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   Abstract    

 

The following seminar paper is based on “Lecture Notes on Randomized Linear Algebra” which 

is written by Michael W. Mahoney. The main focus is on randomized matrix multiplication, least 

square approximation as well as low-rank matrix approximation. Randomized sampling 

techniques have recently proved capable of efficiently solving many standard problems in linear 

algebra and enabling computations at scales far larger than what was previously possible. 
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1  Introduction 
 

This seminar paper will cover recent developments in randomized matrix algorithms of interest 

in large-scale machine learning and statistical data analysis applications. We will focus on basic 

algorithms for fundamental matrix problems such as matrix multiplication, least-squares 

regression, low-rank matrix approximation, which use randomization in some nontrivial way. 

The area, which we will cover, goes by the name Randomized Numerical Linear Algebra 

(RandNLA) or Randomized Linear Algebra (RLA). Randomized matrix algorithms typically use 

randomness to perform random sampling to highlight structural properties of interest, a small 

number of rows, columns or elements from the matrix, or a random projection, projecting the 

original data to a much lower dimension. Much of the interest of this randomized matrix 

algorithms arises since many data analysis methods call these algorithms either as black boxes 

or use similar ideas with their analysis.  

 

1.1 Models of data  
 

When processing large-scale data (in particular streaming data), we desire some methods that 

can be performed with: a few (one or two) passes of data, limited memory (so impossible to 

store all data) or with low computational complexity.  

 

 

 

Matrices are the most useful way to model the data, but they are not the only way to model 

data. Here are some other ways data can be modeled: 

• Turing machine                                                                     • Database table 

• Strings                                                                                    • Graphs 



5 
 

Those models are not inconsistent and it is often helpful to model the data in different ways, 

depending on what one is interested in doing. When we want to model the data, we need to 

know their categorization. There are: 

• Small: A data set is small if you can look at the data and easily find solutions to problem of 

interest. 

• Medium: A data set is medium-sized if it fits into RAM and one can easily run computations of 

interest in a reasonable length of time and get answers to questions of interest.  

• Large: A data set is large if it doesn’t fit into RAM and/or one can’t relatively-easily run 

computations of interest. 

 

1.2  Differences in perspective 
 

Our first Theme is approximating matrix multiplication but, before we proceed, I wanted to 

present what are the differences between traditional perspective and RandNLA perspective on 

matrix multiplication. Say that we have an  𝑚 × 𝑛 matrix 𝐴 and an  𝑛 × 𝑝 matrix  𝐵, and assume 

that we are interested in computing their product 𝐴𝐵. 

• Traditional perspective on matrix multiplication: This is the well-known way to compute the 

product 𝐴𝐵, and it is done with the usual three-loop algorithm. In this case, one views an 

element of 𝐴𝐵 as an inner product between a row of 𝐴 and a column of 𝐵. 

• RandNLA perspective on matrix multiplication: A less obvious and not so “popular” way is to 

view the product 𝐴𝐵 as a sum of 𝑛 terms, each of which is an outer product between a column 

of 𝐴 and a row of 𝐵. Since this perspective would be our focus, here is what we can do: we can 

try to construct some sort of “sketch” of the columns of 𝐴 and the rows of 𝐵 and represent 

those sketches as matrices 𝐶 and 𝑅, than approximate the product 𝐴𝐵 by the product 𝐶𝑅. 

The key idea is to reduce the dimension via random sketching. We can do that in one of two 

complementary ways  and those are: 

• Randomly sample: It identifies some sort of uniformity structure and use that to construct a 

sampling distribution with which to construct a random sample. Often relies on information of 

data. 

• Random projection: It performs a random projection which rotates/projects data onto lower 

dimensions. Often data-agnostic. 
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2 Approximating matrix multiplication 
 

The idea is to start by considering a very simple randomized algorithm to approximate the 

product of two matrices. As I already mentioned, our problem is the following: given an 

arbitrary 𝑚 × 𝑛  matrix 𝐴 and an arbitrary 𝑛 × 𝑝  matrix 𝐵 , and to compute, exactly or 

approximately, the product 𝐴𝐵. At first, we will use some basic well-known three-loop 

algorithm. The running time of this algorithm is 𝑂(𝑚𝑛𝑝) time, which is 𝑂(𝑛3) time if 

𝑚 = 𝑛 = 𝑝.  

 

Algorithm 1 Vanilla three-loop matrix multiplication algorithm 

Input: An 𝑚 × 𝑛 matrix 𝐴 and an 𝑛 × 𝑝 matrix 𝐵  
Output: The product 𝐴𝐵  
  1:  for 𝑖 = 1 to 𝑚 do 
  2:     for 𝑗 = 1 to 𝑝 do 
  3:        (𝐴𝐵)𝑖𝑗 = 0 

  4:         for 𝑘 = 1 to 𝑛 do 
  5:             (𝐴𝐵)𝑖𝑘 += 𝐴𝑖𝑗𝐵𝑗𝑘 

  6:         end for 
  7:     end for  

  8:  end for 

  9:  return 𝐴𝐵 

 

The main question here is: can we solve this problem more faster? We can consider a 

different approach: a randomized algorithm that randomly samples columns and rows of 

the matrices 𝐴 and 𝐵. We can think about matrix multiplication as returning a matrix that 

equals the sum of outer products of columns of 𝐴 and the corresponding rows of 𝐵 , as the 

sum of rank-one matrices: 

𝐴𝐵 =  ∑ 𝐴(𝑖)𝐵(𝑖)

𝑛

𝑖=1

 

Where each 𝐴(𝑖)𝐵(𝑖)  ∈  ℝ𝑚×𝑛 is an 𝑚 × 𝑝 rank-one matrix, computed as the outer product 

of two vectors in ℝ𝑛. 
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With this background, here follows our Basic Matrix Multiplication algorithm. 

  

Algorithm 2  The Basic Matrix Multiplication algorithm 

Input: An 𝑚 × 𝑛 matrix 𝐴, an 𝑛 × 𝑝 matrix 𝐵, a positive integer 𝑐, and probabilities {𝑝𝑖}𝑖=1
𝑛  

Output: Matrices 𝐶 and 𝑅 such that 𝐶𝑅 ≈ 𝐴𝐵 
  1:  for 𝑡 = 1 to 𝑐 do 
  2:     Pick 𝑖𝑡  ∈ {1, … , 𝑛} with probability Pr[𝑖𝑡 = 𝑘] = 𝑝𝑘, in i.i.d. trials, with replacement 

  3:     Set 𝐶(𝑡) = 𝐴(𝑖𝑡) ∕ √𝑐𝑝𝑖𝑡
 and 𝑅(𝑡) = 𝐵(𝑖𝑡) ∕ √𝑐𝑝𝑖𝑡

 

  4:  end for  
  5:  return 𝐶 and 𝑅 

 

Basically, what we want to show here is that: 

 

𝐴𝐵 =  ∑ 𝐴(𝑖)𝐵(𝑖) 

𝑛

𝑖=1

  

                        ≈  
1

𝑐
∑

1

𝑝𝑖𝑡

𝑐

𝑡=1

𝐴(𝑖𝑡)𝐵(𝑖𝑡) 

                                                                                = 𝐶𝑅. 

 

With respect to a few implementation issues, here are some things to note, when probabilities 

of different forms are used in the Basic Matrix Multiplication algorithm: 

• Uniform sampling: one can choose which elements to keep before looking at the data, and so 

one can implement this algorithm in one-pass over the data. 

• Nonuniform sampling:     𝑝𝑖 =
‖𝐴(𝑖)‖ ‖𝐵(𝑖)‖

∑ ‖𝐴(𝑖′)‖ ‖𝐵(𝑖′)‖𝑛
𝑖′=1

                                                                                

 

°  𝑝𝑖’s are called – optimal sampling probabilities. 
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2.1 Initial results for approximating the product of two matrices 
 

Here is the initial result for the quality of approximation of the Basic Matrix Multiplication 

algorithm. We can provide the following statement of the manner in which the sampling 

probabilities of the form Eqn. (1) are optimal. 

Also, we can note how 𝔼[‖𝐴𝐵 − 𝐶𝑅‖𝐹
2] measures the error depends on the 𝑝𝑖’s. Basically, they 

minimize the expectation of the Frobenius norm of the error, and this is equal to the sum of the 

variance of all of the elements of the product matrix. 

 

Lemma 1   Given matrices 𝐴  and 𝐵  construct matrices 𝐶 and 𝑅  with the Basic Matrix 

Multiplication algorithm. Then: 

𝔼[(𝐶𝑅)𝑖𝑗] = (𝐴𝐵)𝑖𝑗 

and  

Var [(𝐶𝑅)𝑖𝑗] =
1

𝑐
∑

𝐴𝑖𝑘
2 𝐵𝑘𝑗

2

𝑝𝑘

𝑛

𝑘=1

−
1

𝑐
(𝐴𝐵)𝑖𝑗

2  

 

Proof:   Fix 𝑖, 𝑗. For 𝑡 = 1, … , 𝑐, define 𝑋𝑡 = (
𝐴(𝑖𝑡)𝐵(𝑖𝑡)

𝑐𝑝𝑖𝑡

)
𝑖𝑗

=
𝐴𝑖𝑖𝑡

𝐵𝑖𝑡𝑗

𝑐𝑝𝑖𝑡

. 

                 𝔼[𝑋𝑡] = ∑ 𝑝𝑘
𝑛
𝑘=1

𝐴𝑖𝑘𝐵𝑘𝑗

𝑐𝑝𝑘
=

1

𝑐
(𝐴𝐵)𝑖𝑗                and                 𝔼[𝑋𝑡

2] = ∑
𝐴𝑖𝑘

2 𝐵𝑘𝑗
2

𝑐2𝑝𝑘

𝑛
𝑘=1 . 

By construction (𝐶𝑅)𝑖𝑗 = ∑ 𝑋𝑡
𝑐
𝑡=1 , we have 𝔼[(𝐶𝑅)𝑖𝑗] = ∑ 𝔼[𝑋𝑡] = (𝐴𝐵)𝑖𝑗

𝑐
𝑡=1 .  While (𝐶𝑅)𝑖𝑗 is 

the sum of 𝑐 independent random variables, follows that Var[(𝐶𝑅)𝑖𝑗] = ∑ Var[𝑋𝑡].𝑐
𝑡=1   Since 

we know that Var[𝑋𝑡] = 𝔼[𝑋𝑡
2] − 𝔼[𝑋𝑡]2 wa can see that  

Var[𝑋𝑡] = ∑
𝐴𝑖𝑘

2 𝐵𝑘𝑗
2

𝑐2𝑝𝑘
−  

1

𝑐2
(𝐴𝐵)𝑖𝑗

2

𝑛

𝑘=1

 

And the lemma follows.                                                                                                                      □ 
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Lemma 2    Given matrices 𝐴  and 𝐵  construct matrices 𝐶  and 𝑅  with the Basic Matrix 

Multiplication algorithm. Then, 

𝔼[‖𝐴𝐵 − 𝐶𝑅‖𝐹
2] = ∑

‖𝐴(𝑘)‖
2

2
‖𝐵(𝑘)‖

2

2

𝑐𝑝𝑘

𝑛

𝑘=1

−
1

𝑐
‖𝐴𝐵‖𝐹

2  

and furthermore if  

                                                    𝑝𝑘 =
‖𝐴(𝑘)‖

2
‖𝐵(𝑘)‖

2

∑ ‖𝐴(𝑘′)‖
2

‖𝐵(𝑘′)‖
2

𝑛
𝑘′=1

                                                                      (1) 

then 

𝔼[‖𝐴𝐵 − 𝐶𝑅‖𝐹
2] =

1

𝑐
 (∑‖𝐴(𝑘)‖

2
‖𝐵(𝑘)‖

2

𝑛

𝑘=1

)

2

−
1

𝑐
‖𝐴𝐵‖𝐹

2  

 

Proof:   At first, note that  

𝔼[‖𝐴𝐵 − 𝐶𝑅‖𝐹
2 ] = ∑ ∑ 𝔼[(𝐴𝐵 − 𝐶𝑅)𝑖𝑗 

2 ]

𝑝

𝑗=1

= ∑ ∑ Var[(𝐶𝑅)𝑖𝑗]

𝑝

𝑗=1

𝑚

𝑖=1

𝑚

𝑖=1

 

and from Lemma 1 follows that  

𝔼[‖𝐴𝐵 − 𝐶𝑅‖𝐹
2] =

1

𝑐
 ∑

1

𝑝𝑘
 (∑ 𝐴𝑖𝑘

2

𝑖

) (∑ 𝐵𝑘𝑗
2

𝑗

) −
1

𝑐
‖𝐴𝐵‖𝐹

2

𝑛

𝑘=1

 

=
1

𝑐
 ∑

1

𝑝𝑘
‖𝐴(𝑘)‖

2

2
‖𝐵(𝑘)‖

2

2
 −

1

𝑐
‖𝐴𝐵‖𝐹

2

𝑛

𝑘=1

 

 

When we use the values     𝑝𝑘 =
‖𝐴(𝑘)‖

2
‖𝐵(𝑘)‖

2

∑ ‖𝐴(𝑘′)‖
2

‖𝐵(𝑘′)‖
2

𝑛
𝑘′=1

          , then 

𝔼[‖𝐴𝐵 − 𝐶𝑅‖𝐹
2] =

1

𝑐
 (∑‖𝐴(𝑘)‖

2
‖𝐵(𝑘)‖

2

𝑛

𝑘=1

)

2

−
1

𝑐
‖𝐴𝐵‖𝐹

2  

              □ 
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At the end, we can provide the following statement where the sampling probabilities of the 

Eqn. (1) are optimal. They minimize the expectation of the Frobenius norm of the error and this 

is equal to the sum of the variances of all elements of the product matrix. 

 

Lemma 3   Sampling probabilities {𝑝𝑖}𝑖=1
𝑛  of the form Eqn. (1) minimizes 𝔼[∥ 𝐴𝐵 − 𝐶𝑅 ∥𝐹

2 ].  

 

Proof: To prove that this choice for the 𝑝𝑘’s minimizes 𝔼[∥ 𝐴𝐵 − 𝐶𝑅 ∥𝐹
2 ] define the function 

𝑓(𝑝1, … , 𝑝𝑛) =  ∑
1

𝑝𝑘
‖𝐴(𝑘)‖

2

2
 ‖𝐵(𝑘)‖

2

2
𝑛

𝑘=1

 

Which characterizes the dependence of 𝔼[∥ 𝐴𝐵 − 𝐶𝑅 ∥𝐹
2 ] on the 𝑝𝑘’s. To minimize 𝑓 subject to 

∑ 𝑝𝑘 = 1𝑛
𝑘=1 , introduce the Lagrange multiplier 𝜆 and define the function 

𝑔(𝑝1, … 𝑝𝑛) =  𝑓(𝑝1, … 𝑝𝑛) +  𝜆 (∑ 𝑝𝑘 − 1

𝑛

𝑘=1

) 

We have at the minimum that  

0 =
𝜕𝑔

𝜕𝑝𝑖
=

−1

𝑝𝑖
2 ‖𝐴(𝑖)‖

2

2
‖𝐵(𝑖)‖

2

2
+ 𝜆 

Thus, 

𝑝𝑖 =  
‖𝐴(𝑖)‖

2
‖𝐵(𝑖)‖

2

√𝜆
=  

‖𝐴(𝑖)‖
2

‖𝐵(𝑖)‖
2

∑ ‖𝐴(𝑖′)‖
2

‖𝐵(𝑖′)‖
2

𝑛
𝑖′=1

 

 

 

Where the second equality comes from solving for √𝜆  in  ∑ 𝑝𝑘 = 1𝑛−1
𝑘=1 . That these probabilities 

are a minimum follows since 
𝜕2𝑔

𝜕𝑝𝑖
2 > 0  ∀𝑖 s.t. ‖𝐴(𝑖)‖

2

2
‖𝐵(𝑖)‖

2

2
> 0.                                       

                                                                                                                                                           □ 
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3 Least-squares Approximation 
 

 

In this chapter, we will discuss about RandNLA algorithms for the least-squares regression. 

Least-squares approximation is a technique to find an approximate solution to a system of 

linear equations that has no exact solution. This is a fundamental problem of interest in linear 

algebra, and many of this methods in RandNLA are mostly easily introduced and understood in 

this relatively-simple setting. With recent data explosion, traditional approach is no longer 

suitable while working with large datasets, instead, randomized algorithms become popular in 

addressing this issue. In so many applications, we want to find an approximate solution to a 

problem or set of equations that, for a bunch of reasons, does not have a solution, or does not 

have a unique solution. 

We are beginning with:  

Let 𝐴 ∈  ℝ𝑛×𝑑 and 𝑏 ∈ ℝ𝑛 be given. If 𝑛 ≫ 𝑑, in which case there are many more rows than 

columns, than in general there does not exist a vector 𝑥 such that 𝐴𝑥 = 𝑏. This is because 𝑏 

may have some part that sits outside the column space of 𝐴. When we have this case, the most 

popular way to find “best” vector 𝑥 such that 𝐴𝑥 ≈ 𝑏 is to minimize the norm of the residuals, 

to solve min𝑥∈ℝ𝑑‖𝐴𝑥 − 𝑏‖, where ‖ ∙ ‖ is some norm.  

 

Before we proceed, we need to mention two basic questions that people are interested in 

when considering LS problems: 

• Algorithmic question: How long does it take to solve the LS problem “exactly”? The answer is 

𝑂(𝑛𝑑2) time - the running time in the RAM model to solve the LS problem, and this can be 

accomplished with one of a variety of direct or indirect methods. 

 

• Statistical question: When is solving the LS problem the “right” thing to do? The answer here 

is - that it is when the data are “nice” in the way that means that large-sample theory can be 

applied, that there are a large number of components that are particularly important or 

influential. That can be checked with empirical statistics such as the leverage scores and with 

other regression diagnostics. 
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3.1 Methods for solving LS problems 
 

With respect to the question of how long does it takes to solve LS problems, there are some 

methods that we can use. Those methods are called direct methods or iterative methods.  

 

By direct methods for solving LS problems, we have: 

• Cholesky decomposition: If 𝐴 is a full rank and well-conditioned, then one can use the 

Cholesky decomposition to compute an upper triangular matrix  𝑇 such that 𝐴𝑇𝐴 = 𝑇𝑇𝑇, and 

then one can solve the normal equations 𝑇𝑇𝑇𝑥 = 𝐴𝑇𝑏. 

•QR decomposition: A little bit slower method, but numerically more stable, especially if 𝐴 is 

rank-deficient or ill-conditioned, involves computing a QR decomposition 𝐴 = 𝑄𝑅 and than 

solving 𝑅𝑥 = 𝑄𝑇𝑏. 

•SVD: More expensive but better still if 𝐴 is very ill-conditioned, involves computing the SVD, 

𝐴 = 𝑈Σ𝑉𝑇, where this is the economical SVD (things that are zeroed-out by singular values are 

not included).  

The complexity of all these methods is  𝑂(𝑛𝑑2). 

Next to direct and iterative methods there are also well-known Strassen-like methods for matrix 

multiplication. Those algorithms can also be applied to rectangular LS problems, with similar 

improvements in worst-case running time. Since they are never used in practice, we won’t 

focus on them, but because they are of theoretical interest, it was worth mentioning them. 

 

3.2 Randomized sketches for LS problems 
 

To see how to solve the LS problem, we can define a function  

𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖2
2 = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏). 

To find the minimizer of this function, we can set the derivate equals to zero, s.t.  
𝜕𝑓

𝜕𝑥
= 0, noting 

that the second derivate is positive. Then we get 𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑏 = 0, which is the normal 

equation, 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. If 𝐴 has full column rank, than 𝐴𝑇𝐴 is square and has full rank, and this 

is a 𝑑 × 𝑑 system of linear equations with solution: 
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𝑥𝑚 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏. 

 

Here, we will deal with so-called linear sketches. This means that we can write the operation of 

the sketch as a linear function. Note, that random projection matrices and random sampling 

matrices satisfy this. The advantages of working with linear sketches include that we can take 

advantage of linear theory stuff and it is easy to update sketches. 

 

Now, let 𝑀 be an arbitrary sketching matrix and we are going to apply to 𝐴 and 𝑏 to construct a 

sketch. When forming a sketch, the original LS problem  

𝒵 = min𝑥∈ℝ𝑑‖𝐴𝑥 − 𝑏‖2, 

would be replaced with a sketched LS problem 

𝒵 = min𝑥∈ℝ𝑑‖𝑀(𝐴𝑥 − 𝑏)‖2. 

 

We want to ask what are the properties that 𝑀 needs to satisfy s.t.: 

𝑥̃𝑚  ≈ 𝑥𝑚 

‖𝐴𝑥̃𝑚‖2  ≈  ‖𝐴𝑥𝑚 − 𝑏‖2. 

The second requirement is a statement where one might not even be able to obtain 

“certificate” for the solution. The bound on the vector achieving the optimal solution is typically 

of greater interest in NLA, where the vector is used form something downstream such as 

classification. For matrix extensions of these ideas, we usually want results for the objective, 

since we will measure quality by norm reconstruction. Here are two very important structural 

conditions.  

Let 𝐴 = 𝑈Σ𝑉𝑇 = 𝑈𝐴Σ𝐴𝑉𝐴
𝑇  be the SVD of 𝐴 , and let 𝑏⊥ = 𝑈𝐴𝑈𝐴

𝑇𝐴  and note that 𝒵 =

‖𝐴𝑥𝑚 − 𝑏‖2 = ‖𝑏⊥‖2. Then follow two conditions: 

 

• Condition 1:                                             

𝜎𝑚𝑖𝑛(𝑀𝑈𝐴) ≥  1 √2⁄                                                                                                                                    
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• Condition 2:  

 ‖𝑈𝐴𝑀𝑇𝑀𝑏⊥‖2
2  ≤  

𝜀

2
𝒵2. 

The main lemmas for those structural conditions would be our next thing to do. They say that if 

we have a sketched matrix 𝑀 that satisfies those two conditions, then we have a relative-error 

approximation to the solution of the LS problem. We are now interested in quality-of-

approximation.  

 

Lemma 4   Consider the overconstrained least squares approximation problem and let the 

matrix 𝑈𝐴 ∈ ℝ𝑛×𝑑contain the top d left singular vectors of A. Assume that the matrix 𝑀 satisfies 

Conditions 1 and 2 form above, for some 𝜀 ∈ (0,1). Then, the solution vector 𝑥̃𝑚 to the least 

squares approximation problem satisfies: 

 

‖𝐴𝑥̃𝑚 − 𝑏‖2 ≤ (1 + 𝜀)𝒵. 

 

Proof:  Let us first rewrite the down-scaled regression problem induced by 𝑀 as  

                  min𝑥∈ℝ𝑑‖𝑀𝑏 − 𝑀𝐴𝑥‖2
2  = min𝑦∈ℝ𝑑‖𝑀(𝐴𝑥𝑚 + 𝑏⊥) − 𝑀𝐴(𝑥𝑚 + 𝑦)‖2

2                                      

                                                               = min𝑦∈ℝ𝑑‖𝑀𝑏⊥ − 𝑀𝐴𝑦‖2
2                                                                                                                       

                                                               = min𝑧∈ℝ𝑑‖𝑀𝑏⊥ − 𝑀𝑈𝐴𝑧‖2
2.                                                    (2)                                                                                                                                                                                                 

Now, let 𝑥̃𝑚 ∈ ℝ𝑑 be such that 𝑈𝐴𝑧𝑚 = 𝐴(𝑥̃𝑚 − 𝑥𝑚) and note that 𝑧𝑚 minimizes the Eqn. (2). 

The latter fact follows since  

‖𝑀𝑏⊥ − 𝑀𝐴(𝑥̃𝑚 − 𝑥𝑚)‖2
2 = ‖𝑀𝑏⊥ + 𝑀(𝑏 − 𝑏⊥) − 𝑀𝐴𝑥̃𝑚‖2

2 = ‖𝑀𝑏 − 𝑀𝐴𝑥̃𝑚‖2
2 

We have that: 

(𝑀𝑈𝐴)𝑇𝑀𝑈𝐴𝑧𝑚 = (𝑀𝑈𝐴)𝑇𝑀𝑏⊥ 

Taking the norm of both sides and observing that under Condition 1 we have 

𝜎𝑖((𝑀𝑈𝐴)𝑇𝑀𝑈𝐴) = 𝜎𝑖
2(𝑀𝑈𝐴) ≥ 1 √2⁄ ,  and for all 𝑖 it follows that  

‖𝑧𝑚‖2
2 2⁄ ≤ ‖(𝑀𝑈𝐴)𝑇𝑀𝑈𝐴𝑧𝑚‖2

2 = ‖(𝑀𝑈𝐴)𝑇𝑀𝑏⊥‖2
2. 
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Using Condition 2 we observe that  

‖𝑧𝑚‖2
2 ≤ 𝜀𝒵2. 

We will rewrite the norm of the residual vector as  

‖𝑏 − 𝐴𝑥̃𝑚‖2
2 = ‖𝑏 − 𝐴𝑥𝑚 + 𝐴𝑥𝑚 − 𝐴𝑥̃𝑚‖2

2 

                                                                       = ‖𝑏 − 𝐴𝑥𝑚‖2
2 + ‖𝐴𝑥𝑚 − 𝐴𝑥̃𝑚‖2

2 

                                                                       = 𝒵2 + ‖𝑈𝐴𝑧𝑚‖2
2 

                                                                       ≤ 𝒵2 + 𝜀𝒵2.    

The first claim of the lemma follows because √1 + 𝜀 ≤ 1 + 𝜀.            

                                                                                                                                                                         □                                                                                            

 

Lemma 5  Same setup as the previous lemma. Then 

‖𝑥𝑚 − 𝑥̃𝑚‖2 ≤
1

𝜎min(𝐴)
√𝜀𝒵 

Proof:    Using the same notation as in the proof in previous lemma, follows that: 

 𝐴(𝑥𝑚 − 𝑥̃𝑚) = 𝑈𝐴𝑧𝑚. With taking the norm of both side of this expression, we are having that 

 

‖𝑥𝑚 − 𝑥̃𝑚‖2
2 ≤

‖𝑈𝐴𝑧𝑚‖2
2

𝜎min
2 (𝐴) 

 

                                                                           ≤
𝜀𝒵2

𝜎min
2 (𝐴)

 . 

Taking a square root, the second claim follows.                                                                                   

                                                                                                                                                                         □ 

 

By making further assumption on 𝑏, we can connect error bound with ‖𝑥𝑚‖2. 
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Lemma 6  Suppose that ‖𝑈𝐴𝑈𝐴
𝑇𝑏‖  ≥ 𝛾‖𝑏‖2, for some 0 < 𝛾 ≤ 1. Under Conditions 1 and 2, 

solution  𝑥̃𝑚 to subsample LS problem obeys 

‖𝑥𝑚 − 𝑥̃𝑚‖2 ≤ √𝜀 𝜅(𝐴)√𝛾−2 − 1‖𝑥𝑚‖2. 

• ‖𝑈𝐴𝑈𝐴
𝑇𝑏‖  ≥ 𝛾‖𝑏‖2 ,  says a nontrivial fraction of energy of 𝑏 lies in range (𝐴). 

Proof:  

𝒵2 =  ‖𝑏‖2
2 − ‖𝑈𝐴𝑈𝐴

𝑇𝑏‖2
2 

                                                                      ≤ (𝛾−2 − 1)‖𝑈𝐴𝑈𝐴
𝑇𝑏‖2

2 

                          ≤ (𝛾−2 − 1) 𝜎max
2 (𝐴)‖𝑥𝑚‖2

2. 

 

This combined with Lemma 5 concludes proof.                                                                                 

                                                                                                                                                            □ 

  

 

4 Low-rank Matrix Approximation 
 

 

Low-rank approximation of linear operators is ubiquitous in applied mathematics, scientific 

computing, numerical analysis, and a number of other areas. Decomposition of a matrix into 

low-rank matrices is a powerful tool for scientific computing and data analysis. The purpose is 

to obtain a low-rank matrix by decomposition of the original matrix into a product of smaller 

and lower-rank matrices or just by randomly projecting the matrix down to a lower-dimensional 

space. Such decomposition requires less storage and computational burden. The focus is on 

randomized methods which try as much as possible to preserve the original matrix properties 

by applying the subspace sampling. In many applications, randomized algorithms in terms of 

accuracy, stability and speed are much better than the classical decomposition algorithms. We 

will propose a sparse orthogonal transformation matrix to reduce the dimension of the data. 

The results show that compared with the most accurate methods, the transformation speed is 

much faster and can save a lot of memory in the case we are dealing with the huge matrices. 
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4.1 Basic Low-rank Matrix Approximation 
 

 

The low-rank matrix approximation problem involves finding of a rank 𝑘 version of a 𝑚 × 𝑛 

matrix 𝐴, labeled as 𝐴𝑘, such that 𝐴𝑘 is as “close” as possible to the best SVD approximation 

version of 𝐴 at the same rank level. 

 

If we have matrix  𝐴 ∈ ℝ𝑚×𝑚, then 𝐿 = [𝑙1𝑙2 … 𝑙𝑚] ∈ ℝ𝑚×𝑚 are orthogonal, the (approximate) 

left singular vectors of 𝐴 where {𝑙𝑡}𝑡=1
𝑚 ∈ ℝ𝑚 and 𝑅 = [𝑟1𝑟2 … 𝑟𝑛] ∈ ℝ𝑛×𝑛 are orthogonal, the 

(approximate) right singular vectors of 𝐴 where {𝑟𝑡}𝑡=1
𝑛 ∈ ℝ𝑛. They are such that  

𝐿𝑇𝐴𝑅 = D = 𝐷𝑖𝑎𝑔(𝜎1, … , 𝜎𝜑), 

where D ∈ ℝ𝑚×𝑛 , 𝜑 = min{𝑚, 𝑛} and 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝜑  ≥ 0 are the singular values of 𝐴. 

Then we have that  

𝐴 = 𝐿𝐷𝑅𝑇. 

These three matrices: 𝐿, 𝐷, 𝑅 construct the Singular Value Decomposition (SVD) of matrix 𝐴. 

The SVD is very useful, because it can reveal us the important information about the structure 

of a matrix. We can define some 𝑟 with 𝜎1 ≥ 𝜎2 ≥ …  ≥ 𝜎𝑟 > 𝜎𝑟+1 =. . . = 𝜎𝜑 = 0, then is 

rank(𝐴) = 𝑟 and also range(𝐴) = span{𝑙1, … , 𝑙𝑟}. If we let 𝐿𝑟 ∈ ℝ𝑚×𝑟 to denote the matrix 

consisting of the first 𝑟 columns of 𝐿, equivalently if we let 𝑅𝑟 ∈ ℝ𝑟×𝑛 to denote the matrix 

consisting of the first 𝑟 columns of 𝑅, and 𝐷𝑟 ∈ ℝ𝑟×𝑟 denote the 𝑟 × 𝑟 submatrix of 𝐷, then: 

𝐴 = 𝐿𝑟𝐷𝑟𝑅𝑟
𝑇 = ∑ 𝜎𝑡𝑙𝑡𝑟𝑡𝑇

𝑟

𝑡=1

 

 

• 𝒌 ≤ 𝒓  we are defining: 

𝐴𝑘 = 𝐿𝑘𝐷𝑘𝑅𝑘
𝑇 = ∑ 𝜎𝑡𝑙𝑡𝑟𝑡𝑇

𝑘

𝑡=1
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where 𝐴𝑘 = 𝐿𝑘𝐿𝑘
𝑇  𝐴 = (∑ 𝑙𝑡𝑙𝑡𝑇𝑘

𝑡=1 ) 𝐴  and 𝐴𝑘 = 𝐴 𝑅𝑘𝑅𝑘
𝑇 = 𝐴 (∑ 𝑟𝑡𝑟𝑡𝑇𝑘

𝑡=1 )  s.t. 𝐴𝑘  is the 

projection of 𝐴 onto the space spanned by the top 𝑘 singular vectors of 𝐴. The distance 

between 𝐴 and any rank 𝑘 approximation to 𝐴 is minimized by 𝐴𝑘: 

 

min
𝐾∈ℝ𝑚×𝑛:rank(𝐾)≤𝑘

‖𝐴 − 𝐾‖2 = ‖𝐴 − 𝐴𝑘‖2 = 𝜎𝑘+1(𝐴) 

and 

min
𝐾∈ℝ𝑚×𝑛:rank(𝐾)≤𝑘

‖𝐴 − 𝐾‖𝐹
2 = ‖𝐴 − 𝐴𝑘‖𝐹

2 = ∑ 𝜎𝑡
2(𝐴)

𝑟

𝑡=𝑘+1

 

 

Matrices for which the numerical rank k is much smaller than either m or n abound in 

applications. Examples include:  

• Principal Component Analysis (PCA) is a basic tool in statistics and data mining. When 

projecting the data onto the orthogonal directions of maximal variance (principal components) 

we can visualize or explain the data in far fewer degrees of freedom than the ambient 

dimension. This amounts to computing a truncated Singular Value Decomposition. 

• PCA is popular in the analysis of population genetic variation. Though problems exist with it’s 

interpretation and more advanced nonlinear methods have been developed, PCA still remains 

an indispensable data analysis tool in the sciences.  

• A particular application of PCA is a technique in facial recognition called Eigenfaces. 

Representing faces as 2-D vectors, the eigenfaces are the significant features (principal 

components) among the known faces in the database. Just a small number of eigenfaces are 

needed to span the significant variations so faces can accurately be described by a weighted 

sum of each eigenface. The tast of matching a face against the entire database reduces to 

comparing only the hand full of weights which greatly reduces the complexity of the problem. 

• Estimating parameters via least squares in biology, engineering, and physics often leads to 

large over determined linear systems. Low rank factorization of the coefficient matrix leads to 

efficient solutions of the problem. 
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• The fast multiple method for more rapidly evaluating potential fields relies on low rank 

approximations of continuum operators with exponentially decaying spectra.  

• Laplacian Eigenmaps arise in image processing. A few eigenvectors of a graph derived from 

the image provide a non-linear embeddin. This is also an example of how linear approximations 

are used to solve some non-linear problems of interest.  

• Low cost sensor networks provide a wealth of data. Their low cost enables many sensors to 

be densely deployed while limiting their on board data processing capability. This inevitably 

results in lots of redundant data to be processed by the user. 

 

 

4.2 Low-rank Approximation in Practice 
 

There are some challenges in understanding how these theoretical ideas for randomized low-

rank matrix approximation can be used in practice. For better understanding, the basic idea is 

to go through the practical situations and set the issues for the randomized low-rank 

approximation situation: 

• It could be more expensive to sample 𝑂 (
𝑘 log(𝑘)

𝜀2 )  columns/rows and it could be difficult to do 

so if the constant in the big-𝑂 is left unspecified. Instead of that we could choose exactly  𝑘, or 

we can choose 𝑘 + 𝑝, where 𝑝 is small integer such as 5 or 10. 

• In most applications, in particular in those that are interested moderate to high precision low-

rank matrix approximation, numerical analysis and scientific computing applications, here are 

other goals of interest. Good Example for that is with given a good approximation to an 

orthogonal basis 𝑄  approximating 𝐴 , one might want to find other types of matrix 

decompositions.  

• When the spectrum decays some slowly but not very slowly, then it might be interested in 

doing some sort of power iteration, which will help the spectrum to decay more quickly and it 

could be of interest to incorporate this process directly into the algorithm. 

 



20 
 

4.3 Something about SVD algorithms 
 

Excellent algorithms for computing SVDs exist, but many of them are not well suited for an 

emerging computational environment. Complications include: 

• Multi-processor computing: CPU speed is growing slowly, but processors get cheaper all the 

time.  

• Communication speeds improve only slowly: Communication between different levels in 

memory hierarchy, latency in hard drives, inter-processor communication, etc.  

• The size of data sets is growing very rapidly. The cost of slow memory is falling rapidly, and 

information is gathered at an ever faster pace — automatic DNA sequencing, sensor networks, 

etc.  
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