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Abstract

This thesis studies a regularization technique of Dupire’s formula for Levy
jump diffusion models. In particular, a procedure is introduced to reobtain
the option prices with a local volatility model.
These results are applied to Kou’s model, and for that purpose representa-
tions of the option price surface and some derivatives are stated.
The derived results are then implemented numerically, and the functionality
of the introduced procedure is proved using the programming language Mat-
lab. Furthermore issues that arise during this implementation are addressed,
such as errors stemming from numerical integration.

This work is largely based on the paper How to make Dupire’s formula work
with jumps by Friz, Gerhold and Yor.

Keywords: Fourier transform, moment generating function, option pricing,
Kou model, Dupire formula
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Chapter 1

Introduction

Financial mathematics and stochastic analysis are two relatively new fields
of mathematics, but have lately become an important field of research. This
is due to the rising interest in derivatives and stock prices which require
financial modelling.
Louis Bachelier was the first to discuss stock price modelling and option
pricing in 1900 in his thesis ’Theory of Speculation’, [Bac00]. In his paper he
introduced a model to describe the discounted stock price process (S̃t)t∈[0,T ]
as a Brownian motion with volatility σ and initial value S0 by

S̃t = S0 + S0σWt,

where (Wt)t∈[0,T ] is a standard Brownian motion. In 1965, Samuelsson pro-
posed a financial model using geometric Brownian motion which became fa-
mous when Black and Scholes used this model in their seminal paper, [BS73].
In the last few decades, the interest in financial mathematics and stochas-
tic modelling increased, and with this some weaknesses of stochastic models
based on Brownian motions, and therefore especially of the Black-Scholes
model were revealed. Especially the absence of heavy tails in the log-returns
and the lack of volatility smiles and jumps were reasons to introduce new
models that satisfy these requirements.
One generalization that can makes adaption to all weaknesses mentioned
above possible, is to use the large class of Levy processes, and exponential
Levy models. This class includes the Black-Scholes model as a special case,
when the Levy process is a (non standard) Brownian motion. Levy mod-
els and especially exponential Levy models are commonly used due to the
fact that these processes form semimartingales and that their distributions
possess special properties. They can also include jumps, making stock price
modelling more accurate but harder to handle.
Another approach is, to model the assets on behalf of a so called implied
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volatility model. There, the underlying is defined via a stochastic differential
equation (SDE), where the volatility is a function of time and the strike price.
This function is computed such, that the input in a call price model returns
the corresponding market price. This can overcome the problems regarding
volatility smiles, but obviously does not include jumps.
A similar approach is, to use a local volatility model for the underlying.
Within this model, the asset is again defined via an SDE, where the volatil-
ity function depends on time and the momentary asset price. This volatility
function is defined via Dupire’s formula, using a given (market) call price
surface.

Let (St)t∈[0,T ] be a stochastic process modelling an asset, and (Bt)t∈[0,T ] a
riskless security with

Bt := ert, 0 ≤ t ≤ T,

where r denotes the riskless interest rate. Then a European call option with
underlying S, time to maturity T > 0 and strike K > 0 is defined as

C(k, T ) = E[B−1T (ST −K)+],

with (.)+ = max(., 0) defining the positive part.
Throughout this thesis, w.l.o.g the initial value is set to 1,S0 = 1. To get call
prices for initial values S0 > 0, one only has to multiply this value with the
call price, with modified strike price K̃ := K

S0
.

E[B−1T (S0ST −K)+] = S0E[B−1T (ST − K̃)+]

In this thesis the mentioned asset S is modelled by Kou’s model, [Kou02].
With this definition a call price surface is generated using the approach of
[Lee04]. The mathematical requirements to do this are presented in the fol-
lowing chapter. Then, in Chapter 3, Levy processes and some properties are
presented and proved. Furthermore some exponential Levy models are intro-
duced, focusing on Kou’s model, which is described in detail in Section 3.2.1.
After the mathematical foundations are set, the theory behind the paper of
Gerhold et al.,[FGY13], is presented. In Chapter 5, all these results and the-
ory is combined and applied numerically to Kou’s model, highlighting some
numerical problems and performing some backtests. This thesis is concluded
with a short resume.
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Chapter 2

Preliminary definitions and
results

2.1 Moment generating functions and Char-

acteristic functions

Definition 2.1. For a given random variable X the moment generating
function (mgf ) is defined by

MX(t) := E[etX ],

wherever it exists.

Theorem 2.2. Let X, Y be two random variables, and MX , MY their cor-
responding moment generating functions. Then the following properties are
satisfied:

i) X and Y follow the same distribution, if and only if the two moment
generating functions are equal on their domain.

X
d
= Y ⇔MX = MY

ii) If furthermore the moment generating function of X exists in an open
interval around zero, then all moments of X can be calculated as deriva-
tive of MX .

E[Xn] =
dnMX

dtn
(0), n ∈ N

Sketch of Proof.
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i) ”⇒”: This direction is trivial as equality in distribution implies that

f(X)
d
= f(Y ), for all functions f: R→ R. By choosing ft : x 7→ etx and

taking the expectation follows, that E[etX ] = E[etY ], ∀t.
”⇐”: This proof is done for characteristic functions in [JP03, Theo-
rem 14.1]. Using Remark 2.7 yields the result for moment generating
functions.

ii) If the moment generating function exists in an open interval around 0,
then the derivative is well defined for t = 0. The statement follows by
interchanging the differentiation and the expectation and evaluating at
t = 0. �

Remark 2.3. Theorem 2.2 i) implies, that the moment generating function
of a random variable uniquely determines the underlying probability distri-
bution and vice versa.

Another important property of the mgf relates to the sum of independent
random variables.

Theorem 2.4. Let (Xj)j∈I be a set of independent random variables with
well defined mgfs, and I an arbitrary index set. Then the mgf of the sum of
these random variables S :=

∑
j∈I Xj is well defined and given by

MS(t) = E[e
∑
j∈I tXj ] =

∏
j∈I

MXj(t).

Proof. The statement follows by using the power law of the exponential func-
tion and the independence of the random variables.

E
[
e
∑
j∈I tXj

]
= E

[∏
j∈I

etXj
]

=
∏
j∈I

E[etXj ] =
∏
j∈I

MXj(t)

As mentioned above, the moment generating function does not always exist
(cf. Cauchy distribution). Therefore the characteristic function is often used
instead.

Definition 2.5. For a given, Rn - valued random variable X the character-
istic function is defined by

ϕX :

{
Rn → C
ϕX(t) = E[eit·X ],

where i is the imaginary unit.
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Lemma 2.6. The characteristic function exists for each random variable
with an arbitrary power law, in fact it is even bounded by 1,

ϕX(t) ≤ 1.

Proof. To show the existence of the characteristic function it is sufficient to
show the boundedness for all t ∈ Rn.

|E
[
eit·X

]
| ≤ E

[
|eit·X |

]
= 1

Remark 2.7. If the moment generating function of a random variable exists,
then the domain of its characteristic function can be extended to the complex
numbers and ϕX(−iz) = MX(z) for all z ∈ C.

Due to this property characteristic functions and moment generating func-
tions share the most important properties, so Theorem 2.4 can be adapted
to characteristic functions.

Lemma 2.8. The characteristic function of a random variable X uniquely
determines the distribution of X.

Lemma 2.9. Let X be a real value random variable, and ϕX its characteristic
function.
If the k-th moment of X exists, then it can be calculated by:

E
[
Xk
]

= (−i)k
dkϕX

dtk
(0).

Proof. This follows by applying Theorem 2.2 ii) and Remark 2.7 or by fol-
lowing the proof of Theorem 2.2 ii).

In mathematical finance stock prices or other underlyings are often modelled
as exponential stochastic variables. Usually these processes form martingales,
if discounted. Therefore it is common to use a generalized and discounted
characteristic function, to be able to use these properties.

Definition 2.10. Let X denote a Rn - valued random variable, and AX the
interior of the set {ν ∈ Rn : E

[
eν·X

]
<∞}.

For every complex vector θ ∈ ΛX := {ξ ∈ Cn : −Im(ξ) ∈ AX} the general-
ized discounted characteristic function of X can be defined by:

ϕX : ΛX → C with ϕX(θ) := E
[
e−

∫ T
0 rtdteiθ·X

]
,

where e−
∫ T
0 rtdt is the corresponding discounting factor.
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Remark 2.11. The existence of this generalized version is trivial, as the cor-
responding domains are chosen exactly such, that all parts are finite. To
be exact, the discounted factor does not play a role for existence, and the
characteristic function itself can be split into two exponentials. One with a
mere imaginary exponent, which is therefore bounded, and one with a real
exponent, which is restricted such that it is finite.

In the following, only this generalized version will be used and it will be
referred to as the characteristic function.
In case that a probability distribution admits a probability density function,
its characteristic function can be interpreted as the Fourier transform of this
very density. For this reason a brief introduction to the theory of Fourier
transformation given.

2.2 Fourier transformation & the damped op-

tion price

The Fourier transformation is an important tool when pricing financial in-
struments, especially options.
The general idea behind Fourier pricing is, that if the characteristic function
of an underlying is known in closed form, the characteristic function/Fourier
transform of the option and finally the option price itself can be computed.
This section will introduce a way to calculate the original function out of its
Fourier transformed, known as the Fourier inversion theorem. Furthermore
formulas for calculating the characteristic function of the (damped) option
price and the option price itself will be presented in terms of the characteristic
function of the underlying.

2.2.1 Fourier transformation and properties

At first the Fourier transformation for general L1(R) functions is introduced
and some properties and results are stated.

Definition 2.12. For an integrable function f ∈ L1(R) the Fourier transform
f̂ : R→ C is defined as follows.

f̂(x) =

∫ ∞
−∞

f(y)eixydy
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The Fourier transform f̂ of any integrable function f is well defined, due to
the fact that

|f̂(x)| = |
∫ ∞
−∞

f(y)eixydy| ≤
∫ ∞
−∞
|f(y)eixy|dy =

∫ ∞
−∞
|f(y)|dy <∞ ∀y ∈ R .

Proposition 2.13. Let f, g ∈ L1(R) be integrable functions, and f̂ , ĝ their
corresponding Fourier transforms. Then the following properties are satisfied.

i) The Fourier transform is linear, i.e. ∀a, b ∈ C : ̂(af + bg) = af̂ + bĝ.

ii) f̂ is uniformly continuous and ‖f̂‖∞ ≤ ‖f‖L1

iii) f̂ ∗ g = f̂ · ĝ

iv) For a real number t ∈ R define h(x) := f(x+ t), then ĥ(x) = e−ixtf̂(x).

Proof. See [Rud87, Chapter 9]. Note that the definition of the characteristic
function there, f̂ ∗ varies from Definition 2.12. To be precise, it is defined as

f̂ ∗(x) :=
1√
2π
f̂(−x).

If the Fourier transform satisfies certain conditions, it is possible to compute
the original function out of it with the Fourier inversion theorem. This
theorem is fundamental for the rest of the thesis and option pricing in general.

Theorem 2.14. For f and f̂ in L1(R), the following equation is valid.

f(x) =
1

2π

∫ ∞
−∞

e−ixyf̂(y)dy

Proof. See [Rud87, Chapter 9].

Note, that if a random variable admits a probability density, its characteristic
function can be interpreted as the Fourier transform of this density. With
this theorem the characteristic function uniquely determines the probability
density function, and therefore the probability distribution.
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2.2.2 Fourier transform of the damped option price

In the previous section a condition for a Fourier transform to exist, was that
the function is integrable. This causes problems when considering pricing
functions such as the call price function (x, k) := (x − k)+. Therefore the
idea of the damped option price is introduced. This section is mainly taken
from [Lee04].

The payoff of a european call option with strikeK, underlying S and maturity
T > 0 is given by CT = (ST − K)+. In case of a positive strike and an
almost surely positive underlying, it can be expressed via the log-underlying
XT := log(ST ) and the log-strike k := log(K), CT =

(
eXT − ek

)+
.

Let now G : R2 → R denote the pricing function defined by G(x, k) =(
ex − ek

)+
. Further let Bt be the time t value of a discount Bond maturing

at T , Bt = E
[
e−

∫ T
t rtdt

]
, where (rt)t∈[0,T ] is the - possibly stochastic - interest

rate.
Now the time zero price of a european call option can be written by

C(k, t) = B0E[G(Xt, k)] .

As mentioned before, the call price is not integrable, and therefore the Fourier
transform cannot be formed. To do this, the damped option price function
Cα(k, t) is introduced:

Cα(k, t) := eαkC(k, t) .

Theorem 2.15. If there exists a p > 0 with E[B0e
(p+1)X ] <∞ then for 0 <

α ≤ p, the damped option price function is integrable, Cα(., t) ∈ L1(R), ∀t ≥
0. Therefore the Fourier transform ĉα(k) exists, and is given by

ĉα(k, t) =
ϕtX(k − (α + 1)i)

(α + ik)(α + 1 + ik)
,

where ϕtX is the (generalized, damped) characteristic function of Xt.

Proof.∫
R
|Cα(u, t)|du =

∫
R

eαuB0E[(eXt − eu)+]du = E
[
B0

∫
R

eαu(eXt − eu)+du

]
=

= E
[
B0

∫ Xt

−∞
eαu(eXt − eu)+du

]
≤ E

[
B0

∫ Xt

−∞
eαueXtdu

]
≤

≤ E
[
B0e

(α+1)Xt
]
≤ E

[
B0e

(p+1)Xt
]
<∞
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The interchange of the expectation and the integral is provided by Fubini’s
theorem using the non-negativity of the integrand. Therefore the Fourier
transform exists.

Let Ft denote the distribution of Xt, Xt ∼ Ft. Then again, by using Fubini’s
theorem for non negative integrands, the Fourier transform can be calculated.

ĉα(k, t) =

∫
R

eiukeαuB0E[(eXt − eu)+]du =

=

∫ ∞
−∞

e(α+ik)uB0

∫
R
(ex − eu)+dFt(x)du =

=

∫
R

∫ x

−∞
e(α+ik)uB0(e

x − eu)du dFt(x) =

=

∫
R
B0

(
e(α+1+ik)x

α + ik
− e(α+1+ik)x

α + 1 + ik

)
dFt(x)

=
E
[
B0e

(α+1+ik)Xt
]

(α + ik)(α + 1 + ik)
=

ϕtX(k − (α + 1)i)

(α + ik)(α + 1 + ik)

This theorem shows the need of the generalized characteristic function intro-
duced in Section 2.1.
The main purpose however, is calculating the call price function rather than
its Fourier transform. To be able to apply the Fourier inversion theorem it
is necessary that ĉα(k, t) is again integrable.

Theorem 2.16. If the conditions from Theorem 2.15 are satisfied, then
ĉα(., t) ∈ L1(R).

Proof. The following inequation follows by using properties of the absolute
value of a complex number. The functions 1Uε(0) and 1UCε (0) describe the indi-
cator function on an epsilon neighbourhood around zero and its complement,
respectively.

|ĉα(k, t)| ≤
|E[e(α+1+ik)Xt ]|

|(α + ik)(α + 1 + ik)|
≤

E[|e(α+1)Xt |]
|α + ik| · |α + 1 + ik|︸ ︷︷ ︸

≥|α+ik|

≤
E[|e(α+1)Xt |]
|α + ik|2

≤

≤
E[|e(α+1)Xt |]
α2 + k2

≤ E[|e(α+1)Xt |]︸ ︷︷ ︸
<∞

( 1

α2
1Uε(0)︸ ︷︷ ︸
∈L1(R)

+
1

k2
1UCε (0)︸ ︷︷ ︸
∈L1(R)

)

Therefore, as ĉα(., t) is bounded by a L1(R) function, it is integrable itself.
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Now, the Fourier inversion theorem can be applied to compute the original
call price function out of its Fourier transform.

Theorem 2.17. If there exists a p > 0 with E[B0e(p+1)Xt ] < ∞ then for
0 < α ≤ p the call price function is given by

C(k, t) =
e−αk

2π

∫ ∞
−∞

e−iuk
ϕtX(u− (α + 1)i)

(α + iu)(α + 1 + iu)
du = (2.1)

=
e−αk

π

∫ ∞
0

Re

(
e−iuk

ϕtX(u− (α + 1)i)

(α + iu)(α + 1 + iu)

)
du (2.2)

Proof. The conditions of Theorem 2.16 are satisfied, therefore Theorem 2.14
can be applied. Multiplying with e−αk yields the first equation, the second
equation then follows as the real part of the integrand is an even function,
and its imaginary part is odd.

Remark 2.18. In the following chapters it will be necessary to compute the
derivatives of the call price with respect to the strike K. To make these
calculations easier, a representation of the call price as function of the strike
K := ek is stated.

C(K, t) =
K−α

2π

∫ ∞
−∞

K−iu
ϕtX(u− (α + 1)i)

(α + iu)(α + 1 + iu)
du = (2.3)

=
K−α

π

∫ ∞
0

Re

(
K−iu

ϕtX(u− (α + 1)i)

(α + iu)(α + 1 + iu)

)
du (2.4)
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Chapter 3

Levy Processes and jump
diffusion models

In mathematical finance one of the most important things is the underlying
model one uses for stock prices. Nevertheless it is hard to create a model
that is both, simple enough to get formulas for matters of calculation and
complex enough to describe the market well. Due to that reason, models,
such as the Black Scholes model or similar that assure easy calculation of
various option prices etc., are not useful in practice as they are rather simple
and have very strict assumptions.
One thing that is often criticized is that these models do not provide jumps
- which do appear in real markets. Hence this thesis will focus on Levy jump
diffusion models and especially on the Kou model defined in [Kou02]. For
this purpose Levy processes and some results are presented before defining
the jump diffusion models.

3.1 Levy Processes

This section will provide all necessary definitions and results for further cal-
culations with Levy processes. The structure mainly follows [Pap08].
For all further calculations let (Ω,F ,F,P) be a filtrated probability space
with filtration F = (Ft)t∈[0,T ], where the time horizon T > 0 can be infinite.1

Definition 3.1. A real valued stochastic process X := (Xt)t∈[0,T ] is called a
Levy process if it satisfies the following properties:

(L0) X0 = 0 a.s.

1If T = +∞, then each interval [0, T ] has to be replaced by [0, T ] ∩ [0,∞) = [0, T ).
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(L1) Independence of increments: For any 0 ≤ t1 < t2 < . . . < tn ≤ T ,
Xti −Xti−1

and Xtj −Xtj−1
, i, j ∈ {2, . . . , n}, i 6= j are independent.

(L2) Stationarity of increments: Xt −Xs
d
= Xt−s, for any 0 ≤ s < t ≤ T .

(L3) Stochastic continuity: lims→t P (|Xt −Xs| > ε) = 0, ∀ε > 0 and t ≥ 0.

Remark 3.2. Note that in some papers a Levy process is needed to be cadlag,
however this condition is omitted as for every Levy process X there exists
an almost surely (a.s.) cadlag version of it. For further results this version
will be taken.
Further note that the condition (L3) does not imply that the paths are con-
tinuous, but rather says that there are no jumps at a fixed time t a.s. .

Example 3.3. To illustrate that the possibility of jumps is conform with
Definition 3.1, consider (Nt)t≥0 a homogeneous Poisson process. Then per
definition N0 = 0 holds, and the process has independent and stationary
increments. So the only thing that needs to be shown, is that (L3) is satisfied.
As the increments of a Poisson process are Poisson distributed, the following
equation holds.

P[Nt −Ns = k] = e−λ(t−s)
(λ(t− s)k)

k!
, ∀k ∈ N0, t > s ≥ 0

With this the validity of (L3) follows.

lim
s→t

P[Nt −Ns > 0] = lim
s→t

1− e−λ(t−s) = 0 a.s.

One important property of Levy processes specifies the characteristic func-
tion(s) of the process.

Theorem 3.4. Let (Xt)t≥0 be a Levy process, and ϕXt , t ≥ 0 denote the
characteristic function of Xt, ϕXt(θ) = E[eiθXt ].
Then ϕXt , t ≥ 0 can be expressed by means of ϕX1 as follows.

ϕXt(θ) = ϕX1(θ)
t = E[eiθX1 ]t

Proof. Let n ∈ N and t ≥ 0 be fixed but arbitrary. Then Xt can be written
as a telescopic sum of increments of the process.

Xt = X t
n

+
(
X 2t

n
−X t

n

)
+ . . .+

(
Xt −X t(n−1)

n

)
16



Figure 3.1: Two sample paths of homogeneous Poisson processes.
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Due to the stationarity of increments (L2), each of the terms n in the brackets
is equal to X t

n
in distribution.

Using first the independence and the stationarity of increments of a Levy
process yields the following.

E
[
eiθXm

]
= E[eiθX1 ] · E[eiθ(X2−X1)] · · ·E[eiθ(Xm−Xm−1)] = E

[
eiθX1

]m

E
[
eiθX1

] 1
n = E

[
e
iθX 1

n

] 1
n · E

[
e
iθ(X 2

n
−X 1

n
)
] 1
n · · ·E

[
e
iθ(X1−Xn−1

n
)
] 1
n

= E
[
e
iθX 1

n

]
Combining these two results, proves the lemma for any positive rational num-
ber.
To get the result for any positive irrational number t, take a series of rational
numbers (qn)n∈N decreasing to t. Due to dominated convergence and the a.s.
right continuity of Xu in u, the statement of the lemma follows.

E[eiθXt ] = lim
n→∞

E[eiθXqn ] = lim
n→∞

E[eiθX1 ]qn = E[eiθX1 ]t

Definition 3.5. Let X := (Xt)t≥0 be a Levy process. Then the characteristic
exponent of this process is defined by

ψ(θ) := − log
(
E
[
eiθX1

])
. (3.1)

With this definition, Theorem 3.4 can be written differently.

Lemma 3.6. Let (Xt)t≥0 be a Levy process, and ψ denote the characteristic
exponent of X defined in (3.1).
Then the characteristic function ϕXt , t ≥ 0 can be written as

ϕXt(θ) = e−tψ(θ). (3.2)

The lemma above shows that the characteristic function a Levy process is of
a special type. Due to Theorem 2.2 this also restricts the class of possible
distributions of Levy processes. Precisely, the family of distributions of a
Levy process fulfills the following property.

Definition 3.7. A probability distribution F of a random variable is called
infinitely divisible, if, for any n ∈ N, there exists a probability distribution
Fn such, that F is given as the n-th convolution of Fn

FX = F ∗(n) = Fn ∗ . . . ∗ Fn .
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A random variable X is called infinitely divisible, if for any n ∈ N there exits
a set of iid random variables (X

(n)
j )j=1,...,n, X

(n)
j ∼ Fn, ∀j = 1, . . . , n, such

that
X

d
= X

(n)
1 + . . .+X(n)

n .

Lemma 3.8. Let X be a random variable and FX denote its distribution,
X ∼ FX . Then X is infinitely divisible if and only if FX is.

Proof. Let (Xk)k∈N be a family of iid random variables with Xk ∼ F for all
k. Then the distribution of the sum

∑n
k=1Xk is given as the n-th convolution

of F , for any n ∈ N,
n∑
k=1

Xk ∼ F ∗n.

With this relation the statement follows.

Before the relation of Levy processes and infinitely distributions can be
shown, another result is required.

Lemma 3.9. For two infinitely divisible distributions F and G, their convo-
lution F ∗G again is infinitely divisible.

Proof. Suppose two random variables X ∼ F and Y ∼ G, n ∈ N and
Z := X + Y .
Z = X︸︷︷︸

d
=
∑n
j=1X

n
j

+ Y︸︷︷︸
d
=
∑n
j=1 Y

n
j

d
=
∑n

j=1X
n
j + Y n

j︸ ︷︷ ︸
:=Z

(n)
j

As the set (Z
(n)
j )j=1,...,n is iid, the infinitely divisibility follows.

Now it can be shown that the class of infinitely divisible distributions covers
all possible distributions of Levy processes. With Lemma 3.8, this implies
that each Levy process itself is infinitely divisible.

Theorem 3.10. Let (Xt)t∈[0,T ] denote a Levy process, then for every t ∈ [0, T ]
there exists an infinitely divisible distribution Ft with Xt ∼ Ft. Also, for ev-
ery infinitely divisible distribution F , there exists a Levy process (Xt)t∈[0,T ]
with X1 ∼ F .

Proof. W.l.o.g. let n ∈ N and t > 0 be arbitrary but fixed, and define random
variables Y1, . . . , Yn by

Yj := X jt
n
−X (j−1)t

n

, j = 1, . . . , n.
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Then with (L1) and (L2) follows, that (Yj)j=1,...,n is a set of iid random

variables with Y1
d
= . . .

d
= Yn

d
= X t

n
.

By using the incremental notation of Xt it can be written as Xt
d
=
∑n

j=1 Yj.
As the choice of n was arbitrary, the distribution of Xt is infinitely divisible.

Otherwise, for any infinitely divisible probability distribution F define X1 ∼
F . With Theorem 3.4 the characteristic function of every Xt, t ≥ 0 and
therefore their distribution is known. Then the properties of a Levy process
have to be shown.
The exact prove is done in [Sat99, Theorem 7.10(ii)].

Example 3.11. Important examples of infinitely divisible distributions, and
their corresponding Levy processes are presented in the following.

• The degenerate distribution δx:
Take a random variable Z ∼ δz, this means that Z = z a.s., for z ∈ R.
Then for any n ∈ N, Z can be decomposed to a sum of iid random
variables Zn

1 , . . . , Z
n
n ∼ δz/n:

Z
d
= Zn

1 + . . .+ Zn
1 .

As shown in Theorem 3.10 a Levy process X exists with X1 ∼ δx. The
characteristic function of X1 is given by ϕX1 (θ) = E[eiθX1 ] = eiθx, and
with Theorem 3.4 it can be calculated for Xt, t ≥ 0: ϕXt(θ) = eiθxt. As
the characteristic function defines the distribution, the whole process
(Xt)t≥0 is known with Xt = xt a.s.
It is easy to verify that (L1-3) are valid, therefore this process really is
a Levy process.

• The Poisson distribution Poi(λ):
Let (Zi)i=1,...,n be a set of iid Poisson distributed random variables,
Zi ∼ Poi(λi), i = 1, . . . , n. Then the sum of these random variables
again is Poisson distributed.2

Z :=
n∑
i=1

Zi and λ =
n∑
i=1

λi, then Z ∼ Poi(λ)

With this, any Poisson distributed random variable can be written as
sum of n iid Poisson random variables, and the infinitely divisibility
follows.

2This can be shown on behalf of characteristic functions.
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To get the corresponding Levy process with X1 ∼ Poi(λ), Theorem 3.4
is again useful.
The characteristic function of a Poisson distributed random variable
with parameter λ is given by

ϕPoi(θ) = eλ(iθ−1) = ϕX1(θ).

With this the characteristic function of Xt, t ≥ 0 is given by ϕXt(θ) =(
eλ(iθ−1)

)t
= eλt(iθ−1). Therefore Xt again is Poisson distributed with

parameter λt, and the resulting Levy process (Xt)t≥0 is a Poisson pro-
cess.

• The Compound Poisson distribution CPoi(λ, F ):
For N ∼ Poi(λ) and a series of iid random variables (Zn)n∈N, Zn ∼ F
with an arbitrary probability distribution F . Then X :=

∑N
n=1 Zn is

Compound Poisson CPoi(λ, F ) distributed. As a result of the addi-
tion stability of the Poisson distribution the CPoi(λ, F ) distribution is
infinitely divisible:

X
d
=

N1∑
i=1

Zi,1 + . . .+
Nn∑
j=1

Zj,n,

where N1, . . . , Nn ∼ Poi(λ
n
) and (Zi,j)i∈N ∼ F, ∀j = 1, . . . , n.

The characteristic function of a Compound Poisson process with pa-
rameters λ and F is given by ϕCP (θ) = eλ(ϕF (θ)−1). Again a process
is defined by X1 ∼ CP (λ, F ) and all other Xt, t ≥ 0 via the char-
acteristic function ϕXt(θ) = ϕX1 (θ)t = eλt(iϕF (θ)−1). Therefore Xt is
again CP (λt, F ) distributed, and the corresponding Levy process is a
Compound Poisson process.

• The normal distribution N (µ, σ2):
The normal distribution is, like the Poisson distribution, stable re-
garding addition. Therefore a random variable Z ∼ N (µ, σ2) can be
decomposed into a sum of iid normal distributed stochastic variables:

Z
d
= Z1 + . . .+Zn, n ∈ N, where Z1, . . . , Zn ∼ N (µ

n
, σ

2

n
). With this the

infinite divisibility follows.
Again a Levy process can be defined with X1 ∼ N (µ, σ2), and using
Theorem 3.4 yields Xt ∼ N (µt, σ2t). Therefore, together with (L1-
3), the Levy process (Xt)t≥0 is a Brownian motion with drift µ and
diffusion σ, i.e. Xt = µt + σWt, where Wt is a standard Brownian
motion.
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If X1 ∼ N (0, 1) is standard normal distributed, then Xt ∼ N (0, t) and
together with (L1-3) this shows that the process (Xt)t≥0 is a standard
Brownian motion.

• It is obvious that each distribution that is stable regarding addition
is also infinitely divisible. Furthermore due to Lemma 3.9, the con-
volution of any two infinitely divisible distributions again is infinitely
divisible.3 This also shows that the sum of Levy processes again define
a Levy process.

Another essential property of infinitely divisible distributions - and therefore
Levy processes - is the representation of the characteristic function. This
theorem is known as Levy-Khintchine-formula.

Theorem 3.12. Let (Xt)t≥0 be a Levy process, and ϕX1 (θ) the characteristic
function of X1. Then the following representation is valid:

ϕX1 (θ) = exp

(
aiθ − 1

2
σ2θ2 +

∫
R\{0}

(eiθx − 1− iθx1|x|<1)ν(dx)

)
, (3.3)

where a ∈ R, σ ≥ 0 and ν is a sigma-infinite measure, satisfying
∫
R\{0} 1 ∧

x2 ν(dx) <∞.

Proof. See [Sat99, Theorem 8.1(i)]. Note that the theorem there only shows
that for each infinitely divisible distribution, the characteristic function is of
the form (3.3). Together with Theorem 3.10 this yields the statement of this
theorem.

This, together with Theorem 3.4 shows, that the characteristic function of a
Levy process - and therefore the process itself - is fully determined by the
triplet (a, σ, ν).

Definition 3.13. For a Levy process (Xt)t≥0 with characteristic function
stated in (3.3), the triplet (a, σ, ν) is called Levy-(Khintchine) triplet.
A Levy triplet is said to fulfill the usual conditions, if a ∈ R, σ ≥ 0 and ν is
a sigma-infinite measure, satisfying

∫
R\{0} 1 ∧ x2 ν(dx) <∞.

To be exact, a ∈ R is called the drift term, σ2 the Gaussian coefficient and
ν the Levy measure.

3As this is valid for a convolution of two distributions it is, by induction, valid for a
n-fold convolution, n ∈ N.
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Remark 3.14. Note, that the Levy-Khintchine representation, and therefore
the Levy triplet is unique.

As mentioned before, the sum of Levy processes is again a Levy process.
Hence it is reasonable to to decompose a Levy process into a sum of some
standard Levy processes. This in fact can be done on behalf of three Levy
processes, and is called the Levy-Itò decomposition.

Theorem 3.15. Let (a, σ, ν) be a Levy triplet that satisfies the usual con-
ditions, and (Ω,F ,P) a probability space. Then three independent Levy pro-
cesses X(1), X(2), X(3) on that probability space exist, such that: X(1) is a
Brownian motion with drift, X(2) is a compound Poisson process and X(3)

is a square integrable pure jump martingale with a.s. countable number of
jumps on each finite time interval with magnitude less than 1.
With X := X(1) + X(2) + X(3), there exists a Levy process X = (Xt)t≥0 on
that probability space with Levy triplet (a, σ, ν) and characteristic exponent

ψX(θ) = −
(
aiθ − 1

2
σ2θ2 +

∫
R\{0}

(eiθx − 1− iθx1|x|<1)ν(dx)

)
(3.4)

for θ ∈ R.

Remark 3.16. Note that sometimes the Levy process is decomposed into
four parts, splitting the Brownian motion with drift into a drift term and a
Brownian motion with diffusion σ.

The exact proof of this theorem is rather lengthy, and will not be stated here.
A rigorous motivation of if, following [Pap08] is shown below.

Motivation of Theorem 3.15 :
In Theorem 3.12 the characteristic function of a Levy process was stated
to have a certain form. Therefore the characteristic exponent is defined by
Equation (3.4). Now ψX is split into three parts −ψX = ψ1

X + ψ2
X + ψ3

X .
ψ1
X(θ) := aiθ − 1

2
σ2θ2 is the characteristic exponent of a Brownian motion

with drift a and diffusion σ, ψ2
X is defined via ψ2

X :=
∫
|x|≥1(e

iθx − 1)ν(dx)

and ψ3
X :=

∫
0<|x|<1

(eiθx − 1− iθx)ν(dx).

Now define λ :=
∫
|x|≥1 ν(dx), if λ = 0 then ψ2

X belongs to a compound

Poisson process with intensity λ = 0 and arbitrary probability distribution

F . Otherwise further define F (dx) =
1|x|≥1ν(dx)

λ
. This obviously defines a

probability distribution as
∫
R F (dx) = 1

λ

∫
|x|≥1 ν(dx) = 1. Now ψ

(2)
X can be

rewritten

ψ2
X =

∫
|x|≥1

(eiθx − 1)ν(dx) =

∫
R
λ(eiθx − 1)F (dx) = λ(ϕF (θ)− 1).
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This shows that this part belongs to a compound Poisson process X(2) with
X

(2)
1 ∼ CPoi(λ, F ) (cf. Example 3.11).

To show that the last part ψ3
X belongs to a square integrable pure jump mar-

tingale is the hardest part, and is shown for example in [Pap08] or [Tan11].

As mentioned before the characteristic function ϕX(θ) does exist for all θ ∈ R
and an arbitrary random variable X. Due to the Levy-Ito representation
theorem, one can show that for Levy processes the characteristic function
even is integrable on R.

Lemma 3.17. Let X := (Xt)t∈[0,T ] be a Levy process with characteristic
function ϕXt. If further the Levy triplet (a, σ, ν) satisfies the usual conditions,
and X is no pure jump process (σ > 0), then the characteristic function of
Xt, t > 0 is integrable on R, ϕXt ∈ L1(R), and

|ϕXt(θ)| ≤ e−
1
2
tσ2θ2 ∀θ, t

holds.

Proof. As the conditions of Theorem 3.15 are satisfied it can be applied, and
the stated independent processes X(1), X(2), X(3) exist with

X
d
= X(1) +X(2) +X(3).

Using the independence of these processes, and Jensen’s inequality yields the
following.

|ϕXt | =
∣∣∣E[eiθX(1)

t
]∣∣∣ ∣∣∣E[eiθX(2)

t
]∣∣∣ ∣∣∣E[eiθX(3)

t
]∣∣∣ ≤

≤
∣∣∣E[eiθX(1)

t
]∣∣∣E[ |eiθX(2)

t |︸ ︷︷ ︸
=1

]
E
[
|eiθX

(3)
t |︸ ︷︷ ︸

=1

]
=
∣∣∣E[eiθX(1)

t
]∣∣∣

As X
(1)
t ∼ N (at, σ2t), the characteristic function is given by

E
[
eiθX

(1)
t
]

= eiat−
1
2
σ2θ2 .

Taking the absolute value yields the stated inequality

|ϕXt(θ)| ≤ e−
1
2
tσ2θ2 ∀θ, t.

Now let f(µ,σ2) denote the probability density function of a N (µ, σ2) random
variable.

f(µ,σ2)(x) :=
1√

2πσ2
e−

1
2

(x−µ)2

σ2
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Then, using the inequality above and the assumptions t > 0, σ > 0 yields the
supposed integrability of the characteristic function.∫

R
|ϕXt(θ)|dθ ≤

∫
R

e−
1
2
tσ2θ2dθ =

√
2πtσ2

∫
R
f(0, 1

tσ2
)(θ)dθ︸ ︷︷ ︸

=1

=
√

2πtσ2 <∞

3.2 Exponential Levy models

In mathematical finance, the most important thing is the model one uses
for calculations of stock prices, derivatives etc. Complex models will fit the
data better, but require more assumptions regarding parameters that may
not be fulfilled and make calculations harder. Therefore one has to choose a
model that on the one hand is sufficiently complex to reflect the real world
circumstances well, and on the other hand is simple enough to enable easy
price calculations of at least plain vanilla derivatives.
The Black-Scholes model has for a long time been the preferred model when
it comes to pricing options, and in practice often still is. This model has
been discussed in detail for its advantages and disadvantages, see for example
[Gat06]. The main feature of this model is, that the asset (St)t≥0 is modelled
by a geometric Brownian motion and therefore the option prices can be
calculated easily.

St := S0e
(µ− 1

2
σ2)t+σWt ,

where µ ∈ R, σ > 0 and (Wt)t≥0 is a Brownian motion.

However, there has been a lot of research regarding modifications of the
Black-Scholes model to improve two aspects, see [KW04, Section 1].
For one thing, the log-returns of an underlying often do not follow a normal
distribution as supposed in the Black-Scholes model. In fact, the distribution
function tends to be left-skewed and leptokurtic which are two facts that indi-
cate non gaussian log-returns. For another thing in the Black-Scholes model
the implied volatility function is known to form the so-called volatility smile.
This means that the constant implied volatility in the Black-Scholes model
should rather be a convex function of the strike and time.
These two aspects motivate the use of more complex models, with other
return distributions. Therefore the more general type of exponential Levy
models is introduced.
Examples for other popular models are stochastic volatility models, GARCH
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models or the constant elasticity of variance (CEV) model. However, the ab-
sence of jumps discards these models as jumps are an important issue when
quantifying big changes in stock prices in short time intervals. Another rea-
son to use jump models is the existence of jumps in observed prices such
as exchange rates. Hence, this thesis focusses on exponential Levy (jump)
models, and for this reason in the following some definitions and results for
Levy processes are stated.

Definition 3.18. Let (Xt)t≥0 be a Levy process with Levy triplet (a, σ, ν) 4.
The asset S is then said to follow an exponential Levy model, if

St := eXt , t ≥ 0.

Within these models two different types are distinguished.

Pure jump models

These models are specified by a Levy process with triplet (a, σ, ν), where
σ > 0 and ν(R) < ∞, meaning that the Levy process has a diffusion and
a jump part, with finite number of jumps. Some important examples are
stated below.

• Variance-Gamma model: The Variance-Gamma process, also known as
the Laplace motion is a pure jump Levy process with finite moments.
Further, it has independent and are Variance Gamma distributed mo-
ments.

• Normal inverse Gaussian model: The Normal inverse Gauss process is
a Levy process with Normal inverse Gaussian distributed increments.
For further details see [TV09].

Jump diffusion models

These models are specified by a Levy process with triplet (a, σ, ν), where
σ > 0 and ν(R) < ∞, meaning that the Levy process has a diffusion and
a jump part, with finite number of jumps. The two most important models
are stated below.

4See Definition 3.1 and Theorem 3.12.
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• Merton model: Within this model, the corresponding Levy process, re-
spectively its Levy measure has a Gaussian density,

ν(x) =
λ√

2πσ2
e−

(x−µ)2

2σ2 ,

where λ defines the jump intensity, µ is the average jump size and σ
the volatility.

• Kou model: This model will be discussed in detail in Section 3.2.1.

The Black-Scholes model can also be expressed as an exponential Levy model,
more precisely it is given if the exponent Xt is a Levy process without jumps,
ν(R) = 0.

3.2.1 Kou’s model

Kou’s model [Kou02] is a Levy jump diffusion model, where the asset price
St has the following dynamics.

dSt
St−

= µdt+ σdWt + d

(
Nt∑
j=1

Vj − 1

)
,

where µ ∈ R, σ > 0 and (Wt)t≥0 is a standard Brownian motion. Further,
(Nt)t≥0 is a Poisson process with rate λ, and (Vj)j∈N is a sequence of iid

random variables Vj
d
= V, ∀j ∈ N with V > 0 a.s., such that its logarithm

has a double-exponential distribution:

Y := log(V )
d
=

{
ξ1 with probability p

ξ2 with probability 1− p

for ξi ∼ Exp(ηi) with E[ξi] = 1
ηi
, i ∈ {1, 2}.

This means that the probability density function of Y is given by

fY (y) = pη1e
−η1y1y≥0 + (1− p)η2eη2y1y<0 ,

where p ∈ [0, 1] and η1 > 1, η2 > 0.

For reasons of simplicity, all sources of randomness, (Nt)t≥0, (Wt)t≥0 and
(Yj)j∈N, are set as independent and µ and σ are assumed constant.
The model can be generalized to multidimensional processes, and the as-
sumptions regarding the independence and constancy can be loosened or
dropped, respectively.
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From the dynamics of the asset price St, the process can be computed by
using Ito’s formula on Xt := log(St):

dXt = d(log(St)) =

=
1

St
dSt −

1

2S2
t

d〈St, St〉+ d

(
Nt∑
j=1

log (St + St(Vj − 1))− log(St)

)
=

=
1

St
dSt −

1

2S2
t

d〈St, St〉+ d

 Nt∑
j=1

log(Vj)︸ ︷︷ ︸
Yj

 .

Using integration, and as µ and σ are constant, the representation of Xt and
St follow.

Xt = X0 + (µ− 1

2
σ2)t+ σWt) +

Nt∑
j=1

Yj (3.5)

St = S0e
(µ− 1

2
σ2)t+σWt

Nt∏
j=1

Vj (3.6)
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Chapter 4

How to make Dupire’s local
volatility work with jump
processes

Local volatility models are a commonly used tool for asset pricing. This is,
as they can be calibrated to fit market data very well. Furthermore the local
volatility can be computed directly out of option market prices with Dupire’s
formula. Anyhow, this only is feasible if the asset is continuous, and therefore
has no jumps.
The drawbacks of such no jump models have been discussed in Section 3.2,
and hence it is reasonable to adjust these jump processes in a way, such that
Dupire’s formula can be applied.
In the following section, at first local volatility is introduced and Dupire’s
formula is derived shortly. Then, the results of Gerhold’s paper [FGY13]
regarding Dupire’s local volatility for Levy jump diffusions are summed up
and applied to Kou modelled underlyings.

4.1 Local volatility & Dupire’s formula

The idea to compute the dynamics of an asset on behalf of given call prices is
a common task. Especially the calculation of the so called implied volatility
σBS(K, t) is a frequently used procedure 1. Here, the idea is that the volatility
of the underlying asset is a function of both, the option’s strike price and
time to maturity. The corresponding diffusion model is given by the following

1The implied volatility is calculated such, that the Black Scholes pricing formula equals
the real prices for several points in time and strikes. For further information see [Gat06,
MR97].
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dynamics
dSt
St

= µdt+ σBS(K, t)dWt .

In practise it is interesting to fit a model to existing call (market) prices.
Breeden and Litzenberger, [BL78] showed that european call prices define
the underlying’s density. Based on this, Dupire (1994) showed, that a unique
diffusion process exists, matching this density.

dSt
St

= µdt+ σ(St, t)dWt (4.1)

The function σ(St, t) is then called local volatility.
For an arbitrage free call price surface, Dupire even showed that this model is
uniquely determined by the so called Dupire formula. The following deriva-
tion is mainly taken from Gatheral, [Gat06].

Heuristic derivation of Dupire’s formula

Consider the stock price model

dSt
St

= rtdt+ σ(St, t)dWt.

With ϕ(St, t) defining the pseudo probability density, the expected payoff of
a european call option with strike K and maturity T is given by

C(K,T ) =

∫ ∞
K

ϕ(s, T )(s−K)ds.

Then the call price is twice differentiable with respect to the strike, and once
with respect to time, and the corresponding derivatives are given as follows.

∂C

∂K
(K,T ) = −

∫ ∞
K

ϕ(s, T )ds

∂2C

∂K2
(K,T ) = ϕ(K,T )

∂C

∂T
(K,T ) =

∫ ∞
K

∂

∂T
ϕ(s, T )(s−K)ds

Using the fact, that ϕ satisfies the Fokker-Planck equation,

∂ϕ

∂T
=

1

2

∂2

∂S2
t

(σ2S2
Tϕ)− ST

∂

∂ST
(rTSTϕ),
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and using partial integration twice yields the following equation for the
derivative with respect to time.

∂C

∂T
(K,T ) =

σ2K2

2
ϕ(K,T )+

∫ ∞
K

rT sϕds =
σ2K2

2

∂2C

∂K2
(K,T )−rTK

∂C

∂K
(K,T )

Solving this equation for σ2 gives Dupire’s formula.

σ2(K,T ) =
2(∂TC(K,T ) + rK∂KC(K,T ))

K2∂KKC(K,T )
. (4.2)

Note, that within this derivation no assumptions for interchanging differenti-
ation with integration or applying the Fokker-Planck equation are made. For
this reason the problems that occur when considering jumps are stressed.
For one thing it is questionable whether the call price function is twice con-
tinuously differentiable with respect to the strike when considering jump
models for the underlying, and for another thing there is a blowup of the lo-
cal volatility σ(., t)→∞ for t→ 0 leaving the existence of a unique solution
to (4.1) unsure.
Nevertheless, this formula is often used in practice even in presence of jumps
after some regularizations are done. Therefore Gerhold et al. showed in
[FGY13] that this approach is reasonable, and that Dupire’s formula can be
used even in presence of jumps using time shifting methods.

Theorem 4.1 ([FGY13], Theorem 1). Assume that (St)t≥0 is a martingale
(with jumps) and the corresponding smooth 2 call price surface

C(K,T ) = E[(ST −K)+], ∀K,T ≥ 0,

such that ∂TC > 0 and ∂KKC > 0. Define the ε-shifted local volatility by

σ2
ε (K,T ) =

2(∂TC(K,T + ε) + rK∂KC(K,T + ε))

K2∂KKC(K,T + ε)
. (4.3)

Then
dSεt
Sεt

= σε(S
ε
t , t)dWt, starting at randomized spot Sε0 with distribution

P[Sε0 ∈ dK]/dK = ∂KKC(K, ε),

admits a unique, non explosive strong SDE solution such that

E[(SεT −K)+]→ C(K,T ), as ε→ 0, ∀K,T ≥ 0. (4.4)

2What is really needed here is that σε as defined in 4.3 is locally Lipschitz in K and
bounded, continuous on compacts in T.
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This theorem is the basis of this thesis, and the following sections will focus on
applying this to Kou’s model and realizing it numerically. However, taking
the limit for ε → 0 is hard to implement. Hence, another version of this
theorem is provided by Gerhold et al.

Theorem 4.2 ([FGY13], Theorem 4). Suppose the setting of Theorem 4.1

with σloc defined by (4.2) and define the process (S̃εt )t≥ε by

dS̃εt

S̃εt
= σloc(S̃εt , t)dWt,

starting at a random spot S̃εε with distribution

P(S̃εε ∈ dK)/dK = ∂KKC(K, ε).

Then, for K ≥ 0 and T ≥ ε, Sε rebuilds the given call price surface.

E[(S̃εT −K)+] = C(K,T )

Proof. Let Sε be the time shifted process defined in Theorem 4.1. Now define
the process Y = (Yt)t∈[0,T ], as Yt := Sεt−ε. Then the following equation holds

E[(YT −K)+] = C(K,T ),

and using the SDE for Sε yields a representation for Y.

Yt = Sε0 +

∫ t−ε

0

Sεuσε(S
ε
u, u)dWu = Y ε

ε +

∫ t

ε

Y ε
s σε(Y

ε
s , s)dWs

With the definitions of the initial values, it follows that

Yε = Sε0
d
= S̃εε ,

and with this
S̃ε

d
= Y.

Now the statement of the theorem follows.

E[(S̃εT −K)+] = E[(YT −K)+] = C(K,T )

This version is preferred to Theorem 4.1, as the call price surface can be
regained by Monte Carlo simulation for each time to maturity T ≥ ε.3

3The error between the price obtained by simulation and the actual call price (surface)
can be explained by numerical errors, and a possibly to small simulation size.
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Remark 4.3. Note, that although Theorem 4.2 only states the probability
density of the ’initial value’ Sεε , the cumulative distribution function can be
obtained by integration.

P[Sεε ≤ x] =

∫ x

0

∂KKC(y, ε)dy = ∂KC(x, ε)− ∂KC(0, ε)

This will be used to simulate the initial value numerically.

The next sections will apply this theorem to Kou’s model and establish an
integral representation for the local volatility.

4.2 Local volatility in Kou’s model

As described before, the computation of the local volatility happens in three
steps:

1. Calculation of the characteristic function of the underlying.

2. Computing the Call price surface via inverse Fourier transformation.

3. Applying Dupire’s formula on the Call price surface.

In the following the local volatility surface in Kou’s model will be computed
following the three steps stated before.

Assumption 1. From now on the underlying S is considered a martingale.
This can be done as a result from the no arbitrage condition.

Characteristic function

As shown in Equation (3.6) the asset price St and its logarithm Xt have the
following representation:

Xt = X0 + (µ− 1

2
σ2)t+ σWt) +

Nt∑
j=1

Yj

St = S0e
(µ− 1

2
σ2)t+σWt

Nt∏
j=1

Vj.
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Out of this, one can easily compute the characteristic function of Xt, by
applying the Levy-Khintchine formula, see Theorem 3.12. For reasons of
integrity, the characteristic function is derived manually below.

ϕX1 (θ) = E[exp(iθX1)] =

= E
[
exp
(
iθ (X0 + µ− 1

2
σ2 + σW1)︸ ︷︷ ︸

:=X(1)

)]
E
[
exp
(
iθ

N1∑
j=1

Yj︸ ︷︷ ︸
:=X(2)

)]
,

where the last equation follows due to the independence of (Wt)t≥0, (Nt)t≥ 0
and (Vj)j∈N. Then, by noticing that X(1) ∼ N (b, σ2) with b := X0 + µ− 1

2
σ2

the first part of the characteristic function is given by

E[exp(iθX(1))] = exp(iθb− 1

2
θ2σ2).

For the second part it is important to notice that X(2) is compound Poisson
distributed, X(2) ∼ CP(λ, F ), where F is a double exponential distribution
DExp(p, η1, η2) with probability density f ,

f(y) := pη1e
−η1y1y≥0 + (1− p)η2eη2y1y<0.

In Example 3.11 the characteristic function of a compound Poisson random
variable Y ∼ CPoi(λ, F ) was stated as

ϕY (θ) = eλ(ϕF (θ)−1).

Therefore only the characteristic function of the double exponential distri-
bution F needs to be calculated.

ϕF (θ) = E[eiθY ] =

∫
R

eiθyf(y)dy =

=

∫ ∞
0

eiθypη1e
−η1ydy +

∫ 0

−∞
eiθy(1− p)η2eη2ydy =

= pη1

∫ ∞
0

e(iθ−η1)ydy + (1− p)η2
∫ 0

−∞
e(iθ+η2)ydy =

pη1
η1 − iθ

+
(1− p)η2
η2 + iθ

With this, finally the characteristic function of the log asset Xt at time t = 1
is given by

ϕX1(θ) = exp

(
iθb− 1

2
θ2σ2 + λ

(
pη1

η1 − iθ
+

(1− p)η2
η2 + iθ

− 1

))
,
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and the Levy exponent by

ψX(θ) = iθb− 1

2
θ2σ2 + λ

(
pη1

η1 − iθ
+

(1− p)η2
η2 + iθ

− 1

)
. (4.5)

As (Xt)t≥0 is a Levy process, the characteristic function of Xt follows by
applying Theorem 3.4.

ϕXt(θ) = exp

(
t

(
iθb− 1

2
θ2σ2 + λ

(
pη1

η1 − iθ
+

(1− p)η2
η2 + iθ

− 1

)))
(4.6)

Due to Assumption 1, (St)t≥0 can be considered a martingale. A sufficient
condition for this is, that E[St] = E[S0e

Xt ] = S0ϕXt(−i) = S0. Therefore it
follows, that

b = −
(
σ2

2
+ λ

(
pη1
η1 − 1

+
(1− p)η2
η2 + 1

− 1

))
. (4.7)

The mgf in the double exponential jump diffusion model follows analogously:

MXt(θ) = exp

(
t

(
θb+

1

2
θ2σ2 + λ

(
pη1
η1 − θ

+
(1− p)η2
η2 + θ

− 1

)))
. (4.8)

As η1 > 1 and η2 > 0, it follows that there exists a p with 1 < p < η1, such
that MX

t (p) <∞. Therefore all assumptions for Theorem 2.15 are satisfied,
and ĉα(k, t) can be computed.

The Call price surface

The calculation of the call price surface is done following Section 2.2.2. From
Theorem 2.15 follows that the Fourier transform of the damped option price
has the form

ĉα(k, t) =
ϕXt(k − (α + 1)i)

(α + ik)(α + 1 + ik)
. (4.9)

Now, with Theorem 2.16, ĉα(k, t) is integrable and applying Theorem 2.17
provides

C(k, t) =
e−αk

2π

∫ ∞
−∞

e−iukĉα(u, t)du =
e−αk

π

∫ ∞
0

Re
(
e−iukĉα(u, t)

)
du.

By plugging in the previously derived formulas for ĉα(u, t) and ϕXt(θ) respec-
tively yields an integral formula for the call price surface in Kou’s model. This
integral will be computed in Chapter 5 by means of numerical integration.
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Applying Dupire’s formula

In Dupire’s formula (4.2), the first derivative with respect to T , ∂TC and
the first and second derivative with respect to K, ∂KC and ∂KKC are used.
Therefore it needs to be verified, that the conditions for interchanging inte-
gration with differentiation are satisfied. It is sufficient for the integrand to
be integrable, differentiable with respect to the required variable and for the
derivation to be bounded by an integrable function.
Hence, the call price surface is rewritten:

C(k, t) =
1

2π

∫ ∞
−∞

f(k, t, u)du,

where

f(k, t, u) = e−(α+iu)k
ϕXt(u− (α + 1)i)

(α + iu)(α + 1 + iu)
. (4.10)

So, as shown in Proposition 5.3, all required derivatives of f are bounded by
an integrable function, and therefore the differentiation and integration can
be interchanged. With this, the derivatives in Dupire’s formula are given by

∂KC(K,T ) =
1

2π

∫ ∞
−∞

∂Kf(K,T, u)du

∂KKC(K,T ) =
1

2π

∫ ∞
−∞

∂KKf(K,T, u)du

∂TC(K,T ) =
1

2π

∫ ∞
−∞

∂Tf(K,T, u)du

and Dupire’s formula can be applied.4

4Note that, as C(K,T ) is computed numerically, these derivatives are computed the
same way.
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Chapter 5

Numerical realisation

The previous chapters provide all necessary results and formulas to be able
to compute the local volatility theoretically. Anyways, to be able to do this
numerically there are still some issues that need to be taken care of, such as
numerical integration or Fourier inversion. This chapter will therefore focus
on the numerical problems that occur while computation, and describe the
most important steps of the algorithm. The aim of the following algorithm is,
to show that Theorem 4.2 is applicable for jump diffusion processes. There-
fore Kou’s model is selected as model for the underlying. Once the model
is chosen and all parameters are set, all required results can be computed
following Section 4.2, and with this the damped Fourier transform of the
option price, and the call price surface itself are calculated.

5.1 Optimal damping factor

In Section 2.2.2 the damped option price was introduced, to be able to com-
pute either its Fourier transform and the call price surface itself. As the
damping factor α does not have any impact on the resulting option price in
theory, the choice of α has not been an issue in this paper. The only restric-
tions to it, are the ones resulting from Theorems 2.15 and 2.17.
Nevertheless, this factor α does have a big impact on the oscillation and
absolute value of the integrand, and therefore is important for numerical in-
tegration. This issue has been discussed in detail in [LK07]. The results of
this paper are now shortly presented, and then applied to Kou’s model to
get the optimal damping factor for Fourier inversion.

The first restriction results from the strip of regularity of the characteris-
tic function. The generalized version of the characteristic function is well
defined on ΛX := {ξ ∈ C : −Im(ξ) ∈ AX}, cf. Definition 2.10, with
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AX := (ζ−, ζ+) ⊆ R. As the Fourier transform of the call price is given by
Equation (4.9), the permitted interval for alpha follows easily.

α ∈ (ζ− − 1, ζ+ − 1)

Computing the strip of regularity for Kou’s model

Lemma 5.1. Let X be a random variable and MX its mgf, and let (ζ−, ζ+)
be the maximal interval where the mgf exists.
Then these bounds are given as follows.

ζ− := sup{θ < 0| log(MX(θ)) =∞}
ζ+ := inf{θ > 0| log(MX(θ)) =∞}

Proof. As the logarithm is a strictly increasing function, one can see that
MX(θ) <∞, for all θ with log(MX(θ)) 6=∞. Let Z be the set of all values,
where the mgf does not exist,

Z := {θ ∈ R| log(MX(θ)) =∞}.

As MX(0) = 1 <∞ for any random variable X, it follows that 0 ∈ (ζ−, ζ+),
and therefore ζ− ≤ 0 and ζ+ ≥ 0.
Now define ζ− and ζ+ as stated above. Then (ζ−, ζ+)∩Z = ∅, and therefore
MX(θ) <∞ for all θ ∈ (ζ−, ζ+).
Let I := (a, b) ) (ζ−, ζ+) be another interval, and let w.l.o.g. a < ζ−, and
(zn)n∈N ∈ ZN with zn ↗ ζ− a series that converges from below to ζ−. Then
there exists an index N ∈ N such that zN ∈ I, and therefore the mgf does
not exist on the whole interval.
The same steps can be done if b > ζ+ with a series in Z decreasing to ζ+,
and with this (ζ−, ζ+) must be the maximal interval.

Now, this lemma can be applied to the moment generating function stated
in (4.8).

log(MX
t (θ)) = t

(
θb+

1

2
θ2σ2 + λ

(
pη1
η1 − θ

+
(1− p)η2
η2 + θ

− 1

))
This function is continuous, and therefore finite, on R \ {−η2, η1}. So the
strip of regularity is given by

(ζ−, ζ+) := (−η2, η1) ⊃ [0, 1],

and with this
α ∈ (α−, α+) := (−η2 − 1, η1 − 1). (5.1)

To get the optimal choice of α, the integrand only needs to be minimized
over this interval.
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Optimal choice of α suggested by Lord & Kahl

As mentioned before the choice of alpha is not imported when calculating
the option prices in theory. However, due to numerical errors it does have an
impact when integrating numerically. These numerical errors are caused by
both, highly oscillating integrands and big absolute values of the integrand.
Lord and Kahl [LK07] optimized the choice of the damping parameter α
regarding big absolute values. These results have been been taken up by
Peterseil [Pet14] and were presented in a mathematically more accurate way.
The following proposition presents the result from these discussions.

Proposition 5.2. [Pet14, Proposition 5.3.4]
Let X be a random variable with ϕX its corresponding moment generating

function, and let further ζ− and ζ+ be defined as in Lemma 5.1. Then α∗ ∈
(α−, α+) := (ζ− − 1, ζ+ − 1) minimizes

sup
u∈(0,∞)

∣∣∣∣∣e−(α+iu)k ϕX(u− (α + 1)i)

(α + iu)(α + 1 + iu)

∣∣∣∣∣ (5.2)

if and only if it is a solution to

min
α∈[α−,α+]\{−1,0}

logMX(α + 1)− 1

2
logα2(α + 1)2 − αk. (5.3)

In case one of the bounds α−, α+ is infinite, additionally assume

P(X < k) > 0 if α− = −∞ and

P(X > k) > 0 if α+ = +∞.

Then the minimization problem in (5.3) has a unique solution in each of the
intervals

◦ [α−,−1) ∩ (−∞,−1),

◦ (−1, 0) ∩ (−1, α+] and

◦ (0, α+] ∩ (0,+∞).

Proof. See [Pet14, Proposition 5.3.4]. Note that the notation there is slightly
different, as α is replaced with α + 1 and therefore the intervals are shifted
accordingly. Furthermore note that with Remark 2.7, ϕX(u − (α + 1)i) =
MX(α + 1− iu), wherever it exists.
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With this theorem calculating the optimal choice of alpha can be done by
numerical optimization of expression (5.3). However, this choice of α is only
optimal for the integrand stated in (5.2), and therefore when calculating
the call price surface C(K,T ). As Dupire’s formula (4.2) requires numerical
calculation of some derivatives first an integral representation is derived and
similar results for these functions are presented.

Proposition 5.3. Let the log-underlying X := (Xt)t∈[0,T ] be a non pure-jump
Levy process with characteristic function ϕXt, and let its Levy triplet (a, σ, ν)
satisfy the usual conditions with σ > 0. Further let α−, α+ be defined as in
Proposition 5.2 and K be the strike of a european call option C(K, t) stated
in (2.3).
Then C(., .) ∈ C2,1 1, and the corresponding derivatives are given by

∂C

∂K
(K, t) = −

1

π

∫ ∞
0

Re

(
K−(α+1+iu)

ϕXt(u− (α + 1)i)

(α + 1 + iu)

)
du

∂2C

∂K2
(K, t) =

1

π

∫ ∞
0

Re
(
K−(α+2+iu)ϕXt(u− (α + 1)i)

)
du

∂C

∂t
(K, t) =

1

π

∫ ∞
0

Re

(
−ψ(u− (α + 1)i)K−(α+iu)

ϕXt(u− (α + 1)i)

(α + iu)(α + 1 + iu)

)
du,

where ψ(.) is the characteristic exponent stated in (3.2), and 0 < α ≤ α+.

Proof. With the assumptions made, all conditions for Theorem 2.17 are sat-
isfied, and the call price is given by (2.2). The key point in this proof is to
show that the integral and the differential can be interchanged. To do this,
the integrands have to be differentiable and the corresponding derivatives
have to be absolutely bounded by an integrable function.
For this purpose, let fα : R+ × [0, T ] × R → C denote the integrand as a
function of the strike K := ek for each valid α,

fα(K, t, u) := K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + iu)(α + 1 + iu)
.

To see the dependence on t better, fα is rewritten using (3.2), and the char-
acteristic exponent ψ : C→ C.

fα(K, t, u) := K−(α+1+iu)
etψ(u−(α+1)i)

(α + iu)(α + 1 + iu)
.

1Note that this means that C(., .) is twice differentiable with respect to K. Anyhow,
due to the chain rule of derivations C(log(K), t) is also twice differentiable with respect
to k.
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Then fα is clearly twice differentiable with respect to K, and once with
respect to t, fα(., ., u) ∈ C2,1, with the following derivatives.

∂fα
∂K

(K, t, u) = −K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + 1 + iu)

∂2fα
∂K2

(K, t, u) = K−(α+2+iu)ϕXt(u− (α + 1)i)

∂fα
∂t

(K, t, u) = −ψ(u− (α + 1)i)K−(α+iu)
ϕXt(u− (α + 1)i)

(α + iu)(α + 1 + iu)

These three functions exactly describe the corresponding derivations of the
integrand of C(K, t). Therefore the only thing that needs to be shown is, that
these derivatives are bounded by integrable functions, then derivation and
integration can be interchanged. Using that |z| ≥ |Re(z)| and |az| = |aRe(z)|
is valid for all z ∈ C yields the following inequalities.

∣∣∣∣∂fα∂K
(K, t, u)

∣∣∣∣ ≤ K−(α+1)
|ϕXt(u− (α + 1)i)|

|α + 1|
(5.4)∣∣∣∣∂2fα∂K2

(K, t, u)

∣∣∣∣ ≤ K−(α+2)|ϕXt(u− (α + 1)i)| (5.5)

To get an estimate for the derivative with respect to t, first a bound for
ψ(z) := − logE[eizX1 ], z ∈ C needs to be found. Note therefore, that here
log is the complex logarithm defined as log : C \ {0} → [0,∞)× i (−π, π] 2.
With this definition, the following inequality holds for all z ∈ C,

| log z| ≤ | log
∣∣z|∣∣+ π.

Now this can be applied to the characteristic exponent.

|ψ(z)| = | log |E[eizX1 ]||+ π ≤ | logE[|eizX1|]|+ π =

= E[e−Im(z)X1 ] + π := c∗ <∞

With these results an upper bound can be established.∣∣∣∣∂fα∂t (K, t, u)

∣∣∣∣ ≤ |ψ(u− (α + 1)i)|︸ ︷︷ ︸
≤c∗

K−α
|ϕXt(u− (α + 1)i)|

|α2 + α|

≤ c∗K−α
|ϕXt(u− (α + 1)i)|

|α2 + α|

(5.6)

2This is often referred to as the principal value of the complex logarithm.
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As X was assumed to be a non pure jump process with σ > 0, and the Levy
triplet fulfills the usual conditions, Lemma 3.17 can be applied. Therefore
ϕXt is integrable, and with this all stated derivatives are integrable with re-
spect to u.
This was the main condition for interchanging the integral and the differen-
tial.

∂C

∂K
(K, t) =

∂

∂K

(
1

2π

∫ ∞
−∞

K−(α+iu)
ϕXt(u− (α + 1)i)

(α + iu)(α + 1 + iu)
du

)
=

=
1

2π

∫ ∞
−∞

∂fα
∂K

(K, t, u)du = −
1

π

∫ ∞
0

Re

(
K−(α+1+iu)

ϕXt(u− (α + 1)i)

(α + 1 + iu)

)
du

The last equation follows, as the imaginary part of the integrand is an odd
function, and therefore the integral equals zero. The same steps can be done
for the other derivatives as well, which yields the stated representations.

Now, one can see that these representations again are integral notations that
need to be computed numerically. For this reason it is once more required
to find an optimal damping factor for each derivative that minimizes compu-
tation errors. As mentioned for the call price itself, these functions also do
not depend on the choice of α in theory, but might do when calculations are
done numerically.
However, in the following only the derivatives with respect to the strike are
considered. The derivative with respect to the time to maturity t is not
optimized individually, but rather computed with the optimal alpha from
Proposition 5.2. This is done, as getting a similar result for ∂C

∂T
to is not

easy when optimizing this derivative, and doing so would cause a remarkably
higher computation time.
In the following, the approach from [Pet14] is modified to get similar results
for these derivations.

Lemma 5.4. Let X := (Xt)t∈[0,T ] fulfill the assumptions of Proposition 5.3,
with characteristic function ϕXt. Further, let α ∈ R be such, that ϕXt(−(α+
1)i) <∞. If α 6= −1 then

sup
u∈(0,∞)

∣∣∣∣∣K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + 1 + iu)

∣∣∣∣∣ = K−(α+1)
ϕXt(−(α + 1)i)

|α + 1|
,

and if α = −1 then

sup
u∈(0,∞)

∣∣∣∣∣K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + 1 + iu)

∣∣∣∣∣ = +∞.
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Proof. In case α 6= −1, one gets∣∣∣∣∣K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + 1 + iu)

∣∣∣∣∣ ≤ K−(α+1)
ϕXt(−(α + 1)i)

|α + 1|
.

As ϕXt is continuous wherever it exists, the whole expression is and taking
the right limit yields

lim
u↘0

∣∣∣∣∣K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + 1 + iu)

∣∣∣∣∣ = K−(α+1)
ϕXt(−(α + 1)i)

|α + 1|
,

and therefore the stated equation holds.
If α = −1, then |α+ 1 + iu| = |u|, and with this the second equation follows.

lim
u↘0

∣∣∣∣∣K−(α+1+iu)
ϕXt(u− (α + 1)i)

(α + 1 + iu)

∣∣∣∣∣ = K−(α+1) lim
u↘0

ϕXt(−(α + 1)i)

|u|
= +∞

Lemma 5.5. For µ ∈ R define fµ : R \ {−1} → R+ as

fµ(x) :=
eµx

|x+ 1|
. (5.7)

Then
f ′′(x) > 0, ∀x ∈ R \ {−1}.

Proof. At first, it is helpful to write this function in a different way.

fµ(x) :=


eµx

−(x+ 1)
x < −1

eµx

x+ 1
x > −1

Now the second derivatives can be computed for each of these cases by using
the quotient rule of derivation.

f ′′µ(x) =


eµx(µ(x+ 1)− 1)2 + eµx

−(x+ 1)3
x < −1

eµx(µ(x+ 1)− 1)2 + eµx

(x+ 1)3
x > −1

Combining these two cases gives a closed form for f ′′,

f ′′µ(x) =
eµx(µ(x+ 1)− 1)2 + eµx

|x+ 1|3
, x ∈ R \ {−1}.

With this representation, obviously, f ′′µ(x) > 0 is satisfied for x 6= −1.
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The following lemma is an equivalent to Proposition 5.2 for the integrand of
the first derivative of the call price with respect to the strike.

Lemma 5.6. Let X be a random variable and ϕX its corresponding moment
generating function, and let further α− and α+ be defined as in Proposi-
tion 5.2. Then α∗ ∈ (α−, α+) minimizes

sup
u∈(0,∞)

∣∣∣∣∣e−(α+1+iu)k
ϕX(u− (α + 1)i)

α + 1 + iu

∣∣∣∣∣ (5.8)

if and only if it is a solution to

min
α∈[α−,α+]\{−1}

logMX(α + 1)− 1

2
log(α + 1)2 − (α + 1)k. (5.9)

Additionally assume that both bounds α−, α+ are finite.
Then the minimization problem in (5.9) has a unique solution in each of the
intervals

◦ [α−,−1) and

◦ (−1, α+].
(5.10)

Again, the following proof is based on the approach in [Pet14, Proposi-
tion 5.3.4] and has been adapted to this purpose.

Proof. At first, note that every strictly convex function has at most exactly
one minimum. Therefore, showing that the function of the optimization
problem is convex yields a part of the statement.
To do this, note that the function fµ defined in (5.7) is convex regardless on
the choice of µ. Therefore it is convex when setting µ∗ := X(ω)− k for each
ω ∈ Ω.

fµ∗(α) :=
e(X(ω)−k)α

|α + 1|
, α ∈ R \ {−1}

This is equivalent to the fact that for all λ ∈ (0, 1) and α 6= β ∈ R \ {−1},
fµ∗ satisfies the following inequation.

fµ∗(αλ+ β(1− λ)) < λfµ∗(α) + (1− λ)fµ∗(β)

Now define the function J : R \ {−1} → R+ as

J(α) := E[fµ∗(α + 1)] = e−k(α+1)MX(α + 1)

|α + 1|
,

then taking the expectation on both sides of the inequation and multiplying
with the positive factor e−k yields the convexity of J .

J(αλ+ β(1− λ)) < λJ(α) + (1− λ)J(β)

44



This, together with Lemma 5.4 shows that there exist at most one optimal
alpha in each interval stated in (5.10) for the expression in (5.8). As the loga-
rithm is a strictly monotonic increasing function, this minimization problem
is equivalent to getting the minima (if existing) of

log(J(α)) = logMX(α + 1)− 1

2
log(α + 1)2 − (α + 1)k.

Now the only thing that needs to be shown, is that there really exists a
unique minimum in each of the intervals. This statement is trivial, if either
α− or α+ equals −1, so this case is excluded. With this the following is
always valid

lim
α↘−1

J(α) = lim
α↗−1

J(α) = +∞. (5.11)

As the function J is continuous on each, [α−,−1] and [−1, α+] there also
exists a minimum in both of these intervals, and with (5.11) it follows that
there exist one in the half open intervals.

A similar result for the second derivative can be obtained analogously.

Lemma 5.7. Let X be a random variable with ϕX its corresponding mo-
ment generating function, and let further α− and α+ be defined as in Propo-
sition 5.2. Then α∗ ∈ (α−, α+) minimizes

sup
u∈(0,∞)

∣∣e−(α+2+iu)kϕX(u− (α + 1)i)
∣∣ (5.12)

if and only if it is a solution to

min
α∈[α−,α+]

logMX(α + 1)− (α + 2)k. (5.13)

Additionally assume that both bounds α−, α+ are finite.
Then the minimization problem in (5.9) has a unique solution on [α−, α+].

Proof. At first it needs to be shown, that the following equation is valid.

sup
u∈(0,∞)

∣∣K−(α+2+iu)ϕX(u− (α + 1)i)
∣∣ = K−(α+2)ϕX(−(α + 1)i)

Clearly ∣∣K−(α+2+iu)ϕX(u− (α + 1)i)
∣∣ ≤ K−(α+2)ϕX(−(α + 1)i)

is valid by using properties of complex numbers. On the other hand, taking
the limit for u↘ 0 yields

lim
u↘0

∣∣K−(α+2+iu)ϕX(u− (α + 1)i)
∣∣ = K−(α+2)ϕX(−(α + 1)i),
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which proofs the required equation.
Now, according to the proof of Lemma 5.6 define a function f : (α−, α+)→
R+ as

f(α) := e−k(α+2)+X(ω)(α+1).

Then this function clearly is strictly convex for each ω ∈ Ω. Then, taking
the expectation of this functions retains this property. As

E[f(α)] = e−k(α+2)ϕX(−(α + 1)i) = e−k(α+2)MX(α + 1)

and this function converges to infinity at both interval bounds a unique mini-
mum exists on (α−, α+). Due to the fact that the logarithm is monotonically
increasing, the minimum of this function is equal to the minimum of its
logarithm, which was to be shown.

Definition 5.8. Consider the setting of Proposition 5.2, Lemma 5.6 or
Lemma 5.7, with α∗j , j ∈ I ⊆ {1, 2, 3} the unique solutions on the corre-
sponding intervals of the minimization problem. Then each α ∈ {αj, j ∈ I}
with

F (α) = min
j∈I

F (α∗j )

is referred to as optimal alpha for this minimization problem.

Now this lemma can be applied in Kou’s model to get the optimal damping
factor α for computing the local volatility.

5.1.1 Application in Kou’s model

For the following section suppose Kou’s model, defined in (3.5), as the
fixed model defining the underlying. Then define the log underlying, X :=
(Xt)t∈[0,T ] with characteristic function ϕXt ,

ϕXt(θ) = exp

(
t

(
iθb− 1

2
θ2σ2 + λ

(
pη1

η1 − iθ
+

(1− p)η2
η2 + iθ

− 1

)))
,

where b is given by (4.7) with σ > 0. With this the characteristic exponent
has the following form

ψ(θ) = iθb− 1

2
θ2σ2 + λ

(
pη1

η1 − iθ
+

(1− p)η2
η2 + iθ

− 1

)
.
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Then all assumptions in Proposition 5.3 are satisfied, and the call price
C(K, t) ∈ C2,1 has the following derivatives.

∂C

∂K
(K, t) = −

1

π

∫ ∞
0

Re

(
K−(α+1+iu)

ϕXt(u− (α + 1)i)

(α + 1 + iu)

)
du

∂2C

∂K2
(K, t) =

1

π

∫ ∞
0

Re
(
K−(α+2+iu)ϕXt(u− (α + 1)i)

)
du

∂C

∂t
(K, t) =

1

π

∫ ∞
0

Re

(
−ψ(u− (α + 1)i)K−(α+iu)

ϕXt(u− (α + 1)i)

(α + iu)(α + 1 + iu)

)
du.

Now further set the parameters in this model as follows.

σ λ p η1 η2
0,21 1,4 0,04 3,7 1,8

Table 5.1: Model parameters

For this distinct set of parameters, the call price surface and its derivatives
are plotted as function of α in Figure 5.1.
With this figure, one can observe three main things. The three poles at
the interval bounds, the convexity in between and rather small differences in
value besides close to the poles. This means, that the choice of alpha has only
a small impact on the absolute value of the integrand. By minimizing this
function due to Lemma 5.6, one gets the optimal choice of alpha, α∗ = 0.997.
Anyways, both the plot and the optimal damping factor depend on the (log-)
strike and the time to maturity t.
The most important property seen in this figure is the discontinuity around
k = 0. This behaviour can be explained by two things, either the pole
for α = 0 which makes such value an improper choice, and the asymptotic
behaviour of ∂C

∂K
(K, t) for K → 0.

For this reason consider

∂C

∂K
(K, t) = −

1

π

∫ ∞
0

Re

(
K−(α+1+iu)

ϕXt(u− (α + 1)i)

(α + 1 + iu)

)
du

as given in Proposition 5.3. Then assuming t ∈ R+ \ {0} fixed and taking
the limit K → 0 gives the following asymptotic behaviour

lim
K→0

∂C

∂K
(K, t) ≈ K−(α+1).
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Figure 5.1: Call price surface and its derivatives in Kou’s model.

Figure 5.2: Optimizing function for k = 1, t = 10.

As mentioned before, the damping factor is only optimized for the integrand
of ∂C

∂K
. Hence, to compute Dupire’s local volatility with the highest numeri-

cal stability, one would tend to calculate an optimal damping factor for each
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Figure 5.3: Optimal alpha: α∗(k, t)

derivative in (4.2). Nevertheless, both ∂2C
∂K2 and ∂C

∂T
are comparably flat as

the function in Figure 5.3 so the choice of alpha is negligible as long as in
a certain range. Furthermore getting a similar result to Lemma 5.6 is not
that easy when optimizing ∂C

∂T
, and doing so would cause a remarkably higher

computation time. For these two reasons Dupire’s formula is calculated with
one distinct alpha.
Once a distinct damping factor is chosen, one obtains the local volatility
surface. Figure 5.4 shows the volatility surface in Kou’s model with the pa-
rameters defined as in Table 5.1. It can be seen, that for T → 0 the volatility
surface has a blowup. This happens due to the fact that the underlying is a
Levy process with a jump part. The jump part makes big differences possi-
ble, even in infinitesimal time intervals which results in high volatility as the
local volatility model has to compensate this without jumps.

5.1.2 Monte Carlo simulation

Now, as the local volatility surface is computed numerically, the next step is
to show that Theorem 4.2 is valid by numerical simulation. Hence, reconsider
the main statement of this theorem.

For a given call price surface, and the resulting local volatility surface σ2(K,T )
a random variable can be defined, by an SDE and a time-zero probability dis-
tribution, such that the original call price surface can be regained.

This means, that by Monte Carlo simulation with a sufficiently high amount
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Figure 5.4: Local volatility surface in Kou’s model.

of samples one should get exactly the same call prices, besides from numerical
errors.
This simulation requires two steps of sampling, first the start value out its
given distribution, and then the random variable out of the SDE.

Breeden and Litzenberger [BL78] showed, that the second derivative of a call
price surface with respect to the strike equals the risk neutral probability
density of the underlying multiplied by a factor. Once the probability density
is known, samples of this distribution can be drawn using the approach stated
below.

Inversion method

Sampling from a given probability distribution is done via the so called in-
version method, described by the following theorem.

Theorem 5.9. Let F be a probability distribution and define its generalized
inverse by

F−1(u) := inf{x ∈ R|F (x) ≥ u}.
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If U is uniformly distributed on [0, 1], then F−1(U) has distribution function
F .

Proof. To show this statement first note that

F−1(U) ∼ F ⇔ P(F−1(U) ≤ x) = F (x).

Therefore it is sufficient to show that this equation holds.

P(F−1(U) ≤ x) = P(inf{y|F (y) ≥ U} ≤ x) = P(U ≤ F (x)) = F (x)

With this result, one can easily sample from any kind of probability distri-
bution once the cumulative distribution function (cdf) is known. For this
purpose Remark 4.3 can be used to obtain the cdf and sample the initial
value. The Matlab implementation of this is stated below.

function [X]=pdfrnd(x,cdf,size)

%x... values where pdf is calculated

%cdf...cdf(x)

%size .. sample size

cdf=cdf/max(cdf); %ensure cdf(end)=1

if cdf(1)>0

cdf=[0,cdf]; %ensure cdf(1)=0

x=[2*x(1)-x(2) x];

end

[cdf,idx,]=unique(cdf);

x=x(idx);

u=rand(size,1);

logical = arrayfun(@(s) any(s==cdf),u);

X=zeros(size,1);

X(not(logical))= interp1(cdf,x,u(not(logical)),’linear’,0);

if any(logical)

rd=zeros(sum(logical),1);

i=1;

for j = u(logical)
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idx= (j==cdf);

rd(i)=y(idx(1))+(cd(idx(end))-cdf(idx(1)))*rand(1);

i=i+1;

end

X(logical)=rd;

end

end

The Runge-Kutta scheme

Approximation of stochastic differential equations can be challenging numer-
ically, especially when strong convergence is required. One famous way of
doing this, is by using Taylor expansions to get time discrete approximations
of the required SDEs.
The most popular examples are the Euler (- Maruyama) scheme and the
Milstein scheme, where for the first one the order of strong convergence is
0.5, and for the latter 1 - see e.g. [KP92]. Hence the Milstein scheme should
be preferred. However, this method requires computation of derivatives of
the coefficient functions and is therefore discarded.

Consider the following stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt (5.14)

with initial condition X0 = x0, x0 ∈ Rn,

a : [0, T ]× Rn → Rn,

b : [0, T ]× Rn → Rn×d

and W := (Wt)t∈[0,T ] a d dimensional Brownian motion.

Euler scheme:

For the SDE given in (5.14) the Euler-Maruyama method computes a discrete
approximation in N ∈ N steps. The numerical solution Y := (Yn)n=0,...,N is
given as follows.

Y0 :=x0 (5.15)

Yn+1 :=Yn + a(τn, Yn)∆t+ b(τn, Yn)∆Wn, n = 0, . . . , N − 1 (5.16)

where

∆t :=
T

N
,

τn := n∆t, n = 0, . . . , N and

∆Wn := Wτn+1 −Wτn , n = 0, . . . , N − 1.
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The realization of this algorithm in Matlab is stated below.

function [X]=euler(mu,sigma,T,N,X0)

%calculate path of X: dX= mu(Xt,t) Xt dt + sigma(Xt,t) Xt dW

%where sims is the number of sample paths

sims=length(X0);

X=zeros(N+1,sims);

X(1,:)=X0;

b= zeros(1,sims);

a= b;

dt=T/N;

t=(0:N)’.*dt;

dW=sqrt(dt)*randn(N,sims);

for j=1:N

a = arrayfun(@(x) mu(x,t(j)),X(j,:));

b = arrayfun(@(x) sigma(x,t(j)),X(j,:));

X(j+1,:)= X(j,:) + (a -1/2 * b.^2).*dt + b.*dW(j,:);

end

end

For non stochastic differential equations, the deterministic Runge-Kutta schemes
avoid the use of derivatives. In the following a method will be introduced,
which works similar to the these deterministic techniques, and will from now
on be referred to as Runge-Kutta scheme. One method proposed by Platen
[KP92] will be stated below. This method is based on the Milstein scheme,
where the derivatives of the diffusion function are approximated through
Taylor expansion.

Algorithm:

Then a discrete approximation of (5.14) Y := (Yn)n=0,1,...,N in N ∈ N steps
can be computed numerically, as follows.

Y0 :=x0 (5.17)

Yn+1 :=Yn + a(τn, Yn)∆t+ b(τn, Yn)∆Wn+ (5.18)

1√
∆t

(b(τn, Y n)− b(τn, Yn))(∆W 2
n −∆t), n = 0, . . . , N − 1 (5.19)

53



where

∆t :=
T

N
,

τn := n∆t, n = 0, . . . , N

∆Wn := Wτn+1 −Wτn , n = 0, . . . , N − 1 and

Y n := Yn + a(τn, Yn)∆t+ b(τn, Yn)
√

∆t, n = 0, . . . , N − 1.

Remark 5.10. Note, that like the Milstein scheme, the above presented method
is an explicit scheme of strong order 1, and is therefore preferred to the Euler
scheme.

This algorithm is again realized in Matlab, similar to the Euler method.

With either of these methods in combination with simulating the initial value,
one can compute sample paths of the option’s underlying.
When these algorithms are applied to exponential Levy models and their
corresponding SDEs, it can be required to apply them on the log-underlying
and taking the exponential afterwards to guarantee positivity. This can be
done using Ito’s formula for Levy processes.

Lemma 5.11. Consider the following local volatility model for an underlying
S.

dSt = σ(t, St)St dWt, and

S0 = s0 ∈ R+

Then the model for the log-underlying Xt := log(St) is given by

dXt = −1

2
σ2(t, eXt)dt+ σ(t, eXt) dWt, and

X0 = log(s0).

Proof. The equation for the initial value follows per definition.
The main statement of this lemma is an application of Ito’s formula for Levy
processes with f : x → log(x). [Protter!] Then one obtains the following
SDE.

dXt = d(log(St)) =
1

St
dSt +

1

2S2
t

d〈St, St〉 = −1

2
σ2(t, St)dt+ σ(t, St) dWt

Then using St = eXt yields the statement.
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The difference in these two algorithms mainly depends on the change of the
Ito part b(., .) with respect to the underlying. Note further that in case of a
deterministic function b, the expected difference is zero. This can be seen as
the quadratic variation of the Brownian motion equals t.

Figure 5.5: Comparison of Euler and Runge-Kutta algorithm in the local
volatility model.

With this result, finally the underlying can be simulated such, that theo-
rem 4.2 is satisfied and the original call prices can be obtained if the number
of simulated paths is sufficiently high.
As mentioned before problems occur for T near zero, as the local volatility
has a blow-up. This is avoided by time shifting the whole process. With this,
the simulation starts at an arbitrary point in time ε > 0. The approach is
split into four steps stated below.

• At first a small time shift parameter ε > 0 is chosen.
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• Then, using the result from Breeden and Litzenberger [BL78] one gets
the law of the underlying at time ε.

• Set Sε as initial value and simulate the local volatility model from this
time on.

• Then Theorem 4.2 ensures that for a sufficient number of simulations
the original call price surface is obtained.

This approach is realized in Matlab including both, the Euler-Mayurama and
Runge-Kutta simulation method. Note that the initial value is simulated for
each realization, resulting in different starting points. Some sample paths
from this simulation are plotted below using the Runge-Kutta scheme with
ε = 0.1.

Figure 5.6: Sample paths generated from a local volatility model in Kou’s
model.
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5.2 Backtesting

In order to guarantee the correct computation of the local volatility for a
Kou-modelled call price surface, it is necessary to perform some test. One
way of doing this is by showing that Theorem 4.2 holds. Anyways, this does
neither prove that computation is done correctly, nor does it give an estimate
for the numerical error. Getting these results is hard in general for Kou’s
model as calculating values of the local volatility is only possible by numeri-
cal methods due to the integral representation.
Nevertheless, it is possible to test the algorithm for a special setting of pa-
rameters - namely by setting the Compound Poisson intensity λ = 0. Doing
this, the modelled process stated in (3.6) reduces to a geometric Brownian
motion. Hence the Black-Scholes model can be applied, and the Call price
surface and all derivatives, obtained by Fourier inversion, can be compared
to the ones given by Black-Scholes formulas.

Proposition 5.12 (Black-Scholes). Let (St)t∈[0,T ] denote the underlying of
a european call option in Black-Scholes model, and r > 0 be the short rate.
Then the arbitrage free price of this call option at time t < T with strike
K > 0 and maturity T in the Black Scholes model, is given by

Ct = c(K,St, T − t, σBS, r) =

= StN(d1(St, T − t))−Ke−r(T−t)N(d2(St, T − t)),
(5.20)

where N : R→ [0, 1] is the standard Gaussian cumulative distribution func-
tion, and d1,2 are given by

d1,2(s, τ) =
log( s

K
) + (r ± 1

2
σ2
BSτ)

σBS
√
τ

.

Proof. See for example [BS73] or [MR97, Theorem 3.1.1].

Proposition 5.13. Let c(K, s, T, σBS, r) denote the price of a call option
in Black-Scholes model stated in (5.20). Then it is twice differentiable with
respect to the strike K, and once with respect to time T , and the corresponding
derivatives are given as follows.

∂c

∂K
(K, s, T, σBS, r) = −e−r(T−t)N(d2)

∂2c

∂K2
(K, s, T, σBS, r) = n(d2)

e−r(T−t)

σBS
√
T − tK

∂c

∂T
(K, s, T, σBS, r) =

sσBS

2
√
T − t

n(d1)−Kre−r(T−t)N(d2)
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Proof. These formulas follow by differentiation of (5.20), or see [MR97, Sec-
tion 3.1.11]

As mentioned before, setting λ = 0 in Kou’s model results in Black-Scholes
model. Hence, the call prices and all derivatives obtained by Fourier inver-
sion should equal the ones given by the formulas stated in Propositions 5.12
and 5.13.
Comparison of the Call price surface and its derivatives are stated below for
Kou’s model with the setting described in Table 5.2.

Figure 5.7: Comparison of Black Scholes model and Fourier option pricing.

Figure 5.7 shows that the differences between the Black-Scholes formula and
the call price surface obtained by Fourier inversion are acceptable. Even
the differences in the derivatives with respect to time can be explained by
numerical errors.
This is an indication, that the algorithm works as expected for λ = 0.

Another way to test the quality and accuracy of the numerical method, is to
compare the local volatility surfaces itself.

58



The local volatility surface itself, σ(K,T ) is given by Dupire’s formula stated
in (4.2). Then, due to Theorem 4.2, the stochastic process (St)t∈[0,T ] defined
by the SDE

dSt = Stσ(St, t)dWt

rebuilds this original call price surface.
Applying this to the Black-Scholes model, where the underlying SBS is given
by dSBSt = SBSt σBSdWt, should return the same volatility σBS as local volatil-
ity. This means that the local volatility obtained by the algorithm should be
a flat plane equal the initial volatility,

σ(K,T ) = σBS.

This gives evidence that the volatility surface is computed correctly, not con-
sidering numerical errors. Then Monte Carlo simulation with a sufficiently
high amount of paths should yield the original call price surface for any
parameter set, especially including the more interesting case with λ 6= 0.

Backtesting for λ 6= 0

As mentioned above, the previous tests give evidence, that the regularization
method in [FGY13] can be applied numerically. To show this, all numerical
methods and results mentioned before need to be combined. For this purpose,
let the set of parameters be as stated in Table 5.1, and thus λ 6= 0.
At first the call price surface and all required derivatives are computed, using
the choice of the damping factor as suggested in Section 5.1. Then a time
shifting parameter needs to be chosen, ε := 0.1 and the start value of the time
shifted process, Sε0 can be simulated N ∈ N times, where N is the number of
simulations, with

P[Sε0 ∈ dK]/dK = ∂KKC(K, ε).

Having done this, the time horizon T ∗ > 0, and a step size ∆t for the Runge-
Kutta scheme have to be set. This results in N paths of (Sεt )t∈[0,T ∗], and with
this call prices for each strike K > 0 and time to maturity 0 < T ≤ T ∗ can be
estimated as arithmetic mean of the call prices of the individual simulations,

C(K,T ) ≈
N∑
j=1

(Sε,jT −K)+

N
,

with Sε,j the j − th simulation of Sε.

The following figures are created in Kou’s model with the parameter set
stated in Table 5.1, with step size ∆k = 0.1.
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Figure 5.8 below gives a comparison of the simulated call prices and the
initial call prices as a function of the log strike for T = 1 with step size. The
approximation error observed stems from two things, both the low number of
simulations and errors due to numerical integration. The left plot compares
the simulated call prices to the time shifted original call prices whereas the
right plot gives a comparison of the non shifted ones. In particular, this means
that the left side illustrates Theorem 4.2 and the right side Theorem 4.1 for
one distinct ε.

Figure 5.8: Comparison of call prices for T = 1 and ε = 0.1 with 5000
simulations.

The relative error of the simulated call prices and the time shifted ones is
plotted in the Figure 5.9. The increase for large log strike can be explained
due to the fact, that the simulated call price converges to zero more slowly
than the original price.
Figure 5.10 shows the initial call price surface compared to simulated ones
with different simulation sizes. One can see, that with rising number, the
error decreases, and the call price surface obtained by Monte Carlo simulation
converges to the original one.

Theorem 4.1 requires to take the limit ε→ 0 to obtain the exact call prices.
To show numerically that the call prices converge to the original prices for
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ε→ 0, Figure 5.11 compares this application for three different time shifting
parameters ε.

Again, the relative errors between each approximation in Figure 5.11 and the
original non shifted call prices are illustrated in Figure 5.12.
This shows that Theorem 4.2 is applicable numerically, and gives a procedure
to use Dupire’s formula even in a jump diffusion setting.
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σ λ p η1 η2
0,21 0 0,04 3,7 1,8

Table 5.2: Model parameters

Figure 5.9: Relative error to the time shifted call prices with 5000 simulations.
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Figure 5.10: Simulated Call price surfaces in Kou’s model.
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Figure 5.11: Comparison of call prices for T = 1 and different ε with 5000
simulations.
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Figure 5.12: Relative errors for different ε with 5000 simulations.
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Conclusio

Based on the results of Gerhold et al. in [FGY13], a numerical implementa-
tion of their procedure is presented. In particular, a regularization of Dupire’s
local volatility in the presence of jumps is applied numerically to Kou’s model.
To be able to do so, a rigorous derivation of a call price surface in this very
model is done and representations for some derivatives of this surface are
stated. This yields Dupire’s local volatility surface stemming from Kou’s
model, which defines the according local volatiliy diffusion process. Due to
[FGY13], the process stemming from this SDE with a stochastic initial value
regains the original call price surface.
For the numerical implementation of this procedure, a sampling technique
from SDEs is required. Hence, Euler’s method and the Runge-Kutta scheme
are introduced and compared. Further, to get sample initial values the inver-
sion method is presented. These two results are then combined to get sample
paths of the reproduced stochastic process, and Monte Carlo simulation is
used to show that the original call prices can be obtained.
Additionally, a numerical problem is addressed that occurs in numerical in-
tegration and an improvement of this issue is stated and the numerical im-
plementation is backtested to prove its correctness.
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