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mein Studium ermöglicht und mich immer unterstützt haben. Auch meinen Geschwistern und
ihren Partnern, Roman & Michaela, Gudrun & Helmut und Sandra & Johannes, gilt mein ganz
besonderer Dank für ihre großartige Unterstützung im Laufe meines Studiums.
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Abstract

The Heston model is one of the most popular stochastic volatility models for derivatives pricing.
The model proposed by Heston (1993) takes into account non-lognormal distribution of the assets
returns, leverage effect and the important mean-reverting property of volatility. In addition, it
has a semi-closed form solution for European options. It therefore extends the Black and Scholes
model and includes it as a special case.
The prices produced by the model are quite parameter sensitive, hence the calibration of the
parameters is as crucial as the model itself. The calibration must be robust and stable and
should not be too computer intensive, which rules out global optimisation algorithms. The
general approach of applying a least-square type procedure is very sensitive to the choice of the
initial point. Therefore, literature on closed-form asymptotic approximations has grown rapidly
in the past few years. An overview of these approximations will be presented in this thesis and
some will be proved for their accuracy in delivering a starting point for the calibration.
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Chapter 1

Introduction

1.1 Motivation

Financial innovation has been the force driving global finance to greater economic efficiency since
the late nineteenth century. Among all the innovations, derivative securities, such as options,
futures, bonds, etc, have caused some of the most dramatic changes in the financial world.
Although option agreements have been made for many centuries, a theoretically consistent
frame work of option pricing did not become available until the 1970s when Fischer Black, Myron
Scholes and Robert Merton derived the Black-Scholes model, which changed the way and impact
the world of pricing derivatives using stocks as the underlying asset. It was now possible to price
derivatives by a very simple closed form solution. But with the crude assumption on constant
volatility and in lognormal returns really limits the model, and this is why the model only is
used as a benchmark today.

In reality, the implied volatilities of traded options generally vary, both with strike price and
with maturity of the option. The variation with strike price is called the volatility smile, or the
volatility skew. The question then arises as to how to price options in a way which is consistent
with this market-observed variation of implied volatility. One of the concepts used to cope with
this problem is that of stochastic volatility. There are various models of stochastic volatility,
although arguably the most popular is the Heston model.

The constant volatility of the Black-Scholes model corresponds to the assumption that the un-
derlying asset follows a lognormal stochastic process. On the other hand, the basic assumption
of stochastic volatility models is that the volatility (or possibly, the variance) of the underlying
asset is itself a random variable. There are two Brownian motions: one for the underlying, and
one for the variance; stochastic volatility models are thus at least two-factor models. Of course,
the two processes are correlated and, at least in the equity world, the correlation is usually taken
to be negative: increases/decreases in the asset price tend to be coupled to decreases/increases
in the volatility. Once the variance of the underlying has been made stochastic, closed-form
solutions for European call and put options will in general no longer exist. One of the attrac-
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2 CHAPTER 1. INTRODUCTION

tive features of the Heston model, however, is that (quasi-) closed-form solutions do exist for
European plain vanilla options. This feature, in turn, makes calibration of the model feasible.1

The Heston model parameters can be determined by calibrating to a market observed implied
volatility smile for European options. The calibration routine takes as its starting point the
implied volatilities for a set of such options, with varying strikes and/or maturities. The volatil-
ities are converted to option prices, and the parameters of the Heston model are chosen so as
to best match this set of market data. All calibration algorithms search a region of parameter
space in a more or less intelligent way, by minimizing an error metric.

This calibration must be robust and stable and should not be too computing intensive. This
latter constraint often rules out global optimisation algorithms which are very slow despite their
accuracy. The general approach to the calibration of parametric models, such as the Heston
model, is to apply a least-square type procedure either in price or implied volatility. This kind
of approach will in general be very sensitive to the choice of the initial point, which will often
in practice drive the selection of the local minima the algorithm will converge to.

This is where asymptotic properties of the Heston model come into play, which have been
throughly studied over the last years: small and large time behaviours, wings of the implied
volatility for fixed maturity. These various explicit formulas are estremely useful in practice to
determine initial points for the calibration of the model. Such algorithms will typically converge
in a few seconds on a standard laptop and therefore improve the calibration efficiency.

These asymptotic approximations for short or long term asymptotics will be the main topic of
this thesis. The accuracy of some selected approximations will be proofed by applying them to
ATX option data.

1.2 Structure of Thesis

For a general understanding, the basic objects, ideas and results of the classical Black-Scholes
theory of derivative pricing will be presented in chapter 2. The attention will be drawn to
volatility and the limitations of the Black-Scholes model, which will lead to the assumption of
stochastic volatility.

In chapter 3 stochastic volatility models and in particular the Heston model will be discussed.
Furthermore, the semi-closed form solution for European options will be presented and the
Heston parameters will be analyzed in greater detail. The understanding of the parameter
influence is important for accurate calibration of the model.

In chapter 4 some selected closed-form asymptotic approximations for European option prices
and implied volatility will be presented. The focus will be on the work of Forde & Jacquier [23],

1FinCAD 2007, see [20]
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Forde et al. [24], Forde et al. [25] and Friz et al. [27]. The explicit formulas provide information
about the behaviour of option prices in extreme regions (small or large strikes and/or maturities)
and help to improve calibration efficiency, since they can provide pertaining initial points for
the model calibration.

Finally, in chapter 5 some asymptotic approximations for implied volatility are applied to Eu-
ropean ATX call options to calculate initial parameters for the calibration of the Heston model.
The results of this empirical research will be presented in this chapter.

The appendix contains MATLAB Code used for the calculations throughout the paper and lists
the software used.



4 CHAPTER 1. INTRODUCTION



Chapter 2

The Black-Scholes Theory of
Derivative Pricing

The aim of the following chapter is to present the basic objects, ideas, and results of the now
classical Black-Scholes theory of derivative pricing. The chapter is mainly based on [7], [26], [34]
and [52], and it is intended for readers to enter the theory of derivative pricing or simply refresh
their memory. This is not a complete treatment of this theory with detailed proofs, detailed
presentations of the subject can be found in many books, some will be mentioned throughout
the chapter.

2.1 Market Model

In this model, suggested by Samuelson [54] and used by Black and Scholes [9] in 1973, there are
two assets. One is the riskless asset (bond) with price Bt at time t, described by the ordinary
differential equation

dBt = rBtdt,

where the non-negative constant r is the instantaneous interest rate for lending or borrowing
money. Setting B0 = 1, the equation results in Bt = ert for t ≥ 0. The price Xt of the other
asset, the risky stock or stock index, is described by the following stochastic differential
equation

dXt = µXtdt+ σXtdWt (2.1)

where µ ∈ R is a constant mean return rate, σ > 0 is a constant volatility, and (Wt)t≥0 is a
standard Brownian motion. This fundamental model will be presented in the following sections.

5
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2.1.1 Brownian Motion

The Brownian motion is a real-valued stochastic process with continuous trajectories (denoted
by t→Wt) that have independent and stationary increments. The standard Brownian motion
is characterized by the following:

(i) W0 = 0,

(ii) for any 0 < t1 < · · · < tn, the random variables (Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1) are
independent,

(iii) for any 0 ≤ s < t, the increment Wt −Ws is a centered (mean-zero) normal random
variable with variance E[(Wt −Ws)

2] = t− s. In particular, Wt is N (0, t)-distributed.

The probability space where the Brownian motion is defined is denoted by (Ω,F ,P) and the
expectation E[·] is computed. Let Ω be the space of all continuous trajectories C([0,∞] : R),
such that Wt(ω) = ω(t). The σ-algebra F contains all sets of the form {ω ∈ Ω : |ω(s)| < R,
s ≤ t}. P is the Wiener measure, which is the probability distribution of the standard
Brownian motion.

The increasing family of σ-algebras Ft generated by (Ws)s≤t, the information on W up to time
t, and all the sets of probability 0 in F is called the natural filtration of the Brownian motion.
A stochastic process (Xt)t≥0 is adapted to the filtration (Ft)t≥0 if the random variable Xt is
Ft-measurable (meaning that any event {Xt ≤ x} belongs to Ft) for every t.

The independence of increments makes the Brownian motion an ideal candidate to define a
complete family of independent infinitesimal increments dWt, which are centered and normally
distributed with variance dt and which will serve as a model of (Gaussian white) noise. The
drawback is that the trajectories of (Wt) cannot be nice in the sense that they are not of
bounded variation, as the following simple computation suggests.
Let t0 = 0 < t1 < · · · < tn = t be a subdivision of [0, t], which one may suppose evenly spaced,
so that ti − ti−1 = t/n for each interval. The quantity

E

[
n∑
i=1

|Wti −Wti−1 |

]
= nE[|Wt/n|] = n

√
t/nE[|W1|]

goes to +∞ as n↗ +∞, indicating that the integral with respect to dWt cannot be defined in
the usual way trajectory by trajectory. In the next section will be described how such integrals
can be defined.

In figure 2.1 a simple simulation of the standard Brownian motion (Wiener process) is
demonstrated. The simulation was done in Matlab with a chosen step size ∆ = 1/1000, by
using the built in function randn for representing a N (0, 1)-distributed stochastic variable.
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Figure 2.1: Sample path of a standard Brownian motion.

2.1.2 Stochastic Integral

For a fixed finite time T , let (Xt)0≤t≤T be a stochastic process adapted to (Ft)0≤t≤T , the
filtration of the Brownian motion up to time T , such that

E
[∫ T

0
(Xt)

2dt

]
< +∞.

The stochastic integral of (Xt) with respect to the Brownian motion (Wt) is defined as a limit
in the mean-square sense (L2(Ω)),

∫ t

0
XsdWs = lim

n↗∞

n∑
i=1

Xti−1(Wti −Wti−1), (2.2)

as the mesh size of the subdivision goes to zero. As a function of time t, this stochastic
integral defines a continuous square integrable process such that

E

[(∫ t

0
XsdWs

)2
]

= E
[∫ t

0
X2
sds

]
.
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It has the martingale property

E
[∫ t

0
XudWu | Fs

]
=

∫ s

0
XudWu (P-a.s., s ≤ t), (2.3)

as can easily deduced form the definition (2.2). The quadratic variation 〈Yt〉 of the stochastic
integral Yt =

∫ t
0 XudWu is

〈Yt〉 = lim
n↗∞

n∑
i=1

(Yti − Yti−1)2 =

∫ t

0
X2
sds (2.4)

in the mean-square sense.

Stochastic integrals are mean-zero, continuous, and square integrable martingales. Also the
converse is true, meaning every mean-zero, continuous, and square integrable martingale is a
Brownian stochastic integral.

2.1.3 Risky Asset Price Model

The Black-Scholes model for the risky asset price corresponds to a continuous process (Xt)
sucht that, in an infinitesimal amount of time dt, the infinitesimal return dXt/Xt has mean
µdt, proportional to dt with a constant rate of return µ and centered random fluctuations that
are independent of the past up to time t. These fluctuations are modeled by σdWt where σ is a
positive constant volatility and dWt the infinitesimal increments of the Brownian motion. The
corresponding formula for the infinitesimal return is

dXt

Xt
= µdt+ σdWt (2.5)

which is the stochastic differential equation (2.1). The right side has the natural financial
interpretation of a return term plus a risk term. For simplicity, it is also assumed that there
are no dividends paid in the time interval being considered. In integral form, this equation is

Xt = X0 + µ

∫ t

0
Xsds+ σ

∫ t

0
XsdWs

where the last integral is a stochastic integral as described in the previous section. The initial
value X0 is assumed to be independent of the Brownian motion and square integrable. This
equation, or in the differential form (2.1), is a particular case of a general class of stochastic
differential equations driven by a Brownian motion:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.6)
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or in integral form,

Xt = X0 +

∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs. (2.7)

In the Black-Scholes model, µ(t, x) = µx and σ(t, x) = σx, these are independent of t,
differentiable in x, and linearly growing at infinity.

It is very tempting to write Xt/X0 in equation (2.5) explicitly as the exponential of
(µt+ σWt), but this is not correct because the usual chain rule is not valid for stochastic
differentials. For example, W 2

t is not equal to 2
∫ t

0 WsdWs, since by the martingale property
(2.3), this last integral has an expectation equal to zero but E[W 2

t ] = t. This discrepancy is
corrected by Itô’s formula and will be explained in the following section.

2.1.4 Itô’s Formula

The function g(Wt) of the Brownian motion Wt defines a new stochastic process. In the
following will be supposed that the function g is twice continuously differentiable bounded, and
has bounded derivatives. The purpose of the chain rule is to compute the differential dg(Wt)
or equivalently its integral g(Wt)− g(W0). Using the subdivision t0 = 0 < t1 < · · · < tn = t of
[0, t], one can write

g(Wt)− g(W0) =
n∑
i=1

(g(Wti)− g(Wti−1)).

Applying Taylor’s formula to each term results in

g(Wt)− g(W0) =
n∑
i=1

g′(Wti−1)(Wti −Wti−1)

+
1

2

n∑
i=1

g′′(Wti−1)(Wti −Wti−1)2 +R,

where R contains all the higher-order terms.

If (Wt) were differentiable only the first sum would contribute to the limit as the mesh size of
the subdivison goes to zero, leading to the chain rule dg(Wt) = g′(Wt)W

′
tdt of calculus. In the

Brownian case (Wt) is not differentiable and, by (2.2), the first sum converges to the stochastic
integral ∫ t

0
g′(Ws)dWs.
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The correction comes from the second sum, which converges like (2.4) to the following:

1

2

∫ t

0
g′′(Ws)dWs.

This can be seen by comparing it in L2 with 1
2

n∑
i=1

g′′(Wti−1)(ti − ti−1). The higher-order terms

contained in R converge to zero and do not contribute to the limit, which is

g(Wt)− g(W0) =

∫ t

0
g′(Ws)dWs +

1

2

∫ t

0
g′′(Ws)ds.

This is the simplest version of Itô’s formula and it is often written in differential form:

dg(Wt) = g′(Wt)dWt +
1

2
g′′(Wt)dt.

In the next step a similar formula for dg(Xt) will be derived, where Xt is the solution of a
stochastic differential equation like (2.6). The general formula for a function g depending also
on time t is the following:

dg(t,Xt) =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)d〈X〉t,

where dXt is given by the stochastic differential equation (2.6) and 〈X〉t =
∫ t

0 σ
2(s,Xs)ds is

the quadratic variation of the martingale part of Xt, which is the stochastic integral on the
right side of (2.7). In terms of dt and dWt, the formula is

dg(t,Xt) =

(
∂g

∂t
+ µ(t,Xt)

∂g

∂x
+

1

2
σ2(t,Xt)

∂2g

∂x2

)
dt+ σ(t,Xt)

∂g

∂x
dWt, (2.8)

where all the partial derivatives of g are evaluated at (t,Xt).

2.1.5 Lognormal Risky Asset Price

For the evolution of the stock price Xt, the focus will be on the stochastic differential equation
(2.5) again. It is natural to suspect from the ordinary calculus formula

∫
dx/x = log x that

logXt might satisfy an equation that can be integrated explicitly. The differential of logXt will
be computed by applying Itô’s formula (2.8) with g(t, x) = log x, µ(t, x) = µx and σ(t, x) = σx:

d logXt = (µ− 1

2
σ2)dt+ σdWt.

The logarithm of the stock price is then given explicitly by

logXt = logX0 + (µ− 1

2
σ2)t+ σWt,
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which leads to the following formula for the stock price:

Xt = X0 exp((µ− 1

2
σ2)t+ σWt). (2.9)

The return Xt/X0 is lognormal, it is the exponential of a non-standard Brownian motion that
is normally distributed with mean (µ− 1

2σ
2)t and variance σ2t at time t. The process (Xt) is

also called geometric Brownian motion. The stock price given by (2.9) satisfies equation (2.5).
It can also be obtained as a diffusion limit of binomial tree models, which arise when Brownian
motion is approximated by a random walk.

Figure 2.2: Lognormal density function with µ = 5 and σ = 0.5.

Notice that, if Xt becomes zero, it stays at zero for all times thereafter. Thus, bankruptcy
(zero stock price) is a permanent state in this model. However, 1

tWt tends to zero as t tends to
infinity with probability 1, so it follows that if X0 is not zero then (with probability 1) Xt does
not go to zero in a finite time.

2.2 Derivative Contracts

Derivatives are contracts based on the underlying asset price (Xt). They are also called
contingent claims and can be applied to almost any type of asset, e.g. stocks, interest rates or
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commodities.

2.2.1 European Call and Put Options

A European call option is a contract that gives its holder the right, but not the obligation,
to buy one unit of an underlying asset for a predetermined strike price K on the maturity date
T . If XT denotes the price of the underlying asset at maturity time T , then the value of this
contract at maturity, its payoff, is

h(XT ) = (XT −K)+ =

{
XT −K if XT > K,

0 if XT ≤ K.
(2.10)

In the first case of the equation, the holder will exercise the option and make a profit of
XT −K by buying the stock for K and selling it immediately at the market price XT . In the
second case, the holder does not exercise the option, since the market price of the asset is less
than the strike price and the payoff is therefore 0.

A European put option is a contract that gives its holder the right to sell a unit of the asset
for a strike price K at the maturity date T . Its payoff is

h(XT ) = (K −XT )+ =

{
K −XT if XT < K,

0 if XT ≥ K.
(2.11)

In the first case, buying the stock at the market price XT and exercising the put option yields
a profit of K −XT . In the second case, the holder will not exercise the option.

Figures 2.3 and 2.4 show the way in which the investor’s profit or loss on an European option
varies with the terminal stock price. The expiration date of the two options is in 2 months.

Figure 2.3: Profit from buying a European call option on one share of a stock. Option price
C = 5, strike price K = 100. Source: [34]
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Figure 2.4: Profit from buying a European put option on one share of a stock. Option price
P = 7, strike price K = 70. Source: [34]

2.2.2 Moneyness of an Option

Moneyness of an option indicates whether an option is worth exercising or not. Moneyness of
an option at any given time depends on where the price of the underlying asset is at that point
of time relative to the strike price. The following three terms are used to define the moneyness
of an option:

An option is ITM (in-the-money) if on exercising the option, it would produce a cash inflow
for the holder. Thus, call options are ITM at time t when the value of the price of the
underlying exceeds the strike price, Xt > K. On the other hand, put options are ITM when
the price of the underlying is lower than the strike price, Xt < K.

An OTM (out-of-the-money) option is an opposite of an ITM option. A holder will not
exercise the option when it is OTM. A call option is OTM when its strike price is greater than
the price of the underlying and a put option is OTM when the price of the underlying is
greater than the option’s strike price.

An ATM (at-the-money) is one in which the price of the underlying is equal to the strike
price. It is at the stage where with any movement in the price of the underlying, the option
will either become ITM or OTM.

In figure 2.5 the moneyness regions are displayed in the European call and put options, which
have already been presented in section 2.2.1 above.

The moneyness for call and put options is defined by

Mt =
K

Xt
,

and the moneyness categories listed in table 2.1 will be used throughout this thesis.
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Figure 2.5: Moneyness regions in a European call option (left) and in a European put option
(right). Original Image Source: [34]

Moneyness Call Put

< 0.94 deep ITM deep OTM

0.94− 0.97 ITM OTM

0.97− 1.00 ATM ATM

1.00− 1.03 ATM ATM

1.03− 1.06 OTM ITM

> 1.06 deep OTM deep ITM

Table 2.1: Moneyness of call and put options

2.3 Replicating Strategies

The Black-Scholes analysis of a European-style derivative yields an explicit trading strategy in
the underlying risky asset and riskless bond whose terminal payoff is equal to the payoff of the
derivative at maturity. The path the stock price takes does not matter. Thus, an investor can
cover against all risk of eventual loss, by selling the derivative and holding a dynamically
adjusted portfolio according to this trading strategy. This replicating strategy therefore
provides an insurance policy against the risk of being short the derivative: A loss incurred at
the final time from one part of this portfolio will be exactly compensated by a gain in the
other part. It is called a dynamic hedging strategy since it involves continuous trading, where
to hedge means to eliminate risk. The essential step in the Black-Scholes methodology is the
construction of this replicating strategy and arguing, based on no arbitrage, that the value of
the replicating portfolio at time t is the fair price of the derivative. This argument will be
developed in the following sections.
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2.3.1 Replicating Self-Financing Portfolios

In this chapter a European-style derivative will be considered. Its payoff h(XT ) is a function of
the underlying asset price at maturity time T . The stock price (Xt) follows the geometric
Brownian motion model (2.9), which describes a solution of the stochastic differential equation
(2.1). The pair φ = (φ1, φ2) of adapted processes is called a trading strategy. φ1

t is specifying
the number of units of the underlying asset held at time t, whereas φ2

t is describing the number
of units of the riskless bond. In order to have the stochastic integral involving φ1

t and the usual

integral involving φ2
t well-defined, suppose that E[

∫ T
0 (φ1

t )
2]dt and

∫ T
0 |φ

2
t |]dt are finite.

Assume Bt = ert for the price of the bond at time t, then the value at time t of this portfolio is
φ1
tXt + φ2

t e
rt. If its value at time T is almost surely equal to the payoff

φ1
TXT + φ2

T e
rT = h(XT ), (2.12)

it will replicate the derivative at maturity. Furthermore, this portfolio is assumed to be
self-financing : the variations of its value are due only to the variations of the stock and bond
prices (variations of the market). After the initial investment, no further funds are required.
For example, if more of the asset is bought, bonds have to be sold to pay for it. In differential
form this is described by the following:

d(φ1
tXt + φ2

t e
rt) = φ1

tdXt + rφ2
t e
rtdt. (2.13)

2.3.2 The Black-Scholes Partial Differential Equation

The goal is to construct a self-financing portfolio φ = (φ1, φ2) that will replicate the derivative
at maturity (2.12). Assume that a pricing function P (t, x) exists, that relates the option price
to the present risky asset price, and is regular enough to apply Itô’s formula (2.8). To exclude
possible arbitrage opportunities assume

φ1
tXt + φ2

t e
rt = P (t,Xt) for any 0 ≤ t ≤ T. (2.14)

For example, if the left-hand side in the equation is less than the right-hand side, one can
create arbitrage by selling the overpriced derivative security immediately and investing in the
underpriced asset-bond trading strategy. Since the terminal payoff of the trading strategy is
equal to the payoff of the derivative, this yields an immediate profit with no exposure to future
loss.

Differentiating (2.14) and using the self-financing property (2.13), one obtains for the left
hand-side

φ1
tdXt + rφ2

t e
rtdt,
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and in addition using equation (2.1) results in

(φ1
tµXt + φ2

t re
rt)dt+ φ1

tσXtdWt.

Using Itô’s formula (2.8) on the right-hand side, yields in total:

(φ1
tµXt + φ2

t re
rt)dt+ φ1

tσXtdWt =

(
∂P

∂t
+ µXt

∂P

∂x
+

1

2
σ2X2

t

∂2P

∂x2

)
dt+ σXt

∂P

∂x
dWt, (2.15)

where all the partial derivatives of P are evaluated at (t,Xt). Equating the coefficients of the
dWt terms gives

φ1
t =

∂P

∂x
(t,Xt), (2.16)

and from (2.14) one obtains

φ2
t = (P (t,Xt)− φ1

tXt)e
−rt. (2.17)

Equating the dt terms in (2.15) gives

r

(
P −Xt

∂P

∂x

)
=
∂P

∂t
+

1

2
σ2X2

t

∂2P

∂x2
,

which is satisfied for any stock price Xt if P (x, t) is the solution of the Black-Scholes partial
differential equation

LBS(σ)P = 0, (2.18)

where

LBS(σ) =
∂

∂t
+

1

2
σ2x2 ∂

2

∂x2
+ r

(
x
∂

∂x
− ·
)
.

This equation holds in the domain t ≤ T and x > 0, since the stock price remains positive in
the model. It is to be solved backward in time with the final condition P (T, x) = h(x), because
at expiration the price of the derivative is simply its payoff.

The partial differential equation (2.18) with its final condition has a unique solution P (t, x),
which is the value of a self-financing replicating portfolio. Knowing P , the portfolio
φ = (φ1, φ2) is uniquely determined by (2.16) and (2.17).

Notice, the rate of return µ does not enter in the valuation of this portfolio. It is a remarkable
feature of the Black-Scholes theory that if two investors have different speculative views about
the growth rate of the risky asset (meaning that they have different values of µ but agree that
the historical volatility σ will prevail), then they will agree on the no-arbitrage price of the
derivative, since P does not depend on µ.
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2.3.3 The Black-Scholes Formula

For European call options the Black-Scholes partial differential equation (2.18) is solved with
the final condition (x−K)+ = h(x). The Price of a European call option depends on the
following:

� current stock price x

� time-to-maturity T − t

� strike price K

� volatility σ

� interest rate r

At time t and for an observed risky asset price Xt = x, the price of a European call option
CBS(t, x) is given by a closed-form solution known as the Black-Scholes Formula:

CBS(t, x) = xN(d1)−Ke−r(T−t)N(d2), (2.19)

where

d1 =
log(x/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, (2.20)

d2 = d1 − σ
√
T − t. (2.21)

Furthermore, let N stand for the standard Gaussian cumulative distribution function, then it
is given by

N(z) =
1√
2π

∫ z

−∞
e−y

2/2dy. (2.22)

This convenient formula for the price of a European call option explains the popularity of the
model in the financial services industry since the mid-1970s. Only the volatility σ, the
standard deviation of the returns scaled by the square root of the time increment, needs to be
estimated from data, assuming that the interest rate r is known. There is a similar formula for
European put options, as will be shown in the next section.

Figure 2.6 demonstrates how the Black-Scholes price changes when strike price K, volatility σ,
and interest rate r are kept constant while time-to-maturity T and the stock price x vary. One
can observe that the option price increases as the stock price and time-to-maturity increase.
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Figure 2.6: The Black-Scholes price for an European Call option with K = 100, σ = 0.3, r = 0.05.
Source: [40]

2.3.4 Put-Call Parity

The put-call parity describes the important relationship between European call and put
options, which can be used to derive a closed-form expression for the price of a European put
option. It is satisfied in any arbitrage-free, continuous-time model of a security market,
provided that the savings account, the risk less bond is given by Bt = ert.

Let CBS(t, x) be the price of a European call and PBS(t, x) of a European put option. The
prices of European call and put options with the same expiry date T and strike price K satisfy
the put-call parity relationship

CBS(t,Xt)− PBS(t,Xt) = Xt −Ke−r(T−t). (2.23)

The relationship is preserved under the lognormal model because the difference CBS − PBS
satisfies the partial differential equation (2.18) with the final condition h(x) = x−K. This
problem has the simple solution x−Ke−r(T−t). To derive a closed-form expression for the
price of a European put option, use the Black-Scholes formula (2.19) for CBS and the put-call
parity relation (2.23). Thus, the following explicit formula for the price of a European put
option is obtained:

PBS(t, x) = Ke−r(T−t)N(−d2)− xN(−d1), (2.24)
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where d1, d2 and N are as in (2.20), (2.21) and (2.22), respectively.

Figure 2.7 shows the pricing function CBS(0, x; 100, 0.5; 0.1) and PBS(0, x; 100, 0.5; 0.1) plotted
against the present (t = 0) stock price x. Notice how the call option function is a smoothed
version of the “ramp” terminal payoff function. For the put option function one can see that it
crosses over its terminal payoff for some (small enough) x.

Figure 2.7: Black-Scholes call and put option pricing function at time t = 0, with K = 100,
T = 0.5, σ = 0.1 and r = 0.04. Source: [26]

Other types of options, in gerneral, do not lead to such explicit formulas. Solving numerically
the partial differential equation (2.18) with appropriate boundary conditions is required, to
determine their prices. More information, e.g. on the determination of American option prices,
can be found in [26] and in many other books.

2.4 Volatility

For practical application of the Black-Scholes Theory, one needs to have numerical estimates of
all the input parameters. The input data consists of the string x, r, T, t and σ. Out of these five
parameters, x, r, T and t can be observed directly, which leaves the problem of obtaining an
estimate of the volatility σ. The volatility of a stock is a measure of the uncertainty about the
returns provided by the stock. Stocks typically have a volatility between 15% and 60%. Two
basic approaches for the estimation are used, namely historical volatility or implied volatility.
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2.4.1 Historical Volatility

To value an European option, an obvious idea is to use historical data in order to estimate σ.
Since, in real life, the volatility is not constant over time, one standard practice is to use
historical data for a period of the same length as the time to maturity. This approach takes
the standard deviation of the underlying’s log-returns and times the time length. The
log-return of the underlying asset is

Rt = log
Xt

Xt−1
.

Using elementary statistical theory, an estimate of σ is given by

σ̂H =

√
ϑ

∆t
,

where the sample variance ϑ is given by

ϑ =
1

n− 1

n∑
t=1

(Rt − R̄n)2,

with R̄n = 1
n

∑n
t=1Rt being the sample mean.

An argument against the use of historical volatility is that in real life volatility is not constant,
but changes over time. It should be an estimate of the volatility for the coming time period,
but this approach only yields an estimate for the volatility over the past time period.

2.4.2 Implied Volatility

Implied volatility of an option is calculated from its market price observed on an exchange and
not from the prices of the underlying as it is the case for the historical volatility. In this thesis
its defined as the volatility, that is obtained when equating the option’s market value to its
Black-Scholes value, given the same strike price and time to maturity. It is extracted
numerically due to the fact that the Black-Scholes formula cannot be solved for σ in terms of
the other parameters.

Given an observed European call option price Cobs (market price) for a contract with strike K
and expiration date T , the implied volatility σ̂I is defined to be the value of the volatility
parameter that must go into the Black-Scholes formula (2.19) to match this price:

CBS(t, x;K,T ; σ̂I) = Cobs.
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Remark (1) A unique non-negative implied volatility σ̂I > 0 can be found given
Cobs > CBS(t, x;K,T ; 0) because of the monotonicity of the Black-Scholes formula in the
volatility parameter:

∂CBS
∂σ

=
xe−d

2
1/2
√
T − t√

2π
> 0.

(2) The implied volatilites from put and call options of the same strike price and time to
maturity are the same because of put-call parity (2.23).

Thus implied volatilities are embedded in option prices, which in turn reflect the future
expectations of the market participants. Whereas historical volatilities are backward looking,
implied volatilities are forward looking. Traders often quote the implied volatility of an option
rather than its price. This is convenient because the implied volatility tends to be less variable
than the option price.

Note, that implied volatilities can be used to test (in a non-standard way) the Black-Scholes
model. Suppose, e.g. the market prices of a number of European calls with the same exercise
date on a single underlying stock were observed. If the model is correct (with a constant
volatility) then, if one plots implied volatility as a function of the strike price, one should
obtain a horizontal straight line. Contrary to this, it is often observed that options deep OTM
or deep ITM are traded at higher implied volatilities than ATM options. The graph of the
observed implied volatility function thus often looks like a smile, and for this reason the
implied volatility curve is termed the volatility smile, see figure 2.11; but more on this in the
following section.

2.5 Limitations of the Black-Scholes Model

The Black-Scholes model has set such an important foundation in financial engineering in the
past 30 years and has been really recognized by both academia and practitioners, but it is also
well known and accepted that this model is not that accurate in capturing the features in the
stock markets in reality. There are several major drawbacks of the Black-Scholes model,
mainly because the idealized assumptions do rarely hold in the real world. First of all, the
assumption of a normal distribution of log-returns is under critique ever since 1963 by
Mandelbrot.1 Combined factors of extreme events, fat tails, high peak and the volatility
clustering effects make the assumption of non-Gaussian distribution more appropriate.
Secondly, the volatility smile is simply a violation of the constant volatility assumption. The
mentioned drawbacks will be discussed in greater detail in the following sections.

1Mandelbrot (1963a, 1963b), see [44] and [45] respectively
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2.5.1 Shortcomings of Gaussian distribution

Economists believed that prices in speculative markets, such as grain and securities markets,
behave very much like random walks,2 which is based on two assumptions: (1) price changes
are independent random variables, and (2) the changes conform to some probability
distribution.

Mandelbrot (1963) challenged this long existing believe, that the price changes in a speculative
market are approximately Gaussian. First, some features of Gaussian distribution will be
presented. In the study of financial time-series, it is a concept to describe the actual return
distribution, where data or the variable turns to cluster around the mean. The two important
parameters are the mean µ and the variance σ2. For a Gaussian distribution the probability
density function is given by

f(x) =
1√

2πσ2
e

(x−µ)2

2σ2 .

Some notable properties of the Gaussian distribution are the following:

� symmetry around its mean µ, therefore the skewness of the distribution is 0,

� both the mode and the median are the same as the mean µ,

� the inflection points (points where the curve changes sign) of the curve occur one
standard deviation away from the mean, e.g. at µ− σ and µ+ σ,

� the kurtosis (describes the peakedness of a distribution) is equal to 3.

Unfortunately, these properties are not suitable in capturing the probability of extreme events
in the market. Take for example the stock market crash of October 1987. Following the
standard paradigm, the stock market returns are lognormally distributed with a annualized
volatility of 20% (as was already mentioned in section 2.4, it is usually believed to be between
15% and 60%). On October 19, 1987, the two month S&P 500 futures price fell 29 percent.
Under the lognormal assumption and according to the calculation from the probability density
function, the probability of this event is 10−160, which is virtually impossible.3 In the history
of stock market this is not the only event with little probability that actually did happen.

Besides the difficulty in dealing with historical extreme events, empirical research has shown
that the actual return distributions in stock market have fatter tails and higher peak than the
normal distribution. In figure 2.8, the frequency distribution of SPX daily log-returns over a
77-year period from 1928 to 2005 is plotted and compared with the normal distribution. Note
the −22.9% return on October 19, 1987 in figure 2.10, which is not directly visible in figure
2.8, but the x-axis has been extended to the left to accommodiate it. It is quite obvious that

2Fama (1965), p2, see [18]
3This example is extracted from Jackwerth & Rubinstein (1996), p1611, see [36]
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the distribution of log-returns of SPX is highly peaked and fat-tailed relative to the normal
distribution. The Q-Q plot in figure 2.9 shows just how extreme the tails of the empirical
distribution of returns are relative to the normal distribution. This plot would be a straight
line, if the empirical distribution were normal. Fat tails and the high central peak are
characteristics of mixture of distributions with different variances.4

Figure 2.8: Frequency distribution of 77 years of SPX daily log-returns compared with the normal
distribution. Source: [28]

All mentioned factors above are against the assumption of a Gaussian distribution and point
out the necessity to move from assumption of constant volatility to stochastic volatility.

2.5.2 Clustering and Leverage effect

Another drawback is the so-called volatility clustering. It means, that large market moves are
followed by large moves, while small moves are followed by small moves, a feature which
obviously cannot be captured by a model assuming constant volatility. One can observe this
trend in figure 2.10, where the log-returns of SPX over a 15-year period are plotted. This
implies that actually the volatility of the log-returns is auto-correlated. In the model, this is a
consequence of mean reversion of volatility.5

This strong negative correlation between stock’s current prices and their future volatilities,
called the leverage effect was first noted by Black [8] in 1976, who also mentions: “I have
believed for a long time that stock returns are related to volatility changes. When stocks go
up, volatility seem to go down; and when stocks go down, volatilities seem to go up.”6 This

4Gatheral (2006), page 2, see [28]
5Gatheral (2006), page 2, see [28]
6Black (1976), pp. 177, see [8]
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Figure 2.9: Q-Q plot of SPX daily log-returns compared with the normal distribution. Note the
extreme tails. Source: [28]

could also be explained from intuition. When the return of equity becomes negative, the
reactions from the investors will be more volatile, thus the volatility will increase. Otherwise,
when the return becomes positive, investors will gain more confidence in the speculative
market; therefore the volatility in the near future would decrease. Therefore, this is also an
implication that the constant volatility assumption is far away from the reality.

2.5.3 Volatility Smile

Recall the definition of the implied volatility from section 2.4.2 as the volatility of the
underlying assets which, when substituted into the Black-Scholes formula, gives a theoretical
price equal to the market price. If the assumption of constant volatility in the Black-Scholes
model would hold in the market, the implied volatility of the underlying one could get given an
underlying price with different maturities and strikes should be the same. In other words,
using Black-Scholes option pricing model, for options with the same expiration date, the
implied volatility is expected to be the same regardless the value of the strike price.
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Figure 2.10: SPX daily log-returns from December 31, 1984 to December 31, 2004. Note the
−22.9% return on October 19, 1987. Source: [28]

As seen in figure 2.11, where one can observe a so-called volatility smile, this contradicts the
market reality. The characteristic shape of the curve indicates, that implied volatilities for
OTM options are typically higher than those of ATM options. Closely related to this
phenomenon is the so-called skew, an asymmetry which can also be observed in the market. In
figure 2.11, for European ATX call options from the market data described in 5.1, the
Black-Scholes implied volatility for each option and then the average per moneyness group
(introduced in section 2.2.2) were calculated.

Jackwerth & Rubinstein [36] in 1996, and many other researchers have studied the
phenomenon of volatility smile for equity options. Table 2.2 shows how implied volatility
changes through different time-to-maturity. This has become more widely observed after the
stock market crash in October 1987, because the volatility surface was rarely flat afterwards.

But despite these limitations of idealistic assumptions, which are clearly not suitable to the
real market, the Black-Scholes model is still widely used. The main reason is simply its easy
analytical tractability, which results in simple formulas for most pricing problems. It is also
quite accurate for ATM vanilla options, but one should be careful when using Black-Scholes
prices for deep OTM options or exotic options; in these cases market prices can show huge
deviations from the theoretical Black-Scholes prices. However, the content of the following
chapter will digress from the Black-Scholes world to stochastic volatility world.
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Figure 2.11: Implied volatility of European ATX call options per moneyness group

At-the-money Historical Volatility: Prior Sampling Period

Date Implied Volatility 28 Days 91 Days 364 Days 1092 Days

04/02/86 0.193 0.137 0.133 0.108 0.118

04/02/87 0.199 0.145 0.143 0.170 0.136

04/04/88 0.262 0.149 0.220 0.348 0.233

04/03/89 0.153 0.116 0.115 0.141 0.238

04/02/90 0.194 0.108 0.136 0.137 0.231

04/02/91 0.196 0.139 0.169 0.167 0.149

04/02/92 0.153 0.073 0.095 0.127 0.145

04/02/93 0.133 0.122 0.108 0.100 0.134

The first column displays the Black-Scholes implied volatility for the ATM option on the S&P
500 index. The option with a time-to-expiration between 135 and 225 days is chosen. 8 dates
from April 2,1986 through April 2, 1993 are used and the date closest to April 2 is chosen
for each year. The remaining four columns report the historical volatility for those dates,
sampling the prior 28, 91, 364 and 1092 days, repectively.

Table 2.2: Black-Scholes Implied and Historical Time Series Volatilities. Source:
Jackwerth & Rubinstein, page 1613, see [36].



Chapter 3

Stochastic Volatility and the Heston
Model

In the previous chapter, the Black-Scholes world and its limitations have been discussed. The
phenomenon of the implied volatility smile points to a more realistic assumption of stochastic
volatility model. In this chapter some alternative option pricing models will be discussed,
before the widely used Heston model will be presented. This chapter is based
on [1], [28], [29], [33], [37], [51], [53] and [60].

3.1 Moving to Stochastic Volatility Models

Due to its inconsistence with reality and existence of implied volatility smile, Black-Scholes
framework leaves much room for improvement by loosing its idealized assumptions. Different
researchers have contributed various models to deal with its drawbacks to their individual and
specific focus. One category of alternative models are models with the assumptions of
stochastic interest rate instead of constant interest rate, presented by Merton [48] and Amin &
Jarrow [3]. Also a possibility is to retain the property that the asset price changes
continuously, but assume a process other than geometric Brownian motion. Another
alternative is to assume a process where all the asset price changes that take place are jumps.

These three types of processes are known as Levy processes.1 A model where stock prices
change continuously is known as a diffusion model. A model where continuous changes are
overlaid with jumps is known as a mixed jump-diffusion model and was suggested by
Merton [49] in 1976. A model where all stock price changes are jumps is known as a pure jump
model, an example is the variance-gamma model by Carr et al. [10].

1Roughly speaking, a Levy process is a continuous-time stochastic process with stationary independent incre-
ments.

27
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The constant elasticity of variance (CEV) model is an example for a diffusion model where the
risk-neutral process for a stock price S is

dS = (r − q)Sdt+ σSαdz

where r is the risk-free rate, q is the dividend yield, dz is a Wiener process, σ is a volatility
parameter, and α is a positive constant.2

When α = 1, the CEV model is the geometric Brownian motion model, which has been used in
the last chapter. When α < 1, the volatility increases as the stock price decreases. This creates
a probability distribution similar to that observed for equities with a heavy left tail and a less
heavy right tail. When α > 1, the volatility increases as the stock price increases. This creates
a probability distribution with a heavy right tail and a less heavy left tail.
These models have been developed to fit the volatility smiles that are observed in practice.
The CEV model is more suitable for catching the volatility smile similar to that observed for
equity options, while jump-diffusion models are better for currency options.

Finally, the limitation of constant volatility leads to models with assumption of stochastic
volatility. The volatility is related to a square root process, Cox-Ingersoll-Ross (CIR) process,
which was first introduced by Cox, Ingersoll and Ross in 1985.3 There are a number of models,
including models by Hull & White [35], Scott [56], Wiggins [59], Stein & Stein [57] and
Heston [33]. Stochastic volatility models are useful because they explain in a self-consistent
way why options with different strikes and expirations have different Black-Scholes implied
volatilities. An important paper on the empirical performance analysis of alternative options
pricing models by Bakshi et al. [5] gives the overall conclusion that the stochastic volatility
feature is the most important. Other measurement, such as adding jumps and assumption of
stochastic interest rate are not as significant as the assumption of stochastic volatility.

In the following section the derivation of the valuation equation in stochastic volatility models
will be described and in section 3.3 the base equations of the Heston model will be presented.

3.2 Derivation of the Valuation Equation

This section is based on [28] and [60]. Suppose that the stock price S and its variance v satisfy
the following SDEs:

dSt = µtStdt+
√
vtStdWt, (3.1)

dvt = α(St, vt, t)dt+ σβ(St, vt, t)
√
vtdZt, (3.2)

2Cox & Ross (1976), see [13]
3Cox et al. (1985), see [14]
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with

dWtdZt = ρdt,

where µt is the (deterministic) instantaneous drift of stock price returns, σ is the volatility of
volatility and ρ is the correlation between random stock price returns and changes in vt. W (t)
and Z(t) are standard Brownian motions (Wiener processes).
The stochastic process (3.1) followed by the stock price is equivalent to the one assumed in the
derivation of Black and Scholes (2.1). This ensures that the standard time-dependent volatility
version of the Black-Scholes formula may be retrieved in the limit η → 0. In practical
applications, this is a key requirement of a stochastic volatility option pricing model as
practitioners’ intuition for the behaviour of options prices is invariably expressd within the
framework of the Black-Scholes formula.
In contrast, the stochastic process (3.2) followed by the variance is very general. Nothing will
be assumed about the functional form of α(·) and β(·). In particular, a square root process for
variance will not be assumed.
In the Black-Scholes case, there is only one source of randomness, the stock price, which can
be hedged with stock. In the present case, random changes in volatility also need to be hedged
in order to form a riskless portfolio. Set up a portfolio Π containing the option being priced,
denote the value by U(S, v, t), a quantitiy −∆ of the stock and a quantity −∆1 of another
asset whose value U1 depends on volatility. One receives

Π = U −∆S −∆1U1.

The change in this portfolio in a time dt is given by

dΠ =

{
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ ρσvβS

∂2U

∂v∂S
+

1

2
σ2vβ2∂

2U

∂v2

}
dt

−∆1

{
∂U1

∂t
+

1

2
vS2∂

2U1

∂S2
+ ρσvβS

∂2U1

∂v∂S
+

1

2
σ2vβ2∂

2U1

∂v2

}
dt

+

{
∂U

∂S
−∆1

∂U1

∂S
−∆

}
dS

+

{
∂U

∂v
−∆1

∂U1

∂v

}
dv

where, for clarity, the explicit dependence of the state variables St and vt on t and the
dependence of α and β on the state variables have been eliminated. To make the portfolio
instanteously risk-free, choose

∂U

∂S
−∆1

∂U1

∂S
−∆ = 0

to eliminate dS terms, and

∂U

∂v
−∆1

∂U1

∂v
= 0
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to eliminate dv terms. This leaves

dΠ =

{
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ ρσvβS

∂2U

∂v∂S
+

1

2
σ2vβ2∂

2U

∂v2

}
dt

−∆1

{
∂U1

∂t
+

1

2
vS2∂

2U1

∂S2
+ ρσvβS

∂2U1

∂v∂S
+

1

2
σ2vβ2∂

2U1

∂v2

}
dt

= rΠdt

= r(U −∆S −∆1U1)dt

where the fact has been used, that the return on a risk-free portfoio must equal the risk-free
rate r, which will be assumed to be deterministic for this purpose. Collecting all U terms on
the left-hand side and all U1 terms on the right-hand side, one gets

∂U
∂t + 1

2vS
2 ∂2U
∂S2 + ρσvβS ∂2U

∂v∂S + 1
2σ

2vβ2 ∂2U
∂v2

+ rS ∂U∂S − rU
∂U
∂v

=
∂U1
∂t + 1

2vS
2 ∂2U1
∂S2 + ρσvβS ∂2U1

∂v∂S + 1
2σ

2vβ2 ∂2U1
∂v2

+ rS ∂U1
∂S − rU1

∂U1
∂v

The left-hand side is a function of U only and the right-hand side is a function of U1 only. The
only way that this can be is for both sides to be equal to some function f of the independent
variables S, v and t. Deduce that

∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ ρσvβS

∂2U

∂v∂S
+

1

2
σ2vβ2∂

2U

∂v2
+ rS

∂U

∂S
− rU

= −(α− φβ
√
v)
∂U

∂v

where, without loss of generality, the arbitrary function f of S, v and t has been written as
(α− φβ

√
v), where α and β are the drift and volatility functions from the SDE (3.2) for

instantaneous variance.

3.3 Base Equations of the Heston model

The stochastic volatility model proposed by Heston [33] in 1993, extends the Black and Scholes
model and includes it as a special case. Hestons’s setting take into account non-lognormal
distribution of the assets returns, leverage effect, important mean-reverting property of
volatility and it remains analytically tractable. Furthermore, the Black-Scholes volatility
surfaces generated by Heston’s model look like empirical implied volatility surfaces.
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The Heston model corresponds to choosing α(S, vt, t) = κ(θ − vt) and β(S, v, t) = 1 in
equations (3.1) and (3.2). Therefore, the underlying asset price S at time t with dividend q
and risk-free interest rate r is assumed to follow the following stochastic process:

dSt = (r − q)Stdt+
√
vtStdWt, S0 ≥ 0, (3.3)

where v(t) is the variance and follows the process:

dvt = κ(θ − vt)dt+ σ
√
vtdZt, v0 = σ2

0 = 0, (3.4)

where W(t) and Z(t) are two standard Brownian motions, correlated with each other by

dWtdZt = ρdt, (3.5)

where κ, θ, σ > 0 and |ρ| < 1 are the model parameters:

� v0 Initial variance

� κ Mean reversion rate

� θ Long run variance

� σ Volatility of variance

� ρ Correlation parameter

Note that v0 > 0 is assumed to be non random at time 0, and accounts for the short-term
at-the-money implied variance observed on the market. The parameter ρ represents the
correlation between the asset price and its instanteous volatility, and corresponds to the
leverage effect introduced in section 2.5.2.

The variance process (vt)t≥0 is called a Feller diffusion (or a CIR process) and the
Yamada-Watanabe conditions4 ensure that a non-negative unique strong solution exits. Since
the process (St)t≥0 can be written as the exponential of a smooth functional of the variance
process, it also has a unique strong solution. Since the square-root function is not smooth at
the origin, understanding the behaviour of the variance process at this point is fundamental.
The Feller classification of boundaries for one-dimensional diffusions5 implies the following:

(i) if 2κθ ≥ σ2, then the origin is unattainable;

(ii) if 2κθ < σ2, then the origin is a regular, attainable and reflecting boundary; this means
that the variance process can touch 0 in finite time, but does not spend time there;

4Karatzas & Shreve (1991), Section 5.2.C, see [38]
5Karlin & Taylor (1981), Chapter 15, Section 6, see [39]
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(iii) infinity is a natural boundary, i.e. it can not be attained in finite time and the process
can not be started there.

In the rest of the paper, to the inequality 2κθ ≥ σ2 will be referred to as the Feller condition.
The interested reader may refer to [43] for the implications of such a boundary classification
when pricing options using finite difference schemes.

3.4 Incomplete Market in the Heston Model

By looking at the Heston model and comparing the number of random sources (two standard
Brownian motions) with the number of the risky traded assets (only the underlying spot since
volatility is not traded) one can easily see that the model is an incomplete model.6 Therefore,
it is not possible to obtain an unique price for any contingent claim using only the underlying
asset and a bank account, which is normally the case for complete models such as the
Black-Scholes model. To complete the market in the Heston model, one has to add an
European call option for example.

In a complete (frictionless) market framework, contingent claims written on the existing
primitive assets are redundant. Assuming that their introduction in the economy does not
affect equilibrium prices,7 the agent utility cannot be increased by trading in such redundant
assets. However in incomplete markets, contingent claims can improve the market efficiency by
reducing the dimensionality of unhedgeable risks (see Hart [31]).
Bajeux & Rochet [4] adressed this problem in a continuous-time incomplete market model.
Considering the stochastic volatility model studied by Hull & White [35], they showed that
any European option completes the market. A pricing rule of the option is required in order to
check its redundancy at any time.
Romano & Touzi [53] show that a sufficient condition for a contigent claim to complete the
market is the strict convexity of its price function in the current underlying asset price at any
time (strictly) before maturity. Such a sufficient condition is satisfied by European call and
put option. In general, given a contingent claim with convex payoff function, such a sufficient
condition is satisfied by any admissible arbitrage price induced by an equivalent martingale
measure under which the volatility process is Markov.
Thus, they extended the result of Bajeux & Rochet [4] to a large class of contingent claims and
allow a possible correlation between the asset price and its volatility variations.

6Björk (2004), p118, Meta-theorem 8.3.1, see [7]
7Detemple & Selden (1991) showed that trading in options does affect the equilibrium prices since the agents’

demand is changed, see [15]
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3.5 Semi-closed Form Solution for European Options

The above mentioned equations (3.3)-(3.5) are still insufficient to price contingent claims
because no assumptions that give the price of volatility risk have been made. Standard
arbitrage arguments8 demonstrate that the value of any asset U(S, v, t) must satisfy the partial
differential equation

1

2
vS2∂

2U

∂S2
+ ρσvS

∂2U

∂S ∂v
+

1

2
σ2v

∂2U

∂v2
+ rS

∂U

∂S

+ κ(θ − vt)− λ(S, v, t)
∂U

∂v
− rU +

∂U

∂t
= 0. (3.6)

The function λ(S, v, t) represents the market price of the volatility risk. Without loss of
generality its functional form can be reduced to λ(S, v, t) = λv.

A European call option with strike price K and maturing at time T satisfies the PDE (3.6)
subject to the following boundary conditions:

U(S, v, T ) = max(0, S −K),

U(0, v, t) = 0,

∂U

∂S
(∞, v, t) = 1 (3.7)

rS
∂U

∂S
(S, 0, t) + κθ

∂U

∂v
(S, 0, t)− rU(S, 0, t) + Ut(S, 0, t) = 0,

U(S,∞, t) = S.

By analogy with the Black-Scholes formula, the solutions have the form

C(S, v, t) = SP1 −KP (t, T )P2, (3.8)

where the first term is the present value of the underlying (spot) asset, and the second term is
the present value of the strike price payment. Both of these terms must satisfy the original
PDE (3.6). It is convenient to write them in terms of the logarithm of the spot price x = ln[S].

1

2
v
∂2Pj
∂x2

+ ρσv
∂2Pj
∂x ∂v

+
1

2
σ2v

∂2Pj
∂v2

+ (r + ujv)
∂Pj
∂x

+ (aj − bjv)
∂Pj
∂v

+
∂Pj
∂t

= 0. (3.9)

,

8Black & Scholes (1973) and Merton (1973), see [9] and [48] respectively
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for j = 1, 2, where

u1 =
1

2
, u2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ.

For the option price to satisfy the terminal condition in equation (3.7), these PDEs (3.9) are
subject to the terminal condition

Pj(x, v, T ; ln[K]) = I{x≤ln[K]}

Thus, they may be interpreted as adjusted or risk-neutralized probabilities.9 The probabilities
Pj are not immediately available in closed form, but one can receive them by inverting the
characteristic functions. Their characteristic functions satisfy the same PDE (3.9) and the
characteristic function solution is

fj(x, v, t;φ) = exp(C(T − t;φ) +D(T − t;φ) v + iφx), (3.10)

where

C(τ, φ) = rφiτ +
a

σ2

{
(bj − ρσφi+ d)τ − 2 ln

[
1− gedτ

1− g

]}
D(τ, φ) =

bj − ρσφi+ d

σ2

[
1− edτ

1− gedτ

]
and

g =
bj − ρσθi+ d

bj − ρσθi− d
,

d =
√

(ρσφi− bj)2 − σ2(2ujφi− φ2).

One can invert the characteristic functions to get the desired probabilities:

Pj(x, v, T ; ln[K]) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ ln[K]fj (x, v, T ;φ)

iφ

]
dφ. (3.11)

The integrand in equation (3.11) is a smooth function that decays rapidly and presents no
difficulties. Equations (3.8),(3.10) and(3.11) give the solutions for European call options.

9Cox & Ross (1976), see [13]
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3.6 Influence of Parameters

It is important to understand the meaning of the Heston parameters, since the effective
utilisation of the stochastic volatility model depends on the initial parameters and calibration
parameters:

Initial variance v0 Changing the initial variance allows adjustment in the height of the
smile cure rather than the shape. Increasing the initial volatility level,

√
v0 moves the implied

volatility smile upwards, see figure 3.1 (left). This behaviour is quite intuitive, hence will not
be commented further.

Long run variance θ As a matter of fact, long run variance θ and initial variance v0 have a
similar influence upon the implied volatility smile. In figure 3.1 (right) the effect of changing
long run variance is shown.

Mean reversion κ The mean reversion rate can be interpreted as representing the degree of
volatility clustering. As mentioned in section 2.5.2, volatility clustering can be observed in the
market, it means that large moves are followed by large moves, while small moves are more
likely to be followed by small moves. The mean reversion parameter controls the curvature of
the curve. Increasing the mean reversion parameter flattens the implied volatility smile, see
figure 3.2. Decreasing the mean reversion has a similar effect as increasing the volatility of
variance in terms of curvature, the effect is shown in figure 3.9.

Figure 3.1: The effect of changing the initial variance v =
√
v0 (left) and the effect of changing

the long run variance θ (right). Source: [29]

Correlation ρ The correlation, which can be interpreted as the correlation between the
log-returns and volatility of the asset, affects the heaviness of the tails. Intuitively, if ρ > 0,
then volatility will increase as the asset price/return increases. This will spread the right tail
and squeeze the left tail of the distribution creating a fat right-tailed distribution. Conversely,
if ρ < 0, then volatility will increase when the asset price/return decreases, thus spreading the
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Figure 3.2: The effect of changing the mean reversion κ. Source: [29]

left tail and squeezing the right tail of the distribution creating a fat left-tailed distribution
(emphasising the fact that equity returns and its related volatility are negative correlated).
The correlation, therefore, affects the skewness of the distribution. Figure 3.3 shows this effect
for different values ρ on the skewness of the density function.

Figure 3.3: The effect of ρ on the skewness of the density function. Source: [51]

The effect of changing the skewness of the distribution also impacts on the shape of the implied
volatility surface. Hence, ρ also affects this. Figures 3.4, 3.5 and 3.6 show the effect of varying
ρ. As can be seen, the model can imply a variety of volatility surfaces and hence adresses the
shortcoming of constant volatility across differing strike levels in the Black-Scholes model.

Volatility of variance σ The Volatility of variance σ affects the kurtosis (peak) of the
distribution. When σ is 0 the volatility is deterministic and hence the log-returns will be
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Figure 3.4: Implied volatility surface, ρ = 0.5, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%,
S0 = 1, strikes: 0.8− 1.2, maturities: 0.5− 3 years. Source: [51]

Figure 3.5: Implied volatility surface, ρ = 0, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%, S0 = 1,
strikes: 0.8− 1.2, maturities: 0.5− 3 years. Source: [51]

normally distributed. Increasing σ will then increase the kurtosis only, creating heavy tails on
both sides. The effect of varying σ on the kurtosis of the density function is shown in figure 3.7.

Again, the effect of changing the kurtosis of the distribution impacts on the implied volatility.
Figures 3.8 - 3.10 show how σ affects the significance of the smile/skew. Higher σ makes the
skew/smile more prominent. This makes sense relative to the leverage effect. Higher σ means
that the volatility is more volatile. This means that the market has a greater change of extreme
movements. So, writers of puts must charge more and those of calls less, for a given strike.
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Figure 3.6: Implied volatility surface, ρ = −0.5, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%,
S0 = 1, strikes: 0.8− 1.2, maturities: 0.5− 3 years. Source: [51]

Figure 3.7: The effect of σ on the kurtosis of the density function. Source: [51]

The aforementioned features of this model enables it to produce a barrage of distributions.
This makes the model very robust and hence addresses the shortcomings of the Black-Scholes
model. It provides a framework to price a variety of options that is closer to reality.
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Figure 3.8: Implied volatility curve, ρ = 0.5, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%, S0 = 1,
strikes: 0.8− 1.2, maturities: 0.5− 3 years. Source: [51]

Figure 3.9: Implied volatility curve, ρ = 0, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%, S0 = 1,
strikes: 0.8− 1.2, maturities: 0.5− 3 years. Source: [51]

3.7 Advantages and Disadvantages of the Heston Model

Both academia and practitioners have recognized the significance of the Heston Model,
nevertheless, it is not a model without any drawbacks. A brief summary of its advantages and
disadvantages will be presented in this section.



40 CHAPTER 3. STOCHASTIC VOLATILITY AND THE HESTON MODEL

Figure 3.10: Implied volatility curve, ρ = −0.5, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%,
S0 = 1, strikes: 0.8− 1.2, maturities: 0.5− 3 years. Source: [51]

Advantages of the Heston model:

� Semi-closed form solution for European options and thus the model allows a fast
calibration to given market data.

� Unlike the Black-Scholes model, the price dynamics in the Heston model allows for
non-lognormal probability distribution (high peak, fat tails).

� The model fits the implied volatility surface of option prices in the market, when the
maturity is not too small.

� The volatility is mean reverting.

� It takes into account leverage effect (negative correlation of equity returns and implied
volatility), and in addition, it permits the correlation between the asset and the volatility
to be changed

Disadvantages of the Heston model:

� Since volatility is unobservable, the parameter values in the Heston model (and other SV
models) are not easily estimated.

� The prices produced by the model are quite parameter sensitive, hence the fitness of the
model depends on the calibration. In other words, the price to pay for more realistic
models is the increased complexity of model calibration.
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� The Heston model fails to produce decent results for short maturities as the model fails
to create a short term skew as strong as the one given by the market. To perform well,
further extensions of the model are necessary, such as adding jumps.10

The first two drawbacks display the importance of calibration in the Heston model. Often, the
estimation method for the parameters becomes as crucial as the model itself.11

In the last years asymptotic properties of the model have been thoroughly studied: small and
large time behaviours, wings of the implied volatility for fixed maturity. They are extremely
useful in practice to determine initial points for the calibration of the model. On this
calibration issue, least-square minimisation methods based on these asymptotical results as a
proxy should be very accurate. In the next chapters some asymptotic results will be presented,
and used for the calibration of initial parameters.

10Mikhailov & Nögel (2003), see [50]
11Mikhailov & Nögel (2003), see [50]
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Chapter 4

Asymptotic Behaviour in the Heston
model

This chapter is based on [21], [22], [23], [24], [25] and [27]. Stochastic models are used
extensively by traders and quantitative analysts in order to price and hedge financial products.
Once a model has been chosen for its realistic features, one has to calibrate it. This calibration
must be robust and stable and should not be too computer intensive. This latter constraint
often rules out global optimisation algorithms which are very slow despite their accuracy. For
this matter closed-form asymptotic approximations have grown rapidly in the past few years.
They have proved to be very efficient

(i) to provide some information about the behaviour of option prices in some extreme
regions such as small or large strikes and/or maturities (where standard numerical
schemes lose their accuracy),

(ii) to improve calibration efficiency.

Indeed one can first perform an instantaneous calibration on the closed-form first and then use
this result as a starting point to calibrate the whole model. In practice calibration is often
performed using the implied volatility, i.e. the volatility parameter to be used in the
Black-Scholes formula in order to match the observed market price, rather than option prices.

The general approach to the calibration of parametric models, such as the Heston model, is to
apply a least-square type procedure in implied volatility. This kind of approach will in general
be very sensitive to the choice of the initial point, which will often in practice drive the
selection of the local minima the algorithm will converge to. The various explicit formulae for
short or long term asymptotics, conveniently inverted, come into play to get a pertaining
initial point.

In this chapter an overview of the many recent results concerning the asymptotic properties of
the Heston model, with a main focus on the work of Forde & Jacquier [23], Forde et al. [24],
Forde et al. [25] and Friz et al. [27] will be presented. Finally, in chapter 5 the results on

43
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calibrating the initial points in the Heston model with the afore mentioned asymptotic
properties will be provided.

Note, in the following sections σt(x) shall denote the implied volatility of a European Call
option written on the (forward) asset price St, with strike K = S0e

x maturing at time T . With
Xt = log(St) the log-forward price will be denoted for convenience, the log-moneyness of an
option is denoted with x. Many results in this section will be based on the knowledge and the
properties of the Laplace transform of the model. It hence worth recalling its exact form. For
any t > 0, define the moment generating function Λt of the Heston model by

Λt(u) := logE(eu(Xt−x0)), for all u ∈ R such that the expectation exists.

4.1 Lee’s Moment Formula

First, Lee’s moment formula will be presented. Lee [42] proved in 2004 the existence of bounds
for the implied volatility skew at extreme, i.e. deep in-the-money or out-of-the-money. He
shows that implied volatility is bounded by two functions that are linear in the log-strike
k = log(K/S0). He shows also how to relate the gradients of the wings of the upper bound of
the implied volatility skew to the maximal finite moments of the underlying process. The main
results will be presented in theorem 4.1.3 and 4.1.5.

Let Bt be the time-t price of a discount bond maturing at T , and ST a nonnegative underlying
randomness. Write C and P for the time-0 call and put prices as a function of strike:

C(K) = B0E(ST −K)+

P (K) = B0E(K − ST )+

for K > 0 and define F0 = EST , which one interprets as today’s T -forward price of the payoff
ST . Note also the following Corollary.

Corollary 4.1.1. If ESp+1
T <∞, then C(K) = O(K−p) as K →∞.

If ES−qT <∞, then P (K) = O(K1+q) as K → 0.

Consider the right-hand (or large K or positive x or out-of-the-money call) tail of the square of
implied volatility. First it will be shown that this tail slope is no larger than 2.

Lemma 4.1.2. There exists x∗ > 0 such that for all x > x∗

I(x) <
√

2|x|/T
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Proof. By the strict monotonicity of CBS in its second argument, it is only necessary to
establish that

CBS(x, I(x)) < CBS(x,
√

2|x|/T ) (4.1)

whenever x > x∗. On the left-hand side of 4.1, one gets

lim
x→∞

C(K(x)) = lim
K→∞

B0E(ST −K)+ = 0

by dominated convergence, because EST <∞. On the right-hand side,

lim
x→∞

CBS(x,
√

2|x|/T ) = B0F0[Φ(0)− lim
x→∞

exΦ(−
√

2|x|)] = B0F0/2

by L’Hôpital’s rule. This proves 4.1.2 �

The explicit formula relating the right-hand tail slope to how many finite moments the
underlying possesses is given by the following:

Theorem 4.1.3 (The Moment Formula, part 1). Let

p̃ := sup
{
p : ES1+p

T <∞
}

βR := lim sup
k→∞

σ2
BS(K,T )T

|k|
.

Then βR ∈ [0, 2],

p̃ =
1

2

(
1√
βR
−
√
βR
2

)2

where 1/0 :=∞. Equivalently,

βR = 2− 4(
√
p̃2 + p̃2 − p̃)

where the right-hand expression is to be read as zero, in the case p̃ =∞.

Proof. Lemma 4.1.2 implies βR ∈ [0, 2]. Show that p̃ = f−(βR)/2.
For any β ∈ (0, 2), L’Hôpital’s rule implies that

lim sup
x→∞

e−cx

CBS(x,
√
β|x|/T )

=

{
0 for c > f−(β)/2

∞ for c ≤ f−(β)/2

which will be used in both stages of the proof.

To prove p̃ ≤ f−(βR)/2, note that f− : (0, 2)
onto−→ (0,∞) is strictly decreasing. So it sufficies to

show that for any β ∈ (0, 2) with f−(β)/2 < p̃, one has βR ≤ β. Choose p ∈ (f−(β)/2, p̃). By
Corollary 4.1.1, as x→∞,
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CBS(x, I(x))

CBS(x,
√
β|x|/T )

=
O(e−px)

CBS(x,
√
β|x|/T )

−→ 0.

The result follows from the monotonicity of CBS in its second argument.
To prove p̃ ≥ f−(βR)/2, it sufficies to show that for any p ∈ (0, f−(β)/2), one has ES1+p

T <∞.
Choose

CBS(K(x))

e−Qx
≤
CBS(x,

√
β|x|/T )

e−Qx
−→ 0 as x→∞,

so there exists K∗ such that for all K > K∗, one has C(K) < K−Q. Then, as claimed,

ES1+p
T = E

∫ ∞
0

(p+ 1)pKp−1(ST −K)+dK

≤ p(p+ 1)B−1
0

[∫ K∗

0
Kp−1C(K)dK +

∫ ∞
K∗

Kp−Q−1dK

]
<∞,

where the first step uses a mixture of calls to span the twice-differentiable payoff S1+p; see the
appendix of [11]. �

Consider the left-hand (or small K or negative x or out-of-the-money put) tail of the square of
implied volatility. First it will be shown, that this tail slope is no larger than 2.

Lemma 4.1.4. For any β > 2 there exists x∗ such that for all x < x∗,

I(x) <
√
β|x|/T

For β = 2, the same conclusion holds, if and only if ST satisfies P(ST = 0) < 1/2.

Proof. For case β > 2 and the “if” part of case β = 2: There exists x∗ such that for all x < x∗,

P(ST < F0e
x) < Φ(−

√
f−(β)|x|)− e−xΦ(−

√
f+(β)|x|)

because as x→ −∞, the left-hand side approach P(ST = 0), while the right-hand side
approaches either 1 (in case β > 2) or 1/2 (in case β = 2). So

PBS(x, I(x)) = B0E(K(x)− ST )+ ≤ B0K(x)P(ST < F0e
x) < PBS(x,

√
β|x|/T )

for all x < x∗. The result follows from strict monotonicity of PBS in its second argument.
For the “only if” part of case β = 2: By monotonicity of PBS , on has

B0K(x)/2 > PBS(x,
√

2|x|/T ) > B0E(K(x)− ST )+ ≥ B0K(x)P(ST = 0)

for arbitrary x > x∗. Divide by B0K(x) to obtain the result. �

The explicit formula relating the left-hand tail slope to how many finite moments the
underlying’s reciprocal possesses is given by the following:
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Theorem 4.1.5 (The Moment Formula, part 2). Let

q̃ := sup
{
q : ES−qT <∞

}
βL := lim sup

k→−∞

σ2
BS(K,T )T

|k|
.

Then βL ∈ [0, 2],

q̃ =
1

2

(
1√
βL
−
√
βL
2

)2

where 1/0 :=∞. Equivalently,

βL = 2− 4(
√
q̃2 + q̃ − q̃)

where the right-hand expression is to be read as zero, in the case q̃ =∞.

Proof. Lemma 4.1.4 implies βL ∈ [0, 2]. Show that q̃ = f−(βL)/2.
For any β ∈ (0, 2), L’Hôpital’s rule implies that

lim sup
x→−∞

e(1+c)x

PBS(x,
√
β|x|/T )

=

{
0 for c > f−(βL)/2

∞ for c ≤ f−(βL)/2

which will be used in both stages of the proof.

To prove q̃ ≤ f−(βL)/2, note that f− : (0, 2)
onto−→ (0,∞) is strictly decreasing. So it sufficies to

show that for any β ∈ (0, 2) with f−(β)/2 < q̃, one has βL ≤ β. Choose q ∈ (f−(β)/2, q̃). By
Corollary 4.1.1, as x→ −∞,

PBS(x, I(x))

PBS(x,
√
β|x|/T )

=
O(e(1+q)x)

PBS(x,
√
β|x|/T )

−→ 0.

The result follows from the monotonicity of PBS in its second argument.
To prove q̃ ≥ f−(βL)/2, it sufficies to show that for any q ∈ (0, f−(βL)/2), one has ES−qT <∞.
Choose β such that Q := f−(β)/2 ∈ (q, f−(βL)/2). For |x| sufficiently large,

P (K(x))

e(1+Q)x
≤
PBS(x,

√
β|x|/T )

e(1+Q)x
−→ 0 as x→ −∞,

so there exists K∗ such that for all K < K∗, one has P (K) < K1+Q. Then, as claimed,

ES−qT = E
∫ ∞

0
−q(−q − 1)K−q−2(K − ST )+dK

≤ q(q + 1)B−1
0

[∫ K∗

0
KQ−q−1dK +

∫ ∞
K∗

K−q−2P (K)dK

]
<∞,
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where the first step uses a mixture of puts to span the twice-differentiable payoff S−q; see the
appendix of [11]. �

4.2 Short-maturity asymptotic behaviour

In this section the main results of Forde et al. [24] will be presented. The short-maturity
bahaviour of the Heston model has recently attracted quite a few people, with a focus on
applications of Varadhan’s seminal work [58] on short-time behaviour of diffusion processes.
Berestycki et al. [6] showed that, in a fairly general stochastic volatility model, the short-time
implied volatility is the viscosity solution to a certain PDE; Durrleman [17] characterised and
solved this PDE in the Heston model, and Henry-Labordère [32] characterised the small-time
behaviour of the implied volatility using the heat kernel expansion on a Riemannian manifold.
Finally, in [19], Feng et al. worked out the short-time behaviour of the Heston model in a fast
mean-reverting regime using large deviations theory, Alòs & Ewald [2] in a small volatility of
volatility regime using Malliavin calculus, and Medvedev & Scaillet [46] obtained the
short-time behaviour of general stochastic volatility models by means of asymptotic expansion
of the corresponding pricing PDE.

Using the affine properties of the Heston model, Forde & Jacquier [21] developed a large
deviation approach to obtain the small-time behaviour of the implied volatility. In [24] Forde
et al. refined this analysis by providing the first-order correction of the small-maturity
expansion for the implied volatility in this model. Their methodology in use is, similar to the
one used in [25] for the large-maturity case, is based on saddlepoint expansions in the complex
plane and the properties of holomorphic functions.

The attention will now be drawn to Forde et al. [24], which results hold in both correlation
regimes. The analysis in this work relies on the Laplace transform of the process and not on its
path properties, so it is not necessary to assume the Feller condition. The limiting moment
generation function Λ : D → R is defined by Λ(p) := limt→0 tΛt(p/t), for all u ∈ D, where D is
a closed interval of the real line containing the origin. The function Λ has the following
representation:

Λ(p) :=
y0p

σ(
√

1− ρ2 cot(1
2σp

√
1− ρ2)− ρ)

, for all p ∈ D. (4.2)

The Fenchel-Legendre transform Λ∗ : R→ R of the function Λ is defined by

Λ∗(x) := sup
p∈D
{px− Λ(p)}, for all x ∈ R. (4.3)

Then the following small-time expansions for European call option prices and implied
volatilities in the Heston model hold.
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Theorem 4.2.1. In the Heston model (3.3) the asymptotic behaviour for European call options

E(eXt − S0e
x)+

S0
=


(1− ex)+ + exp

(
−Λ∗(x)

t

)(
A(x)√

2π
t3/2 +O

(
t5/2
))

, if x 6= 0√
y0t

2π
−Bt3/2 +O

(
t5/2
)
, if x = 0,

(4.4)

holds as the maturity t→ 0, where

A(x) :=
exU(p∗(x))

p∗(x)2
√

Λ′′(p∗(x))
,

U(p) := exp

(
κθ

σ2

(
(iρσ − d0)ip− 2 log

(
1− g0e

id0p

1− g0

)))
exp

(
y0e
−id0p

(1− g0e−id0p)σ2

(
(iρσ − d0)ipd1 + (d1 − κ)(1− eid0p)− (iρσ − d0)(1− e−id0p)(g1 − id1g0p)

1− g0e−id0p

))
,

B :=
1

48

√
2

y0π

(
σ2

(
1− ρ2

4

)
+ y0(y0 − 3ρσ)− 6κ(θ − y0)

)
,

where the functions Λ and Λ∗ are defined in (4.2) and (4.3), and

d0 := σρ̄, d1 :=
2κρ− σ

2ρ̄
i, g0 :=

iρ− ρ̄
iρ+ ρ̄

, g1 :=
(2κ− ρσ)

σρ̄(iρ+ ρ̄)2
.

Figure 4.1: The leading order term (grey) and correction term (blue) in the small-time limit for
the Heston model for κ = 1.15, σ = 0.2, y0 = θ = 0.04, ρ = −0.4, t = 0.25. Source: [22]
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The following theorem gives the out-of-the-money and in-the-money (x 6= 0), and the
at-the-money (x = 0) implied volatility for small maturities.

Theorem 4.2.2. The small-time implied volatility has the asymptotic behaviour

σ2
t (x) =

σ
2
0(x) + a(x)t+ o(t) if x 6= 0

y0 +

(
κ(θ − y0)− σ2

6

(
1− ρ2

4

)
+
ρσy0

2

)
t

2
+ o(t) if x = 0,

(4.5)

as the maturity t→ 0, where the following expansions for the functions σ0 and a hold when x
is close to zero,

σ0(x) =
√
y0

(
1 +

ρσx

4y0
+

1

24

(
1− 5ρ2

2

)
σ2x2

y2
0

)
+O(x3)

a(x) = −σ
2

12

(
1− ρ2

4

)
+
y0ρσ

4
+
κ

2
(θ − y0) +

ρσ

24y0
(σ2ρ̄2 − 2κ(θ + y0) + y0ρσ)x

+
176σ2 − 480κθ − 712ρ2σ2 + 521ρ4σ2 + 40y0ρ

3σ + 1040κθρ2 − 80y0κρ
2

7680

σ2x2

y2
0

+O(x3).

Note that the two functions σ0 and a are symmetric when the correlation parameter ρ is null.
This is consistent with the fact that uncorrelated stochastic volatility models generate
symmetric smiles.

4.3 Large-maturity asymptotic behaviour

4.3.1 Large-maturity & Large-strike

The section is based on Forde and Jacquier [23]. The two theorems show the asymptotic
behaviour for European call options and the implied volatility in the large-time, large-strike
regime.

Theorem 4.3.1. For the Heston model (3.3) let θ̄ = κθ
κ−ρσ and assume the good correlation

regime κ̄ = κ− ρσ > 0. Then the large-time behaviour for the price of a call option of strike
S0e

xt on St = eXt is

1

S0
E(St − S0e

xt)+ = (1− ext)1{x<− 1
2
θ} + 1{− 1

2
θ<x< 1

2
θ̄}

+
1

2
1{x= 1

2
θ̄} + (1− 1

2
e−

1
2
θt)1{x=− 1

2
θ} (4.6)
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as t→∞, where

V (p) =
κθ

σ2
(κ− ρσp− d(−ip)) ,

d(k) =
√

(κ− ρσik)2 + σ2(ik + k2),

where p∗(x) = σ−2κρ
2(1−ρ2)σ

+ κθρ+xσ
2(1−ρ2)σ

√
σ2+4κ2−4κρσ

x2σ2+2xκθρσ+κ2θ2
and V ∗(x) = p∗(x)x− V (p∗(x)) is the

Legendre transform of V .

Theorem 4.3.2. Let σt(x) denote the implied volatility at maturity t for a log-moneyness x.
Then the large-time expansion for the large-time, large-strike regime is

σ2
∞(x) = lim

t→∞
σ2
t (x)

=

{
2(2V ∗(x)− x− 2

√
V ∗(x)2 − V ∗(x)x) if x > 1

2 θ̄ or x < −1
2θ

2(2V ∗(x)− x+ 2
√
V ∗(x)2 − V ∗(x)x) if x ∈ (−1

2θ,
1
2 θ̄),

(4.7)

where V ∗ is given in theorem 4.3.1.

Note, the next term in the expansion for the implied volatility is calculated in Forde et al. [25].

4.3.2 Large-maturity & Fixed-strike

The section is based on Forde et al. [25]. The following two theorems show the asymptotic
behaviour for European call options and the implied volatility in the large-time, fixed-strike
regime.

Theorem 4.3.3. For the Heston model (3.3) for any x ∈ R, the following asymptotic
behaviour for the price of a call option on S = eX with fixed strike K = S0 exp(x)

1

S0
E(St −K)+ = 1 +

A(0)√
2πt

exp ((1− p∗(0))x− V ∗(0)t) (1 +O(1/t)) (4.8)

holds as the maturity t→∞, where
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A(x) =
1√

V ′′(p∗)


U(p∗(x))

(p∗2(x)−p∗(x))
if x ∈ R \ {−1

2θ,
1
2 θ̄}

−1− sgn(x)
(

1
6
V ′′′(p∗(x))
V ′′(p∗(x)) − U

′(p∗(x))
)

if x ∈ {−1
2θ,

1
2 θ̄},

V (p) =
κθ

σ2
(κ− ρσp− d(−ip)) ,

U(p) = exp

(
V (p)y0

κθ
+

2κθ

σ2
log(1− g(−ip))

)
,

g(k) =
κ− ρσik − d(k)

κ− ρσik + d(k)
,

d(k) =
√

(κ− ρσik)2 + σ2(ik + k2),

where p∗(x) = σ−2κρ
2(1−ρ2)σ

+ κθρ+xσ
2(1−ρ2)σ

√
σ2+4κ2−4κρσ

x2σ2+2xκθρσ+κ2θ2
, V ∗(x) = p∗(x)x− V (p∗(x)) is the

Legendre transform of V and sgn(x) equals 1 if x is positive and -1 otherwise.

Theorem 4.3.4. Let σt(x) denote the implied volatility corresponding to a call option with
maturity t and fixed strike K = S0 exp(x) in the Heston model. Then the following behaviour
for the implied volatility in the fixed-strike case

σt(x)2 = 8V ∗(0) + a1(x)/t+O(1/t) (4.9)

holds for all x ∈ R, as t→∞,
where the correction term a1 : R→ R is defined by

a1(x) := −8 log
(
−A(0)

√
2V ∗(0)

)
+ 4(2p∗(0)− 1)x, for allx ∈ R,

and where V ∗, A and p∗ are given in theorem 4.3.3. The error term |σ2
t (x)− 8V ∗(0)− a1(x)/t|t

tends to zero as t goes to infinity uniformly on compact subsets of R.

4.4 Extreme-strike asymptotic behaviour

In this section the main results of Friz et al. [27] will be presented. It is known that Heston’s
stochastic volatility model exhibits moment explosion, and that the critical moment s+ can be
obtained by solving (numerically) a simple equation. This yields a leading order expansion for
the implied volatility at large strikes: σBS(k, T )2T ∼ Ψ(s+ − 1)× k (Roger Lee’s moment
formula [42]). Friz et al. first derive a novel tail expansion for the Heston density, sharpening
previous work of Drăgulescu & Yakovenko [16], and then showed the validity of a refined
expansion of the type σBS(k, T )2T = (β1k

1/2 + β2 + ...)2, where all the constants are explicitly
known as functions of s+, the Heston model parameters, spot vol and maturity T . In the case
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of the zero-correlation Heston model such an expansion was derived by Gulisashvili &
Stein [30]. The entire quantitative analysis in Friz et al. is based on affine principles, at no
point do they need knowledge of the (explicit, but cumbersome) closed form expression of the
Fourier transform of logST (equivalently: Mellin transform of ST ); what matters is that these
transforms satisfy ordinary differential equations of Riccati type. Secondly, the analysis of Friz
et al. reveals a new parameter (critical slope), defined in a model free manner, which drives
the second and higher order terms in tail- and implied volatility expansions.

The novel right and left tail expansion for the Heston density and the refined expansion of the
implied volatility of Friz et al. [27] will be presented in the following two subsections.

4.4.1 Right Tail Asymptotics

As mentioned above, the Heston model, as many other stochastic volatility models, exhibits
moment explosion in the sense that

T ∗(s) = sup{t ≥ 0 : E[Sst ] <∞}

is finite for s large enough. Differently put, for fixed maturity T there will be a (finite) critical
moment

s+ := sup{s ≥ 1 : E[SsT ] <∞}.

Note, in the Heston model, and many other affine stochastic volatility models, T ∗ is explicitly
known. The critical moment, for fixed T , is then found numerically from T ∗(s+) = T .

A model fee result due to Lee [42] (see moment formula section 4.1) then yields

lim sup
k→∞

σBS(k, T )2T = Ψ(s+ − 1)× k,

where k = log(K/S0) denotes the log-strike, σBS the Black-Scholes implied volatility, and

Ψ(x) = 2− 4(
√
x2 + x− x) ∈ [0, 2].

Theorem 4.4.1. For every fixed T > 0, the distribution density DT of the stock price ST in a
correlated Heston model with ρ ≤ 0 satisfies the following asymptotic formula:

DT (x) = A1x
−A3eA2

√
log x(log x)−3/4+a/c2(1 +O((log x)−1/2)) (4.10)

as x→∞. The constants A3 and A2 are expressed explicitly in terms of critical moments s+

and critical slope
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σ := − ∂T ∗(s)

∂s

∣∣∣∣
s=s+

as

A3 = s+ + 1 and A2 = 2

√
2v0

c
√
σ
.

For the constant factor A1 the following explicit expression is obtained:

A1 =
1

2
√
π

(2v0)1/4−a/c2c2a/c2σ−a/c
2−1/4

× exp

(
−v0

(
b+ s+ρc

c2
+

κ

c2σ2

)
− aT

c2
(b+ cρs+)

)

×

(
2
√
b2 + 2bcρs+ + c2s+(1− (1− ρ2)s+)

c2s+(s+ − 1) sinhT 1
2

√
b2 + 2bcρs+ + c2s+(1− (1− ρ2)s+)

)2a/c2

.

Theorem 4.4.2. Under the assumptions of Theorem 4.4.1, the Black-Scholes implied volatility
admits the expansion

σBS(k, T )2T =

(
β1k

1/2 + β2 + β3
log k

k1/2
+O

(
1

k1/2

))2

(4.11)

as k →∞, where

β1 =
√

2
(√

A3 − 1−
√
A3 − 2

)
,

β2 =
A2√

2

(
1√

A3 − 2
− 1√

A3 − 1

)
,

β3 =
1√
2

(
1

4
− a

c2

)(
1√

A3 − 1
− 1√

A3 − 2

)
.

4.4.2 Left Tail Asymptotics

First the behaviour of the Heston density DT (x) near zero will be discussed. The lower critical
moment is defined by

s− := inf{s ≤ 0 : E[SsT ] <∞}
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and the corresponding slope and curvature by

σ− := ∂sT
∗|s− ≥ 0 and κ− := ∂2

sT
∗∣∣
s−
.

Theorem 4.4.3. For every fixed T > 0, the distribution density DT of the stock price ST in a
correlated Heston model with ρ ≤ 0 satisfies the following asymptotic formula:

DT (x) = B1x
B3eB2

√
− log x(− log x)a/c

2−3/4(1 +O((− log x)−1/2)) (4.12)

as x ↓ 0, where

B3 = − (s− + 1), B2 = 2

√
2v0

c
√
σ−

B1 =
1

2
√
π

(2v0)1/4−a/c2c2a/c2−1/2σ
−a/c2−1/4
−

× exp

(
−v0

(
b+ s−ρc

c2
+

κ−
c2σ2
−

)
− aT

c2
(b+ cρs−)

)

×

(
2
√
b2 + 2bcρs− + c2s−(1− (1− ρ2)s−)

c2s−(s− − 1) sinh 1
2

√
b2 + 2bcρs− + c2s−(1− (1− ρ2)s−)

)2a/c2

.

Theorem 4.4.4. Under the assumptions of this section, the Black-Scholes implied volatility
admits the expansion

σBS(k, T )
√
T = ρ1(−k)1/2 + ρ2 + ρ3

log(−k)

(−k)1/2
+O

(
ϕ(−k)

(−k)1/2

)
(4.13)

as k → −∞. The constants are given by

ρ1 =
√

2
(√

B3 + 2−
√
B3 + 1

)
,

ρ2 =
B2√

2

(
1√

B3 + 1
− 1√

B3 + 2

)
,

ρ3 =
1√
2

(
1

4
− a

c2

)(
1√

B3 + 2
− 1√

B3 + 1

)
.
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Chapter 5

Fast Calibration

In this chapter some of the asymptotic formulas from chapter 4 will be applied to market data
and proofed for their accuracy. As mentioned before, the asymptotic formulas can be applied
to receive a pertaining initial point. The calculation will only take a few seconds on a standard
computer and these initial points can later be used as a starting point to calibrate the whole
Heston model (3.11), e.g. with a least-square method. This approach improves the calibration
efficiency.

First, the market data used for the empirical research will be described, second the results of
the estimation procedures will be analyzed. This chapter is based on [61] and [41].

5.1 Option Data

5.1.1 Austrian-Traded-Index

The Austrian-Traded-Index (ATX) is the most important stock market index of the Wiener
Börse and the largest trading place in the Austrian economy. The ATX is, like most European
indices, defined as a price index and it contains the 20 largest and most actively-traded stocks
on the exchange. The index is reviewed twice a year, and as many as three companies might
be removed and replaced. Large companies listed on the ATX are for example the Erste
Group, OMV, Voestalpine, Telekom Austria and Andritz, which combined amount about 60%
of the index.

5.1.2 Data Description

For the empirical investigation in the next chapter, data on European ATX options from
March 10, 2011 to May 9, 2011 was used. This comprises a sample of 576 daily collected data.

57
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The data contains information on the mid price, strike price, underlying price, maturity and
the corresponding 3-M EURIBOR rate.

Call Put
x̄ s x̄ s

deep ITM 241.85 48.06 274.73 41.19
ITM 137.48 18.25 190.72 28.88
ATM 94.07 30.22 123.65 30.11
ATM 57.62 27.58 78.83 33.23
OTM 31.07 19.47 45.87 25.89
deep OTM 19.83 13.87 14.56 13.21

Table 5.1: Average mid prices x̄ and standard deviation s per moneyness.

The option data was categorized into moneyness groups, according to the definition in section
2.2.2. The data consists of 19.2% ITM, 35.2% ATM and 45.6% OTM options. In table 5.1 the
avarage mid price and its standard deviation per moneyness group are displayed. The average
call option prices vary between 19.83 and 241.85, whereas the put options vary between 14.56
and 274.72.

Call Put
x̄ s x̄ s

deep ITM 0.17 0.03 0.26 0.03
ITM 0.17 0.02 0.28 0.04
ATM 0.16 0.04 0.25 0.02
ATM 0.17 0.02 0.25 0.02
OTM 0.18 0.02 0.24 0.18
deep OTM 0.21 0.03 0.23 0.18

Table 5.2: Average implied volatility x̄ and standard deviation s per moneyness.

Table 5.2 shows the implied volatility calculated with the Black-Scholes model from the market
data per moneyness group. The implied volatility was calculated for each option and then the
average per moneyness group was calculated. One can recognize that the ATX option data
displays a volatility smile as described in section 2.5.3, and therefore points out the necessity
of an option pricing model with stochastic volatility, capable of taking this effect into account.

5.2 Estimation Procedure

As mentioned in chapter 4, calibration of the Heston model is very sensitive to the choice of
the initial point. The various explicit formulas come into play to receive a pertaining initial
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point. Therefore, calibration efficiency can be improved and carried out on a standard
computer in a few seconds. Estimates for the volatility parameter v0 with the structural
parameters {κ, θ, σ, ρ} will be needed.

Since closed-form solutions are available for the Black-Scholes implied volatility from the
asymptotic formulas, a natural candidate for the estimation of the initial parameters is a
non-linear least squares procedure involving minimization of the sum of squared errors between
the model implied volatility and the market implied volatility.
Let σi(t, St,K) denote the market implied volatility of option i on day t, and let σ∗i (t, St,K)
denote the model implied volatility of the option i on day t. To estimate the parameters, the
sum of squared percentage errors between model and market implied volatilities will be
minimized:

min
Φt

N∑
i=1

[
σi(t, St,K)− σ∗i (t, St,K)

σi(t, St,K)

]2

, t = 1, . . . , T ; (5.1)

where N denotes the number of options on day t, and T denotes the number of days in the
sample. For the calculation MATLAB function lsqnonlin was used. The function
lsqnonlin(fun,x0,lb,ub) starts at the point x0 and finds a minimum of the sum of squares
of the functions described in fun. In lb and ub a vector of lower and upper bounds is defined,
so that the solution x is always in the range lb ≤ x ≤ ub, wich means that Heston’s calibrated
initial parameters will be between lb and ub.
The market implied volatility σi(t, St,K) from the data described in section 5.1 was calculated
using blsimpv from the Financial Toolbox of MATLAB. The function returns the implied
volatility values for the given parameters: underlying price S, strike K, risk-free rate of return
r, time-to-maturity T − t and the observed option price.

Since the results for the estimation, might again depend on the choice of the starting point x0,
five different sets of reasonable parameters have been used, see table 5.3. With each of these
parameters five suitable options for the prevailing asymptotic formula were calibrated,
meaning an equation with five unknown was solved. In section 5.3.1 the results of calibrating
with different starting values will be discussed in greater detail for the short-maturity formula.

κ θ σ ρ v0

Starting point A 6.5482 0.0731 2.3012 -0.4176 0.1838
Starting point B 1.1500 0.0400 0.2000 -0.4000 0.0400
Starting point C 3.0000 0.0500 0.5000 -0.5000 0.1500
Starting point D 1.3784 0.2319 1.0359 -0.2051 0.0231
Starting point E 0.6067 0.0707 0.2928 -0.7571 0.0654

The parameters B, C and E were taken from [24], [51] and [54] respec-
tively, the parameters A and D are from [47].

Table 5.3: Starting points for calibration of five options
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5.3 Empirical Findings

In this section the results of the empirical research will be presented. In section 5.3.1 the
small-time regime will be examined in greater detail, before in section 5.3.2 the results of the
the various implied volatility asymptotics will be presented. For the calibration only European
call options from the sample data described in 5.1 were used, the MATLAB code for the
various calibrations can be found in appendix B.

With the parameter sets recieved from the calibration procedures, option price, with Heston’s
semi-closed form solution (3.11), and Black-Scholes implied volatility were calculated. The
results are displayed as volatility sufaces and smiles, and in addition the empirical performance
was analyzed using four measures for the option prices:

� MAE: Mean absolute errors

MAE =
1

N

N∑
n=1

(|On −On∗|)

� MPE: Mean percentage errors

MPE =
1

N

N∑
n=1

(On −On∗)
On

� MAPE: Mean absolute percentage errors

MAPE =
1

N

N∑
n=1

(|On −On∗|)
On

� MSE: Mean squared errors

MSE =
1

N

N∑
n=1

(On −On∗)2,

where On is the mid price of the option n and O∗n is the option price calculated with the
Heston model (3.11). MAEs and MAPEs measure the magnitude of pricing errors, while
MPEs indicate the direction of the pricing errors. MSEs measure the volatility of errors.
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5.3.1 Short-maturity

For the calibration, the closed form for the small-time implied volatility (4.5) without the error
term, was used. The data was also calibrated using only the leading order term of the
small-time implied volatility formula. Furthermore, parameter results were also used as actual
initial parameters for a calibration with the Heston model. Heston’s semi-closed form solution
(3.11) for option prices was used for this calibration.

First, attention will be drawn to the choice of the starting values. The parameter sets in table
5.3 were used for calibrating five options only, to receive a reasonable starting point for the
calibration. Sets A, C and D lead to the same result, starting point IP1, and the initial
parameter set IP2 is the result of using set B or E (see table 5.4). To receive more starting
points, this procedure was done three times, using a different option mix every time.
In total four parameters which differ significantly were received from the calculations, and are
displayed in table 5.4. Note, that κ and σ differ more often than the other parameters.

κ θ σ ρ v0

Starting point IP1 0.2542 0.9998 0.8096 -0.0000 0.0119
Starting point IP2 19.9992 0.0271 0.9599 -0.7567 0.0125
Starting point IP3 0.0909 0.9714 0.6773 -0.0000 0.0228
Starting point IP4 2.7262 0.1711 0.0001 -0.5419 0.0000

The parameter sets were calculated by calibrating five call options, using
the starting points from table 5.3.

Table 5.4: Initial Parameters for the small-time calibration

The initial points in table 5.4 were finally used to calibrate the sample data with the
small-time formula (4.5). The parameter results are displayed in table 5.5. Note, that
calibration with the initial parameter sets IP1 and IP3, yielded the same result S1. One can
also see some similarities between the three results, e.g. v0 is almost the same for all of them.

κ θ σ ρ v0

Small-time result S1 0.2372 1.0000 0.7064 -0.0000 0.0099
Small-time result S2 19.9990 0.0178 0.0079 -1.0000 0.0005
Small-time result S3 2.5131 0.1393 0.0051 -0.9864 0.0003

The parameter sets were calculated by calibrating all call options from the
sample data with the formula for the small-time implied volatility (4.5).

Table 5.5: Parameter results from small-time calibration

Figure 5.1 shows the average implied volatility per moneyness group calculated for the three
results and the market implied volatility. The error measures for the Heston option prices are
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displayed in table 5.6 and plotted in figures 5.7 to 5.10. Note, that the result S2 is not as good
as the other results.
Using only the leading order term from the small-time regime for the calibration with the
initial parameters IP1 and IP3 (which yielded both the small-time result S1 before), a result
quite similar to S1 and one differing were recieved. The implied volatilities are shown in figure
5.2 and in table 5.6 one can see that the differing result (lead-term 2) is not as accurate but
still quite good.

The small-time results (S1-S3) were also used as actual initial parameters for the calibration
with the Heston model (3.11). From the initial sets S1 and S2 a similar result was recieved, in
figure 5.3 the implied volatilites are plotted. It is interesting to note, that S2 was a poor
quality small-time result, but still serves as a very good initial parameter for the Heston
calibration. In figure 5.4 the third small-time result S3 is plotted with its corresponding
Heston calibration result.

In figure 5.5 the implied volatility for the corresponding (using same initial point) small-time,
small-time leading oder term and Heston calibration result is shown. Their error measures are
plotted in figures 5.11 to 5.14. The same camparison was also calculated in a smaller time
interval, using only call options with maturities ranging from 0.08 to 0.16 years from the
sample. See figure 5.6 and for the error measures see table 5.7 and figures 5.15 to 5.18.

Furthermore the volatility surfaces for the call options from the sample data have been plotted
for the underlying prices 2700, 2900 and 3100. Figures 5.19 to 5.21 display the market
volatility surfaces and in figures 5.22 to 5.24 the volatility surface produced by small-time
calibration result S1 is plotted. The good fit of the surface produced by the Heston model to
the one generated by the market is obvious.
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Figure 5.1: Implied volatility of small-time calibration result per moneyness group

Figure 5.2: Implied volatility of small-time and small-time leading order term calibration result
per moneyness group
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Figure 5.3: Implied volatility of small-time calibration and corresponding Heston model calibra-
tion result per moneyness group

Figure 5.4: Implied volatility of small-time calibration and corresponding Heston model calibra-
tion result per moneyness group
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Figure 5.5: Implied volatility of both small-time calibration and corresponding Heston model
calibration results per moneyness group

Figure 5.6: Implied volatility of both small-time calibration and corresponding Heston model
calibration results per moneyness group, on sample data with maturities ranging from 0.08 to 0.16
years
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Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 1 0,0130 0,0310 0,0721 0,1497 0,2548 0,5104 0,2339
Small-time 2 0,0304 0,1176 0,2286 0,4821 0,7103 1,0367 0,5599
Small-time 3 0,0175 0,0340 0,0850 0,2260 0,4003 0,7411 0,3420
Lead-term 1 0,0131 0,0412 0,0691 0,0741 0,1058 0,3652 0,1533
Lead-term 2 0,0145 0,0606 0,1306 0,2213 0,3534 0,6053 0,3038
Heston 1 0,0154 0,0420 0,0799 0,1002 0,1309 0,3233 0,1525
Heston 2 0,0128 0,0539 0,0989 0,1230 0,1338 0,3941 0,1816

MPE
Small-time 1 0,0043 0,0130 0,0422 0,1491 0,2548 0,3542 0,1814
Small-time 2 0,0304 0,1176 0,2259 0,4821 0,7103 0,5744 0,4263
Small-time 3 0,0155 0,0272 0,0752 0,2237 0,4003 0,3587 0,2290
Lead-term 1 -0,0073 -0,0364 -0,0530 -0,0359 0,0091 0,2608 0,0571
Lead-term 2 0,0116 0,0477 0,0897 0,2195 0,3534 0,5381 0,2759
Heston 1 -0,0130 -0,0373 -0,0567 -0,0601 -0,0707 0,1749 0,0132
Heston 2 -0,0069 -0,0523 -0,0923 -0,1190 -0,0794 0,2996 0,0299

MAE
Small-time 1 3,0352 4,3070 6,7698 7,8120 6,2351 8,1014 6,6594
Small-time 2 7,0507 17,1938 22,4146 26,1285 20,9390 17,9041 19,5492
Small-time 3 4,0793 4,8398 7,1788 9,2847 8,0585 10,2964 8,0952
Lead-term 1 3,0655 5,6748 5,7490 3,4967 2,6454 5,8746 4,5652
Lead-term 2 3,3517 8,7823 13,1034 14,2441 11,4081 11,6858 11,2520
Heston 1 3,6630 5,6981 6,0345 3,5607 2,3525 5,5100 4,5317
Heston 2 2,9412 7,3971 7,8981 5,0336 3,2946 6,2944 5,5825

MSE
Small-time 1 13,8975 29,8179 66,9096 80,1911 54,2565 119,1938 73,6250
Small-time 2 75,7073 378,8642 655,9842 797,7803 564,9768 465,8773 529,0791
Small-time 3 27,5576 37,8273 74,4067 103,5135 81,5246 168,9674 100,2579
Lead-term 1 16,0628 46,1124 49,6464 18,4064 13,7641 69,3591 39,7388
Lead-term 2 22,3553 104,3434 236,8109 280,2884 185,4299 215,9750 196,7194
Heston 1 22,6885 49,8070 56,1585 18,5756 10,9324 62,1077 39,2770
Heston 2 16,2853 72,9171 82,0007 36,1295 17,7745 75,4797 53,3016

Table 5.6: Pricing errors per moneyness group from calibrating whole sample data with both
small-time formulas and Heston’s formula
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Figure 5.7: MAPE error per moneyness group from calibrating whole sample data with small-time
formula and different initial parameters

Figure 5.8: MPE error per moneyness group from calibrating whole sample data with small-time
formula and different initial parameters
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Figure 5.9: MAE error per moneyness group from calibrating whole sample data with small-time
formula and different initial parameters

Figure 5.10: MSE error per moneyness group from calibrating whole sample data with small-time
formula and different initial parameters
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Figure 5.11: MAPE error per moneyness group from calibrating whole sample data with small-
time and Heston formula

Figure 5.12: MPE error per moneyness group from calibrating whole sample data with small-time
and Heston formula
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Figure 5.13: MAE error per moneyness group from calibrating whole sample data with small-time
and Heston formula

Figure 5.14: MSE error per moneyness group from calibrating whole sample data with small-time
and Heston formula
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Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 0,0133 0,0398 0,0471 0,0616 0,0817 0,2920 0,0996
Lead-term 0,0202 0,0907 0,1247 0,1690 0,2774 0,3428 0,1795
Heston 0,0185 0,0414 0,0508 0,0909 0,0939 0,2228 0,0938

MPE
Small-time -0,0082 -0,0339 -0,0119 0,0376 0,0497 0,2290 0,0558
Lead-term -0,0197 -0,0907 -0,1204 -0,1690 -0,2774 -0,0613 -0,1196
Heston -0,0173 -0,0338 0,0100 0,0878 0,0219 0,0343 0,0201

MAE
Small-time 3,1227 5,1355 4,2386 3,4071 1,9960 3,4811 3,4543
Lead-term 4,7017 11,9031 10,5193 7,6636 5,7426 4,2392 6,9473
Heston 4,4934 5,3597 4,6686 5,2586 2,1911 3,1239 4,0850

MSE
Small-time 15,7962 38,3928 26,4827 16,1072 5,8521 22,4978 19,7854
Lead-term 37,2766 157,3386 127,8992 67,0734 36,1165 23,6136 66,1028
Heston 30,0256 42,1045 29,4617 38,8700 7,0630 14,8043 25,9548

Table 5.7: Pricing errors per moneyness group from calibrating with both small-time formulas
and Heston’s formula, using sample data with maturities ranging from 0.08 to 0.16 years
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Figure 5.15: MAPE error per moneyness group from calibrating with small-time and Heston
formula, using sample data with maturities ranging from 0.8 to 0.16 years

Figure 5.16: MPE error per moneyness group from calibrating with small-time and Heston
formula, using sample data with maturities ranging from 0.8 to 0.16 years
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Figure 5.17: MAE error per moneyness group from calibrating with small-time and Heston
formula, using sample data with maturities ranging from 0.8 to 0.16 years

Figure 5.18: MSE error per moneyness group from calibrating with small-time and Heston for-
mula, using sample data with maturities ranging from 0.8 to 0.16 years
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Figure 5.19: Implied volatility surface of call option market data for the underlying price 2700

Figure 5.20: Implied volatility surface of call option market data for the underlying price 2900
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Figure 5.21: Implied volatility surface of call option market data for the underlying price 3100

Figure 5.22: Implied volatility surface of small-time calibration result for call options with
underlying price 2700
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Figure 5.23: Implied volatility surface of small-time calibration result for call options with
underlying price 2900

Figure 5.24: Implied volatility surface of small-time calibration result for call options with
underlying price 3100
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5.3.2 All Asymptotic Formulas

In this section the calibration results from the various implied volatility approximations from
chapter 4 will be presented. For the small-time regime formula 4.5, for the large-time &
large-strike regime formula 4.7, for the small-strike regime formula 4.11 and for the large-strike
regime formula 4.13 were used without the error term.

Analogous to the previous section, the whole sample data of call options was calibrated at
once. First, all call options (meaning all maturities) were calibrated and then only the call
options with maturities ranging from 0.8 to 0.16 years were calibrated. The implied volatilities
(figures 5.25 and 5.30) and the error measures (tables 5.8 and 5.9, figures 5.26 to 5.29 and 5.31
to 5.34) are displayed for the results from calibrating with the four different implied volatility
approximations.

Figure 5.25: Implied volatility of various asymptotic formula calibration results per moneyness
group, using whole sample data



78 CHAPTER 5. FAST CALIBRATION

Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 0,0128 0,0321 0,0721 0,1497 0,2548 0,5104 0,2339
Large-time 0,0388 0,1247 0,2129 0,3593 0,4385 0,3641 0,2960
Small-strike 0,0137 0,0622 0,1915 0,4427 0,5868 1,0068 0,5101
Large-strike 0,0206 0,0524 0,1402 0,2480 0,3480 0,3139 0,2252

MPE
Small-time 0,0044 0,0133 0,0422 0,1491 0,2548 0,3542 0,1814
Large-time -0,0388 -0,1247 -0,2127 -0,3593 -0,4337 0,1280 -0,1534
Small-strike 0,0065 0,0385 0,1344 0,3703 0,1048 -0,3334 0,0173
Large-strike -0,0196 -0,0371 -0,0633 -0,1179 -0,2316 0,0319 -0,0676

MAE
Small-time 2,9745 4,4365 6,7698 7,8120 6,2351 8,1014 6,6594
Large-time 9,1571 17,1632 16,1941 11,9188 6,9144 6,5540 10,4085
Small-strike 3,2064 8,9729 18,8776 26,2776 17,0891 12,1628 15,5331
Large-strike 4,9698 6,9744 10,8148 9,1764 5,9687 5,8184 7,3078

MSE
Small-time 13,4447 31,0767 66,9096 80,1911 54,2565 119,1938 73,6250
Large-time 104,1364 322,9477 315,0167 171,6854 58,9524 81,2544 156,4945
Small-strike 18,0347 115,8088 500,6586 895,0506 434,6833 240,4333 404,7159
Large-strike 35,5671 77,7865 150,1947 107,8304 47,2449 72,4465 84,2500

Table 5.8: Pricing errors per moneyness group from calibrating whole sample data with various
asymptotic formulas

Figure 5.26: MAPE error per moneyness group from calibrating whole sample data with various
asymptotic formulas
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Figure 5.27: MPE error per moneyness group from calibrating whole sample data with various
asymptotic formulas

Figure 5.28: MAE error per moneyness group from calibrating whole sample data with various
asymptotic formulas
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Figure 5.29: MSE error per moneyness group from calibrating whole sample data with various
asymptotic formulas

Figure 5.30: Implied volatility of various asymptotic formula calibration results per moneyness
group, using sample data with maturities ranging from 0.08 to 0.16 years
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Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 0,0133 0,0398 0,0471 0,0616 0,0817 0,2920 0,0996
Large-time 0,0665 0,1913 0,2578 0,3280 0,3725 0,3529 0,2642
Small-strike 0,0442 0,1582 0,2388 0,3787 0,6887 0,5868 0,3641
Large-strike 0,0264 0,0447 0,0541 0,1602 0,1215 0,2177 0,1119

MPE
Small-time -0,0082 -0,0339 -0,0119 0,0376 0,0497 0,2290 0,0558
Large-time -0,0665 -0,1913 -0,2578 -0,3280 -0,3725 0,1183 -0,1650
Small-strike -0,0442 -0,1582 -0,2388 -0,3787 -0,6887 -0,5721 -0,3610
Large-strike -0,0260 -0,0394 0,0285 0,1602 0,1084 0,0949 0,0600

MAE
Small-time 3,1227 5,1355 4,2386 3,4071 1,9960 3,4811 3,4543
Large-time 15,9054 25,3024 22,1743 15,4718 7,4042 4,3595 13,9606
Small-strike 10,4323 20,7998 20,3235 17,5341 13,7893 6,5236 13,9895
Large-strike 6,4753 5,8633 4,9079 8,4377 3,3280 2,9519 5,2719

MSE
Small-time 15,7962 38,3928 26,4827 16,1072 5,8521 22,4978 19,7854
Large-time 279,2723 658,1415 526,1456 254,3179 62,5581 27,3646 264,7532
Small-strike 129,3670 452,9656 450,2460 322,8830 195,3948 70,3056 243,8489
Large-strike 55,7443 48,1174 33,1507 82,6151 15,2773 15,1238 41,2528

Table 5.9: Pricing errors per moneyness group from calibrating with various asymptotic formulas,
using sample data with maturities ranging from 0.08 to 0.16 years

Figure 5.31: MAPE error per moneyness group from calibrating with various asymptotic formu-
las, using sample data with maturities ranging from 0.08 to 0.16 years
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Figure 5.32: MPE error per moneyness group from calibrating with various asymptotic formulas,
using sample data with maturities ranging from 0.08 to 0.16 years

Figure 5.33: MAE error per moneyness group from calibrating with various asymptotic formulas,
using sample data with maturities ranging from 0.08 to 0.16 years



5.3. EMPIRICAL FINDINGS 83

Figure 5.34: MSE error per moneyness group from calibrating with various asymptotic formulas,
using sample data with maturities ranging from 0.08 to 0.16 years
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Comparison on Time Periods of Sample Data

The sample data contains call options from March 10, 2011 to May 9, 2011 with maturity date
May 20, 2011. In this section the call options have now been seperated into four different time
intervalls (see table 5.10). The calibration with the implied volatility asymptotics was
performed again on these time periods. For the results the implied volatility and the error
measures are presented analogous to the previous sections.
Note, the sample data did not consist of any ITM call options in time period 4. Thus,
calibration with the small-strike formula was not performed in this time period.

Date Maturity (days)
From To From To

Time Period 1 10.03.2011 24.03.2011 71 57
Time Period 2 25.03.2011 07.04.2011 56 43
Time Period 3 08.04.2011 21.04.2011 42 29
Time Period 4 26.04.2011 09.05.2011 24 11

Table 5.10: Selected time periods for the calibration of the sample data

Figure 5.35: Implied volatility of various asymptotic formula calibration results per moneyness
group, using options recorded in time period 1
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Figure 5.36: Implied volatility of various asymptotic formula calibration results per moneyness
group, using options recorded in time period 2

Figure 5.37: Implied volatility of various asymptotic formula calibration results per moneyness
group, using options recorded in time period 3
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Figure 5.38: Implied volatility of various asymptotic formula calibration results per moneyness
group, using options recorded in time period 4
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Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 0,0152 0,0310 0,0302 0,0332 0,0555 0,3364 0,1434
Large-time 0,1117 0,1025 0,0574 0,3722 0,7307 0,9019 0,5139
Small-strike 0,0197 0,0754 0,3048 0,5615 0,6173 0,5721 0,4228
Large-strike 0,0180 0,0241 0,0841 0,1250 0,1292 0,3127 0,1642

MPE
Small-time -0,0107 -0,0237 0,0090 0,0268 0,0242 0,3045 0,1139
Large-time -0,1117 -0,1025 0,0439 0,3722 0,7307 0,9019 0,4632
Small-strike -0,0132 0,0754 0,3048 0,5615 0,6173 0,5721 0,4196
Large-strike -0,0139 0,0004 0,0841 0,1250 0,1292 0,3033 0,1545

MAE
Small-time 3,4704 4,8109 3,1568 2,4762 2,8704 10,0799 5,7699
Large-time 26,8762 16,5274 5,8265 25,0977 34,4955 26,0348 23,3458
Small-strike 4,7605 11,4205 31,6062 40,0906 29,7288 17,4681 22,0551
Large-strike 4,1941 3,7451 8,7376 9,1614 6,6959 9,6401 7,7158

MSE
Small-time 27,6029 26,9702 17,0628 11,2629 18,9574 159,1708 70,1698
Large-time 747,3431 320,4912 64,4588 702,1155 1224,4419 753,5985 668,5201
Small-strike 32,2431 166,5759 1047,3057 1618,0034 938,2289 391,7897 654,2946
Large-strike 33,6033 19,4455 95,3839 94,1242 67,2276 157,3207 97,3664

Table 5.11: Pricing errors per moneyness group from calibrating options recorded in time period
1 with various asymptotic formulas

Figure 5.39: MAPE error per moneyness group from calibrating options from time period 1 with
various asymptotic formulas
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Figure 5.40: MPE error per moneyness group from calibrating options from time period 1 with
various asymptotic formulas

Figure 5.41: MAE error per moneyness group from calibrating options from time period 1 with
various asymptotic formulas
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Figure 5.42: MSE error per moneyness group from calibrating options from time period 1 with
various asymptotic formulas

Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 0,0123 0,0309 0,0237 0,0483 0,0893 0,1356 0,0551
Large-time 0,0391 0,1191 0,1522 0,1907 0,2066 0,3655 0,1710
Small-strike 0,0347 0,0293 0,5040 0,7571 0,5216 0,2680 0,3121
Large-strike 0,0253 0,0474 0,0377 0,0553 0,0525 0,3305 0,0950

MPE
Small-time -0,0023 -0,0193 0,0055 0,0385 0,0875 0,1032 0,0340
Large-time -0,0391 -0,1191 -0,1522 -0,1907 -0,2066 -0,3267 -0,1638
Small-strike 0,0300 -0,0293 0,5040 0,7571 0,5216 0,2334 0,3034
Large-strike -0,0253 -0,0468 -0,0153 -0,0004 -0,0203 -0,2917 -0,0719

MAE
Small-time 2,7505 4,1795 2,2130 3,3027 3,1829 2,5255 3,0089
Large-time 9,1343 16,2360 13,6465 10,5388 7,3540 5,5840 10,0336
Small-strike 7,5223 3,9297 37,7966 48,7500 19,4856 5,2002 19,3044
Large-strike 6,0877 6,4731 3,3230 3,1148 1,8210 4,9798 4,5839

MSE
Small-time 12,0923 28,4260 8,4049 15,7003 11,9049 14,6956 15,1615
Large-time 97,5380 284,7849 199,3725 117,0069 56,3922 36,7451 123,2464
Small-strike 92,3128 15,4422 1428,5852 2660,8683 404,1454 46,4857 734,8361
Large-strike 46,3532 68,4287 18,1817 16,6906 3,9321 28,8522 32,8098

Table 5.12: Pricing errors per moneyness group from calibrating options recorded in time period
2 with various asymptotic formulas
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Figure 5.43: MAPE error per moneyness group from calibrating options from time period 2 with
various asymptotic formulas

Figure 5.44: MPE error per moneyness group from calibrating options from time period 2 with
various asymptotic formulas
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Figure 5.45: MAE error per moneyness group from calibrating options from time period 2 with
various asymptotic formulas

Figure 5.46: MSE error per moneyness group from calibrating options from time period 2 with
various asymptotic formulas
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Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time 0,0056 0,0571 0,0514 0,0852 0,1115 0,4611 0,1684
Large-time 0,0903 0,2583 0,2581 0,1139 0,6092 0,8366 0,4314
Small-strike 0,0044 0,0256 0,1259 0,6591 0,7705 0,6933 0,4810
Large-strike 0,0269 0,1417 0,1352 0,1303 0,4460 0,4826 0,2751

MPE
Small-time 0,0031 -0,0571 -0,0130 0,0777 0,1003 0,4397 0,1388
Large-time -0,0903 -0,2583 -0,2581 0,0084 0,6092 0,8366 0,2637
Small-strike 0,0026 -0,0023 0,1259 0,6591 0,7705 0,6933 0,4785
Large-strike -0,0269 -0,1417 -0,1261 -0,1226 -0,4460 -0,4190 -0,2563

MAE
Small-time 1,4355 6,8096 4,7496 3,7404 1,9184 4,0044 3,6107
Large-time 23,1518 31,4988 21,4327 4,7610 10,0518 7,1048 13,3717
Small-strike 1,0699 2,8915 10,2527 26,8163 13,0953 6,7491 11,5047
Large-strike 6,8903 17,1812 11,0808 5,0134 6,6984 3,4185 7,1864

MSE
Small-time 2,7272 50,2819 33,9445 22,2004 6,0952 25,6596 21,9790
Large-time 543,0797 997,4518 507,2509 36,0105 111,3600 64,6994 270,3604
Small-strike 1,6580 11,0104 165,3617 731,3030 198,8030 65,6044 223,5882
Large-strike 50,0132 297,6535 135,9645 33,5561 49,9061 22,1820 74,9093

Table 5.13: Pricing errors per moneyness group from calibrating options recorded in time period
3 with various asymptotic formulas

Figure 5.47: MAPE error per moneyness group from calibrating options from time period 3 with
various asymptotic formulas
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Figure 5.48: MPE error per moneyness group from calibrating options from time period 3 with
various asymptotic formulas

Figure 5.49: MAE error per moneyness group from calibrating options from time period 3 with
various asymptotic formulas
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Figure 5.50: MSE error per moneyness group from calibrating options from time period 3 with
various asymptotic formulas

Parameter < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 all

MAPE
Small-time - - 0,1409 0,5831 0,7286 1,8154 0,8989
Large-time - - 0,3884 0,9324 1,0242 0,3938 0,6300
Small-strike - - - - - - -
Large-strike - - 0,3158 0,6964 0,8266 0,3774 0,5158

MPE
Small-time - - 0,1228 0,5831 0,7286 -1,0028 -0,0211
Large-time - - -0,3884 -0,9324 -1,0242 0,1518 -0,4527
Small-strike - - - - - - -
Large-strike - - -0,3158 -0,6964 -0,8266 -0,0385 -0,4056

MAE
Small-time - - 6,2413 10,6174 4,4408 2,4443 5,5337
Large-time - - 20,5618 14,8517 6,1610 0,9876 9,5306
Small-strike - - - - - - -
Large-strike - - 16,9146 11,0274 4,9438 0,8526 7,5636

MSE
Small-time - - 56,6695 132,0944 21,2300 8,8477 49,7277
Large-time - - 430,3289 234,8339 42,3527 1,3358 158,5699
Small-strike - - - - - - -
Large-strike - - 295,3740 130,2575 27,9788 1,1760 101,7497

Table 5.14: Pricing errors per moneyness group from calibrating options recorded in time period
4 with various asymptotic formulas
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Figure 5.51: MAPE error per moneyness group from calibrating options from time period 4 with
various asymptotic formulas

Figure 5.52: MPE error per moneyness group from calibrating options from time period 4 with
various asymptotic formulas
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Figure 5.53: MAE error per moneyness group from calibrating options from time period 4 with
various asymptotic formulas

Figure 5.54: MSE error per moneyness group from calibrating options from time period 4 with
various asymptotic formulas
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5.4 Conclusion

As expected, the calibration results, using implied volatility asymptotics, depend on their
starting point as well. It was observed, that the mean reversion rate κ and the volatility of
variance σ vary more often in the results, than the other parameters. However, the different
calibration results all served as good initial parameters for calibration with Heston’s
semi-closed form (3.11), as one can see in 5.3 and 5.4.
For the small-time regime was also observed that calibration, using only the leading order
term, is quite accurate as well. The results serve as good initial parameters as one can see in
table 5.6 (Lead-term 1 and 2).

Comparing the calibration reults using the various implied volatility asymptotics, it is obvious
that the small-time (4.5) and the large-strike (4.11) regime yield the best results. This was to
be expected since the sample data consists of 45% OTM call options and quite short
maturities, ranging from 10 to 90 days. Note, that slightly better results were recieved from the
small-time regime, when calibrating the whole market data or only time periods of the data.
The results from calibrating with the small-strike (4.13) and the large-maturity & large-strike
(4.7) formulas are not so accurate. This is due to the mentioned fact, that the sample data
consists of options with short maturities and only 29.2% ITM options.

The general conclusion of the thesis is, that it is necessary to take a look at the option data
prior the calibration. Then one should choose the appropriate implied volatility asymptotic
formula (see chapter 4) and reasonable starting values for calibrating the parameters.
Following theses guidelines, one will receive good initial parameters for the calibration with
Heston’s semi-closed form solution (3.11).
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Appendix A

Software

The following software was used for various calculations throughout this thesis:

� Maple 15.00

� MATLAB 7.11.0.584 (2010b)

� Microsoft Excel 2007

� PASW Statistics 18.0.0

The calculations in chapter 5 were done in MATLAB (matrix laboratory). It is a numerical
computing environment and fourth-generation programming language. It allows matrix
manipulations, plotting of functions and data, implementation of algorithms, creation of user
interfaces, and interfacing with programs written in other languages. MATLAB was also used
to simulate the figures 2.1, 2.2 and the volatility surfaces 5.19 to 5.24.
Figure 2.11 and all the implied volatility per moneyness plots in chapter 5 were generated with
the programme PASW Statistics (since 2010 named SPSS again). It is a statistics program
used for survey authoring and deployment, data mining, text analytics, statistical analysis, and
collaboration and deployment.
The differential calculus for the asymptotic formula in the large-time & large-strike regime was
done in Maple. Maple is a general-purpose commercial computer algebra system. Users can
enter mathematics in traditional mathematical notation and there is extensive support for
numeric computations, to arbitrary precision, as well as symbolic computation and
visualization.
Microsoft Excel was used to manage the sample data, and calculate and plot the error
measures in chapter 5.
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Appendix B

MATLAB Code

B.1 Calibration

function [x] = run ()

%Initial Parameter Set

%x0 = [kappa, theta, sigma, rho, v0]

x0 = [0.2542 0.9998 0.8096 -0.0001 0.0119]

%Lower and upper bound for optimisation

lb = [0 0 0 -1 0];

ub = [20 1 5 0 1];

datensatz = xlsread('Satensatz.xlsx', 'all', 'A2:I251');

% Maturity

T = datensatz(:,2);

% Strike price

strike = datensatz(:,4);

% Underlying price

Under = datensatz(:,3);

%Implied Volatility

implvol = datensatz(:,9);

tic; % start timer

% Optimisation

options = optimset('TolFun', 1e-8);
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[x,resnorm,unused,exitflag]

= lsqnonlin(@(x) costf3(x,T,strike,Under,implvol),x0,lb,ub,options);

%value of objective function

fprintf('resnorm = %.20f\n', resnorm);

%3: Change in the residual was less than the specified tolerance

fprintf('exitflag = %d\n\n', exitflag);

fprintf('kappa=%.20f\n theta=%.20f\n sigma=%.20f\n',x(1),x(2),x(3));

fprintf('rho=%.20f\n v0= %.20f\n',x(4),x(5));

fprintf('\nRechenzeit: %d s\n', int16(toc)); % stop timer and output

end

function [L] = costf3(x, T, strike, Under, implvol)

for i = 1 : length(T)

%L(i) depends on the regime one wants to use:

L(i)=((implvol(i)^2-SmallTime(x(1),x(2),x(3),x(4),x(5),money(i),T(i)))/implvol(i)^2);

%Small-ime Leading Order Time:

((implvol(i)^2-SmallTimeLDT(x(1),x(2),x(3),x(4),x(5),money(i),T(i)))/implvol(i)^2);

%Large-time, Large-strike:

((implvol(i)^2-LargeTime(x(1),x(2),x(3),x(4),x(5),money(i),T(i)))/implvol(i)^2);

%Small-strike:

(implvol(i)-SmallStrike(x(1),x(2),x(3),x(4),x(5),T(i),strike(i),Under(i)))/implvol(i);

%Large-strike:

(implvol(i)-LargeStrike(x(1),x(2),x(3),x(4),x(5),T(i),strike(i),Under(i)))/implvol(i);

end

end
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B.2 Small-maturity

function H = SmallTime(kappa,theta,sigma,rho,v0,money,T)

x = log(money);

alpha = kappa*theta;

term1 = 1 + (rho/2)*(sigma*x/v0) + (1-(7/4)*rho^2)* (sigma^2*x^2)/(12*v0^2);

term2a = (rho*sigma*v0)/2 - (sigma^2/6)*(1-rho^2/4) + alpha - kappa*v0;

term2b = sigma^2*(1-rho^2) + rho*sigma*v0 - 2*alpha - 2*kappa*v0;

term3a = (176 - 712*rho^2 + 521*rho^4)*sigma^2 + 40*sigma*rho^3*v0;

term3b = 80*(13*rho^2 - 6)*alpha - 80*kappa*rho^2*v0;

H1 = v0 * term1 + (term2a + (rho*sigma)/(12*v0) * term2b * x) * (T/2);

H2 = (sigma^2/(7680*v0^2)) * (term3a + term3b) * x^2*T;

H = H1 + H2;

end

B.3 Small-maturity Leading Order Term

function H = SmallTimeLDT(kappa,theta,sigma,rho,v0,money,T)

x = log(money);

alpha = kappa*theta;

term1 = 1 + (rho*sigma*x)/(4*v0);

term2 = (1/24)*(1 - 5*rho^2/2)*(sigma^2*x^2/v0^2);

H = v0*(term1 + term2)^2;

end

B.4 Large-maturity

function H = LargeTime(kappa,theta,sigma,rho,v0,money,T)
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x = (1/T)*log(money);

kappa2 = kappa - rho*sigma;

theta2 = (kappa*theta)/kappa2;

%p corresponds to p*

pterm1 = (sigma-2*kappa*rho)/(2*(1-rho^2)*sigma);

pterm2a = (sigma^2+4*kappa^2 - 4*kappa*rho*sigma);

pterm2b = (x^2*sigma^2+2*x*kappa*theta*rho*sigma+kappa^2*theta^2);

pterm2 = sqrt(pterm2a/pterm2b);

p = pterm1 + (kappa*theta*rho + x*sigma)/(2*(1 - rho^2)*sigma) * pterm2;

Vterm = (kappa - rho*sigma*p - sqrt((kappa-rho*sigma*p)^2 + sigma^2*(p-p^2)));

V = (kappa*theta/sigma^2) * Vterm;

Vstern = p*x - V;

if ((x > theta2/2) || (x < -theta/2) )

H = 2*(2*Vstern - x - 2*sqrt(Vstern^2 - Vstern*x));

else

H = 2*(2*Vstern - x + 2*sqrt(Vstern^2 - Vstern*x));

end

end

B.5 Small-strike

function [H] = SmallStrike(kappa, theta, sigma, rho, v0, T, strike, Under)

a = kappa*theta;

b = -kappa;

c = sigma;

k = log(strike/Under);

%root finding procedure

NullstelleGefunden = false;

Start = 100;

options = optimset('Display','off');

while ~NullstelleGefunden
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fs = ExplosionTime(Startwert, rho, c, b, T);

if isfinite(fs) && isreal(fs)

[solution, fval, exitflag] = fzero(@(s) ExplosionTime(s, rho, c, b, T), Start, options);

if (exitflag == 1)

if isreal(solution) & solution >= -1

NullstelleGefunden = true;

s = solution;

end;

end;

end;

Start = Start + 100;

if (Start >= 5000)

fprintf('Startwert schon bei %d\n', Start);

disp(rho);

disp(c);

disp(b);

disp(T);

end;

end

B3 = -(s+1);

B2 = 2* (2*v0)^(1/2)/(c * slope^(1/2));

rho1= 2^(1/2) * ((B3+2)^(1/2) - (B3+1)^(1/2));

rho2= B2*2^(-1/2) * ( 1/(B3+1)^(1/2) - 1/(B3+2)^(1/2));

rho3= 2^(-1/2) * (1/4 - a/c^2) * ( 1/(B3+2)^(1/2) - 1/(B3+1)^(1/2));

H = (1/T^(1/2)) * (rho1*(-k)^(1/2) + rho2 + (rho3 * log(-k))/((-k)^(1/2)));

end

function Tstern = ExplosionTime(s, rho, c, b, T)

term = (atan(sqrt(-(s*rho*c+b)^2 + c^2*(s^2-s))/(s*rho*c+b)));

Tstern = ((2/sqrt(-(s*rho*c+b)^2 + c^2*(s^2-s))) * term)-T;

end
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B.6 Large-strike

function [H] = LargeStrike(kappa, theta, sigma, rho, v0, T, strike, Under)

a = kappa*theta;

b = -kappa;

c = sigma;

k = log(strike/Under);

%root finding procedure

NullstelleGefunden = false;

Start = 100;

options = optimset('Display','off');

while ~NullstelleGefunden

fs = ExplosionTime(Start, rho, c, b, T);

if isfinite(fs) && isreal(fs)

[solution, fval, exitflag] = fzero(@(s) ExplosionTime(s, rho, c, b, T), Start, options);

if (exitflag == 1)

if isreal(solution) & solution >= -1

NullstelleGefunden = true;

s = solution;

end;

end;

end;

Start = Start + 100;

if (Startwert >= 5000)

fprintf('Startwert schon bei %d\n', Start);

disp(rho);

disp(c);

disp(b);

disp(T);

end;

end

term1a = T*c^2*s*(s-1) * (c^2*(2*s-1) - 2*rho*c*(s*rho*c + b));

term1b = 2*(s*rho*c +b) * (c^2*(2*s-1) - 2*rho*c*(s*rho*c + b));

term1c = 4*rho*c * (c^2*s*(s-1) - (s*rho*c + b)^2);

R1 = term1a - term1b + term1c;
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R2 = 2*c^2*s * (s-1) * (c^2*s*(s-1) - (s*rho*c + b)^2);

%slope corresponds to sigma in formula

slope = R1 / R2;

A2 = 2*(sqrt(2*v0))/(c*sqrt(slope));

A3 = s + 1;

beta1 = sqrt(2)*(sqrt(A3-1) - sqrt(A3-2));

beta2 = (A2/sqrt(2)) * (1/sqrt(A3-2) - 1/sqrt(A3-1));

beta3 = (1/sqrt(2)) * (1/4 - a/c^2) * (1/sqrt(A3-1) - 1/sqrt(A3-2));

H = (1/sqrt(T)) * (beta1*k^(1/2) + beta2 + (beta3 * log(k))/k^(1/2));

end

function Tstern = ExplosionTime(s, rho, c, b, T)

term = (atan(sqrt(-(s*rho*c+b)^2 + c^2*(s^2-s))/(s*rho*c+b)) + pi);

Tstern = ((2/sqrt(-(s*rho*c+b)^2 + c^2*(s^2-s))) * term)-T;

end

B.7 Heston Model

The MATLAB code for the semi-closed form solution of the Heston model is based on [51].

function call = HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,s0,K,opt)

warning off;

if(opt==1)

call = s0*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,1)

- K*exp(-r*T)*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,2);

else

call= s0*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,1)

- K*exp(-r*T)*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,2)-s0+K*exp(-r*T);

end

function ret = HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,type)

ret=0.5+1/pi*quadl(@HestonPIntegrand,0,100,[],[],kappa,theta,sigma,rho,v0,r,T,s0,K,type);
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function ret = HestonPIntegrand(phi,kappa,theta,sigma,rho,v0,r,T,s0,K,type)

ret = real(exp(-i*phi*log(K)).*Hestf(phi,kappa,theta,sigma,rho,v0,r,T,s0,type)./(i*phi));

function f = Hestf(phi,kappa,theta,sigma,rho,v0,r,T,s0,type);

if type == 1

u = 0.5;

b = kappa - rho*sigma;

else

u = -0.5;

b = kappa;

end

a = kappa*theta; x = log(s0);

d = sqrt((rho*sigma*phi.*i-b).^2-sigma^2*(2*u*phi.*i-phi.^2));

g = (b-rho*sigma*phi*i + d)./(b-rho*sigma*phi*i - d);

C = r*phi.*i*T + a/sigma^2.*((b- rho*sigma*phi*i + d)*T -2*log((1-g.*exp(d*T))./(1-g)));

D = (b-rho*sigma*phi*i + d)./sigma^2.*((1-exp(d*T))./(1-g.*exp(d*T)));

f = exp(C + D*v0 + i*phi*x);
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