Local volatility asymptotics and small-time central limit theorems

Stefan Gerhold

Vienna UT

Joint work S. De Marco, P. Friz, M. Kleinert, P. Porkert, M. Shkolnikov, and M. Yor

April 2013
Talk consists of two parts:

- PART I: Local volatility approximations
- PART II: Small-time central limit theorems for semimartingales
PART I: Overview

- Local vol model: recreates marginals of a given diffusion (via call price surface)
- Question: Given market dynamics, what does the associated local vol surface look like?
- Asymptotics for small time, large strike
- Applications: model risk; parametrization design
- Short end of the local vol surface: regularization
Local volatility

Given call price surface

\[C = C(K, T) \]

Reproduced by local volatility model

\[\frac{dS_t}{S_t} = \sigma_{\text{loc}}(S_t, t) dW_t \]

Dupire’s formula (1994)

\[\sigma^2_{\text{loc}}(K, T) = \frac{2 \partial_T C}{K^2 \partial_{KK} C} \]
Heston Model

- Consider Call price surface $C_{\text{Hes}}(K, T)$ generated by Heston:

\[
\begin{align*}
 dS_t &= S_t \sqrt{V_t} dW_t, \quad S_0 = 1, \\
 dV_t &= (a + bV_t) dt + c \sqrt{V_t} dZ_t, \quad V_0 = v_0 > 0,
\end{align*}
\]

- Correlated Brownian motions

\[
 d\langle W, Z \rangle_t = \rho dt, \quad \rho \in [-1, 1]
\]

- Parameters

\[
a \geq 0, \ b \leq 0, \ c > 0
\]
Local vol in the Heston model (De Marco, Friz, SG 2013)

- Heston dynamics \implies Call prices \implies local vol surface
- Dupire’s formula

$$
\sigma^2_{\text{loc}}(K, T) = \frac{2\partial_T C_{\text{Hes}}}{K^2 \partial_{KK} C_{\text{Hes}}}
$$

- New wing asymptotics ($k = \log K$)

$$
\sigma^2_{\text{loc}}(K, T) \sim \text{const} \times k, \quad K \to \infty \\
\sigma^2_{\text{loc}}(K, T) \sim \text{const} \times |k|, \quad K \to 0
$$

- Looks like Lee’s moment formula for implied vol
- Similarly for the Stein-Stein model (Friz, De Marco 2012; large deviations)
Local variance for Heston model computed with Dupire’s formula. Call price derivatives computed via 1D integration of Heston characteristic function on a fixed integration contour.
Local variance for Heston model computed with Dupire’s formula. Adaptive contour with shift into saddle point. Note the linear increase.
Application 1: Design local vol parametrizations

- Example: Gatheral’s SVI parametrization
- Popular parametrization of the **implied vol** surface

\[\sigma_{\text{imp}}(K, T)^2 T \approx \text{SVI}(k; a, b, c, m, s) \]

\[k \mapsto a + b \left((-m + k)c + \sqrt{(-m + k)^2 + s} \right) \]

- Gatheral, Jacquier 2011: Heston, \(T \to \infty \Rightarrow \text{SVI} \)
- Wings \((k \to \pm \infty) \) compatible with Lee’s formula
- Our asymptotic result motivates SVI parametrization also for **local vol** \(\sigma_{\text{loc}}(K, T) \)
Application 2: Model risk

- Consider a path-dependent exotic
- $SV =$ price under **stochastic vol model**
- $LV =$ price under associated **local vol model**
- Note: local vol model recreates marginals of stoch vol model, but not the full law \implies in general $SV \neq LV$
- Similar price: low model risk (e.g., variance swap)
- Different price: high model risk (e.g., volatility swap)
- **Toxicity index** (Reghai 2011)

\[
I = \frac{|SV - LV|}{|SV + LV|}
\]
Application 2: Model risk

- How to calculate local vol of a stochastic vol model?
- We need $\sigma_{\text{loc}}(K, T)$ in particular for large/small K (Monte Carlo requires it)
- Dupire’s formula + Fourier inversion: unstable for large/small K
- Conditioning:

$$\sigma_{\text{loc}}^2(K, T) = E[\sigma_{\text{stoch}}^2(T) | S_T = K]$$

Difficult for $K \gg S_0$ (condition on unlikely events)

\Rightarrow Wing approximation useful for computation
Towards a general wing approximation of local vol

- Moment generating function ($X_T = \log S_T$):

$$M(s, T) := E[\exp(sX_T)], \quad m(s, T) := \log M(s, T)$$

- Dupire’s formula + Fourier inversion

$$\sigma_{loc}^2(K, T) = \frac{2\partial_T C}{K^2 \partial_{KK} C} = \frac{2 \int_{-i\infty}^{i\infty} \frac{\partial_T m(s, T)}{s(s-1)} e^{-ks} M(s, T) ds}{\int_{-i\infty}^{i\infty} e^{-ks} M(s, T) ds}$$

- Saddle point method: Leading terms are integrands evaluated at saddle point \longrightarrow cancellation
General wing formula for local vol (De Marco, Friz, SG 2013)

- log moment generating function ($X_T = \log S_T$)

$$m(s, T) = \log E[\exp(sX_T)]$$

- saddle point $\hat{s}(k, T)$

$$\frac{\partial}{\partial s} m(s, T) \bigg|_{s=\hat{s}} = k$$

- “Lee type” wing formula for $k \to \infty$:

$$\sigma_{\text{loc}}^2(K, T) \approx \frac{2 \frac{\partial}{\partial T} m(s, T)}{s(s - 1)} \bigg|_{s=\hat{s}(k, T)}$$
Two ways to use the formula

- As it is (numerically very accurate, but not quite explicit):

\[
\sigma^2_{\text{loc}}(K, T) \approx 2 \left. \frac{\partial}{\partial T} m(s, T) \right|_{s=\hat{s}(k, T)} \frac{s(s-1)}{s(s-1)}
\]

- Use asymptotics of saddle point \(\hat{s}(k, T) \) and mgf \(\Rightarrow \) explicit formula (model-dependent)

- E.g., \(\text{const} \times k \) for Heston. Explicit, but model-dependent and less accurate.
Heston model: Numerical example (left wing)

Abbildung: Local variance $\sigma^2_{loc}(k, T)$ and our approximation in the Heston model.
Abbildung: Local variance $\sigma^2_{\text{loc}}(k, T)$ and our approximation in the Heston model.
Abbildung: Boundaries of the region where the relative error of our approximation is less than 2% (blue), 3% (green), 4% (yellow), and 5% (red).
Heston model: Implied volatility, $T = 0.25$

Abbildung: Green: Local vol computed by Dupire’s formula. Red: Use our approximation, as soon as its accuracy is over 5%.
Heston model: Implied volatility, $T = 5$

Abbildung: Green: Local vol computed by Dupire's formula. Red: Use our approximation, as soon as its accuracy is over 5%.
Heston model: rigorous proof

- Finding saddle point + local expansion of integrands fairly routine
- Problem: Verify concentration
- Needs some insight into behaviour of integrand away from saddle point
- Show exponential decay of integrands by ODE comparison (Riccati ODEs, similar to Friz, SG, Gulisashvili, Sturm, Quantitative Finance 2011)
- [Korenblum’s ratio Tauberian theorem?]
Using Dupire’s formula for models with jumps

- Variance gamma model: Call price not C^2 w.r.t. strike (but works for T large)

- Jumps \Rightarrow Blowup of local vol as $T \to 0$, hence local vol model may be ill-defined.

Dupire’s formula: $\sigma_{loc}^2(K, T) = 2\partial_T C/(K^2 \partial_K K C)$.

Call PIDE:

$$\partial_T C = \frac{1}{2} K^2 \sigma^2 \partial_{KK} C$$

$$+ \int_{-\infty}^{\infty} \nu(dz)(C(Ke^{-z}, T) - C(K, T) - K(e^z - 1)\partial_K C)$$

- Even if Dupire’s formula is well-defined, the local vol model may not match the marginals of the jump process.
Jumps: blowup if local vol as $T \to 0$

- Our saddle point formula works well

$$\sigma_{\text{loc}}^2(K, T) \approx \left. \frac{2}{s(s - 1)} \frac{\partial m(s, T)}{\partial T} \right|_{s = \hat{s}(k, T)}$$

- Examples for off-the-money blowup ($K \neq S_0$ fixed):

 $$\sigma_{\text{loc}}^2(K, T) \approx \frac{1}{T} \quad \text{(Merton jump diffusion)}$$
 $$\sigma_{\text{loc}}^2(K, T) \approx \frac{1}{\sqrt{T}} \quad \text{(Kou’s diffusion)}$$
 $$\sigma_{\text{loc}}^2(K, T) \approx \frac{1}{T} \quad \text{(Normal inverse Gaussian)}$$
Regularization of local vol

- A realistic market model should have jumps (especially for pricing short-maturity products)
- But then local vol model is ill-defined (blowup of σ_{loc} for $T \to 0$)
- Question: is there a truncation of the local vol surface that always gives a well-defined local vol model?
Regularization of local vol

Theorem (Friz, SG, Yor 2013): Assume that (S_t) is a martingale (possibly with jumps) with associated smooth call price surface C, such that $\partial_T C > 0$ and $\partial_{KK} C > 0$, i.e. (strict) absence of calendar and butterfly spreads. Define ε-shifted local volatility

$$\sigma^2_\varepsilon(K, T) = \frac{2 \partial_T C(K, T + \varepsilon)}{K^2 \partial_{KK} C(K, T + \varepsilon)}.$$

Then $dS^\varepsilon/S^\varepsilon = \sigma_\varepsilon(S^\varepsilon, t)dW$, started at randomized spot S^ε_0 with distribution

$$\mathbb{P}[S^\varepsilon_0 \in dK]/dK = \partial_{KK} C(K, \varepsilon),$$

admits a unique, non-explosive strong SDE solution such that

$$\forall K, T \geq 0 : \mathbb{E}[(S^\varepsilon_T - K)^+] \to C(K, T) \quad \text{as} \quad \varepsilon \to 0.$$
Regularization of local vol: Proof

- Let \(q^\varepsilon(dS, T) \) be the law of \(S_T^\varepsilon \), and \(p^\varepsilon(S, T) \) be the density of \(S_{T+\varepsilon} \).
- Calculate

\[
\mathbb{E}[(S_T^\varepsilon - K)^+] = \int (S - K)^+ q^\varepsilon(dS, T) \\
\equiv \int (S - K)^+ p^\varepsilon(S, T) dS \\
= \mathbb{E}[(S_{T+\varepsilon} - K)^+] \\
= C(K, T + \varepsilon).
\]

Then let \(\varepsilon \to 0 \).
- Need to show \(S_T^\varepsilon \overset{d}{=} S_{T+\varepsilon} \)
Regularization of local vol: Proof

- Define

\[a^\varepsilon(K, T) := \frac{\partial_TC(K, T + \varepsilon)}{p^\varepsilon(K, T)} \]

- \(p^\varepsilon \) satisfies the Fokker-Plack equation

\[\partial_{KK}(a^\varepsilon p^\varepsilon) = \partial_T p^\varepsilon \]

- But \(q^\varepsilon \) is also a (weak) solution, in the sense that

\[\int \varphi(S)q^\varepsilon(dS, t) = \int \varphi(S)q^\varepsilon(dS, 0) + \int_0^t \int a^\varepsilon(S, s)\varphi''(S)q^\varepsilon(dS, s) \]

for any smooth \(\varphi \) with compact support. (Since \(a^\varepsilon(S, t)\partial_{SS} \) is the generator of \(S^\varepsilon \).)
So our result is a corollary of the following uniqueness theorem (Pierre 2012):

\[U := (0, \infty) \times \mathbb{R} \]

Let \(a : (t, x) \in \bar{U} \rightarrow a(t, x) \in \mathbb{R}_+ \) be a continuous function with \(a(t, x) > 0 \) for \((t, x) \in U\), and let \(\mu \) be a probability measure with \(\int |x| \mu(dx) < \infty \). Then there exists at most one family of probability measures \((p(t, dx), t \geq 0)\) such that

- \(t \geq 0 \rightarrow p(t, dx) \) is weakly continuous
- \(p(0, dx) = \mu(dx) \) and

\[
\partial_t p - \partial_{xx}(ap) = 0 \quad \text{in} \ D'(U)
\]

(i.e., in the sense of Schwartz distributions on the open set \(U \)).
PART II: Small-time central limit theorems for semimartingales

- $(X_t)_{t \geq 0}$ semimartingale with $X_0 = x_0$ a.s.
- f smooth
- We are interested in the limit

$$\lim_{t \to 0} \frac{f(X_t) - f(x_0)}{\sqrt{t}}$$

in distribution
- Main motivation: Complement well known small time LDPs by a CLT
- There are connections to digital option prices and implied volatility slopes
PART II: Overview

- CLT for SDE solutions
- CLT for continuous semimartingales
- $\lim_{t \to 0} \mathbb{P}[X_t > x_0] = ?$
- Functional CLT for continuous semimartingales
- Digital options, implied volatility slope
CLT for SDE solutions

Let X be a weak solution of the SDE

$$dX_t^j = b_j(t, X_t) \, dt + \sum_{k=1}^{d} \sigma_{jk}(t, X_t) \, dB_t^k$$

where B is a standard d-dimensional Brownian motion, b is uniformly bounded in a neighborhood of $(0, x_0)$ and σ is continuous in $(0, x_0)$.
CLT for SDE solutions

Let X be a weak solution of the SDE

$$dX^j_t = b_j(t, X_t) \, dt + \sum_{k=1}^{d} \sigma_{jk}(t, X_t) \, dB_t^k$$

where B is a standard d-dimensional Brownian motion, b is uniformly bounded in a neighborhood of $(0, x_0)$ and σ is continuous in $(0, x_0)$.

Thm: For every $f : \mathbb{R}^m \to \mathbb{R}^n$ s.t. there exists an open neighborhood U of x_0 with $f \in C^2(U, \mathbb{R}^n)$, there exists an a.s. positive stopping time τ such that

$$\frac{f(X_{t \wedge \tau}) - f(x_0)}{\sqrt{t}} \xrightarrow{d} N_f \text{ as } t \searrow 0,$$

where N_f is a normal random vector with mean 0 and covariance matrix (with $L := \sigma(0, x_0)$)

$$V = (Df)(x_0) L (Df(x_0) L)^\top.$$
CLT for continuous semimartingales

- Assume: $X = x_0 + M + A$ continuous semimartingale
- M continuous local martingale, A locally finite variation,
- Conditions that ensure representation

$$X_{t^\wedge \tau}^j = x_0 + \int_0^{t^\wedge \tau} b_s^j \, ds + \sum_{k=1}^m \int_0^{t^\wedge \tau} \sigma_{s}^{jk} \, dB_s^k$$

- some boundedness assumptions
- Then the small-time CLT is valid
CLT for continuous semimartingales: General Assumptions

1. $X_0 = x_0$ a.s.;

2. there exists an a.s. positive stopping time τ_A such that a.s.

$$A^j_t = \int_0^t b^j_s \, ds, \quad t \in [0, \tau_A],$$

for an adapted process b;

3. there exists a random variable C_b, such that $|b^j_t| \leq C_b < \infty$
 for a.e. $t \in [0, \tau_A]$ a.s.;
CLT for continuous semimartingales: General Assumptions

1. $X_0 = x_0$ a.s.;
2. there exists an a.s. positive stopping time τ_A such that a.s.

$$A_t^j = \int_0^t b_s^j \, ds, \quad t \in [0, \tau_A],$$

for an adapted process b;
3. there exists a random variable C_b, such that $|b_t^j| \leq C_b < \infty$ for a.e. $t \in [0, \tau_A]$ a.s.;
4. there exists an a.s. positive stopping time τ_M such that the covariation is a.s.

$$\langle M^j, M^k \rangle_t = \int_0^t \sum_{l=1}^m \sigma_s^{jl} \sigma_s^{kl} \, ds, \quad t \in [0, \tau_M],$$

for a progressive process σ;
5. there exists a deterministic constant $C_\sigma < \infty$, such that $|\sigma_t^{jk}| \leq C_\sigma$ for a.e. $t \in [0, \tau_M]$ a.s., $j, k \in \{1, \ldots, m\}$;
6. as $t \searrow 0$, $\sigma_t \to L$ a.s., where L is a deterministic matrix.
CLT for continuous semimartingales

Thm: For every $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ s.t. there exists an open neighborhood U of x_0 with $f \in C^2(U, \mathbb{R}^n)$, there exists an a.s. positive stopping time τ such that

$$
\frac{f(X_{t\wedge\tau}) - f(x_0)}{\sqrt{t}} \xrightarrow{d} N_f \text{ as } t \downarrow 0,
$$

where N_f is a normal random vector with mean 0 and covariance matrix

$$V = (Df)(x_0)L(Df(x_0)L)^\top.$$
n = 1 (otherwise: Cramér-Wold)

Choose open ball B with $\bar{B} \subset U$

$\tau := \tau_{B^c} \wedge \tau_A \wedge \tau_M$

By Doob’s integral representation theorem:

$$X_{t \wedge \tau}^j = x_0 + \int_0^{t \wedge \tau} b_s^j \, ds + \sum_{k=1}^m \int_0^{t \wedge \tau} \sigma_s^{jk} \, dB^k_s$$
By Itô’s formula:

$$\frac{f(X_{t\land \tau}) - f(x_0)}{\sqrt{t}} = \frac{1}{\sqrt{t}} \int_0^{t\land \tau} (L_s f)(X_s) \, ds$$

$$+ \frac{1}{\sqrt{t}} \sum_{k,l=1}^m \int_0^{t\land \tau} \frac{\partial f}{\partial x_l}(X_s) \sigma_{s}^{lk} \, dB^k_s,$$

where

$$(L_s f)(u) := \frac{1}{2} \sum_{k,l=1}^m (\sigma_s \sigma_s^\top)_{kl} \frac{\partial^2 f}{\partial x_k \partial x_l}(u) + \sum_{k=1}^m b^k_s \frac{\partial f}{\partial x_k}(u)$$
CLT for continuous semimartingales: proof sketch (3/3)

- First term (use boundedness assumption on b, σ, choice of B):

$$\frac{1}{\sqrt{t}} \int_0^{t \wedge \tau} (\mathcal{L}_s f)(X_s) \, ds = O(\sqrt{t}), \quad t \to 0, \text{ a.s.}$$

- Second term:

$$\frac{1}{\sqrt{t}} \sum_{k, l=1}^m \int_0^{t \wedge \tau} \frac{\partial f}{\partial x_l}(X_s) \sigma_{s}^{lk} \, dB^k_s$$

Freeze integrand at $s = 0$, Cauchy-Schwarz, Itô’s isometry \(\to\) converges in law to a Gaussian r.v.

- Slutsky’s theorem
Heuristic CLT derivation from LDP in the elliptic case (1/2)

- Recall: classical CLT can be heuristically derived from Cramér’s theorem
- Suppose \(X \) satisfies
 \[
 X_t = x_0 + \int_0^t \sigma(X_s) \, dB_s, \quad t \geq 0
 \]
- Time-scaling: \(X_t \overset{d}{=} X_1^{(\delta)} \), where
 \[
 X_t^{(\delta)} = x_0 + \sqrt{\delta} \int_0^t \sigma(X_s^{(\delta)}) \, dB_s
 \]
- Small-noise LDP for diffusions (Freidlin-Wentzell) \(\implies X_t \)
satisfies LDP as \(t \to 0 \) with rate function
 \[
 I(x) = \frac{1}{2} \inf_{\substack{f \in H^1([0,1]): \ f(0) = x_0, \\ f(1) = x}} \int_0^1 \frac{\dot{f}(s)^2}{\sigma(f(s))^2} \, ds = \frac{1}{2} \left(\int_{x_0}^x \frac{du}{\sigma(u)} \right)^2
 \]
That is, for $\varepsilon > 0$ small and fixed, we have the asymptotics

$$\mathbb{P}(X_t \geq x_0 + \varepsilon) \approx \exp(-I(x_0 + \varepsilon)/t)$$

Non-rigorous step: replace ε by $z\sqrt{t}$:

$$I(x_0 + z\sqrt{t}) = \frac{1}{2} I''(x_0) z^2 t + o(t),$$

and so

$$\mathbb{P}\left(\frac{X_t - x_0}{\sqrt{t}} \geq z\right) \approx \exp\left(-\frac{z^2}{2\sigma(x_0)^2} + o(1)\right).$$
The limiting probability $\lim_{t \to 0} \mathbb{P}[X_t > x_0]$

- **Corollary:** If X satisfies our main assumptions, and the limit law is non-degenerate, then

$$\lim_{t \to 0} \mathbb{P}[X_t > x_0] = \lim_{t \to 0} \mathbb{P}\left[\frac{X_t - x_0}{\sqrt{t}} > 0 \right] = \frac{1}{2}.$$

- **Example** (degenerate limit law): $X_t = B_t^2$ (BM squared)

$$\lim_{t \to 0} \mathbb{P}[X_t > x_0] = 1, \quad \frac{X_t}{\sqrt{t}} \xrightarrow{d} 0$$

- **Example** (drift not abs. continuous): $X_t = \Phi^{-1}(p)\sqrt{t} + B_t$

$$\lim_{t \to 0} \mathbb{P}[X_t > x_0] = p \in (0, 1)$$
The limiting probability \(\lim_{t \to 0} \mathbb{P}[X_t > x_0] \)

- **Example** (All values \(p \in [0, 1] \) can be realized by martingales):
 - \(R_t^\delta \) squared Bessel process of dimension \(\delta \geq 0 \)
 \[
dR_t^\delta = 2 \sqrt{R_t^\delta} \, dB_t + \delta \, dt, \quad R_0^\delta = 0.
\]
 - \(X_t^\delta := R_t^\delta - \delta t \) is a martingale
 - For \(\delta \in [0, \infty) \), \(\lim_{t \to 0} \mathbb{P}[X_t^\delta > x_0] \) ranges over \([0, 1)\).
 - Limit law: Dirac at zero; limit cdf not continuous at zero
The limiting probability $\lim_{t \to 0} \mathbb{P}[X_t > x_0]$: Refined asymptotics

- **SDE**

 $$dX_t = b(t, \cdot) \, dt + \sigma(t) \, dB_t$$

 b bounded predictable process, σ locally square integrable **deterministic** matrix function, smallest eigenvalue of $\sigma(\cdot)^\top \sigma(\cdot)$ uniformly bounded away from 0.

- **Thm:**

 $$g_1(t) \leq \mathbb{P}[X_t > x_0] \leq g_2(t)$$

- g_1, g_2 explicit functions with

 $$g_1(t) = \frac{1}{2} - \sqrt{\frac{\log 2}{2}} \|\sigma^{-1} b\|_{2,\infty} t^{1/2} + O(t),$$

 $$g_2(t) = \frac{1}{2} + \sqrt{\frac{\log 2}{2}} \|\sigma^{-1} b\|_{2,\infty} t^{1/2} + O(t).$$
Thm: Let X satisfy the general assumption. Then for every $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$, such that there exists an open neighborhood U of x_0 with $f \in C^2(U, \mathbb{R}^n)$, the processes

$$Y^{f,u} := \left(\frac{f(X_{u(t \wedge \tau)}) - f(x_0)}{\sqrt{u}} \right)_{t \in [0,T]}, \quad u \in (0,1),$$

converge in law to a Brownian motion with variance-covariance matrix

$$V = (Df)(x_0)L(Df(x_0)L)^\top$$

as $u \searrow 0$.

Functional CLT
Functional CLT: proof idea

- Convergence of finite-dimensional distributions ($u \to 0$):
 \[
 (Y_{t_1}^{f,u}, \ldots, Y_{t_w}^{f,u}) \xrightarrow{d} (\tilde{B}_{t_1}, \ldots, \tilde{B}_{t_w}), \quad t_1, \ldots, t_w \in [0, T],
 \]
 \tilde{B} Brownian motion with variance-covariance matrix V

- Proof: Analogous to finite-dimensional CLT

- Tightness condition: $u_l \in (0, 1)$ arbitrary with $u_l \to 0$

 \[
 \lim_{\delta \searrow 0} \lim_{l \to \infty} \mathbb{P}\left(\sup_{|s-t| \leq \delta} |Y_s^{f,u_l} - Y_t^{f,u_l}| > \varepsilon \right) = 0, \quad \varepsilon > 0.
 \]
CLT for Lévy processes (Doney, Maller 2002)

- Diffusion coefficient σ, Lévy measure ν
- **Thm:** There are functions f, g with

\[
\frac{X_t - f(t)}{g(t)} \to N(0, 1) \quad \text{in distribution}
\]

if and only if

\[
\lim_{x \to 0} \frac{1}{x} U(x) \frac{1}{x T(x)} = \infty
\]

- $T(x) := \nu((x, \infty)) + \nu((\infty, -x))$
- $U(x) := \sigma^2 + 2 \int_0^x y T(y) dy$

- $g(t) \sim c \sqrt{t}$ if and only if $\sigma \neq 0$, and then $c = \sigma$.
- Note: the typical pure jump processes of math. finance **do not** satisfy a CLT (Variance gamma, NIG, CGMY,...)
Application of CLTs: Digital options

- Underlying S_t, define $X_t = \log S_t$, let \mathbb{P} be the pricing measure
- Price of a **digital call option** with log-strike k (with $r = 0)$:
 \[\mathbb{P}[X_T \geq k]. \]
- Small-time asymptotics for $k \neq x_0$: Varadhan, Rüschendorf, Woerner, Forde, Jacquier, Figueroa-López, Houdré, Marchal, ...
- **At the money** ($k = x_0$): If our assumptions hold, then
 \[\lim_{T \to 0} \mathbb{P}[X_T \geq k] = \frac{1}{2}. \]
Implied volatility slope

- Implied volatility $\sigma_{\text{imp}} = \sigma_{\text{imp}}(K, T)$:

 $$C_{\text{BS}}(K, \sigma_{\text{imp}}, T) = C(K, T) := \mathbb{E}[(S_T - K)^+]$$

- Implied volatility slope:

 $$\partial_K \sigma_{\text{imp}} = -\frac{\partial_K C_{\text{BS}} - \partial_K C}{\partial_{\sigma} C_{\text{BS}}}$$

- Under mild assumptions:

 $$\partial_K \sigma_{\text{imp}} = -\frac{\partial_K C_{\text{BS}} + \mathbb{P}[S_T \geq K]}{\partial_{\sigma} C_{\text{BS}}}$$

- Well-known connection between implied vol slope and digitals
Implied volatility slope

More explicitly:

$$\partial_K \sigma_{\text{imp}} = \frac{\Phi(-\sigma_{\text{imp}} \sqrt{T}/2) - \mathbb{P}[S_T \geq K]}{K \sqrt{T} \cdot n(\sigma_{\text{imp}} \sqrt{T}/2)}$$

Under mild assumptions we have $\sigma_{\text{imp}} \sqrt{T} = o(1)$, $T \to 0$, and so

$$\partial_K \sigma_{\text{imp}} \sim \frac{\sqrt{2\pi}}{K \sqrt{T}} \left(\frac{1}{2} - \mathbb{P}[S_T \geq K] - \frac{\sigma_{\text{imp}} \sqrt{T}}{2 \sqrt{2\pi}} + O((\sigma_{\text{imp}} \sqrt{T})^3) \right)$$

ATM asymptotics of $\partial_K \sigma_{\text{imp}}$ depend on second order term of $\mathbb{P}[S_T \geq K]$
ATM digital calls: Small-time expansions for Lévy models

- $S_t = \exp(X_t)$, X Lévy process with characteristic triplet (σ, ν, b)

$$\log E[e^{sx}] = \frac{\sigma^2 s^2}{2} + bs + \int_{-\infty}^{\infty} \left(e^{sx} - 1 - sx1_{\{|x|\leq 1\}}\right)\nu(dx).$$

- **Thm**: Suppose that $\sigma > 0$ and that there is $s_0 \in (1, s_+)$ such that

 \[\phi(s) := \int_{-\infty}^{\infty} \left(e^{sx} - 1 - sx1_{\{|x|\leq 1\}}\right)\nu(dx) \]

 is bounded for $\Re(s) = s_0$ fixed and $\Im(s) \in \mathbb{R}$. Then

 $$\mathbb{P}[X_T > x_0] = \frac{1}{2} + \frac{b}{\sigma \sqrt{2\pi}} \sqrt{T} + O(T \log(1/T)), \quad T \to 0.$$
Implied vol slope for Lévy models

- **Thm:** Assumptions as before. Then

\[
\lim_{T \to 0} \partial_K \sigma_{imp} = -(b/\sigma + \sigma/2).
\]

- **Examples:**
 - Merton jump diffusion
 - Kou’s double exponential jump diffusion

- **Application:**
 - get initial parameter values for calibration
 - qualitative influence of parameters on model behavior
Infinite activity Lévy processes

- Normal inverse Gaussian model:

\[P[X_T > x_0] = \frac{1}{2} + \frac{\delta \beta}{\pi} T \log(1/ T) + o(T \log(1/ T)) \]

\[\partial_K \sigma_{\text{imp}} \sim -\delta \sqrt{\frac{2}{\pi}} (\beta + \frac{1}{2}) T \log(1/ T) \]

- Variance gamma model:

\[P[X_T > x_0] = \frac{1}{2} - \frac{\log 2 \nu \sigma^2}{2 \nu} T + o(T) \]

\[\partial_K \sigma_{\text{imp}} \sim \text{const} \cdot \sqrt{T} \]

- Proof idea: Fourier representation, contour shift

- Question: criterion for \(\lim_{t \to 0} P[X_T > x_0] = \frac{1}{2} \)?
References