

An Implementation of the LIBOR Market Model

Stefan Gerhold

August 30, 2006

The Libor Market Model (Brace et al. 1997)

- ▶ Based on observable market rates
- ▶ Models a discretization of the yield curve
- ▶ Easy calibration to caplet volatilities
- ▶ Transparent modelling of correlation of different points on the yield curve

Forward Rates in the LMM

- ▶ Fix a tenor structure $T_0 < \dots < T_M$
- ▶ Let $F_k(t) = F(t; T_{k-1}, T_k)$ be the simply compounded interest rate prevailing at time t for borrowing from T_{k-1} to T_k
- ▶ For each modelled rate, reset T_{k-1} and maturity T_k are fixed, while time t increases
- ▶ Example: If $T_k - T_{k-1} = 3$ months, then $F_k(T_{k-1})$ is the 3-months-EURIBOR at T_{k-1} . At smaller time t , it is a forward 3-months-EURIBOR.

Forward Rates and Their Volatilities

- ▶ The LMM models a vector of spanning forward rates $(F_1(t), \dots, F_M(t))$
- ▶ Deterministic volatility functions $\sigma_1(t), \dots, \sigma_M(t)$
- ▶ Volatility $\sigma_k(t)$ is a function of time to reset $T_{k-1} - t$
- ▶ Parametric shape for the volatility functions
- ▶ Constant instantaneous correlation ρ_{ij}

The Forward Measure

- ▶ Fix some time horizon T
- ▶ Under the T -forward measure, for every traded asset V the process $V_t/B(t, T)$ is driftless
- ▶ $V_t/B(t, T)$ has constant expectation: $\frac{V_0}{B(0, T)} = \mathbf{E}^T\left[\frac{V_T}{B(T, T)}\right]$
- ▶ The price of V at time 0 is $B(0, T)\mathbf{E}^T[V_T]$

Forward Rates and Forward Measures

- ▶ $F_k(t) = \frac{1}{T_k - T_{k-1}} \left(\frac{B(t, T_{k-1})}{B(t, T_k)} - 1 \right)$
- ▶ Hence $F_k(t)$ is driftless under the T_k -forward measure
- ▶ $F_k(t)$ is *not* driftless under other T -forward measures
- ▶ Drift of $F_k(t)$ under T_j is a rational function of the other rates

Black's Formula for Caplets

- ▶ Assumes log-normal distribution of underlying
- ▶ Market standard for pricing caplets
- ▶ Volatilities for caps of various maturities and tenors are quoted
- ▶ LMM provides theoretical justification of Black's formula
- ▶ $F_k(T_{k-1})$ is log-normal under T_k -forward measure
- ▶ Libor Market Model \approx multiple Black models

Volatility Calibration

- ▶ Volatility of $F_k(t)$ is

$$\sigma_k(t) = \phi_k(a + b(T_{k-1} - t))e^{-c(T_{k-1} - t)} + d$$

- ▶ a, b, c, d independent of k
- ▶ Calibration to caplet prices:

$$\sqrt{\frac{1}{T_{k-1}} \int_0^{T_{k-1}} \sigma_k(t)^2 dt} = T_{k-1} - \text{caplet volatility}$$

- ▶ Fit a, b, c, d by least squares, then determine ϕ_k for exact fit

Correlation Calibration

Correlation Matrix obtained from 1-month-log-returns, data from Jan 2001 to Jul 2007

1.	0.88	..	0.71	0.65	0.57	0.53	0.48	0.47	0.085
0.88	1.	..	0.84	0.76	0.66	0.61	0.57	0.55	0.11
0.82	0.97	..	0.93	0.86	0.78	0.72	0.69	0.67	0.26
0.77	0.92	..	0.98	0.94	0.88	0.83	0.81	0.79	0.42
0.71	0.84	..	1.	0.98	0.94	0.9	0.88	0.87	0.55
0.65	0.76	..	0.98	1.	0.98	0.96	0.93	0.93	0.65
0.57	0.66	..	0.94	0.98	1.	0.99	0.97	0.96	0.75
0.53	0.61	..	0.9	0.96	0.99	1.	0.98	0.98	0.8
0.48	0.57	..	0.88	0.93	0.97	0.98	1.	0.99	0.83
0.47	0.55	..	0.87	0.93	0.96	0.98	0.99	1.	0.86
0.085	0.11	..	0.55	0.65	0.75	0.8	0.83	0.86	1.

Correlation Calibration

- ▶ Parametric structure $\rho_{ij} = \ell + (1 - \ell)e^{-\theta|i-j|}$
- ▶ Best fit for $\ell = 0.54$, $\theta = 0.25$
- ▶ Positive correlations
- ▶ Decrease when moving away from main diagonal
- ▶ Refined parametric structures allow increase along subdiagonals

An Example

- ▶ A structured note with 14 annual coupons
- ▶ Coupon V_k at T_k depends on F_k, \dots, F_{k+9} at T_{k-1}
- ▶ We propagate 22 rates F_1, \dots, F_{22}
- ▶ Value at time 0 is

$$B(0, T_0) V_0 + B(0, T_M) \cdot \mathbf{E}^{T_M} \left[\sum_{k=1}^{13} \frac{V_k}{B(T_k, T_M)} \right]$$

Volatility Calibration

- ▶ A cap on $F_1(T_0)$ is a swaption with maturity T_0 and swap length one year
- ▶ ÖBFA provides swaption volatilities for maturities 1M, 3M, 6M, 1Y, ..., 20Y
- ▶ Swaption volatilities for maturities T_0, \dots, T_M are interpolated from market data
- ▶ Parameters a, b, c, d are found by minimization with Mathematica
- ▶ Fairly good fit to swaption volatility surface

Monte Carlo Simulation

- ▶ Use dynamics of F under terminal measure

$$\frac{dF_k(t)}{F_k(t)} = \mu(F_{k+1}(t), \dots, F_M(t)) dt + \sigma_k(t) dW_k(t)$$

- ▶ W Brownian motion with instantaneous correlation matrix ρ
- ▶ $W(t + \Delta t) - W(t) \sim \sqrt{\Delta t} \mathcal{N}(0, \rho)$
- ▶ Parameters: Number of time discretization points, number of Monte Carlo trials, number of factors

Conclusion

- ▶ Unlike short rate models, the LMM is based on observable market rates
- ▶ The LMM can price almost any interest rate product
- ▶ Mathematica + UnRisk provide comfortable implementation
- ▶ There are many variants and extensions