
occurrences of integrals

This was the standard case. Now the method of the proof will be used once again
to derive the Euler-Lagrange equation for a functional with two occurrences of inte-
grals Therefore consider the functions Li(z,y,y’) and La(x,y,y') as L before and let

f Li(z,y,y)dz and Joly f Lo(z y y )dx be functionals of the form as J[y].
Deﬁne Ye, Y., h and I/ as before and let Jy [ f Ly dz and Jo [y f Ly .dz, where
Li.=Li(x,ye,y.), i =1,2.

Now define F[Jy, J5] as a functional of the two integrals J; and J,. For this functional
we want to find the corresponding Euler-Lagrange equation. Therefore we calculate the
total derivative of F, = F[Jy, Jo | with respect to €, which is given by

dF. _OF.  OF dh.  OF. dJ,
de — de = O0Jy. de = OJy de’

(2.27)

where

OF.
Oe
Since J; . and Jy are of the form of J. in the standard case, we get, as in [2.25]

dh, oLi. ., 0L,
de ‘/a [h( Vo TS, ]dx’

dJ26 aLQe 8L2€
= = h h
de /a{()ayejL()@ye}dz

= 0, since F, does not depend explicitly on e.

Using integration by parts for the second term of the integral yields
oL OL

b b b
, d0L d oL
/ h(x )@dﬂ?— h(ﬂf)a—y, —/ h(x )Eydf —/a h(m)dtay/dx’

where the last equality holds because h(a) = h(b) = 0. Applying this result gives
dJy e bh (a . daLLE)

de —dt oy
dJa.c b d OLo.

— h — 222 ) do.
de ( T dt oy ) v

16 ¢f. [6, Lemma 4]



Substituting this into yields
dF.  OF. [? OLi. dOL;. oF. [? 0Ly, d QLo
— < [y el h € 2 72%¢ ) g
de 07, / (@) ( Oy, di oyl ) Sy / (@) ( Oy, di oyl ) v
b OF. (OL,. d 0Ly, OF. (OLy. d OLsy,
= h Pt ) & 5 d
[ v (aJl,e ( oy, di dy ) "o, ( oy dt Oy )) g

According to [0l Sec. 3.2, Theorem 2| a necessary condition for F[J, o] to have an
extremum for y = y(x) is that

dF,
de

0,
hence we get for e = 0
dF. b OF (0L, dJL, OF (0L, d 0L,
= /[ h - = - = dx = 0.
de / (=) (aJ1 ( oy di 83/) e ( oy di oy )) v

Since this integral has to be equal to zero for any increment h, it is the rest of the
integrand who has to be equal to zero. Therefore we get

Y

OF (0L,  d 0Ly OF (0L,  d 0L,
0Jp \ 0y  dt oy 0Jy \ dy  dt 0y

what is equvialent to the following Euler-Lagrange equation

oL, _ d oL,  OF
oy dx 0y’ 03
Bl _ doL, . oF" (2.28)
Oy dr dy’ 0J2

2.6 Price of geometric average Asian options'’]

As mentioned before there exists a closed form solution for the price of geometric average
Asian options in the Black-Scholes model. Since we will need this expectation later on to
use the method of control variates, the formula for the price is provided in this section.

At first note that for arithmetic average Asian options there is no such solution. The
reason why the geometric case is easier to handle, is that the product, other than the
sum, of log-normal distributed random variables is also log-normal distributed. This of
course is very helpful, since, as we know, the geometric Brownian motion S; is log-normal
distributed.

The payoff function for the discrete geometric average Asian call option is given by

m + m 1/(m—+1) +
(exp (%ﬂ Zlogw(ti))) - K) - (_H sm)) ~K|

17 cf. [T} Section 3.2]
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where m is the number of time points and 0 =ty < ... <t,, =T with t; = %
Note that

i—0 tm—l) S(tm—2 S<tm—3
S(t3) \m—2,S(t2) \ o1, S(t1)
. m m m5m+1'
Since Sy = Soe™Wit =27 and t; —t; 1 = L, i =1,...,m it follows that

m " N 0.2
S(tm,l) = eXP(U(th - th_1) =+ <7“ — 7) (tm — tmfl)

2

= exp(o/T/mX; + (7’ - %) T/m),
gg::; — exp(o/TmXs + (7‘ _ ";) T/m),

2

sg;) — exp(o/Tfm X, + (r - “—) T/m),

n

~—

2

where {X;}", are independent, standard normal distributed random variables.
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With the above results we get

R
(T
s (si“”)>(§< 5 -G G
v () e ()
) g(s D)
_ m+1<(a\/1TX1+< -2 )ym)
+2 (0\/T/—mX2 + (r - %) T/m) +
=) (VT + (v ) )

o (o (v T ) im)
_oyTmynin (=%)T

m+1 2

+

ot n = 1)tog (5

(2.29)
Caused by the additive mean and variance of independent normal random variables, we
know that

o/T/my Ly iXi an o?T(12+2%+ ...+ m?)

m+ 1 m(m + 1)2
(2m—:1r)o'2T
6(m+1)
Therefore we have
T e 2 nr
ovTjmy X | [@Gmt VT, (2.30)
m+1 6(m+1)

where Z is standard normal distributed.
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Plugging in we get

m )/ (m1) 2
log ((Hio ) ) ~(r-Z)1+0uvTz,
0

2
2
2mil (= )+
(mt1) SR

Hence, we can obtain the price of the geometric average Asian call option:

where o7 = 0

and p =

m 1/(m+1) +
C§ (S0, T,K,r,0) =exp(—rT)E (HS (tz)> — K
i=0

(sexo((s-%) 740wz 1) |

=exp((p—7)T)Co (S0, T,K,p,02),

=exp ((p—r)T)exp(—pT)E

where Cy(Sy, T, K, p,07) is the price of an European call option with interest rate p and
volatility 0.

By the Black-Scholes formula we get
Co(So, T, K,p,07) = So®(d1(So, T, K, p,07)) — Ke T ®(dy(Sy, T, K, p,07)),
where ® denotes the distribution function of the normal distribution and
log (%) + <p:|: %) T
VToy '

dl,Z (SO7Ta K7 P, UZ) =

Therefore we have

C3(So, T, K,r,0) = exp((p — )T)(So®(d1(So, T, K, p,07)) — Ke "L ®(dy(So, T, K, p,07)))

= exp(—rT)(Soe” ®(dy(So, T, K, p, 7)) = K®(do(S0, T, K, p,02)))
(2.31)
Let P respectively P9 be the price of the corresponding European respectively geometric
average Asian put option. Then the price of the European one is given by

PO(S()7T7 K7 P, UZ) - Ke_qu)(—d2<Sg,T, K7 P UZ)) - Soq)<_d1(507T7 K7 P UZ))'

Hence we have

Py (So, T, K,r,0) = exp((p — )T)(Ke "1 ®(—dy(So, T, K, p,02)) — So®(—dy (S0, T, K, p,02)))

= exp(—rT)(K®(—dy (S, T, K, p,07)) — Soe’T ®(—dy(So, T, K, p,02))).
(2.32)

27



Chapter 3

Optimal Importance Samplinﬂ

This chapter provides the theory Paolo Guasoni and Scott Robertson used in their paper
to derive the optimal change of drift of an underlying asset in the Black-Scholes model,
where optimal is meant in the sense of reducing variance via importance sampling, as
well as the practical example for a geometric respectively an arithmetic average Asian
option.

3.1 The optimal change of drift

Consider the Black-Scholes model and let P determine the risk-neutral probability mea-
sure. Then the risky asset is, as mentioned before,

Sy = SoethJr(T*%UQ)t

)

where W, is a standard Brownian motion under P, r the interest rate and o the volatility.

Now we want to describe the payoff of a derivative by a functional depending on the
shocks process (Wy)ejo,r). Therefore denote by

Wr ={z € C([0,T],R) : z(0) = 0}

the Wiener space of continuous functions on [0, 7] vanishing at zero.

This space is endowed with the topology of uniform convergence and with the usual
Wiener measure P, defined on the completion of the Borel o-field Fr, under which the
coordinate process Wy(z) = x; is a standard Brownian motion with respect to (F)¢cqo,1,
the usual augmentation of the natural filtration of W.

Roughly spoken, Wy contains the paths of (W;)icpo,r)-

Definition 3.1.1. A payoff is a non-negative functional G : Wp — R, continuous in
the uniform topology.

Lef. [
2 of. [4, chapter 3]
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Example 3.1.2. Consider the arithmetic average Asian call option. Its payoff is given
Jr
by (% fOT Sydt — K) , which corresponds to the functional

1 g ori+(r—Lo?)t
G(ZL‘) = T Soe 2 dt — K
0

Let F' = log G, taking values in RU {—o0}, and define by

+

T
Hy = {h € ACI[0,T]: h(0) = O,/ hidt < oo}
0

the Cameron-Martin space of absolutely continuous functions vanishing at zero with
square integrable derivative.

Now for any deterministic h € Hy, the Radon-Nikodym derivative
d@h T 1 T

induces an equivalent probability measure Q". Under Q" the process W; = W, — h; is a
standard Brownian motion as we learned in section 2.1.5.
So we see that Hp contains the possible changes of drift of S;.

Since we want to minimize

dP dP \? dP 1° , dP )
VCLT’Qh (GdTQh) = ]EQh (GdTQh) - EQh [GdTQh:| = ]EP |:G dTQh:| - ]EP [G] s
we have to minimize
d]P) T 1 T ;2
Ep [GQth] —Ep [eQF(W)’fo hedWit3 [ htdti| .

When Monte Carlo simulation is necessary to estimate Ep [G], the above quantity is, in
general, intractable.

Instead, as in [5], we consider the small-noise asymptotics

L(h) = limsup e log (E]P’ [6§(2F(ﬁw)ffoif Vehidwi+3 1 ;’Lgdt)D ’
€l0

which correspond to approximating Vargs (G%) with e So instead of minimizing

the variance, we minimize e“(*), particularly L(h). Note that since we use this approxi-

mation, the minimizer h will ”just” be asymptotically optimal.

Definition 3.1.3. An asymptotically optimal drift is a solution to the problem

min L(h).

heHr
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Now we have to find a deterministic expression for L(h), which becomes suitable for
optimization. This is possible under the following

Assumption 3.1.4. F: Wr — RU {—o0} is continuous and satisfies
Fr) <K+ K “ 3.1
(z) < Ko+ Ko ma || (3.1)

for some constants K1, Ky >0 and a € (0,2).
Note that condition is fulfilled for virtually all options of practical interest.
Theorem 3.1.5. Let F' satisfy Assumption 3.1.4. Then:

1. If h € Hy, and h has finite variation, then

1 [ : T
L(h) = sup <2F(x) + —/ (& — he)?dt —/ :L“?dt) (3.2)
zeHr 2 0 0
2. For all h € Hy, there exist mazimizers to both[3.3 and[3.3 below:

$s€quT (2F(a:) — /0 ) ifdt) (3.3)

3. [ffz is a solution to then h is asymptotically optimal if

~

L(h) = 2P (h) — / Cizar (3.4)

Furthermore, z'f holds, then h is the unique solution Of.

A proof is provided in the next section. This Theorem yields that if Assum ption 3.1.4 is
satisfied, an asymptotically optimal drift h can be determined by solving [3. particularly
by solving the corresponding Euler-Lagrange ordinary differential equatlon of 3.3 If this
h has a derivative with finite variation and satisfies condition [3.4] then it actually is an
asymptotically optimal drift.

Note that condition certainly holds when F' is a concave functional, since then we
have a unique maximum, but in general, one has to solve a new variational problem to
evaluate L(ﬁ), which also reduces to an Euler-Lagrange ODE.

Once h is found, and since
AW, = d(W} + hy) = AW} + hydt (3.5)

we achieve

[ dP
g [oR e e} i
eF(W*JrfAL)*fOT ﬁtth*ffoT ﬁfdt+% fOT ﬁ?dt] (3.6)

I * | 7 T3 * T3
o (W h) = [ hedWy =3 [ hfdt}

|G (W h)e heawy 4 T W} ,
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where W* is a standard Brownian motion under Q".

As one can see, in a new Monte Carlo simulation the payoff has to be rescaled by the
factor e~ Jo hdWi—3 OThith, while with (3.5 we get

4 = rdt + odW,;
St
& %St = rdt + o (dW; + hydt)
t
d i
& % — (r + ohy)dt + ocdW.
t

for the stochastic differential equation of the risky asset S;. Here we can see that the

drift of S; changes from r to r + ohy. Using Ito’s formula one can proof that a solution
is given by S; = Soea(wt*+ht)+(7‘*%a'2)t'

3.2 Proof of Theorem 3.1.5

The proof of Theorem 3.1.5 is divided into several lemmas.The first one shows the exis-
tence of solutions to the problems [3.2] and using a standard variational argument.

Lemma 3.2.1. Let F satisfy Assumption 3.1.4. Then for any h € Hy and M > 0 there
exists a mazximizer for the problem

T T T
max (ZF(x)—l—M/ (x't—ht)th—QM/ :'cfdt+(1—2M)/ hfdt). (3.7)
0 0 0

z€Hp

Proof. Recall that if ¢, — ¢ weakly in L?[0,T], then g, — ¢ uniformly in [0,7T]. Since
F' is continuous in the uniform norm, it follows that it is also weakly continuous. Let

M > 0 and fix h € Hy. Rewrite [3.7] as
irel%;{ (2F(x) — M||h+ mh%IT + ||h||]%IT) . (3.8)

As a function of x, M|lh + z|f, is convex and finite, hence norm-continuous. Thus,
it is also weakly lower semi-continuous. Since F' is weakly continuous, the function
x — 2F(x) — M||h + z|f, + [|h||, is then weakly upper semi-continuous.

Assumption 3.1.4 implies that

2F (x) = M|l + xliy, + Al < 2K+ 2Ks|2)|S — M+ 2, + [|Alf,
< 20, + 20Tl — Mh+ ol + (2],
Since a < 2, the coercivity property follows; i.e.

lim  (2F(x) — M|h+ a3, +[|h]3,) = —oc,

||z —o00

and the existence of a maximizer follows by upper semi-continuity. O]

3 cf. [, Appendix]
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The remaining part of the proof of Theorem 3.1.5 now requires the theory on large
deviations, which we treated in section 2.3. Therefore recall Schilder’s Theorem [2.15| and
Varadhan’s Lemma [2.13] and consider them adjusted for our case:

Theorem 3.2.2 (Schilder). Let X = Wp and p. be the probability on Wr induced by
the process \/eW, where W is a standard Brownian motion. Then {(jc}ec(s) satisfies
an LDP with rate function

1 T
! / le@|2dt, iz € Hy
0

I(x)=14 2 (3.9)
oo ifr e Wp\Hr

Lemma 3.2.3 (Varadhan’s Lemma). Let (Zc)ec(os) be a family of X-valued random

variables, whose laws . satisfy a large deviations principle rate function I. If H : X — R

1 a continuous function which satisfies

limsup elog E [exp <1H(Ze)>] < 00, (3.10)
e—0 €
for some v > 1, then
1
lirr(l)elog]E {e:cp <—H(Z6))} = sup|[H(x) — I(x)] (3.11)
€— € zeX

The following Lemma states a slight generalization of the result of Varadhan’s Lemma in
order to allow H : X — [—00,00) instead of H : X — R.

Lemma 3.2.4. E|Let H: X — [—00,00). Under the assumptions of Varadhan’s Lemma
the following holds for any A € B:

sup (H (x) — 1 (2)) < lim inf elog ( / exp (%H (ZE)) due)

st [ oo (L1 )
< sup (H () — 1 (x)

z€A

Proof. The second inequality is trivial, while the first one is the result of [2, Lemma 4.3.4],
fixing x € A° instead of z € X.

For the third inequality, note that if H = —oco the result holds trivially. Assum-
ing the other case, let C' be a closed subset of X. For M > 0, consider the set
Cy = CnN{H(x) > —M}, which is closed by the continuity of H. Thus, one has that

/C exp (%H (ZE)) die = /C ey (%H (Ze)) de + /O e <%H (z€)> e

< /CM exp (%H (Ze)) dpe + exp (—%) te (C\Cr)

4 cf. [5l Lemma 2.1]
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Since (fte)ec(o,6) satisfy the LDP with rate function I,

lim sup € log (exp (—M) MG(C\CM)) < —M— inf I(x).
€

e—0 xzeC\Cpm

Using Varadhan’s Lemma on Hlg,, as in [2, Exercise 4.3.11],

lim sup € log ( /C e (%H(Zﬁ)duﬁ>> < sup (H(z) — I(z)) (3.12)

e—0 zeCyp

and hence [2, Lemma 1.2.15]

lim sup € log </ exp <1H (Ze)) due + exp (—%> L (C\CM))
e—0 Cu € €

< max ( sup (H (z)—1I(z)),—M — inf I(m))

zeChy a:GC\CM

< max (Sup (H(z) -1 (z)), —M) .

zeC

The claim follows, as M — oo. O

Lemma 3.2.5. Let F' satisfy Assumption 3.1.4, and define Fj, : W — R as

T 1 /7.
Fu(x) =2F(x) — / hydx, + —/ h?.
0 2 Jo
Then Fj, is well-defined, norm-continuous and satisfies for any h € Hy and v > 1.

Proof. Since F' is continuous, the continuity of Fj, will follow from the continuity of
T — fOT hdz,. Since h has finite variation on [0, T] for each h € Hy, the integral fOT hdzx,
is defined path-wise in the Stieltjes sense. For any f € Wy, integration by parts and the
continuity of f imply that

/0 ",

where Var(h) denotes the total variation of . Thus, continuity follows by the finite vari-
ation assumption. To check the integrability condition apply the Cauchy-Schwarz
inequality to see that

elogEp [exp ( <2F (Vew) — /OT hd (VEW), + % /O T h?dt))]

/0 h2dt + < ;5 log [exp( NG OThtthﬂ (3.13)
log Ex {exp( (\/'W))}
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The first term is finite. For the second, observe that fOT hydW, ~ N <O, fOT hfdt), whence

T T
lim sup — 5 log Ep {exp ( \/_ htth)l = 72/ hldt < oo
0

e—0

It remains to consider the last term in [3.13] Assumption 3.4 implies that

%log (]EP [exp ( (f@)D < 27K1+ log (E[P [eXp (ﬁ—i{; <021£T \W(ﬂ!)a)D ;

and one has to check that the last term is finite. To see this, observe that

4y K. “ 4y K. “
Ep |exp % sup |W ()] < 2FEp |exp % sup z (t)
el=/2 \o<t<r /2 \o<t<r
4’}/[(2 a 1 2
< 4\[ / exp ( 170{/2[) - ﬁb ) db,

where the first inequality follows from the formula Ep[X]| = fooo P(X > b)db, combined
with the elementary estimate

P( sup |W(t)| > b) <2P( sup W (t) >b).

0<t<T 0<t<T

The second inequality follows from the classical distribution

2 b2
P Wi(t) € db) =/ — ——— | db.
(s W) € \/WTexp( QT)

Applying Lemma 3.2.6 below, for A = %Vfﬁ, B =

* 4~ 2
Kob™ — —b db
/0 exp( I—a/2° 12 T )

4v K, 1
< eXp( ! /2 (47K2aT)2 o€ a/2+_(47K2aT)2 =€ 1)

2T , yields

2T

1 2w
x | (4yKyaT)za ¢ 1/2

(2 — «@)), reduces to

which, after letting N = 4yK>aT and M = mm(% %

11 2 1 1 1 2T
S_Nza (= —= Nzae /2 — .
eXp(eT (a 2)) < ¢ + M>

Thus,
5 oo A 1/2
. Y « 2
llr?jélpelog <2”7T_T/0 exp ( - a/QKgb - ﬁb ) db)
11 .2 /1 1
< - Nza|_Z
=27 (a 2) =0
which proves the claim. O
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Lemma 3.2.6. Let A, B > 0, a € (0,2) and set b = (%)ﬁ. Then the function
f(b) = Ab™ — BV? satisfies the estimate

/0 " exp(f(b)db < exp(Al — BY) (z_» + \/ 0 ;;(2 - a))) NCATY

Proof. Note that

F/(b) = a A" — 2Bb,
(b)) = a(a — 1)Ab* % - 2B,
") = ala —1)(a — 2)Ab* 3,

Let b be as given in statement of the lemma and note that f'(b) =0 for b = b, f'(b) >0
for b < b and f'(b) < 0 for b > b. Thus, b is the unique global maximum of f(b). Upon
inspecting the derivatives of f, it follows that f”(b) < —2B < 0 for a < 1, and f”'(b) < 0
for 1 < a < 2. This implies that for b > b,

fi(b) < f(b) = —2B(2 - a),
and taking the Taylor expansion of f around b gives
1
F(b) =AD" — BI + S(b— b "(€(1)

for some £(b) € [b,b] if b < b and &£(b) € [b,b] if b > b. Note that for b > b, f"(£(b)) <
max(—2B,—2B(2 — «)). Thus,

/ exp(Ab* — Bb*)db
0
b 00
_ / exp(Ab® — Bb?)db + / exp(AV* — BY)db
0 b

< exp(Ab* — Bb?) (z_)+ /boo exp (—%(b — b)*min(2B,2B(2 — a))) db)

< exp(Ab* — Bb’) (Q+ /_OO Xp (_2(1/ min(<2bB_, 52(2 - a)))) db)

= exp(Al_?a - Bl_)2) (l—) + \/min(QB, 32(2 - a))) ‘

]

Proof. (of Theorem 3.6) By Lemma 3.2.5, Lemma 3.2.4 can be applied to set A = Wy,
which implies (i). To prove (ii), set M = § in Lemma 3.2.1 to prove the existence of a
maximizer for Analogously, h = 0, M =1 yield a maximizer for (3.3

It remains to prove (iii). In view of (i), and since fOT(ht — @y)%dt > 0, for any h € Hry it
follows that

L(h) = sup <2F(x) +% /O T(j:t — hy)%dt — /0 ' x‘fdt)

zeHp

T
> sup <2F(x) —/ m'fdt),
zeH 0
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which implies the inequality

T .
inf L(h) > 2F(h) — / h2dt, (3.16)
0

heHr

and hence h is asymptotically optimal if is satisfied. For the uniqueness part, consider
two distinct solutions h, g to[3.3] Strict convexity implies that

1 T . T T
L(h) 22F(g)+§/ (gt—ht)zdt—/ gidt > 2F(g)—/ grdt
TO_ 0 0
:2F(h)—/ hZdt,
0

which contradicts the optimality of h, and the uniqueness follows. n

3.3 Optimal change of drift for Asian options

This section employs Theorem 3.1.5 to find explicit formulas for the asymptotically op-
timal changes of drift, for geometric and arithmetic average Asian call and put options.

3.3.1 Optimal change of drift for the geometric average Asian
call option/

Denoting by S; the asset price at time t and by K the strike price, the payoff of a geometric
average Asian call option is given by

(e% J log Sedt __ K)*.

Let a =¢/T and ¢ = Sﬁoexp(—(r — %2)%) With

2 +
Wit r—% |t
L [T1og Sydt * log Soe ( ) )dt
et Jo -K) = - K

Il
N N
CQ
%
o
q
=
&
+
?
/—\
%
SN——
§
~~
+

= K% T_é)% (e% foTWtdt C)+
1/c
— 5 (eafoT Widt C>+
C

5 cf. [ example 4.1]
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the payoff can be rewritten as functional G : Wy — R™, depending on x, the path of the
Brownian motion of the asset price

G(z) = K (e“foT"“dt - c)+. (3.17)

C

Before we can use Theorem 3.1.5 we have to check Assumption 3.1.4. Therefore note that

F(z) = —o0, Va with G(z) = 0, while on the set G(z) > 0, choosing & = 1, K; = log £

and K, = aT gives log(£) + log(e“-be ndt — ¢) <log(£) + aT r%i% |z¢|, which holds. So
telo,

the requirement for the Theorem is satisfied.
Also note that condition [3.4] is certainly satisfied since F is concave. So if we find a
solution for [3.3] this will be the unique and asymptotically optimal change of drift.

Now substitute into , disregarding 210g(§), since it gives no contribution to
finding the maximizer

T
max (2 log(e®Jo =dt — ¢) — / x'fdt) : (3.18)
0

ZEEHT

Now we have to find the corresponding Euler-Lagrange equation. Therefore recall
and let

With

we get



on the left hand side, while with

oF 2ae%N
0J, et —¢’

we get
2ae1

on the right hand side.

Thus we get the Euler-Lagrange ordinary differential equation

iy = -8, (3.19)

with

6af0T zedt

f=a (3.20)

eafoT redt C‘
Note that [4, 4.4] states § by mistake without a in front of the integrals.
Hence, all solutions are of the form

T, = —th + 9t (3.21)

and therefore belong to Hy.

Now we want to find an expression for 7 just depending on 3. Substituting|3.21]into [3.20

gl VES
a.BT?’ a'yT2
6_T+T
aBT3 a'yTz
67T+T —C

Solving this equation for 7 gives the wanted expression

aBT3 -6 log(ﬁc_ﬂ“)
= 3.2

Now we try to find the maximum of [3.18] Therefore we substitute [3.21] into [3.18] which
gives

62T3

2log (6_%(’6T_37) — c) + ByT? — 4*T.

Substituting [3.22] into the last result gives

c )+2m°g(ﬂﬁca) 1 (1og (1))

a
B—a -

Lo
—§BT +210g( oy T3 ,

what is well-defined for g > a.
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Now taking the derivative with respect to (3 gives

9 —12a8T3 — a3*T% (3 — a) — 3613 log (ﬁc_ﬁ“) (8 —a) — 36log (i}“)
9aT? 5(6—a)
Let the result above be equal to zero. Then it reduces to
aBT? 4 3log (ﬁc—_ﬁa) =0, (3.23)

where solving for 8 over § > a gives the optimal @, which is unique by strict concavity
of F.

Substituting into m gives v(3) = BT and therefore the optimal change of drift for
the geometric average Asian call option is given by

~

&y = —§t2 + (Tt (3.24)

3.3.2 Optimal change of drift for the geometric average Asian
put option
Now we want to find the asymptotically optimal change of drift for a geometric average

Asian put option. This is done for the first time and can not be found in [4]. Consider
Sy and K as before, then the payoff is given by

(K _ o o og Stdt> *

With a = ¢/T and ¢ = SKO exp(—(r — %2)5), the payoff can be rewritten as functional

G : Wy — RT, depending on x, the path of the Brownian motion of the asset price

Gla) = = (e — el m) " (3.25)

c
To check Assumption 3.1.4. recall that F(x) = —oo,Va with G(z) = 0. On the set
G(z) > 0, choosing a = 1, K; = log £ + log(c) and K, = 1 gives log(£) + log(c —
et o wdt) < log(£) + log(c) + Hf&)Tc] |z¢|, which holds. So the requirement for Theorem
telo,

3.1.5 is satisfied.

Since F is a reflection of the concave function of the case of the call option across a line
through log(%) parallel to the y-axis, it is again concave. So if we find a solution for ,

this will be the unique and asymptotically optimal change of drift, since condition [3.4] is
certainly satisfied.

Substituting into , disregarding 2 10g(§), since it gives no contribution to finding
the maximizer, yields

T
max (2 log(c — e Jo wedty / x'fdt) . (3.26)
0

zeHr
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Now we have to find the corresponding Euler-Lagrange equation. Since the only difference
to the case of the call option is that F[Jy, Jo] = 2log(c — e/t) — J; instead of F[J;, Jo] =
2log(e®t — ¢) — Jy, there is no change on the left hand side, but we have to take a look
at the right hand side. With

OF  2ae"™  2ae™t
dJ,  c—evr  eahr — ¢’
OF
T
0.J
we get
2ae%)1
et — ¢

on the right hand side. As one can see, also the right hand side did not change, therefore
we get the same Euler-Lagrange ordinary differential equation

with the same (3

6af0T zedt

B=a (3.28)

Hence we get the same family of solutions

e fOT zrdt—c

T = —th + 9t (3.29)

and the same v

afT? — 6 log(ﬁc_ﬁ“)
0 P ) (3.0

Now we try to find the maximum of [3.26] Therefore we substitute [3.29] into [3.26], which
gives

aT? 273
2log (c — e_%(ﬁT—?’V)) — 67 + ByT? — 4*T.

Substituting |3.30| into the last result yields
2
2plog (#5) 4 (los (%))
1 2113 ac B—a B—a
——3T° + 21 _ — .
95 Tale (a—ﬁ) * 3a a7

Here one can see that this time 3 < 0 has to be satisfied. Now taking the derivative with
respect to 3 states

o [ —12aBT° — aB?T% (B — a) — 367> log (ﬁc‘ﬁ“) (6 —a) — 36log (5 c_ga>

0T 5(3—a) '

which is identical to the result at this level in the case of the call option. Therefore it
reduces to the same equation

aBT? + 3log (ﬁc—_ﬁ“) —0, (3.31)
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where solving for 3 over 3 < 0 gives the optimal B, which is unique by strict concavity
of F.

Hence, by substituting into again we get 7(3) = BT and the optimal change of
drift for the geometric average Asian put option

~

Ty = —gﬁ + (Tt (3.32)

As one can see, we mainly achieved the same results for calculating the asymptotically
optimal change of drift for a geometric average Asian call and put option. Since the
functionals [3.18 and [3.26] that have to be maximized, are not the same, one gets different
optimal values B for those cases, even if all other parameters, like T, o, Sy, K, r, would be
the same. This means that the optimal change of drift for geometric average Asian call
and put options belong to the same family of solutions [3.21] but in fact differs depending
on the choice of the type of option(call,put) as well as of the choice of the parameters
T,0,S, K,r, since the optimal value B always changes.

3.3.3 Optimal change of drift for the arithmetic average Asian
call option[|

Denoting by S; the asset price at time ¢ and by K the strike price, the payoff of an
arithmetic average Asian call option is

1 T
([ 5]

Leta:a,bzr—%(T?,c:KSl andd:%. With
0

1/TSdt K +— 1/TS ”W”(T_%)tdt K '
T/ “\7 /), 7

T 2 +
_ % (/ (Wit (1% )t gy KZ)
0

T So

+

the payoff can be rewritten as functional G : Wy — R* depending on z, the path of the
Brownian motion of the asset price

G(z)=d ( /0 : e r bl — c>+ . (3.33)

To check Assumption 3.1.4., let « = 1, K; = logd + log(ebz_l
log(d) + log(fOT ax; + btdt — ¢) < log(d) + log(ew;)_l) +a r%cl% |z¢|, which holds. So the
tel0,

), Ko = a, which gives

requirement for Theorem 3.1.5 is satisfied.
Now substitute into [3.3] then we have

T T
max (2 logd + 2 log (/ ety — c) — / :'B?dt) . (3.34)
ZEEHT 0 0

6 cf. [ example 4.2]
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Now we have to find the corresponding Euler-Lagrange equation.

and let
Ly(
LQ( )
JQ [l‘]

With

we get

on the left hand side, while with

we get

on the right hand side.

it ax+bt
ox ’
0L,
Er
4oL, _
dt 0&
OLs
=2 -0
" Ox
0L,
22 94
o
Aok,
dt 0i 7
—2Z
aea:r—&-bt
or _ 2
8J1 N Jl — C’
oF _ |
0Js
2
Jl — C

Thus we get the Euler-Lagrange ordinary differential equation

with

A= —

i‘t — Aeaxﬂrbt’

a

= )
fo earttbtdt — ¢
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Equation [3.35] admits the family of solutions

_ Bt
r =20 2o (6 J”) (3.37)

which belongs to Hy.

Taking the second derivative of with respect to t gives

0%z, 2 B2yelt
oz a(eft+7)?

Substituting this result and into [3.35, we find out how the pair of parameters (3, 7)

are linked to A
_ )\eamtert

2 ﬁ2,-)/€,3t — e Bt— 210g(eﬁ +7)

a(e? +7)?
2 e, (1)
(eﬁt + )2 (€% + 4)2 (3.38)
A —aﬁ v=A1+7)?
2
a(l+7)?

Note that in [4] it says that substituting (4.12) into (4.11) gives the above result, but
(4.12) should be substituted into (4.10).

Since fOT et tbt s — %—T)(j;;l), eliminating A from |3.36[ and |3.38| yields

aB(e’ +7) __2B%y
(v + (T = 1) = Be(ePT +7)  a(l+7)>

(3.39)

Note that in [4], 4.14] there should be a T instead of the ¢.

Now for fixed (3, the above equation defines a cubic polynomial in 7, which yields three
solutions 71, ¥, 3, all of them depending on . These solutions are explicit, but not what
one would call nice expressions, therefore they are not presented here. Substituting each
7i into [3.34} one can find the corresponding maximizing f3;, which serves to evaluate Y.
Then choose 6 and 4 to be the pair (f;,;), which gives the highest value of [3.34| under
the condition that $(y) > 0 and |J(y)| < 0.0000001(numerically zero).

To check condition [3.4] maximize the functional

T

T 1 [T S\ 2
2logd + 2log (/ exp(axt+bt)dt—c) +§/ <a’:t—i*t) dt—/ irdt
0 0 0

over € Hy. Again we have to find the corresponding Euler-Lagrange equation. There-
fore recall .28 and let
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1
F[Jy, Jo] = 2log(J1 — ¢) — §J2'

With

we get

on the left hand side, while with

we get

on the right hand side.

Thus we get the Euler-Lagrange ordinary differential equation

where A\ is defined as in [3.36]

ax+bt

8-

) =
) =

o\o\

Ll (t, xZ, l')dt,

L2 (t, x, $)dt,

oL,

- axtbt
ox c ’
0L,
— =0
0z ’
4oL, _
dt 0%
0L,
— =0
" Oz
L
% = —2i — 22
d 0L+ .
= -2 27
dt 0 T
2T + 2%
ea$+bt
oF B 2
8J1 N Jl — C’
oF 1
oJ, 2
4
Jl — C’

.Z.'t = 2)\€amt+bt — i’t,

This ordinary differential equation does not admit an
explicit solution, except in the trivial case A = 0. However, a numerical integration of
the Euler-Lagrange equation shows that holds with several significant digits.
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3.3.4 Optimal change of drift for the arithmetic average Asian
put option

Now we want to find the asymptotically optimal change of drift for an arithmetic average
Asian put option. Since this is done for the first time, it cannot be found in [4]. Consider
S; and K as before., then the payoff is given by

1 /7
K——= Syt
(=5 [ s)
Witha=0,0=1r— ,c= K¢ L and d = 41 the payoff can be rewritten as functional
G:Wp — ]R+ dependmg on x, the path of the Brownian motion of the asset price

+

+

G@»:d(a—AT&”Wﬁ). (3.40)

To check Assumption 3.1.4., let a = 1, K7 = logd + log(c), K = 1, which gives log(d) +
log(c — fOT ax; + btdt) <log(d) + log(c) + rr%a% |z;|, which holds. So the requirement for
telo,

Theorem 3.1.5 is satisfied.
Now substitute into [3.3] then we have

T T
max (2 logd + 2log (c — / e“$t+btdt) — / ifdt) : (3.41)
zeHr 0 0

Now we have to find the corresponding Euler-Lagrange equation. Since the only difference
to the case of the call option is that F[Jy, Jo] = 2log(c — J;) — Jo instead of F[Jy, Jo] =
2log(Jy — ¢) — Ja, there is no change on the left hand side. With

oF 2 2
8J1_ C—Jl_Jl—C’
OF
- = _1’
0Jy
we get
2
Jl —C

on the right hand side, which is equal to the one in the case of the call option. Thus we
get the same Euler-Lagrange ordinary differential equation

By = et (3.42)

with the same A\ a

A= — fOT mrtig o (3.43)
Hence the same family of solutions is admitted

— 2 Bt
Ty = g bt — —log (e i 7) . (3.44)
a a 1+
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Substituting and the second derivative of it into [3.42] shows that the parameters
(B,7) are linked to A as before

2%y
A= ——— 3.45
a(l+ ~)? ( )
Also eliminating A from and yields an already known result
BT 2 2

(v + 1) = 1) = Be(e™ + ) a(l+7)?’

which delivers 71, 72, v3 by solving the cubic polynomial for a fixed 3. These solutions are
explicit, but not what one would call nice expressions, therefore they are not presented
here. Substituting each v; into|3.34} one can find the corresponding maximizing (3;, which
serves to evaluate ;. Then choose B and 4 to be the pair ((;,;), which gives the highest
value of under the condition that R(v) < 0 and |S(vy)| < 0.0000001(numerically
Z€r0).

Also in this case we have to check condition therefore maximize the functional

T 1 /T . T
2logd + 2log(c — / exp(ax; + bt)dt) + 5 / (& — 2¢)2dt — / T2t
0 0 0

over x € Hp. Hence we have to derive the corresponding Euler-Lagrange equation. Here
the difference to the case of the call option is that F[J;, J5] = 2log(c — J;) — 3.J> instead
of F[Ji, Jo] = 2log(J; — ¢) — 2Jo, which means that just the right hand side has to be
looked at. With

or 22
o c—J Ji—c
OF_l
o5~ %
we get
4
=

on the right hand side.

Thus we get the Euler-Lagrange equation
i‘t = 2)\€axt+bt — S.ét,

where A is defined as in [3.43] So again we have the same equation as in the case of
the call option. Therefore also in this case this ordinary differential equation does not
admit an explicit solution, except in the trivial case A = 0. However, a numerical inte-
gration of the Euler-Lagrange equation shows that (3.4 holds with several significant digits.

Also for arithmetic average Asian options we got mainly the same results for call op-

tions as well as for put options. What makes the difference is again the achieved pair of
optimal values (3,%).

46



Chapter 4

Different Monte Carlo estimators

In this chapter the different Monte Carlo estimators - the ordinary one, the one using
importance sampling and the one using the method of control variates - for arithmetic
average Asian call and put options will be derived.

4.1 Monte Carlo estimator without importance sam-
pling

The price of an option is, as we know, equal to the discounted expectation of the payoff.
Since the payoff of an arithmetic average Asian call respectively put option is

n +

1
] — i
(i)

and the underlying asset in the Black-Scholes model under the risk-neutral measure is
given by
o2
St _ SOQUWr#(rfT)t

Y

we achieve the Monte Carlo estimator of the price of an arithmetic Asian call respectively
put option

n
1 rtn fmt —e J
Ze t (n+1zso ) _K) ’

N
=1
N

+
1 . 1 mm(r«ﬁ)t.)
e’ Spe i 2)0
Z ( n+1 ]Z:;

=1

where K is the strike, T the maturity, N the number of sample paths, n 4+ 1 the number
of trading days, 0 = ty < t; < ... < t, = T the corresponding trading days and

x%f_), i=1,...,N, 7=0,...,n the value of sample path i at time ¢;.
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4.2 Monte Carlo estimator with importance sampling

Recall that the expectation of a payoff G after using importance sampling is given(as in

B-6) by

Ep [G] = Eg [G (W* + ;}) e I ey~ [ B

where P denotes the risk-neutral measure in the Black-Scholes model, Qﬁ the equivalent

measure, leading to a change of drift from r to r + h when changing the probability
measure from P to Qh W* a standard Brownian motion with respect to @h and h the
solution to B.3l

Therefore we get the following Monte Carlo estimator for an arithmetic average Asian
call respectively put option

2

+
(1) e A i S
Z —rtn } : o (@ +h(t))+(r-% )t _ K — ST hydalV —1 [T h2dt
<n+1 Soe e ) emio M TR BT, (4)

=1

N 2

+
e (e L S t) i,

4.2.1 Using the asymptotically optimal drift of a geometric av-
erage Asian option

In section 3.3.1 and 3.3.2 the optimal change of drift for a geometric average Asian option
was computed as

N

hy = —gtz + (T, (4.3)

where solving

afBT? + 3log (ﬁc—_ﬁa) =0, (4.4)

numerically over 3 > a respectively 5 < 0 gives B The first and second derivatives of h;
with respect to t are given by

ht = B(T - t)a

_ B

While the second integral of 4.1| respectively , fOT h2, can be computed explicitly, we
try to simplify the first integral, fOT Btdxﬁi), by using It6’s formula.

Consider g € CY? with g(t,z) = zh, and note that a standard Brownian motion is an Ito
process for © = 0 and v = 1. Then we get with Itd’s formula

. T .. T.
Wrhr =0+ / (Wihy + 0+ 0)dt + / hydW,
0 0
T X x T S
= / htth == WThT - / Wthtdt
0 0
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Substituting A and A into yields

T . T T
/ hedWy = WrB(T —T) + / BW,dt = 3 / W,dt.
0 0

0
T . . T
/ htd:ct”:ﬁ/ 2Dt i=1,2,...,N
0 0

what can be approximated by

Hence we have

n

1 @
Tﬁn—ﬂjzoxtj7 221,2,...,N.

Substituting the results of this subsection into respectively 4.2 we derive the follow-
ing Monte Carlo estimator for an arithmetic average Asian call respectively put option
using Importance Sampling and the asymptotically optimal change of drift of a geometric
average Asian option

+
—Z . (n — ZSO P xg) Bt2+ﬁTt ) ( 7L22>tj - K) Tﬁn}rl PO off£> 1 h2dt7

- (4.6)

+
iie‘””( ZSO o(af0-4 S124BTe;)+ (ff)tj_K> e*TﬁﬁZ?oxi) 1 h2dt
N n+ 14

- (4.7)

4.2.2 Using the asymptotically optimal drift of an arithmetic
average Asian option

In section 3.3.3 and 3.3.4 the optimal change of drift for an arithmetic average Asian

option was computed as
. —b 2 ot
hy = g t — —log (e +7> : (4.8)
a a I+~

where 8 and 7 can be found as described in those sections.
The first and second derivatives of h; with respect to ¢t are given by

: —b 2 Belt
b 2 fe

a aelt +~’
P2 O
T

Again we can achieve a simplification of the first integral ofespectively , fOT ﬁtdxy),

by using 1t6’s formula. Therefore substitute h and h into . which gives

b 9 8T T 93200t
/ hed W, = Wiy (ﬁ - fTe )+ / 2Pt
0 a ae’t + 1y 0 a(66t+7)
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Hence we have

T . T

e y(B—b 2 pe’l 203 & i

/ hedz® = 29 <5 _z Bﬁf )+ ﬁ7/ © oVt i=1,2.. N
0 a ae’t + vy a Jo (eft+7)

where the integral can be approximated by

n e Btj

2527 1 (i) -
g a n+1z<€5tj+’)/)2xtj’1_1727“‘7]\/'-
7=0

Substituting the results of this subsection into 4.1 respectively we derive the following
Monte Carlo estimator for an arithmetic average Asian call respectively put option using
importance sampling and the asymptotically optimal change of drift of an arithmetic
average Asian option

N n i), B—b ] o2 *
(gl ()
_ A : _

N 4 n—+1
=1 =
() ( B=b_2 BePT 2824 1 n Pt () 1 T}

—Zp < a _EeBT+,Y>_T a’yn+1 j=0 (eﬁtj+ )thj —35Jo h?dt
X e K , (4.9)

N n i _ Bt; 52 +
L et (1 = L gt ot ) (o)
AT - 0
N < n+14

=1 ]:O

B— 282y 1 xn At (i)_1 (Tio
_xT< a _EeBT+,Y>_T a n+1l j=0 (eﬂt7+'y)2xtj —3Jo htdt

(4.10)

4.3 Monte Carlo estimator using the method of con-
trol variates

In section 2.4.2 we derived the control variate estimator [2.18| which is

n

V(1) = ¥ = b(X —B[X)) = - (4~ b(X: — E[X)),

with optimal coefficient b given by

(- X))

! Z?:1(Xi - X )2

Let X;, i =1,..., N be the price of a geometric average Asian call respectively put op-
tion according to the ith sample path 2 and Y;, i = 1,..., N the price of an arithmetic
average Asian call respectively put option according to the same sample path. Further-
more let X = % Zf\il X; be the sample mean of all X; and Y = % Zf\;l Y; the sample
mean of all Y;. Let Cf respectively Py denote the price of a geometric average Asian call
respectively put option given by the closed form solution under the Black-Scholes modell
as examined in section 2.6.
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Then the estimator of the price of an arithmetic average Asian call respectively put option
using the price of a geometric average Asian call respectively put option as control variate
is denoted for both cases by

Gy Iy o (X=X (Yi-Y) o
Y(bN> - <> (YZ SANTA (X, ]E[X])). (4.11)

=1
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Chapter 5

Results

In this chapter numerical results for pricing arithmetic average Asian call and put options
will be presented. The price will be determined by the Monte Carlo estimators, which
were derived in chapter 4. Hence we do a usual Monte Carlo simulation under the
risk-neutral drift, two using importance sampling and the asymptotically optimal drifts
for Asian options of geometric and arithmetic average type, and in the end one more
simulation using the method of control variates.

5.1 Arithmetic average Asian call option

At first consider an arithmetic average Asian call option. With parameters T' = 1, r = 5%,
o = 25%, Sop = 50 and K = 70 this option may be called way out-of-money.

Figure [5.1| shows the price paths of the asset in the absence of random shocks, i.e. .S;
without a Brownian motion, under the different drifts. What one can see here is that the
changed drifts really move the asset price into a region, where it makes the option valuable.
Also one sees that the price path corresponding to the geometric drift is very similar to
the path corresponding to the arithmetic one, although the closed form expression is
much simpler in the geometric case.
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Figure 5.1: price path in absence of random shocks under risk-neutral drift(dotted line),
geometric drift(solid line) and arithmetic drift(dashed line)

Figure 5.2 shows the value of [3.18] the functional that has to be maximized to find the
optimal change of drift for a geometric average Asian call option, depending on [3.

100 -

50

-10 -5 L 0

50+

-100 -

Figure 5.2: value of depending on (3

Figure [5.3 shows the value of [3.34] the functional that has to be maximized to find the
optimal change of drift for an arithmetic average Asian call option, depending on .
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Figure 5.3: value of depending on (3

Table 5.1 compares the prices and standard errors according to the different Monte Carlo
simulations and to different choices of sample size. Here one can see, that the estimator
using the arithmetic drift has the lowest standard error, what seems logical, since the
option is of arithmetic type. The estimator using the geometric drift follows immediately
after it, also for smaller sample sizes, but it offers a much simpler alternative. The
estimator using the method of control variates achieves a slightly higher standard error,
but still a much better one than the usual estimator.

Sample size Risk-neutral Geometric drift Arithmetic drift Control variate

100000 5.92 5.74 5.74 5.78
(0,212) (0.019) (0.018) (0.033)

20000 6.16 5.73 5.74 5.82
(0.472) (0.041) (0.041) (0.074)

5000 6.51 5.72 5.73 5.90
(0.898) (0.084) (0.082) (0.141)

Table 5.1: Monte Carlo estimators of an arithmetic average Asian call option price using
different drifts. Prices are in cents. Parameter values T'= 1, r = 5%, o = 25%, Sy = 50,
K = 70. Simulations are performed with a time-increment of 1/252, corresponding to
one business day.

Table now compares the performance of the estimators in terms of variance reduction
over different strikes and volatilities. Therefore variance ratios, i.e. the variance of the
usual Monte Carlo estimator divided by the variance of the others, are given. Additionally
the corresponding prices are stated. As one can see the achieved variance reduction for
the estimators using importance sampling increases with the strike and decreases with
volatility. This means that the more unlikely it is for the option to be valuable, the
more efficient are the estimators using importance sampling. In the case of the estimator
using the method of control variates it is the other way around, the more likely it is for
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the option to be valuable, the more efficient is the estimator. So for pricing way out-of-
money average Asian call options, importance sampling seems to be the better choice.
Since the option is of arithmetic type, the estimator using the arithmetic drift achieves
more reduction of variance than the one using the geometric drift.

Volatility —Strike

Price(Variance Ratio)

geometric arithmetic control variate
10% 50 182.19(7.09) 182.18(7.12) 181.98(4692)
60 0.37(486) 0.37(487) 0.37(71)
15% 50 234.44(7.71) 234.43(7.77) 234.16(2255)
60 7.03(64.21) 7.03(64.24) 7.04(146)
20% 50 288.29(8.26) 288.26(8.33) 287.96(1305)
60 26.31(32.44) 26.30(32.51) 26.26(204)
70 0.98(458) 0.98(470) 0.98(28.4)
25% 50 342.73(8.78) 342.69(8.88) 342.35(846)
60 56.79(23.66) 56.78(23.77) 56.67(218)
70 5.74(131) 5.74(134) 5.78(40)
30% 50 397.41(9.30) 397.37(9.42) 396.99(588)
60 95.26(20.06) 95.24(20.23) 95.10(206)
70 16.99(69) 16.99(70) 17.08(53)
80 2.54(337) 2.55(356) 2.53(19.3)
35% 50  452.16(9.82) 452.10(9.99) 451.71(430)
60 139.14(18.31) 139.11(18.53) 138.88(189)
70 35.61(47) 35.61(48) 35.58(64)
80 8.21(151) 8.21(159) 8.27(23.9)
90 1.80(578) 1.80(637) 1.79(13)
40% 50  506.90(10.37) 506.82(10.57) 506.42(327)
60 186.76(17.4) 186.72(17.7) 186.44(168)
70 61.17(37.4) 61.15(38.3) 61.07(69.2)
80 18.82(92.2) 18.82(96.6) 19.03(28.3)
90 5.64(254) 5.64(277) 5.59(15.8)

Table 5.2: Prices and variance ratios of an arithmetic average Asian call option over
different volatilities and strikes corresponding to the different Monte Carlo estimators
over 100000 sample paths. Prices are in cents. Parameter values T' = 1, r = 5%, Sy = 50.
Simulations are performed with a time-increment of 1/252, corresponding to one business
day.

Table states the optimal value Bgeo for the optimal change of drift of a call option of
geometric type as well as the optimal values (3, ) for the optimal change of drift for a
call option of arithmetic type corresponding to different values of K and o.
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A

Volatility Strike  [geo 16} A
10% 50  1.45743 0.5515  2.04397
60  5.35967 1.0635  3.15267
15% 50  1.59187 0.7075  2.26444
60  4.01956 -1.1325 0.301007
20% 50  1.67831 0.8415  2.49156
60  3.41506 1.2095  3.52442
70 5.38933 -1.5345 0.207195
25% 50  1.74409 -0.9625 0.367644
60  3.08833 1.2915  3.74261
70  4.59629 1.5895  5.02015
30% 50  1.79915 -1.0745 0.338734
60 2.893  1.3735  3,98098
70 4.09965 -1.6505 0.190965
80  5.26205 -1.8865 0.150906
35% 50  1.84799 1.1795  3.19304
60  2.76917 -1.4565 0.236498
70 3.7679 -1.7145 0.182575
80  4.73503 1.9375  6.86671
90  5.63593 2.1315  8.3396
40% 50  1.89291 -1.2805 0.291363
60  2.68821 1.5395  4.4847
70 3.53632 -1.7805 0.174208
80  4.35935 1.9935  7.12413
90  5.12978 2.1795  8.60169

Table 5.3: Optimal values for the optimal
geometric(/geo) and arithmetic(5,%) type corresponding to different values of K and
o. Parameter values T' =1, r = 5%, Sy = 50.

changes of drifts for call options of

5.2 Arithmetic average Asian put option

Now consider an arithmetic average Asian put option with parameters T = 1, r = 5%,

o =25%, Sp = 50 and K = 35.

Figure |5.4] shows the price paths of the asset in the absence of random shocks under
the different drifts. This time the gap between the price paths under the geometric and
under the arithmetic drift is not that small as in the case of the call option, but again
the changed drifts move the asset price into a region, where it makes the option valuable.
Since the price under the arithmetic drift is lower, it is more likely for the option to be
valuable and will lead to a higher price of the option as under the geometric drift.
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Figure 5.4: price path in absence of random shocks under risk-neutral drift(dotted line),
geometric drift(solid line) and arithmetic drift(dashed line)

Figure [5.5| shows the value of [3.26 the functional that has to be maximized to find the
optimal change of drift for a geometric average Asian put option, depending on /3.
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Figure 5.5: value of depending on (3

Figure 5.6 shows the value of [3.41] the functional that has to be maximized to find the
optimal change of drift for an arithmetic average Asian put option, depending on .
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Figure 5.6: value of depending on (3

Table compares the prices and standard errors according to the different Monte Carlo
simulations and to different choices of sample size. Surprisingly this time the estimator
using importance sampling and the geometric drift achieves the lowest standard error,
followed by the estimator using the method of control variates. Also the estimator using
importance sampling and the arithmetic drift has a lower standard error than the usual
estimator, but this method is not as effective in reducing variance as before.

Sample size Risk-neutral Geometric drift Arithmetic drift Control variate

100000 0.444 0.519 0.528 0.510
(0,0314) (0.0020) (0.0098) (0.0075)

20000 0.475 0.519 0.513 0.505
(0.0721) (0.0044) (0.0169) (0.0177)

5000 0.346 0.521 0.494 0.422
(0.1064) (0.0088) (0.0314) (0.0356)

Table 5.4: Monte Carlo estimators of an arithmetic average Asian put option price using
different drifts. Prices are in cents. Parameter values T'= 1, r = 5%, o = 25%, Sy = 50,
K = 35. Simulations are performed with a time-increment of 1/252, corresponding to
one business day.

Table 5.5 compares the performance of the estimators in terms of variance reduction over
different strikes and volatilities. Therefore again we take a look at variance ratios and the
corresponding prices. In this situation one can see that the achieved variance reduction
for the estimators using importance sampling decreases with the strike and with volatility.
This means that, as in the case of the call option, the more unlikely it is for the option
to be valuable, the more efficient are the estimators using importance sampling. In the
case of the estimator using the method of control variates it is the other way around, the
more likely it is for the option to be valuable, the more efficient is the estimator. So for
pricing way out-of-money average Asian put options, importance sampling seems to be
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the better choice, where the geometric drift achieves a way better result corresponding to
variance reduction. Also one can see, that some options can not be priced by the usual
estimator and therefore also not by the one using the method of control variates, while
the estimators using importance sampling achieve a result different from zero. This result
is way smaller than 1 cent and therefore not really helpful in practice, but it emphasizes
the advantage of the estimators using importance sampling.
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Volatility —Strike

Price(Variance Ratio)

geometric arithmetic control variate
10% 50 61,04(8.81) 60,85(0.02) 61,07(6544)
45 1,02(112) 1,07(0.25) 1,02(364)
40 0,00029(2443) 0,00038(0.43) 0,00007(2.11)
15% 50 113,23(7.67) 114,78(0.07) 113,26(2907)
45 11,01(27.4) 11,17(0.35) 11,00(462)
40 0,181(474) 0,191(2.04) 0,179(39.6)
20% 50 167,02(7.05) 168,10(0.17) 167,07(1628)
45 33,16(15.9) 33,47(0.51) 33,16(455)
40 2,41(83.8) 2,48(1.80) 2,42(77.6)
35 0,0351(2063) 0,0365(25.7) 0,0382(16.3)
30 0,0000378(-) 0,0000379(-) 0(-)
25% 50 221,41(6.6) 222,33(0.31) 221,47(1035)
45 64,15(11.86) 64,69(0.69) 64,15(389)
40 9,68(35.6) 9,82(1.92) 9,65(93.0)
35 0,5186(253) 0,5276(10.2) 0,5104(17.5)
30  0,005219(11980) 0,005286(347) 0,006577(7.36)
30% 50 276,04(6.27) 277,03(0.47) 276,13(716)
45 100,88(9.83) 101,64(0.88) 100,91(324)
40 23,16(21.9) 23,39(2.02) 23,11(100.9)
35 2,57(87.8) 2,59(7.21) 2,58(27.5)
30 0,0885(961) 0,0899(55.8) 0,0907(6.57)
25 0,00042(5933) 0,00043(235.6) 0,00016(2.00)
35% 50 330,75(5.98) 332,01(0.63) 330,86(524)
45 141,34(8.60) 142,26(1.07) 141,39(272)
40 42.47(15.9) 42.78(2.13) 42,45(103.0)
35 7,41(44.6) 7,46(5.81) 7,38(31.9)
30 0,5421(245) 0,5473(24.9) 0,5295(8.43)
25 0,009203(6575) 0,009253(516) 0,012762(4.40)
20 0,0000111(-) 0,0000112(-) 0(-)
40% 50 385,45(5.72) 386,91(0.83) 385,58(400)
45 184,26(7.75) 185,27(1.29) 184,32(227)
40 66,65(12.72) 67,03(2.31) 66,61(99.2)
35 15,75(28.3) 15,84(4.98) 15,68(35.2)
30 1,895(106) 1,908(16.0) 1,897(12.0)
25 0,07359(1026) 0,07387(136) 0,07828(3.95)
20 0,000370(4474) 0,000372(514) 0,000155(1.87)
15 0,0000000283(-) 0,0000000287(-) 0(-)

Table 5.5: Prices and variance ratios of an arithmetic average Asian put option over
different volatilities and strikes corresponding to the different Monte Carlo estimators
over 100000 sample paths. Prices are in cents. Parameter values T'= 1, r = 5%, Sy = 50.
Simulations are performed with a time-increment of 1/252, corresponding to one business
day.
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Table states the optimal value Bgeo for the optimal change of drift of a put option of
geometric type as well as the optimal values (3,7%) for the optimal change of drift for a
put option of arithmetic type corresponding to different values of K and o.
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Volatility ~Strike  [geo 6] 0l

10% o0  -3.59663 -0.0005 -1.00102
45  -4.49579 -0.0005 -1.00213
40  -7.75374 -0.0005 -1.00153
15% 20  -1.90408 -0.0005 -1.00208
45  -3.36655 -0.0005 -1.00169
40 -0.3985 -0.0005 -1.00131
20% o0  -1.80295 -0.0005 -1.00169
45 -2.82978 -0.0005 -1.00142
40 -4.2603  -0.0005 -1.00114
35  -6.06202 -0.0005 -1.00088
30 -8.24682 -0.0005 -1.00065
25% 50  -1.73118 -0.0005 -1.00144
45  -2.51433 -0.0005 -1.00123
40 -3.59663 -0.0005 -1.00102
35 -4.98034 -0.0005 -1.00081
30 -6.68311 -0.0005 -1.00062
30% 50  -1.67372 -0.0005 -1.00126
45  -2.30308 -0.0005 -1.00109
40 -3.16267 -0.0005 -1.00092
35 -4.27064 -0.0005 -1.00075
30 -5.65056 -0.0005 -1.00058
25 -7.35619 -0.0005 -1.00044
35% 50  -1.62435 -0.0005 -1.00112
45 -2.14849 -0.0005 -1.00098
40 -2.85549 -0.0005 -1.00084
35  -3.76996 -0.0005 -1.0007
30 -4.9194  -0.0005 -1.00055
25 -6.35273 -0.0005 -1.00042
20  -8.16545 -0.0005 -1.0003
40% 20  -1.58002 -0.0005 -1.00102
45 -2.0279  -0.0005 -1.0009
40  -2.62486 -0.0005 -1.00078
35  -3.39737 -0.0005 -1.00065
30 -4.37487 -0.0005 -1.00052
25 -5.60326 -0.0005 -1.00041
20 -7.167  -0.0005 -1.0003
15 -9.2353  -0.0005 -1.0002

Table 5.6: Optimal values for the optimal changes of drifts for put options of
geometric(Sgeo) and arithmetic(3,%) type corresponding to different values of K and
o. Parameter values T'= 1, r = 5%, Sy = 50.
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Appendix

Maple codes

To compute the results stated in the last chapter Maple 15 was used. In this section the
corresponding codes are given.
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HHHHIH I I I R
HHHHHHIHHHIHHEH A arithmetic average Asian call option HHHHHHHFHHHIHIHEHIHHEIHTH
S S S G G R
restart,

with(Finance) :

with(Statistics) :

HEHHHHHHHHHHHHHHHHHHH A initialize values HHHHHHEHHHHEHHHHEHHHE
W := WienerProcess( ) :

T=1:
§:=150:
sigma := (.25 :
r:=0.05:
K:=70:

N := 100000 :
N1 = 20000 :
N2 = 5000 :
n=252:

HH AR N sample paths X of a Brownian motion #HHEHEHIHIHIHIHIHIHIH
X := SamplePath(W(t),t=0..1, timesteps =252, replications =N ) :

HH TR geometric and arithmetic average HHHHIHIHIHIHIHIFHIHIFHIFHIHT
1

253
I
s + sigma- X[ 4, j]
SGeo := Vector\ | seq\S- \mul\ e ,j=1.253 ,i=1.N
P
” S TsigmaX[ij] 1,
SArith := Vector| | seq S-add e 53 /=1.253 ,i=1.N

R
HHHHHIFHEHHHEHHPHEHARHEHAA usual Monte Carlo estimator HHHHHHIFHHHHIFHEHHHEHHRHEHH
R

HHtHHHHH vector containing N option prices corresponding to N sample paths #H##H#HHHH
Cneutral == Vector( [seq(e_r'T-max(SArith[i]—K, 0),i=1 ..N) ]) :

HHtHHHHIHHEHI A price and standard error for N=100.000 in Cents #HHHHIHHHHHHIHIHH
100- Mean(Cneutral);
5.924380005

100- StandardError(Mean, Cneutral);
0.211959047419500

HHHHH I price and standard error for N=20.000 in Cents #HH#H#HIHIHHAHHIHHIH
Clneutral := Cneutral[1..20000] :



100- Mean(Clneutral);
6.160881101 3)

100- StandardError(Mean, Clneutral);

0.471899710961524 C))
HH TR price and standard error for N=5.000 in Cents H#HHHHHHHHHHHIFHIFHIH
C2neutral := Cneutral[1..5000] :
100- Mean(C2neutral);

6.510154867 5)
100- StandardError(Mean, C2neutral);
0.898334155279336 6)

B
#HHtHHHHH# Monte Carlo estimator using Importance Sampling and the geometic drift ###H#H1#
P R S R R R L R R R

aGeo = S—i%:
T
>
) [V—T -T
cGeo = %-e 2

HH TR compute beta HHHIHIHIHIHIHIHIHIHHHHHHHHHHHH
— BT 1 ((b—aGeo) ): :
equ aGeo-b +3-In T Geoh 0
betaGeo = fsolve(equ, b, b =aGeo..10000);
betaGeo = 4.596289154 (@)

HH TR aymptotically optimal change of drift HHHHHHHIHIHIHIHIHIHIHE
_ betaGeo

2
hl ==t — betaGeo- (T —t) :

h=1t— 'tz—l-betaGeo'T-t:

HHHHHHIHHHHIHHEHIHHEHI#HE computation of the rescaling terms HHHHHHHIHHIHIFHHEHIHHIFHE

dXLIL=1253) ..N) ]) :

Rescalel = Vector(

T
—O.S-J (h1(1))2dt
0

seq ( betaGeo-

Rescale? = e :
HHtHHHHHHH vector containing N option prices corresponding to N sample paths #H##HHHIH}

CGeo = Vector| |seq| e T

[r—%]'(j—l)

add[s.e 252 + sigma- (h[%) +X[i’j])

J= 1 253] -Rescalel[i]
_K .
253 0)e



‘Rescale2,i=1..N

HHTHHHHHHHHHEHEHE price and standard error for N=100.000 in Cents #HHHHIHIHIHIFHIHE
100- Mean(CGeo);
5.737148757 t))

100- StandardError(Mean, CGeo);
0.0185039720588016 9
HitHHHHIH IR price and standard error for N=20.000 in Cents HHH#HHHIHIHHHHIFHIHIH
ClGeo := CGeo[1..20000] :
100- Mean(C1Geo);
5.734282462 (10)

100- StandardError(Mean, C1Geo);
0.0414330718958574 11
HHHHHIFHHEHIHHEHIHE price and standard error for N=5.000 in Cents #HHH#HHHIHIHHHHIHHIHIH
C2Geo := CGeo[1..5000] :
100- Mean(C2Geo);
5.720578536 (12)

100- StandardError(Mean, C2Geo);
0.0836469739471332 (13)

B
#HHttHHHH# Monte Carlo estimator using Importance Sampling and the arithmetic drift ###H##i#
S R S R R L D R
a = sigma:

2

(@)
bi=r— )
o= K-T
S
_ 5.

d = T

beta := 1.5895;
B:=1.5895 (a4

delta := 5.02015;
6:=5.02015 (15)

HHHHHHIFHEHHHEHHRHEHAAH# aymptotically optimal change of drift #HHHHFHHHFHIHHFHIHHHHE

. beta — b 2 ™! 4 delta
h=tn——¢——'In| ———— |:
a a 1 + delta
beta- ¢
hl =t — beta—b 2 tzteat-?e :
a a e + delta



HHHHH IR computation of the rescaling terms HHHHHHHHIHHIHIHHEHIHHIHHE

2

Rescalel := Vector| |seq| h1(T)-X[i, 2531+ T- 2-B-d
bet(j— 1) ¢
o 232
add beta- (j — 1) ZX[i,j],jZI,,253
(e 2 4 delta .
253 > .-

T
-o.s-J (h1(1)2dt

Rescale? := e 0

Wit vector containing N option prices corresponding to N sample paths #H#HHHHIHH

CArith = Vector| |seq| e "

,jz 1..253 — K0 ‘e—RescaleI[i]

‘Rescale2,i=1..N

HHHHH I price and standard error for N=100.000 in Cents ###H#HHHAHHHHTHIHH
100 Mean(CArith);
5.738688869 (16)

100- StandardError(Mean, CArith);
0.0183120502045484 a7
HHHHHHHHHHHEHEHE price and standard error for N=20.000 in Cents ##HHHHIHIHIHIFHIHT
ClArith == CArith[1..20000] :
100- Mean(ClArith);
5.743829812 (18)

100- StandardError(Mean, ClArith);
0.0409914097726682 19)
HHHHHHHHHHHEHEHEHE price and standard error for N=5.000 in Cents H#HHHHHIHIHIFHIFHIHH
C2A4rith == CArith[1..5000] :
100- Mean(C2Arith);
5.734950026 (20)

100- StandardError(Mean, C2Arith);
0.0824966285807213 21



W I R R R
HitHH I Monte Carlo estimator using the method of control variates #HHHH#HHHIHHIH
T R R R A A R R T R R R R e e

m:=252+1:
Digits := 20 :
z ey Sl ma. M .
B e m+1)
02
(r - — —I—zzj
rho := 2 :
5 :
phi := RandomVariable(Normal(0, 1)) :
2
ln(%) + (rh0+ Z?)T
dl = :
Tz
2
ln(%) + (rho—z?) -T
d2 = :
JT -z
HH I computing Xi , Yi, Xbar, Ybar, EX as described in the method #iH#HHHHIHIHH

Xi := Vector( [seq(e””T-max(SGeo[i]-K, 0),i=1..N) ]) :
Yi := Vector([seq(e”” T-max(SArith[i]-K, 0),i=1..N) ]) :
Xbar == Mean(Xi)

Xbar =0.041540792658249837363 (22)
Ybar := Mean(Yi)
Ybar :=0.059243800049585760919 (23)
EX =™ =T (§.CDF (phi, dI)-K-¢ ™ T.CDF(phi, d2)) :
simplify( EX)
0.040385618906451286000 (24)
HtHHHHHE optimal coefficient by, , price and standard error for N =100.000 in Cents #HHHHHH

suml = add( (Xi[i] — Xbar) - (Yi[i] — Ybar),i=1..N) :

sum?2 := add( (Xbar — Xi[i])%, i=1.N) :
_ suml

sum?2’
b :=1.2415352547355586260 25)

Yev = Vector([seq(Yi[i] —b- (Xi[i] —EX),i=1.N)]):

100- Mean(Ycv)
5.7809611111382723646 (26)

100- StandardError(Mean, Ycv);
0.033465479872684520483 27

HHHHHHH optimal coefficient by, , price and standard error for N =20.000 in Cents #HHHH#H#H#H#



Xil == Xi[1..20000] :
Yil :== Yi[1.20000]:
Xbarl = Mean(Xil);
Xbarl =0.043136124655314373672 (28)

Ybarl == Mean(Yil);
Ybarl :=0.061608811009420215490 29)

suml1 = add((Xil[i] — Xbarl)- (Yil[i] — Ybarl),i=1.NI) :
sum21 := add( (Xbarl — Xil[i])% i=1..NI) :

11
bl = Sumil
sum21
Yevl = Vector([seq(Yil[i] —bl-(Xil[i] —EX),i=1.NI)]):

100- Mean(Ycvl)

5.8190559473617269340 30)
100- StandardError(Mean, Ycvl);
0.073904814857006632095 31

HtHHHHHHHE optimal coefficient by, , price and standard error for N =5.000 in Cents ##t#######

Xi2 == Xi[1..5000] :
Yi2 == Yi[1..5000] :
Xbar2 := Mean(Xi2)

Xbar2 =0.045175919163454806710 (32)
Ybar2 := Mean(Yi2)

Ybar2 :=0.065101548668090936672 (33)
suml2 = add( (Xi2[i] — Xbar2)-(Yi2[i] — Ybar2),i=1.N2) :
sum22 := add( (Xbar2 — Xi2[i])% i=1..N2) :

sumli?2
2 = :
b sum22
Yev2 = Vector([seq(Yi2[i] —b2-(Xi2[i] — EX),i=1..N2)]) :

100- Mean(Ycv2);

5.8995526798724722542 (34)
100- StandardError(Mean, Ycv2);
0.14074026319443596162 35)

HHHH
HHHHHHHEHHEHARHHA A Calculating Variance Ratios HHHEHHHIHHHIHHRHIHERHIHE
R

. .. . Variance(Cneutral)
Ratiodrith = Variance( CArith) ~°
RatioArith .= 133.97691625950460742 (36)
. Variance( Cneutral)
RatioGeo = ;
attotreo Variance(CGeo)

RatioGeo :=131.21213138835458074 37



Variance(Cneutral)

Variance(Ycv)
RatioControlVariate .= 40.115277827046249039 (38)

> RatioControlVariate =

[>
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HHHHIH I I I R
HHHHHH IR arithmetic average Asian put option HHHHHHHHIHEHIHHEHIHHIHE
S S S G G R
restart,

with(Finance) :

with(Statistics) :

HEHHHHHHHHHHHHHHHHHHH A initialize values HHHHHHEHHHHEHHHHEHHHE
W := WienerProcess( ) :

T=1:
§:=150:
sigma := (.25 :
r:=0.05:

K :=35:

N := 100000 :
N1 = 20000 :
N2 = 5000 :
n=252:

HH AR N sample paths X of a Brownian motion #HHEHEHIHIHIHIHIHIHIH
X := SamplePath(W(t),t=0..1, timesteps =252, replications =N ) :

HH TR geometric and arithmetic average HHHHIHIHIHIHIHIFHIHIFHIFHIHT
1

253
I
s + sigma- X[ 4, j]
SGeo := Vector\ | seq\S- \mul\ e ,j=1.253 ,i=1.N
P
” S TsigmaX[ij] 1,
SArith := Vector| | seq S-add e 53 /=1.253 ,i=1.N

R
HHHHHIFHEHHHEHHPHEHARHEHAA usual Monte Carlo estimator HHHHHHIFHHHHIFHEHHHEHHRHEHH
R

HHtHHHHH vector containing N option prices corresponding to N sample paths #H##H#HHHH
Cneutral == Vector( [seq(e_r'T-max(K— SArith[i],0),i=1 ..N) ]) :

HHtHHHHIHHEHI A price and standard error for N=100.000 in Cents #HHHHIHHHHHHIHIHH
100- Mean(Cneutral);
0.4442306452

100- StandardError(Mean, Cneutral);
0.0313849988042821

HHHHH I price and standard error for N=20.000 in Cents #HH#H#HIHIHHAHHIHHIH
Clneutral := Cneutral[1..20000] :



100- Mean(Clneutral);

0.4751316700 3)
100- StandardError(Mean, Clneutral);
0.0720564485276888 )

HH TR price and standard error for N=5.000 in Cents H#HHHHHHHHHHHIFHIFHIH
C2neutral := Cneutral[1..5000] :
100- Mean(C2neutral);

0.3463105204 5)
100- StandardError(Mean, C2neutral);
0.106391575173950 (6)

B
#HHtHHHHH# Monte Carlo estimator using Importance Sampling and the geometic drift ###H#H1#
P R S R R R L R R R

aGeo = S—i%:
T
>
) [V—T -T
cGeo = %-e 2

HHHHHHEHHHHHTHHHAERE compute beta HHHHHHHHHHHHHERHEHHHAHET

— BT 1 ((b—aGeo) ): :
equ := aGeo-b-T" +3-In T Geoh 0
betaGeo = fsolve(equ, b, b =-10000..0);
betaGeo = -4.980337138 (@)
HH TR aymptotically optimal change of drift HHHHHHHIHIHIHIHIHIHIHE
h=1t—- @ £ + betaGeo Tt :

hl ==t — betaGeo- (T —t) :

HHHHHHIHHHHIHHEHIHHEHI#HE computation of the rescaling terms HHHHHHHIHHIHIFHHEHIHHIFHE

dXLIL=1253) ..N) ]) :

Rescalel = Vector(

T
—O.S-J (h1(1))2dt
0

seq ( betaGeo-

Rescale? = e :
HHtHHHHHHH vector containing N option prices corresponding to N sample paths #H##HHHIH}

CGeo := Vector| |seq| e T-max| K

[r—%)'u—l)

(=1
_add\S-e 22

+sigmr (1 U555 | 0 ]), =1 ..253] 0 | o Rescalell]
€

253 ’




‘Rescale2,i=1..N

HHTHHHHHHHHHEHEHE price and standard error for N=100.000 in Cents #HHHHIHIHIHIFHIHE
100- Mean(CGeo);
0.5186146082 t))

100- StandardError(Mean, CGeo);
0.00197185470970393 &)
HitHHHHIH IR price and standard error for N=20.000 in Cents HHH#HHHIHIHHHHIFHIHIH
ClGeo := CGeo[1..20000] :
100- Mean(C1Geo);
0.5190723783 (10)

100- StandardError(Mean, C1Geo);

0.00440892932215184 an
HHHHHIFHHEHIHHEHIHE price and standard error for N=5.000 in Cents #HHH#HHHIHIHHHHIHHIHIH
C2Geo := CGeo[1..5000] :
100- Mean(C2Geo);

0.5210854301 (12)
100- StandardError(Mean, C2Geo);
0.00882799166940856 (13)
SElpleladp Bl S p g i e g S e e L g B D g U D D B L B L g H R D R

#HHttHHHH# Monte Carlo estimator using Importance Sampling and the arithmetic drift ###H##i#
S R S R R L D R
a = sigma:

2

(¢
b=r— )
o= K-T
S
— 5.

d = T

beta :=-0.0005;
B:=-0.0005 (a4

delta := -1.00081;
d:=-1.00081 (15)

HHHHHHIFHEHHHEHHRHEHAAH# aymptotically optimal change of drift #HHHHFHHHFHIHHFHIHHHHE

. beta — b 2 ™! 4 delta
h=tn——¢——'In| ———— |:
a a 1 + delta
beta- ¢
hl =t — beta—b 2 tzteat-?e :
a a e + delta



HHHHH IR computation of the rescaling terms HHHHHHHHIHHIHIHHEHIHHIHHE

2

Rescalel := Vector| |seq| h1(T)-X[i, 2531+ T- 2-B-d
bet(j— 1) ¢
o 232
add beta- (j — 1) ZX[i,j],jZI,,253
(e 2 4 delta .
253 > .-

T
-o.s-J (h1(1)2dt
Rescale? := e 0

Wit vector containing N option prices corresponding to N sample paths #H#HHHHIHH

CArith = Vector| | seq| e T-max| K

A

add[s.e 250 + sigma- (h(%j +X[i,j])

= 1..253 .+~ Rescalel[i]
253 0

‘Rescale2,i=1..N

HHHHH I price and standard error for N=100.000 in Cents ###H#HHHAHHHHTHIHH
100 Mean(CArith);
0.5276059876 (16)

100- StandardError(Mean, CArith);
0.00981343664412574 a7
HHHHHHHHHHHEHEHE price and standard error for N=20.000 in Cents ##HHHHIHIHIHIFHIHT
ClArith == CArith[1..20000] :
100- Mean(ClArith);
0.5126037718 (18)

100- StandardError(Mean, ClArith);
0.0168597282865647 19)
HHHHHHHHHHHEHEHEHE price and standard error for N=5.000 in Cents H#HHHHHIHIHIFHIFHIHH
C2A4rith == CArith[1..5000] :
100- Mean(C2Arith);
0.4942643426 (20)

100- StandardError(Mean, C2Arith);
0.0313799322651236 21)



> AR R PR R
> Hit#HH A Monte Carlo estimator using the method of control variates #HHH#HHIHHIHH
R R R R R R T R e R T R R R i R
> m:=252+1:

>Z'=Sima. M.
| g Vv 6-(m+1) °

2

(r— o —I-ZZJ
> rho = 2 :
| 2
| > phi := RandomVariable(Normal(0, 1)) :
| >

2

ln(%) + (rho+ %)T
> dl = :
— \/7.2

2

ln(%) + (rho—?) T
> d2 =
— \/T'Z
>

> HHHHEH#HI# computing Xi, Yi, Xbar, Ybar, EX as described in the method ##H#H#HH#HIHHH
> Xi = Vector( [seq(e_r'T~max(K— SGeo[i],0),i=1.N)]) :
> Yi == Vector( [seq(e_V'T'max(K— SArith[i],0),i=1.N)]) :
> Xbar = Mean(Xi)

> Ybar = Mean(Yi)

> Ex =™ T (ke T.cpF(phi,-d2) — S-CDF(phi,-dl))
> simplify( EX)

> HHHHHHHHH optimal coefficient by, , price and standard error for N =100.000 in Cents ########
> suml = add((Xi[i] — Xbar) - (Yi[i] — Ybar),i=1..N) :

> sum? := add( (Xbar — Xi[i])% i=1..N) :

suml

sum2’

> b=

> Yev = Vector([seq(Yi[i] —b-(Xi[i] —EX),i=1.N)]):
> 100- Mean(Ycv)

> 100 StandardError(Mean, Ycv);

> HHHHHHHHHA optimal coefficient by, , price and standard error for N =20.000 in Cents #######HH

Xbar :=0.007260217225 (22)

Ybar = 0.004442306452 (23)

0.008181550000 24)

b :=0.717657778627460 (25)

0.5103506326 (26)

0.00749325129650342 27)



Xil == Xi[1..20000]:
Yil == Yi[1..20000] :
Xbarl = Mean(Xil);
Xbarl = 0.007754967450 (28)

Ybarl := Mean(Yil);
Ybarl =0.004751316700 29)

sumll := add((Xil[i] —Xbarl)-(Yil[i] — Ybarl),i=1..NI) :
sum21 := add( (Xbarl — Xil[i])% i=1..NI) :

sumll
= —"
b sum21
Yevl == Vector([seq(Yil[i] —bl-(Xil[i] — EX),i=1..NI)]):

100- Mean(Ycvl)
0.5052898665 30)

100- StandardError(Mean, Ycvl);
0.0176975823201041 (31)

HHHHHHHHHHE optimal coefficient by, , price and standard error for N =5.000 in Cents ##t#######

Xi2 == Xi[1..5000] :
Yi2 == Yi[1..5000] :
Xbar2 = Mean(Xi2)
Xbar2 =0.006921757313 (32)
Ybar2 := Mean(Yi2)
Ybar2 = 0.003463105204 33)
suml2 := add((Xi2[i] —Xbar2)-(Yi2[i] — Ybar2),i=1..N2) :
sum22 = add( (Xbar2 — Xi2[i])% i=1..N2) :
_ suml2
b2 = sum22
Yev2 == Vector([seq(Yi2[i] —b2-(Xi2[i] — EX),i=1..N2)]) :
100- Mean(Ycv2);
0.4219368849 (34

100- StandardError(Mean, Ycv2);
0.0355755211768194 35

H
HHHHHHHHHHHHEHAAA# Calculating Variance Ratios H#HHHHHHHHHHHHHHHHHHHT

R R
. Variance( Cneutral)
RatioArith = ;
atodrt Variance( CArith)
RatioArith := 10.2282653632800 36)
. Variance( Cneutral)
R = ;
atioGeo Variance(CGeo)
RatioGeo :=253.334541492767 37
RatioControlVariate := Variance(Cneutral) .

2

Variance(Ycv)
I 1'2Y



RatioControlVariate := 17.5429908908226

(38)
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