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1 Introduction

The following seminar paper is based on the book ”Introduction to Machine Learning in
Quantitative Finance” written by Hao Ni and Xin Dong, Jinsong Zheng, and Guangxi Yu
[1].
In the book, the authors reveal the basic principles of classic machine learning algorithms

and provide many practical examples from the field of quantitative finance. The particular
chapter I focus on shows the application of PCA to term structure analysis. The Python
codes contained in this book have been made publicly available on the author’s GitHub
[2]. In my analysis, I used different timelines and bonds to see how they would affect the
results; for example, I looked at the timeline of the financial crisis caused by Covid-19. In
addition to the main book, I also used alternative sources to understand the topic better.

2



2 Principal Component Analysis

2.1 Dimension Reduction

In statistics, dimensionality reduction is the transformation of data such that the number
of variables is reduced by obtaining principal variables. It can be helpful in the further pro-
cessing of the data using standard supervised or unsupervised machine learning algorithms,
especially those that are dimensionality sensitive (e.g. k-nearest neighbours algorithm).
Moreover, in some cases, dimensionality reduction can help us see the key structure of
original data. For example, if the data lies in a low dimensional subspace, it is conceivable
that one could restrict our learning problem to this low dimensional subspace and thereby
simplify it.
There are two techniques of dimensionality reduction that can be applied to the feature

space:

• feature selection

is the process of selection of a subset of relevant features, which can be done manually
based on domain knowledge or using statistical tools.

• feature projection

converts data from high-dimensional space to low-dimensional space. The data trans-
formation can be linear or nonlinear.

The basic linear technique for dimensionality reduction, the principal component
analysis (PCA), performs a linear mapping of the data into a smaller space such that the
variance of the data in the low-dimensional representation is maximized[1]. In practice, a
covariance matrix (and sometimes a correlation matrix) of the data is constructed, and the
eigenvectors of this matrix are calculated. The eigenvectors corresponding to the largest
eigenvalues (principal components) can now be used to recover most of the variance of the
original data. Moreover, the first few eigenvectors can often be interpreted in terms of the
large-scale physical behaviour of the system. The original space (with a dimension equal
to the number of points) is reduced (with loss of data, but with the hope that the most
important variance remains) to a space stretched over a few eigenvectors.

2.2 Principal Component Analysis

The goal of PCA is to find an alternative representation of data X in the transformed
space so that X can be approximated by variables of smaller dimensions while maintaining
a given level of the original information.

Let us denote a zero mean p-dimensional feature space X = (X1, ..., Xp). We aim to
obtain a linear transformation V such that the p-dimensional transformed feature variable
Z := XV consists of components orthogonal to each other, and the variances of those
components are in descending order. Alternatively, we are aiming to find the representation
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2 Principal Component Analysis

of X: X = ZV −1 can be seen as a projection onto a new feature space, on which a
dimensionality reduction approach can be built.
Figure 2.1 illustrates the main idea of PCA: to find such orthogonal vectors (principal

components) Zk for k = 1, ..., p, and to reduce the dimensionality of the original data X by
mapping this data to the space generated by first l, l = 1, ..., p − 1 vectors (on this figure
p = 3 and l = 2).

Figure 2.1: Dimensionality Reduction with PCA
[https://jermmy.github.io/images/2017-12-15/pca.jpeg]

2.3 Linear transformation

Let V = (v1, ..., vp) be the loading matrix with vk = (v1k, ..., vpk)
T then the linear trans-

formation of X with V is
Z = XV. (2.1)

and V should satisfy the following:

1. Euclidean norm: ∥vk∥2 = 1,∀k ∈ 1, ..., p;

2. The direction of V is chosen such that the transformed variables {Zk}pk=1 should be
all orthogonal to each other;

3. The variances are in a descending order: V(Z1) ≥ V(Z2) ≥ ... ≥ V(Zp).

Definition 2.3.1. Zk with above properties is called the kth principal component or
kth PC score for k = 1, ..., p.

The following algorithm can be used to find the loading matrix V :
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2 Principal Component Analysis

Algorithm 1 PCA: Loading Matrix V

1. Find v1:
v1 = argmax

∥v∥=1
∥Xv∥2,

then Z1 := Xv1 has the largest variance among all possible projected variables, i.e.,
∥Z1∥2 = maxv,∥v∥2=1∥Xv∥2.

2. For k = 2, ..., p, find vk:
vk = argmax

∥v∥=1
∥X̃kv∥2,

where X̃k is the residual of X after substracting k − 1 components reconstructed
with PCs found from previous steps:

X̃k = X −
k−1∑
j=1

X̃j = X −
k−1∑
j=1

(Xvj)v
T
j .

2.4 Singular value decomposition

Definition 2.4.1. The singular value decomposition (SVD) is a factorization of a
real or complex matrix. A real N × p dimensional matrix X can be decomposed as

X = UDV T , (2.2)

where

• U is an N × p orthonormal matrix: rows and columns of U are orthogonal, and
UTU = Ip, where Ip is the p× p dimensional identity matrix.

• V is a p× p orthonormal matrix: rows and columns of V are orthogonal, and V TV =
Ip.

• D is a p× p diagonal matrix with real entries (di)i=1,...p called singular values and
d1 ≥ d2 ≥ ... ≥ dp ≥ 0.

The principal components Z can be obtained by

Z = XV = (UDV T )V = UD. (2.3)

2.5 Principal components and covariance

Let’s recall some basic defenitions from probability theory and statistics [3]:

• for the vector X = (X1, X2, ..., Xk)
T of k jointly distributed random variables with fi-

nite second moments, its auto-covariance matrix KXX (also denoted as ΣX) is defined
as follows:

KXX = Cov(X,X) = E
[
(X − E[X])(X − E[X])T

]
= E[XXT ]–E[X]E[X]T . (2.4)
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2 Principal Component Analysis

• let X be a random vector with covariance matrix ΣX , and let A be a matrix that can
act on X on the left. The covariance matrix of the matrix-vector product AX is:

Cov(AX,AX) = E[(AX)(AX)T ]–E[AX]E[(AX)T ] =

= E[AXXTAT ]–E[AX]E[ATXT ] =

= AE[XXT ]AT −AE[X]ETAT =

= A
(
E[XXT ]–E[X]E[X]T

)
AT = AΣXAT . (2.5)

• The empirical covariance matrix X can be written as

ΣX =
1

N − 1
XXT . (2.6)

• For every n × n real symmetric matrix, the eigenvalues are real and the eigenvec-
tors can be chosen real and orthonormal. Thus a real symmetric matrix A can be
decomposed as

A = QΛQT (2.7)

where Q is an orthogonal matrix whose columns are (the above chosen, real and
orthonormal) eigenvectors of A, and Λ is a diagonal matrix whose entries are the
eigenvalues of A.

By using the decomposition (2.2) we can now this empirical matrix (2.6):

ΣX =
1

N − 1
XXT =

1

N − 1
(UDV T )(UDV T )T = V

( 1

N − 1
D2
)
V T . (2.8)

Additionaly as the covariance matrix ΣX is a real nonnegative symmetric matrix we can
use an eigenvalue decomposition (2.7):

ΣX = QΛQT . (2.9)

It is clear that the right singular vectors in equation (2.8) are the eigenvectors in (2.9):

V = Q,

and the diagonal matrix Λ = diag(λ1, ..., λp) is
(

1
N−1D

2
)
, i.e componentwise:

λj =
dj

N − 1
. (2.10)

That means that the new coordinates V are given by the eigenvectors of the covariance
matrix.
Now finally the empirical covariance matrix of the principal components Z can be rewrit-

ten:

ΣZ =
1

N − 1
ZTZ =

1

N − 1
(XV )T (XV ) = V TΣXV =

D2

N − 1
= Λ. (2.11)

To summarize [1]:
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2 Principal Component Analysis

1. The principal components Z1, ..., Zp are orthogonal (i.e. Z−1 = ZT ), and the vari-
ances of Z1, ..., Zp are the eigenvalues of the covariance matrix of X in descending
order.

2. With the representation of the covariance of the data using SVD, we can apply PCA
to reduce the dimensionality of the data.

2.6 Summary

Once we have the principal components and the loading matrix, the representation of X
becomes

X = ZV −1 = ZV T =

p∑
j=1

Zjv
T
j . (2.12)

Thus an approximating sequence
{
X̃(k)

}
k=1,...,p

of feature variables X is obtained. In

section (2.5) we have shown that X̃(k) including the first k principal components of X:

X̃(k) =

k∑
j=1

Zjv
T
j (2.13)

covers such proportion ∑k
j=1 λj∑p
j=1 λj

(2.14)

of the variance of X. From the equation above, it is obvious that if we take k = p, we
recover all the original data of X.
Assuming, therefore, that the information is incorporated in the covariance, given the

data set X and the information preservation criterion in the form of the percentage of
variance explained, we can find an approximation of X with reduced dimensionality.
The residual from the approximation using k PCs is

R(k) = X − X̃(k) =

p∑
j=k+1

Zjv
T
j . (2.15)

2.7 Practical problems

1. PCA is not invariant to scaling. Before applying PCA, we should consider
whether or not to standardize the data X, besides removing of the mean from the
data before applying PCA. In practice, it depends on the context of the data and the
objective, but there are two general tips regarding this problem[1]:

• If features are measured in different units that are not comparable, we should
first standardize them before applying PCA.

• If features are measured in comparable units, then we can keep them unscaled
to preserve the original variability information.
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2 Principal Component Analysis

2. PCA can not be used if the data is not Gaussian. PCA is based on the
assumption that the data is normally distributed, that is why we can represent all
the information from the covariance. In the case of non-Gaussian data, independent
component analysis (ICA) is often used; for more details, see [4] and [5].
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3 Application: Term Structure Analysis Using PCA

3.1 Introduction to fixed income term structure

Bonds are one of the many financial instruments with a specified maturity date available in
the market. A bond is a fixed-income instrument representing a loan made by an investor
to a borrower (typically corporate or governmental). They are used by companies, mu-
nicipalities, states, and sovereign governments to finance projects and operations. Owners
of bonds are debtholders, or creditors, of the issuer [6]. The main risk that comes with
corporate bonds is credit risk. They depend on the creditor’s ability to repay the debt, so
there is always the possibility of defaulting on payment.
Treasury bonds are government-issued bonds that are deemed safe and secure. While

corporate bonds have some level of default risk, Treasury bonds are guaranteed if held
to maturity and can be used as a benchmark to measure the performance of other fixed-
income investments. With lower risk comes lower reward: in comparison to corporate
bonds, Treasury bonds earn a lower interest rate.

3.1.1 Bond yield and yield curve

A bond’s yield is the interest income received by an investor from investing in debt securi-
ties. Interest income on them is generated from two sources. On the one hand, bonds with
a fixed coupon, like deposits, have an interest rate that accrues on the face value. On the
other hand, bonds, like stocks, have a price, which can change depending on market factors
and the situation in the company. Although, price changes are less significant with bonds
than with stocks. Current yield is the ratio of annual coupon payments to the current
market value of the bond:

Current Yield =
Annual Coupon Payment

Bond Price
.

Having the definition of bond yield, we define the yield curve. The yield curve represents
the time structure of interest rates and shows the relationship between the yields of financial
instruments and their maturity. Using this tool, an investor gets an idea of several market
properties of traded bonds and can also predict the potential behaviour of the security’s
price under the influence of market factors. By analysing graphical and tabular data, it
is possible to assess the current state of the market, calculate fair premiums and calculate
bond prices under forecasted interest rate movements.

3.1.2 Treasuries bond yield curve and recession

The Treasuries bond yield curve is not only used as a benchmark to assess the value of other
debt instruments but is also considered one of the most important economic indicators to
watch as a precursor to a future cyclical downturn in the US economy.
Usually, yields of longer-dated securities are higher than those of shorter-dated securities

(this is a compensation for risk). However, the short-term yield sometimes exceeds the
long-term yield, and the spread turns negative. The result is a concave curve.
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3 Application: Term Structure Analysis Using PCA

If short securities turn out to be more profitable than long ones, investors do not believe
in the long term, i.e. they are afraid to hold long bonds.
The inversion (concavity) of the Treasuries curve in the US is considered one of the

proxies for an imminent recession or downturn in the economy. At least, as history shows,
in seven out of ten cases, it has indeed become a clear harbinger of an American recession
[7].
In the following example, we analyse the data of Treasury bonds between 1st January

2017 and 31st December 2018 taken using the Federal Reserve Bank of St. Louis API[8].
The US economy has been growing steadily in the period under review since after a rebound
in 2016, it grew by 3.1% in 2018 after climbing by 2.5% in 2017 [9][10].

3.2 Factor Model

We will start with the mathematical model.
Let X be the yield curve consisting of bonds of p maturities with N observations. We will
model X as a k factor model.

X =

x1
...

xN

 =


x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p
...

...
. . .

...
xN,1 xN,2 · · · xN,p


The k factor model for the yield curve X can then be presented in the following way

X = µX + Zf + e, (3.1)

where µx = (µ1, ..., µp) is the mean vector of X, e = (e1, ..., eN ) is the residuals and

Z =


z1,1 z1,2 · · · z1,k
z2,1 z2,2 · · · z2,k
...

...
. . .

...
zN,1 zN,2 · · · zN,k

 consist of k factors, (3.2)

f =


f1,1 f1,2 · · · f1,p
f2,1 f2,2 · · · f2,p
...

...
. . .

...
fk,1 fk,2 · · · fk,p

 the factor loading matrix; (3.3)

i.e., the observation i of feature j is

xi,j = µj +
k∑

l=1

zi,lfl,j + ei,j . (3.4)
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3 Application: Term Structure Analysis Using PCA

How to determine the factors?
One natural solution would be to simply take macroeconomics factors, including economic

outputs, unemployment rates, gross domestic product (GDP), inflation, etc. Bond traders
and financial analysts often cite monetary policy as a significant factor in the movement
of the term structure. The bond market reacts instantly to the release of macroeconomic
news. Conversely, movements in the term structure carry essential information about the
future state of the macroeconomy [11].
Macroeconomic factors are indeed a good solution for explaining the behaviour of the

curve over a long period, such as five years, but this approach has its limitations; in
particular, it is not as effective for explaining shorter-term behaviour. There are several
simple explanations for this: first, we do not closely observe the key macroeconomic factors;
second, a highly correlated set of macroeconomic factors may be unable to provide a stable
result in the fitting process.
Therefore, instead of identifying external factors, we will focus on self-contained inde-

pendent drivers, i. e., factors related to the curve itself, such as slope and curvature.
Through this approach, we will recognize the key structure of the yield curve dynamics

and will be able to answer how 2Y, 10Y, and 30Y bond yields move together. Moreover,
PCA will help us to naturally reduce the dimensionality of the factors based on the co-
efficient of explained variance. In our final steps, we will focus on hedging based on risk
exposure representation in terms of the factors.

Figure 3.1: US Treausry constant maturity rates

3.3 Data and observation

The yield/rate time series of different maturities are shown in Figure 3.1. It is clear that
all curves are moving in the same direction, which indicates the idea that some common
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3 Application: Term Structure Analysis Using PCA

factors drive the yield dynamic.

Figure 3.2: Term structure of interest rates

In Figure 3.2 we can see the yield curve term structure on different dates. In contrast to
the previous figure, here one can distinctly see the inconsistencies in the dynamics and it
is obvious that in some periods the movement is quite the opposite.
Let us consider in more detail the different types of changes between the dates:

1. Level change

The level shock modifies the interest rates of all maturities in nearly equal amounts,
inducing a parallel shift that changes the level of the entire yield curve [12].

An example of level change can be seen by observing the green (2018-02-05) and
orange (2018-05-17) curves. Both are moving in the same direction with almost iden-
tical slopes, and the only difference is the level: the green curve is shifted compared
to the orange one.

2. Slope change The shock to the slope factor increases short-term interest rates by
much more than long-term interest rates so that the yield curve becomes less abrupt
and its slope decreases [12].

For example, from 2018-05-17 (orange) to 2018-12-10 (pink), the slope of the curve
changed as the short-term yield increased while the long-term yield decreased (DGS2
to DGS5).

3. Curvature change

The change in curvature reflects how the difference between the medium-long-term
premium (i.e., the long-term minus the medium-term rate level) and the short-
medium-term premium (i.e., the medium-term minus the short-term rate level) changes
from each day. In other words, the ”belly” of the curve shifts relatively to variations
in short-term and long-term levels daily [1].
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3 Application: Term Structure Analysis Using PCA

Moreover, we can say that the orange (2018-05-17) and green (2018-02-05) curves show
us a classic example of the so-called normal yield curve, a concave curve with a positive
slope. Such a yield curve is considered ”normal” because the market usually requires more
compensation for more risk under normal conditions. Long-term bonds are subject to
greater risks, such as changes in interest rates and increased potential default risk.

3.4 PCA on term structure

We have already noticed that the dynamics of the yield curve are determined by some
common factors, and the PCA allows us to investigate these factors.
Consider X as the de-meaned daily yield change of p maturities on N days. From

Equation 2.3 in Section 2.4, we get the representation of X as

X = ZV T ,

where Z consists of the principal components and V is the loading matrix. Now we are
definitely prepared to analyse the PCA results.

Figure 3.3: The first 3 principal components

3.4.1 Principal components (Z)

Figure 3.3 shows the time series of the first three principal components. It is clear that the
variances of these components are in descending order: the PC1 (green) varies a lot, while
PC3 (blue) fluctuates around zero.
Figure 3.4 indicates that almost 95% of the variation in the data is described by the first

principal component, and combined with the second and third components, it is almost
100%, which means that all of the dynamics of the yield curve can be described by the first
three components. In the next section, we will take a closer look at the loading matrix V.
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3 Application: Term Structure Analysis Using PCA

(a) Individual PC explained variance (b) Cumulative PC explained variance

Figure 3.4: PCA-explained variance ratio

3.4.2 Loading matrix (V)

V is the loading matrix that represents X in the new coordinates. The matrix itself is
presented in Figure 3.5 (a) and visualized in Figure 3.5 (b). We can use the loading matrix
to determine which PCs have the greatest effect on each bond. A loading close to 0 indicates
a weak impact of the variable, and a loading close to ±1 shows a high impact. Let us now
take a closer look at the behaviour of each PC:

• PC1 (green)

All loads are positive, implying that the PC1 factor causes the movement of the yield
curve in the same direction. Therefore, this factor is responsible for the level change.
This reflects that short-term yields tend to move more than long-term yields since
the loads on the short end are larger. Moreover, this figure demonstrates that most
of the varience is accumulated in PC1.

• PC2 (orange)

The loading increases from a negative value at the short end to a positive value at
the long end. Furthermore, it crosses zero one time between two (2Y) and five (5Y)

(a) PCA loading matrix entries (b) PCA loading matrix visualization

Figure 3.5: PCA loading matrix
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3 Application: Term Structure Analysis Using PCA

years bonds. This indicates that short-term yields and long-term yields tend to move
in different directions, so it describes the change in slope of the curve. Note that a
zero crossing point of the curve is an anchor point, and as we can see from the figure,
it is around five years bonds.

• PC3 (blue)

The loadings from short to long-term cross zero twice, which means that the very
short-term and long-term yields move in the same direction while the ”belly” part of
the curve has the tendency to move in the opposite direction. This factor represents
the curvature of the curve in a natural way [1].

Figure 3.6: What do PC scores represent?

As we discussed in Section 3.3, the first three principal components represent the internal
characteristics of the curve: level, slope, and curvature. To confirm our reasoning, we will
choose combinations of bonds that reflect the above factor observations.
We can choose any maturity bond to represent the level (PC1), since all bonds have

essentially the same change in the level. In the first part of Figure 3.6 we use the 10Y bond
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3 Application: Term Structure Analysis Using PCA

to see how close PC1 fits, indeed the green (PC1) and orange (DGS10) curves are almost
a match.
Since the slope factor (PC2) expands short-term bonds by a much larger amount than

long-term bonds, we can represent it as the difference between long-term and short-term
bonds: 10Y−2Y. The second part of Figure 3.6 shows that although the error is larger than
in the previous case, the tendency of the curves is similar.
The coefficient curvature (PC3) describes the fact that changes in short-term and

long-term bonds go in one direction while medium-term bonds move in another, so let us
represent it in the following way: 30Y − 2 × 10Y + 5Y. Indeed, the third part of Figure
3.6 shows that our assumption is very close.

Figure 3.7: Reconstructed series from PC:DGS5

16



3 Application: Term Structure Analysis Using PCA

3.4.3 Representation of X with PCs

When the underlying factors have been found from PCA, we can finally use the first three
principal components to approximate the original data X. As we observed above (Figure
3.4), almost 100% of the variance can be explained by the first three components therefore,
we will use those components to construct X̃(3) using the equations (2.12) and (2.13). The
corresponding residual R(3) could be calculated via equation (2.15).
The upper figure 3.7 shows the approximation of bond yield 5Y by all PCs in aggregate,

and the lower figure 3.7 shows the corresponding residuals. It can be seen that even just
PC1 is quite adequate to obtain a very close result with an error of the order of 10−3.
Figure 3.8 shows the 10Y bond approximation: PC1 has the dominant explanatory power,

its residuals are about 10−3. Adding PC2 improves the reconstruction so that the residuals
are roughly 10−4, and including PC3, in addition, makes no appreciable difference. This
means that PC1 and PC2 are sufficient to provide an explanation of the dynamics.

Figure 3.8: Reconstructed series from PC:DGS10
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3 Application: Term Structure Analysis Using PCA

Our last approximation is for 30Y bonds, and it is presented in Figure 3.9. In comparison
to the 10Y curve, PC2 is more significant in explaining the 30Y trends. Moreover, in this
case, the contribution of PC3 is much more substantial.

Figure 3.9: Reconstructed series from PC:DGS30

3.5 Term structure analysis during COVID-19 crisis

3.5.1 Why this timeline?

The goal was to find a timeline illustrating how US Treasury bonds behave in times of global
recession. Therefore, the choice of the year 2020 was natural, as the COVID-19 pandemic
caused an unprecedented human resource and health crisis. The measures required to
contain the spread of the virus triggered an economic downturn. Prices of risky assets
have fallen precipitously since the onset of the pandemic, with prices of risky assets at the
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3 Application: Term Structure Analysis Using PCA

lower end of the recent surge selling off at half or more of their declines observed in 2008
and 2009. For instance, many equity markets, both large and small, have recorded price
declines of 30 per cent or more at the low end. The S&P Index covers approximately 80%
of US market capitalisation and indicates key market sentiment and trends. The provider
itself, Standard & Poor’s Ratings Services [13], calculates that the S&P 500 Index tracks
portfolios totalling more than 4.6 trillion US Dollars. Indeed, Figure 3.10 shows a dramatic
fall in February and March. In Figure 3.11, one can see that US Treasuries also took a fall
in the same period, although not as big as the S&P index.

Figure 3.10: S&P Index

Figure 3.11: US Treausry constant maturity rates
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3 Application: Term Structure Analysis Using PCA

3.5.2 Data and Results

The dynamics of the term structure, shown in Figure 3.12, are slightly different in this
period than in our previous case, see Figure 3.2. We definitely see a change in the level,
but all the curves are much closer to the slope: we can see a more evident difference in this
period.

Figure 3.12: Term structure of interest rates

Note that all the curves are still positively sloped, but they are now convex instead of
concave. It can be read as a tendency of the yield curve to flatten at long maturities. The
flat curve suggests that short- and long-term bonds offer equivalent returns, usually little
benefit from holding the longer-term instrument; the investor receives no additional com-
pensation for the risks of holding long-term securities. A flat yield curve usually indicates
that investors and traders are concerned about the macroeconomic outlook.
Figure 3.13 shows that PC1 plays an even more significant role here. It explains about

98% of the variance, so the other PCs contribute less than in the first example.

Figure 3.13: PCA-explained variance ratio
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We can finally observe the PC approximation for the 10Y and 30Y bonds. In the top
Figure 3.14, we can see that even just the first PC gives a good approximation. Although if
we look at the residuals, it is evident that during the period of maximum decline in March
2020, it is difficult to reconstruct this spectacular fall by the only PC1. We can also remark
that PC2 improves the result, while PC3 has almost no effect.

Figure 3.14: Reconstructed series from PC:DGS10
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For 30Y bonds, the picture is even worse: the top Figure 3.15 shows that PC1 closely
recovers the general direction, but even small picks are lost. The lower Figure 3.15 shows a
larger residual PC1 value than for 10Y bonds. PC3 plays a much more crucial role in this
case, only when using the three PCs together do we see a residual value close to zero.

Figure 3.15: Reconstructed series from PC:DGS30
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4 PCA for hedging

In this chapter, we will concentrate on the application of PCA for hedging portfolio risk.

4.1 Hedging

Hedging is the way to ensure financial risks by taking an opposite position on an asset in the
market. Hedging against investment risk means strategically using financial instruments
or market strategies to offset the risk of any adverse price movements. In other words,
investors hedge one financial instrument by making a trade with another. A hedging
instrument is a financial instrument that protects against potential risks, and it could be
currencies, securities, deposits, fixed-term contracts, etc.
Technically, in order to hedge an asset, one would have to make multidirectional trades

in securities and financial instruments with a negative correlation. Of course, nothing in
the financial world is free, so there will be some form of payment for this type of insurance.
Reducing risk will always mean reducing potential profits. Thus, hedging is a tool designed
not to increase profits but to decrease potential losses. If the assets an investor hedges
continue to grow, it reduces his potential gain, but if the assets lose in value, the hedge
reduces the size of the loss.
One needs to answer the following questions in order to make a hedging decision [1]:

• What is the current risk? Can we quantify it?

When the yield curve moves, the value of the bond portfolio shifts accordingly. From
the previous sections, we know that by PCA, the yield curve can be decomposed into
three components: level, slope and curvature.

• What types of risk can be taken? How often is hedging planned?

It depends on two factors: the strategy of the individual investor and macroeconomic
factors: the more volatile the situation, the more often hedging is necessary.

• Which instruments are chosen for hedging?

The main hedging instruments are financial derivatives, i.e. forward exchange con-
tracts (futures and options). Liquid products are generally a good hedging instru-
ment.

One easy way to use PCA for hedging is to simply have a look at the loading matrix
(Figure 3.5), we can find those few bonds with the highest correlations with PC1 and PC2
and choose them for further hedging [14].
In this section, we will observe a different method.

4.2 Risk representation

Let us take a yield term structure involving bonds with maturities p. At time t, we define
the yield of maturity Tm as rmt and the value of the respective bond as Pm

t . Then the whole
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4 PCA for hedging

yield term structure is rt = (r1t , ..., r
m
t ), and its daily change dr of N entries is an N × p

matrix with the following PC representation:

dr = (UD)V T = ZV T , (4.1)

where Z is the N × p PCs and V is the p× p loading matrix.
The portfolio risk from the yield curve motion is called the delta risk.The delta risk of

bond m with respect to maturity k is

δm,k
t :=

∂Pm
t

∂rt,k
,

therefore the price change is given as

dPm
t =

k∑
t=1

∂Pm
t

∂rt,k
drt,k =

k∑
t=1

δm,k
t drt,k. (4.2)

Now we will rewrite the price change in terms relevant to the PC algorithm:

dPm
t =

p∑
t=1

∂Pm
t

∂Zt,j
dZt,j (4.3)

where
∂Pm

t
∂Zt,j

is jth PC risk exposure showing the sensitivity of the price of bond m to the

jth PC. From Equation (4.1), we get

∂Pm
t

∂Zt,j
=

m∑
k=1

∂Pm
t

∂rt,k

∂rt,k
∂Zt,j

=
m∑
k=1

δm,k
t vk,j . (4.4)

Thus, if we assume that the price change can be largely explained by the first three PCs,
then from equations (4.2) and (4.3) we have

dPm
t =

p∑
j=1

(
m∑
k=1

δm,k
t vm,j

)
dZt,j . (4.5)

Equations (4.2) and (4.5) give two different representations of risk.

4.3 Hedge level and slope with PCA

Let us select a bond Tk to hedge the exposure of the first PC (level) and solve the hedge
quantity wk

t,1 using the following equation:

p∑
m=1

∂Pm
t

∂Zt,1
= wk

t,1

∂Pm
t

∂Zt,1
. (4.6)

This equation can be easily generalized to hedge two PCs (level and slope):
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4 PCA for hedging

p∑
m=1

∂Pm
t

∂Zt,1
= wk1

t,2

∂P k1
t

∂Zt,1
+ wk2

t,2

∂P k2
t

∂Zt,1
, (4.7)

p∑
m=1

∂Pm
t

∂Zt,2
= wk1

t,2

∂P k1
t

∂Zt,2
+ wk2

t,2

∂P k2
t

∂Zt,2
. (4.8)

A similar technique can be used to hedge higher-order PCs.
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5 Conclusion

In this paper, we examined the PCA method itself, the mathematical principles underlying
it, and after applied it to a practical example: an analysis of U.S. Treasures with different
maturities and over different time horizons.
PCA is a mathematical method for dimensionality reduction, which converts correlated

input data into an uncorrelated output data set whose variance is maximized; as a result,
the loss of information is reduced [14]. The idea behind PCA in the context of the term
structure is that most of the yield curve movements can be expressed as a set of two or
three independent driving factors, the principal components. More precisely, the PCs are
constructed to explain the largest fraction of the total variance of the data set without any
overlap. One can understand them as axes that form a new coordinate system (see Figure
2.1). The first PC contains the maximum amount of the variance and, in our application,
has a meaning of the yield curve level; it explains most of the movements of the term
structure, up to 90%. The second and the third components typically only add another 5 -
10% to the explanatory power of the method; they represent the slope and the curvature,
respectively.
Another powerful application of PCA is presented in the last chapter, where we introduce

the hedging mechanism. We show the representation of the risk in terms of PCs and
calculate the hedge level for our components. Thus the method is beneficial for searching
and correcting investors’ trading strategies.
Nowadays, in an era of big data, PCA is a powerful tool for removing surplus information

from a large data set, resulting in further simplified analysis, interpretation and visualiza-
tion. Moreover, it can be used as a pure analytical instrument, as illustrated in the last
section.
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6 Appendix: Python code

6.1 Jupyter Notebook Code

1 import matplotlib

2 matplotlib.use('TkAgg')

3 import seaborn as sns

4 sns.set(style="ticks", color_codes=True)

5 import matplotlib.cm as cm

6 import matplotlib.pyplot as plt

7 import matplotlib as mpl

8 %matplotlib inline

9

10 import pandas as pd

11 import numpy as np

12 from datetime import datetime

13 from sklearn.preprocessing import scale

14 from sklearn.decomposition import PCA

15 #mpl.rcParams['figure.dpi'] = 200

16

17 from IPython.core.display import HTML

18 HTML("<style>.container {width:98% !important; }</style>")

19 plt.rcParams['axes.facecolor'] = 'white'

20 import seaborn as sns

21 plt.rcParams['axes.facecolor'] = 'white'

22 sns.set_palette("Set2")

23

24 pip install fredapi

25

26 from fredapi import Fred

27 fred = Fred(api_key='cd9a27c9afcd4ee82ec0be135fb8b223')

28

29 # get data

30 startDate = '2019-09-01'

31 endDate = '2020-09-01'

32 df = []

33 ids = ['DGS{}'.format(i) for i in [1,2,5,7,10,20,30]]

34 for s in ids:

35 df.append(fred.get_series(s,

observation_start=startDate,observation_end=endDate)/100)↪→

36

37 df = pd.concat(df,axis=1)

38 df.columns = ids
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39 df = df.dropna()

40

41 # curve dynamic

42 fig,(ax,ax2)=plt.subplots(nrows=2,ncols=1,figsize=(10,5*2))

43 df.plot(grid=True, title='US Treasury Constant Maturity Rate', ax=ax)

44 x =

df.loc[df.index.intersection([datetime(2019,9,1),datetime(2019,12,15),datetime(2020,3,30),datetime(2020,6,1),datetime(2020,9,1)])]↪→

45 x.index = [t.date() for t in x.index]

46 ax2.plot(x.T.index,x.T,marker='*')

47 ax2.legend(x.index)

48 ax2.grid(True)

49 ax2.set_title('Term structure on different dates')

50 fig.tight_layout()

51

52 # contruct pca object

53 from pca import PCABase

54 pcab = PCABase(df)

55

56 # loading matrix (direction may change but doesn't matter)

57 V =

pd.DataFrame(pcab.pca().components_,index=pcab.pc_names(pcab.n_features),columns=pcab.X.columns)↪→

58 V.T.iloc[:,0:3].plot(figsize=(10,5),kind='bar')

59 pcab.cps()

60

61 # resconstruction and residuals

62 r = 'DGS10'

63 fig,(ax,ax2)=plt.subplots(figsize=(8,4*2),ncols=1,nrows=2)

64 ax.plot(pcab.x_projected(1)[r])

65 ax.plot(pcab.x_projected(2)[r])

66 ax.plot(pcab.x_projected(3)[r])

67 ax.legend(['Reconstructed (PC1)','Reconstructed (PC1,PC2)','Reconstructed

(PC1,PC2,PC3)'])↪→

68 ax.set_title('{} reconstructed by PCs'.format(r))

69

70 ax2.plot(pcab.residuals(1)[r])

71 ax2.plot(pcab.residuals(2)[r])

72 ax2.plot(pcab.residuals(3)[r])

73 ax2.legend(['Residual (PC1)','Residual (PC1,PC2)','Residual

(PC1,PC2,PC3)'])↪→

74 ax2.set_title('{} residuals from reconstructed by PCs'.format(r))

75 fig.tight_layout()

76

77 # resconstruction and residuals

78 r = 'DGS30'

79 fig,(ax,ax2)=plt.subplots(figsize=(8,4*2),ncols=1,nrows=2)
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80 ax.plot(pcab.x_projected(1)[r])

81 ax.plot(pcab.x_projected(2)[r])

82 ax.plot(pcab.x_projected(3)[r])

83 ax.legend(['Reconstructed (PC1)','Reconstructed (PC1,PC2)','Reconstructed

(PC1,PC2,PC3)'])↪→

84 ax.set_title('{} reconstructed by PCs'.format(r))

85

86 ax2.plot(pcab.residuals(1)[r])

87 ax2.plot(pcab.residuals(2)[r])

88 ax2.plot(pcab.residuals(3)[r])

89 ax2.legend(['Residual (PC1)','Residual (PC1,PC2)','Residual

(PC1,PC2,PC3)'])↪→

90 ax2.set_title('{} residuals from reconstructed by PCs'.format(r))

91 fig.tight_layout()

92

93 # PC Scores

94 fig,(ax1,ax2,ax3)=plt.subplots(nrows=3,ncols=1,figsize=(8,3*3))

95 l1=ax1.plot(pcab.scores()['PC1'])

96 ax12 = ax1.twinx()

97 l2=ax12.plot(pcab.X['DGS10'],color='orange')

98 ax1.tick_params('x',rotation=30)

99 ax1.legend(l1+l2,['PC1 score','DGS10'])

100 ax1.set_ylabel('score')

101 ax12.set_ylabel('DGS10')

102

103 l1=ax2.plot(pcab.scores()['PC2'])

104 ax22 = ax2.twinx()

105 l2=ax22.plot(pcab.X['DGS10']-pcab.X['DGS2'],color='orange')

106 ax2.tick_params('x',rotation=30)

107 ax2.legend(l1+l2,['PC2 score','DGS10-DGS2'],loc='best')

108 ax2.set_ylabel('score')

109 ax22.set_ylabel('DGS10-DGS2')

110

111 l1=ax3.plot(pcab.scores()['PC3'])

112 ax32 = ax3.twinx()

113 l2=ax32.plot(pcab.X['DGS30']-2*pcab.X['DGS10']+pcab.X['DGS5'],color='orange')

114 ax3.tick_params('x',rotation=30)

115 ax3.legend(l1+l2,['PC3 score','DGS30-2DGS10+DGS5'],loc='best')

116 ax3.set_ylabel('score')

117 ax32.set_ylabel('DGS30-2DGS10+DGS5')

118 fig.tight_layout()

119

120 # PC

121 fig,ax=plt.subplots(figsize=(10,5))

122 l1=pcab.scores().iloc[:,0:3].plot(ax=ax)
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123 ax.grid(True)

124 ax.set_title('Evolution of PCA Factors 1,2,3')

125

126 # PCA-explained variance ratio

127

128 fig,(ax,ax2) = plt.subplots(figsize=(6*2, 4),ncols=2,nrows=1)

129 ax.bar(range(pcab.n_features), pcab.cumsum_expvar_ratio()[0], alpha=0.5,

align='center')↪→

130 ax.set_ylabel('Explained variance percentage')

131 ax.set_xlabel('Principal components')

132 ax.set_title('Individual PC explained variance percentage')

133

134 ax2.bar(range(pcab.n_features), pcab.cumsum_expvar_ratio()[1], alpha=0.5,

align='center')↪→

135 ax2.set_ylabel('Explained variance percentage')

136 ax2.set_xlabel('Principal components')

137 ax2.set_title('Cumulative PC explained variance percentage')

138

139 fig.tight_layout()

6.2 PCA Class Code

1 import pandas as pd

2 import numpy as np

3 from datetime import datetime

4 from sklearn.preprocessing import scale

5 from sklearn.decomposition import PCA

6

7 class PCABase(object):

8 def __init__(self, X, adjust_sign=True):

9 self.X = X

10 self.n_features = X.shape[1]

11 self.dates = X.index

12 self.Xc = self.X - self.X.mean() # centered

13 self.pc_names = lambda n: ['PC' + str(i) for i in np.arange(1, n +

1)]↪→

14 self.adjust_sign = adjust_sign

15

16

17 def pca(self, n_pc=None):

18 '''

19 fit pca model

20 n_pc: number of pcs to fit, take total feature numbers if not

specified↪→

30



6 Appendix: Python code

21 '''

22 if n_pc:

23 model = PCA(n_components=n_pc).fit(self.Xc)

24 else:

25 model = PCA().fit(self.Xc)

26 return model

27

28 def cps(self):

29 '''

30 loading matrix => principal axes in feature space

31 '''

32 cps = self.pca().components_.T

33 cps = self.to_df_pc(cps, is_loading=True)

34 if self.adjust_sign:

35 cps.loc[:, 'PC1'] = np.sign(cps.loc[:, 'PC1'].values[0]) *

cps.loc[:, 'PC1']↪→

36 cps.loc[:, 'PC2'] = -np.sign(cps.loc[:, 'PC2'].values[0]) *

cps.loc[:, 'PC2']↪→

37 return cps

38

39 def cumsum_expvar_ratio(self):

40 var_exp = self.pca().explained_variance_ratio_

41 var_exp_cumsum = np.cumsum(var_exp)

42 return var_exp, var_exp_cumsum

43

44 def scores(self):

45 '''

46 PC scores:

47 '''

48 scores = self.pca().transform(self.Xc)

49 scores = self.to_df_pc(scores)

50 if self.adjust_sign:

51 cps = self.cps()

52 scores.loc[:, 'PC1'] = np.sign(cps.loc[:, 'PC1'].values[0]) *

scores.loc[:, 'PC1']↪→

53 scores.loc[:, 'PC2'] = -np.sign(cps.loc[:, 'PC2'].values[0]) *

scores.loc[:, 'PC2']↪→

54 return scores

55

56 def scores2(self):

57 '''

58 equivalent to the sklearn transform function

59 '''

60 scores = self.Xc.dot(self.cps())

61 scores = self.to_df_pc(scores)
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62 if self.adjust_sign:

63 cps = self.cps()

64 scores.loc[:, 'PC1'] = np.sign(cps.loc[:, 'PC1'].values[0]) *

scores.loc[:, 'PC1']↪→

65 scores.loc[:, 'PC2'] = -np.sign(cps.loc[:, 'PC2'].values[0]) *

scores.loc[:, 'PC2']↪→

66 return scores

67

68 def x_projected(self, p, centered=False):

69 xp = self.scores().iloc[:, 0:p].dot(self.cps().T.iloc[0:p, :])

70 if not centered:

71 xp = xp + self.X.mean()

72 return xp

73

74 def residuals(self, p):

75 residuals = self.X - self.x_projected(p, centered=False)

76 return residuals

77

78 def covX(self):

79 return self.X.cov()

80

81 def eigenv(self):

82 eig_vals, eig_vecs = np.linalg.eig(self.covX())

83 return eig_vals, eig_vecs

84

85 def to_df_pc(self, data, is_loading=False):

86 cols = self.pc_names(self.n_features)

87 idx = self.X.columns if is_loading else self.dates

88 return pd.DataFrame(data, columns=cols, index=idx)
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