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The Libor Market Model (Brace et al. 1997)

» Based on observable market rates
» Models a discretization of the yield curve
» Easy calibration to caplet volatilities

» Transparent modelling of correlation of different points on the
yield curve



Forward Rates in the LMM

» Fix a tenor structure To < --- < Ty

> Let Fi(t) = F(t; Tx—1, Tx) be the simply compounded
interest rate prevailing at time t for borrowing from T,_; to
Tk

» For each modelled rate, reset T,_; and maturity Ty are fixed,
while time t increases

» Example: If Ty — Tx_1 = 3 months, then Fi(Ty—_1) is the
3-months-EURIBOR at Ty_;. At smaller time t, it is a
forward 3-months-EURIBOR.



Forward Rates and Their Volatilities

» The LMM models a vector of spanning forward rates
(Fi(t), ..., Fm(t))

» Deterministic volatility functions o1(t),...,om(t)

» Volatility ox(t) is a function of time to reset Ty_1 — t

» Parametric shape for the volatility functions

» Constant instantaneous correlation p;;



The Forward Measure

» Fix some time horizon T

» Under the T-forward measure, for every traded asset V' the
process V;/B(t, T) is driftless
Vo 1%

» V;/B(t, T) has constant expectation: BOT) = ET[WTT)]
» The price of V at time 0 is B(0, T)E'[V7]



Forward Rates and Forward Measures

v

—_ 1 B(t, Tk—1)
Fi(t) = Th—Tk-1 ( B(fv;'k)l N 1)
Hence Fi(t) is driftless under the Ty-forward measure

v

v

Fi(t) is not driftless under other T-forward measures

v

Drift of Fi(t) under T; is a rational function of the other rates



Black's Formula for Caplets

Assumes log-normal distribution of underlying

Market standard for pricing caplets

Volatilities for caps of various maturities and tenors are quoted
LMM provides theoretical justification of Black's formula
Fi(Tx_1) is log-normal under Ty-forward measure

Libor Market Model =~ multiple Black models
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Volatility Calibration

» Volatility of Fi(t) is
Uk(t) = (bk(a + b( Tk—l — t))e_C(kal—f) + d

» a, b, c,d independent of k

» Calibration to caplet prices:

1 Tk—1
/ ok(t)2dt = Ty_1 — caplet volatility
Tx-1 Jo

» Fit a, b, ¢, d by least squares, then determine ¢, for exact fit



Correlation Calibration

Correlation Matrix obtained from 1-month-log-returns, data from

Jan 2001 to Jul 2007
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Correlation Calibration

Parametric structure p;; = £ + (1 — £)e0li=Jl
Best fit for £ = 0.54, § = 0.25
Positive correlations

Decrease when moving away from main diagonal
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Refined parametric structures allow increase along
subdiagonals



An Example

» A structured note with 14 annual coupons
» Coupon V) at T, depends on Fy,..., Frio at Ty—1
» We propagate 22 rates F1,..., Fx

» Value at time O is

13

B(0, To)Vo + B(0, Tm) - E [kzzzl B( Tk, TM)]



Volatility Calibration

v

A cap on F1(Tp) is a swaption with maturity Ty and swap
length one year

» OBFA provides swaption volatilities for maturities 1M, 3M,
6M, 1Y, ..., 20Y

» Swaption volatilities for maturities Ty, ..., Ty are
interpolated from market data

» Parameters a, b, ¢, d are found by minimization with
Mathematica

» Fairly good fit to swaption volatility surface



Monte Carlo Simulation

» Use dynamics of F under terminal measure

dFk(t)

Fi(t)
W Brownian motion with instantaneous correlation matrix p
W(t+ At) — W(t) ~ VAt N(0, p)

Parameters: Number of time discretization points, number of
Monte Carlo trials, number of factors

= pu(Fisa(t), .-, Fu(t)) dt + ok(t) dWi(t)
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Conclusion

» Unlike short rate models, the LMM is based on observable
market rates

» The LMM can price almost any interest rate product
» Mathematica 4+ UnRisk provide comfortable implementation

» There are many variants and extensions



