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1 Abstract

Accordind to the article we are going to demonstrate the appearance of explosions in three
quantities in interest rate models with log-normally distributed rates in discrete time. (1)
The expectation of the money market account in the Black, Derman, Toy model, (2) the
prices of Eurodollar futures contracts in a model with log-normally distributed rates in
the terminal measure and (3) the prices of Eurodollar futures contracts in the one-factor
log-normal Libor market model (LMM). We derive exact upper and lower bounds on the
prices and on the standard deviation of the Monte Carlo pricing of Eurodollar futures
in the one factor log-normal Libor market model. These bounds explode at a non-zero
value of volatility, and thus imply a limitation on the applicability of the LMM and on
its Monte Carlo simulation to sufficiently low volatilities.
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2 Introduction

Interest rate models with log-normally distributed rates in continuous time are known to
display singular behaviour. The simplest setting where this phenomenon appears is for
log-normal short-rate models such as the Dothan model and the Black–Karasinski model.
It was shown by Hogan andWeintraub that the Eurodollar futures prices in these models
are divergent. Similar explosions appear in Heath, Jarrow, and Morton model with log-
normal volatility specification , where the forward rates explode with unit probability.
The case of these models is somewhat special, as the Eurodollar futures prices are well-
behaved in other interest rate models of practical interest,such as the CIR , and the Hull-
White model. It is widely believed that the same models when considered in discrete
time are free of divergences see for an account of the historical devel-opment of the
log-normal interest rate models. The discrete time version of the Dothan model is the
Black, Derman, Toy model , while the Black–Karasinski model can be simulated both in
discrete and continuous time . In this article, we demonstrate the appearance of numerical
explosions for several quantities in interest rate models with log-normally distributed rates
in discrete time. The explosions appear at a finite critical value of the rate volatility.
This phenomenon is shown to appear for accrual quantities such as the money market
account and the Eurodollar futures prices. The quantities considered remain finite but
their numerical values grow very fast above the critical volatility such that they rapidly
exceed machine precision. Thus for all practical purposes, they can be considered as
real explosions, and their appearance introduces limitations on the use of the models
for the particular application considered. In Section 2, we consider the expectation of
the money market account in a discrete time short rate model with rates following a
geometric Brownian motion. Using an exact solution one can show the appearance of
a numerical explosion for this quantity, for sufficiently large number of time steps or
volatility. This phenomenon and the conditions under which it appears have been studied
in detail elsewhere . Here, we review the main conclusions of this study and point out
its implications for the simulation of interest rate models with log-normally distributed
rates in discrete time. Sections 3 and 4 consider the calculation of the Eurodollar futures
prices in two interest rate models: a one-factor model with log-normally distributed rates
in the terminal measure, and the one-factor log-normal Libor market model, respectively.
The Eurodollar futures convexity adjustment is computed exactly in the former model,
while for the latter we derive exact upper and lower bounds. Both the exact result and
the bounds display numerical explosive behaviour for sufficiently large volatilities, which
are of the order of typical market volatilities. These explosions limit the applicability
of these models for the pricing of Eurodollar futures to sufficiently small values of the
volatility.
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3 The expectation of the money market account in

the BDT model

Lets consider the Black–Derman–Toy model.The following model is defined on tenor
dates ti with i = 0, 1, .., n which are assumed to be uniformly spaced with time step
τ = ti+1 − ti.The model is defined in the Risk-neutral measure Q and Numeraire the
money market account with discrete time compounding:

Bi =
i−1∏
k=0

(1 + Lkτ). (1)

where Lk = Lk,k+1 the Libor Rate for the period (ti, ti+1)
The BDT model is defined by the following distributional assumption for the Libors Li
in the Risk-Neutral measure:

Li = L̃ie
σiWi− 1

2
σ2
i ti (2)

where

• Wi is a standard Brownian motion in the Risk-Neutral measure sampled at the
discrete times ti

• L̃i are constants, which are determined by calibration to the initial yield curve

• σi are the rate volatilities, which are calibrated such that the model reproduces a
given set of volatility instruments such as caplets or swaptions.

Now for given initial yield curve P0,i and rate volatilities σi the calibration problem
consists in finding L̃i such that P0,i = EQ[B−1i ] for all 1 < i ≤ n.The solution for L̃i exists
provided that the following condition is satisfied P0,i > P0,i+1 > 0.The solution to the

calibration problem satisfies the inequality L̃i > Lfwdi where Lfwdi = 1/τ(P0,i/P0,i+1−1)
are the forward rates for the period (ti, ti+1).

• In the zero volatility limit σ = 0, the money market account Bn is given by

Bn =
n−1∏
k=0

(1 + Lfwdk τ)n (3)

• for σ > 0 the money market account Bn becomes a random variable.

Proposition 2.1. Now the the money market account in the BDT model is

Bn =
n−1∏
k=0

(
1 + L̃iτe

σWk− 1
2
σ2tk
)

(4)

The p-th moment of Bn is given by

EQ[Bp
n] = (1 + ρ0)

p

p(n−1)∑
k=0

b
(0,p)
k , (5)
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where the coefficients b
(0,p)
k are found by solving the backwards recursion:

b
(i,p)
k = b

(i+1,p)
k +

p∑
m=1

(
p

m

)
b
(i+1,p)
k−m ρmi+1e

m(k− 1
2
m− 1

2
)σ2ti+1 (6)

with pk = L̃kτ and initial conditions

b
(n−1,p)
0 = 1, b

(n−1,p)
k = 0, k > 1 (7)

The coefficients b
(i,p)
k with negative indices k < 0 are zero.
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3.1 Discrete time moment explosion of the money market ac-
count

In this part we are going to use Proposition 2.1 so we can study the dependence of the
moments of the money market account EQ[Bp

n] on n, σ, τ .
We assume uniform Parameters L̃k = L0, σk = σ. The first two results following form
Proposition 2.1 are given by

EQ[Bn] = (1 + L̃0τ)
n−1∑
j=0

c
(0)
j (8)

first two Results following form Proposition 2.1 are given by

EQ[B2
n] = (1 + L̃0τ)2

2(n−1)∑
j=0

d
(0)
j (9)

where c
(i)
j and d

(i)
j are the solutions to the backwards recursions:

c
(i)
j = c

(j+1)
j + L̃i+1τc

(j+1)
j−1 eσ

2(j−1)ti+1 (10)

d
(i)
j = d

(j+1)
j + 2L̃i+1τd

(j+1)
j−1 eσ

2(j−1)ti+1 + (L̃i+1τ)2d
(j+1)
j−2 eσ

2(2j−3)ti+1 (11)

with initial conditions c
(n−1)
0 = 1, d

(n−1)
0 = 1 and all other coefficients c

(n−1)
k = d

(n−1)
k = 0.

The coefficients c
(i)
j , d

(i)
j for j < 0 are zero.
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The figure above shows typical plots of the expectation EQ[Bn] as function of n at fixed σ
,L0,τ .The results of this numerical study show that the expectation of the money market
accountEQ[Bn] has an explosive behaviour at a certain time step n.
Although its numerical value remains finite, in the explosive phase this quantity grows
very fast and can quickly exceed double precision in a finite time. The same phenomenon
is observed by keeping fixed n ,L0,τ and considering EQ[Bn] as function of the volatility
σ,and also at fixed σ,nτ ,L0 and making the time step τ sufficiently small.A similar explo-
sion is observed also for the higher integer moments p > 1. We show in Table 1. typical
results for the average, the second and fourth moments of the money market account in
a simulation with time step τ = 1.
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Theorem 2.2.The limit

lim
n→∞, 1

2
σ2tnn=β

logEQ[Bq
n] = λ(ρ; β; q), (12)

with ρ = L0τ , with q ∈ N exists, and depends only on ρ and β.The function λ(ρ; β; q)is the
Lyapunov exponent of the positive integer qth momement,and is related to the Lyapunov
exponent λ(ρ; β; 1) = λ(ρβ) of the first momentThe function λ(ρ, β) is given by

λ(ρ, β) = supd∈(0,1)Λ(d) (13)

where

Λ(d) = βd2 + log(1 + ρ)− 2β(1 + ρ)d3
∫ 1

0

dy
y2

1 + ρ− eβd2(y2−1)
(14)

In figure 2(left panel) we see typical plots of λ(ρ, β) versus β for several values of
ρ. The function λ(ρ, β) is everywhere continuous in its arguments (ρ, β) but has dis-
continious derivative ∂βλ(ρ, β) at a certain point βcr(ρ) for ρ below a critical value
ρ < ρc = 0.123.The right panel of the figure shows the critical curve βcr(ρ).
The critical curve βcr(ρ) is well approximated as

β̄cr(ρ) = −3log(ρ) (15)

This approximation of the critical curve ends at the critical point (ρc, βc) = (e−2, 6).
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3.2 Implications for Monte Carlo simulations

The moment explosion of the money market account has implications for the Monte Carlo
simulation of the process Bt.Lets consider the MC estimate for the expectation EQ[Bn]
obtained by averaging over N paths.The standard deviation of this estimate is related to
the variance of Bn as, ∑

Bn,N
=

1√
N

√
varBn (16)

The explosion of the second moment EQ[B2
n] implies that the variance of Bn grows very

fast even as the average value EQ[Bn] is well behaved.This is seen in practical MC sim-
ulations as a rapid increase in the variance of the sample, but we will show next that a
reliable estimate of this variance using the MC sample is problematic.The Monte Carlo
simulation methods can not be used to compute precisely the expectation and higher
moments of Bn in the explosive phase. The same phenomenon will be seen to appear in
several other quantities in models with log-normally distributed rates, and introduces a
limitation in the applicability of MC methods for computing these quantities.

3.3 Continuous time limit and relation to the Hogan–Weintraub
singularity

In the continuous time limit, the BDT model with constant volatility σi = σ goes over
into a short rate model with process for the short rate:

drt = σrtdWt + µ(t)rtdt (17)

The money market account Bt is given by

dBt = rtBtdt (18)

with initial condition B0 = 1. The short rate rt is given by

rt = r0e
σWt +

∫ t

0

dsµ(s)− 1

2
σ2t. (19)

The solution of Equation (13) is given by the exponential of the time integral of the
geometric Brownian motion

Bt = exp

(
r0

∫ t

0

dseσWs+
∫ s
0 µ(u)du−

1
2
σ2s

)
(20)

The expectation of Bt is infinite, for any t > 0. This follows by noting that the time
integral of the geometric Brownian motion is bounded from below by a log-normally
distributed random variable, by the arithmetic- geometric means inequality

1

t

∫ t

0

dseσWs+
∫ s
0 µ(u)du−

1
2
σ2s ≥ exp

(
1

t

∫ t

0

ds(σWs +

∫ s

0

µ(u)du− 1

2
σ2s)

)
(21)

The expectation of the exponential of the quantity on the right-hand side is infinite.
This follows from the well-known result that the moment generating function E[eθX ] of a
log-normally distributed random variable X is infinite for θ > 0.
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• Our results show that the approach of the discrete time model to the continuous
time limit is not smooth, but proceeds through a discontinuity at some value of the
time step size τ where the rate of growth of EQ[Bt] has a sudden increase. This is
observed in simulations as numerical moment and path explosions.

• The explosion of the expectation of Bt is related to the Hogan–Weintraub singu-
larity.This is shown by comparing the results for the discrete and continuous time
settings.
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4 Eurodollar futures in a model with log-normal rates

in the terminal measure

We consider a one-factor short rate model defined on the tenor of dates t0, t1, .., tn. The
rate specification is

Li,i+1 = L̃ie
σiWi− 1

2
σ2ti (22)

where

• Wi is a standard Brownian motion in the tn-th forward measure Pn with numeraire
the zero coupon bond Pt,tn .

• The coefficients L̃i are determined by yield curve calibration such that the initial
yield curve P0,i is correctly reproduced.

This model is used in financial practice as a log-normal approximation to the log- normal
Libor market model or as a parametric representation of the Markov functional model.
Lets consider the Eurodollar futures contract on the rate Li,i+1. Assuming discrete futures
settlement at dates ti, the pricing of this instrument is related to the expectation of
Li,i+1 in the spot measure Q.This can be expressed alternatively as an expectation in the
terminal measure Pn

EQ[Li,i+1] = P0,nEn[BiLi,i+1P
−1
i,n ] = P0,nEn[BiLi,i+1P̂ i,i+1 (1 + Li,i+1τ)], (23)

where

• Bi =
∏i−1

k=0(1 + Lkτ) is the money market account at time ti,and we denoted

P̂ i,j = Pi,j/Pi,n the numeraire-rebased zero coupon bonds.

The expectation (18) can be computed exactly in the particular case of uniform volatil-
ity σi = σ. This can be done using a simple modification of the recursion relation in
Proposition 2.1, and is given by the following result.
Proposition 3.1. Consider the expectation

M (q)
n = E

[
n−1∏
k=1

(
1 + rke

σWk− 1
2
σ2tk
)
eqσWn− 1

2
(qσ)2tn

]
, (24)

• where rk , σ are real positive numbers, and Wi is a standard Brownian motion
started at zero W0 = 0 and sampled at times tk.This expectation is given exactly
by

M (q)
n =

n−1+q∑
p=q

c(0)p , (25)

where

• c(0)p are given by the solution of the recursion relation

c(i)p = c(i+1)
p + ri+1c

(i+1)
p−1 e

σ2(p−1)ti+1 , (26)

• with the initial condition at i = n− 1

c(n−1)q = 1, c(n−1)p = 0 for all p 6= q. (27)
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4.1 Results

We consider the Eurodollar futures on the rate Ln−1,n spanned by the last time step
(tn−1, tn). The expectation of this rate in the terminal measure Pn is simply the forward
rate L̃n−1,n = Lfwdn−1,n,since Pn coincides with the forward measure for this rate. Also, we

have P̂ n−1,n = 1.The expression (18) simplifies to

EQ[Ln−1,n] = P0,nEn[Bn−1Ln−1,n(1 +Ln−1,nτ)] = P0,nL
fwd
n−1,n(M

(1)
n−1 +Lfwdn−1,nτM

(2)
n−1), (28)

• where M
(1)
n−1 and M

(2)
n−1 are given by Proposition 3.1 with the substitutions rk → L̃kτ.

• The multipliers L̃ are obtained from the yield curve calibration of the model to the
forward Libors Lfwdk .

The Eurodollar futures convexity adjustment will be parameterized in terms of the ratio

κED =
M

(1)
n−1 + Lfwdn−1τM

(2)
n−1

(1 + L0τ)n−1(1 + Lfwdn−1τ)
(29)

This quantity is defined such that it is equal to one in the zero volatility σ → 0 limit,
and is a multiplicative measure of the convexity adjustment for the Eurodollar futures
contract on Ln−1,n

In the Figure above we show plots of logκED versus σ for several values of the forward
Libors Lfwd and total tenor n.For the numerical simulation we assume for simplicity

uniform forward Libors Lfwdi = L0 for i = 0, 1, .., n− 1.The numerical results for logκED
in the Figure show an explosive behaviour at a certain value of the volatility σ.
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5 Log-normal Libor market model

In this section we consider the pricing of Eurodollar futures in the one-factor log-normal
Libor market model.We assume the same tenor of dates as in the previous section.We
consider a market with given forward Libors Lfwdi for the non-overlapping tenors (ti, ti+1)
and log-normal caplet volatilities σi.
The log-normal Libor model gives a possible solution for the dynamics of the forward
Libor rates Fk(t) := F (t; tk, tk+1), k = 1, 2, ..., n − 1 which is compatible with this mar-
ket.Under the tn-forward measure, with numeraire Pt,n,the dynamics of the forward Libors
Fk(t) are

dFn−1(t)

Fn−1(t)
= σn−1dWt (30)

......

dFk(t)

Fk(t)
= σkdWt − σk

n−1∑
j=k+1

τσjFj(t)

1 + Fj(t)τ
dt, (31)

with initial conditions Fi(0) = Lfwdi .Here Wtis a standard Brownian motion in the tn-
forward measure Pn.We assumed here a one-factor version of the log-normal LMM, where
all forward Libors are driven by a common Brownian motion Wt The model can be for-
mulated in a more general form, which can accomodate an arbitrary correlation struc-
ture between the n Libor rates.Also,we assumed for simplicity timeindependent volatil-
ities σk.Model (23) s the simplest dynamics of the forward Libors compatible with the
given market of forward Libors and caplet volatilities.The positivity of the forward rates
Fk(t) > 0 implies the inequalities

0 <
τFk(t)

1 + Fk(t)τ
< 1, k = 1, 2, · · · , n− 1 (32)

which gives corresponding inequalities for the drift terms in Equation (23).
By the comparison theorem the following inequalities hold with probability one

F down
k (t) < Fk(t) < F up

k (t), (33)

where

F down
k (t) = Fk(0)exp(−σk

n−1∑
p=k+1

σpt) exp(σkWt −
1

2
σ2
kt), (34)

F up
k (t) = Fk(0) exp(σkWt −

1

2
σ2
kt) (35)

These bounds imply that the probability distributions of the forward Libors Fk(t) in the
terminal measure Pn have log-normal tails.

13



The pricing of Eurodollar futures on the Libor rate Li,i+1 = Fi(ti) reduces to the evalua-
tion of the expectation:

EQ[Li,i+1] = P0,nEn[BiLi,i+1P
−1
i,n ] = P0,nEn[BiLi,i+1P̂ i,i+1 (1 + Li,i+1τ)], (36)

This is identical to the expression (16) in the model considered in the previous section.
We will derive upper and lower bounds on this expectation for the last Libor rate
i = n−1,assuming uniform forward rates and caplet volatilities Lfwdi = L0 and σi = σ.The
relevant expectations can be evaluated exactly using Proposition 3.1 with the substitu-
tions

rk → Fk(0)τ (37)

for the upper bound, and
rk → Fk(0)τe−(n−k−1)σ

2tk (38)

for the lower bound.
We start by computing the upper bound on the multiplicative convexity adjustment factor
κED.This is clearly a finite value, and the finiteness of the Eurodollar futures prices noted
in was one of the reasons for the acceptance and widespread use of the Libor market
models.
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In Figure 4 we show plots of logκupED with κupED the upper bound on the convexity adjust-
ment,
The upper bound has an explosion at a critical value of the volatility, which is relatively
small.
The plots show also the lower bound logκdownED ,which display also an explosion at a higher
value of the volatility.These results show that the Eurodollar futures convexity adjustment
in the Libor market model explodes to unphysical values for sufficiently large volatilities.
For maturity T = 5 years and quarterly simulation time step τ = 0.25
e explosion volatility of the lower bound logκdownED is σexp ' 110% for L0 = 5% and
σexp ' 100% for L0 = 10%.
This explosion introduces a limitation of the applicability of this model for pricing Eu-
rodollar futures to volatilities below a maximum allowed level, which depends on the rate
tenor, maximum maturity and simulation time step. We give next an analytical upper
bound on the explosion volatility of the lower bound which makes explicit its dependence
on the model parameters.
Proposition 4.1 The explosion volatility of the lower bound on the price of the Eurodol-
lar futures on Ln−1,n in the LMM with uniform parameters L0,σ is bounded from above
as

σ2
exptn ≤ −

2n

n− 1
log(L0τ) (39)

This bound on the explosion volatility σexp becomes smaller as the rate L0 increases and
as the maturity tn increases. For the two cases shown in Figure 4.e bound on σexp is 134%
and 121, 5% respectively.
These bounds divide the range of the volatility parameter σ into three regions:
(a)The low-volatility region, below the explosion volatility of the upper bound κupED.In
this region the model is well behaved.
(b) An intermediate volatility region, between the explosion volatilities of the upper and
lower bounds. In this region an explosive behaviour of Eurodollar futures prices is possi-
ble, but is not required by the bounds.
(c)The large volatility region, above the explosion volatility of the lower bound κdownED

In this region the Eurodollar futures prices explode to unphysical values.
Although we assumed in this calculation uniform model parameters Lfwdi = L0,σi =
σ,these bounds can be extended to the general case of arbitrary bounded parameters
(Lfwdi , σi) by using L̄fwd = supiL

fwd
i , σ̄ = supiσi for the upper bound, and Lfwd =

infiL
fwd
i ,σ = infiσi for the lower bound.

he Eurodollar futures convexity adjustment has been computed in the log-normal Libor
market model in , using an analytical approximation based on the Itô-Taylor expansion,
and checked by Monte Carlo simulation. The adjustment was found to be well-behaved
and no singularity was observed for maturities up to T = 5 years Two scenarios have
been considered: (i) normal vols, moderate rates scenario: σ = 40% and L0 = 5%, (ii)
higher vols, low rates scenario:σ = 60% and L0 = 1% Both scenarios lie in region b),
where an explosion may occur, but is not required by the bounds considered.
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6 Summary and discussion

We have shown that certain expectations related to the pricing of financial instruments
have explosive behaviour at large volatility in several widely used log-normal interest rate
models simulated in discrete time. Although the existence of such explosions has been
known for a long time in the continuous-time version of such models, experience with the
discrete time version of these models appears to suggest that no divergences are present.
While this statement is strictly true mathematically, in the sense that the expectations
are finite in the discrete time case, the actual numerical values can become unrealistically
large, such that they are clearly unphysical. We discussed the appearance of such numer-
ical explosions in three interest rate models with log-normal rates in discrete time. The
first quantity is the expectation of the money market account in the BDT model. The
discretely compounded money market account plays a central role in the simulation of
interest rate models in the spot measure, where it represents the numeraire (Jamshidian
1997). A good understanding of its distributional properties is clearly of great practical
importance. Due to an autocorrelation effect between successive compounding factors,
the expectation and the higher positive integer moments of the money market account
in discrete time under stochastic interest rates following a geometric Brownian motion
have a numerical explosion (Pirjol 2015; Pirjol and Zhu 2015). The criteria for the ap-
pearance of this explosion have been derived in (Pirjol and Zhu 2015). The explosion
time decreases with the rate volatility and with the time step size, and approaches zero
in the continuous time limit, as expected from the continuous time theory (Andersen
and Piterbarg 2007). This explosion implies that the distribution of the money market
account has heavy tails, and the explosive paths appear when sampling from the tails of
this distribution.
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We showed in this article that similar explosive phenomena appear in expectations and
variances of certain accrual-type payoffs, which have the compounding structure of the
money market account, such as the Eurodollar futures prices. We illustrated this phe-
nomenon on the case of two interest rate models: i) a one-factor short rate model with
log-normal rates in the terminal measure, and ii) the one-factor log-normal Libor mar-
ket model. The Eurodollar futures can be priced exactly in the former model, using
the exact solution of this model presented in (Pirjol 2013). The result shows explosive
behaviour at a critical value of the volatility. While no similar exact result is available
in the log-normal Libor market model, we derive exact upper and lower bounds on the
Eurodollar futures prices in the log-normal Libor market model with uniform volatility,
or more generally with bounded parameters (Lfwdi , σi) . Both bounds display the same
explosive behaviour at sufficiently large volatility. We also derive an exact lower bound
on the error of a Monte Carlo calculation of this quantity, which has a similar explosive
behaviour. This introduces a limitation on the applicability of this simulation method to
sufficiently low volatilities.
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