TECHNISCHE
UNIVERSITAT
WIEN

Seminar Paper

Applying Deep Learning to
Financial Derivatives

Supervisor:
Assist. Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold

Author:
Twn Marin Tunjié
01635848

VIENNA, JULY 2019

Contents

1

2

Introduction

Neural Networks

2.1 Introduction to Neural Networks
2.2 Forward Propagation
2.3 Backward Propagation 0o
2.4 Gradient Descent
2.5 Stochastic Gradient Descent
2.6 Adam Optimizer
Option pricing
3.1 Black-Scholes Formula
3.2 Greeks
Implementation
4.1 Hyperparameter Tuning,
4.2 Preprocessing
4.3 Python Code
4.3.1 Splitting the Data Set
4.3.2 Model with Adam optimizer
4.3.3 Model with SGD
4.4 Possible Problems
4.4.1 Dying Neuron oo
4.4.2 Vanishing Gradient

1 Introduction

Quantitative finance was always an interesting field, full of intelligent ideas and revo-
lutionary formulas. Today, because of big data availability and higher computing power,
we starting using new methods that were unimaginable in the past. One of them is artifi-
cial intelligence. My main goal will be to introduce you to one of the main Al techniques
called Deep Neural Networks. I will be using them to show you their effect in evaluating
financial derivatives (specifically European Call Options).

There are a lot of different definitions of artificial intelligence and it is quite hard
to get a grasp on it. Representing it as a machine "intelligence” that tries to mimic
human cognitive functions would be one of it. While many still question the notion
of artificial intelligence in quantitative finance, it is progressing faster than ever before.
I will try to provide some of the essential information on why, how and when do we
use it. Machine learning is a subset of Al technique that gives computer the ability to
automatically learn from data without being explicitly programmed. It is divided into 4
large groups: supervised, unsupervised, semi-supervised and reinforcement learning. In
this paper we will be focused on supervised learning (regression). Deep learning, also
known as hierarchical learning, is one of machine learning methods based on artificial
neural networks, that got its name imitating the looks of connections in the human brain.
In the second section I will describe you the main principles behind neural networks before
I give you an idea of how would implementation of neural networks look like in python.

2 Neural Networks

2.1 Introduction to Neural Networks

Artificial Neural Networks are one of the most powerful machine learning techniques.
They became extremely popular with advancement in computing power and large amount
of data. One of the main differences between traditional machine learning and deep learn-
ing (neural network with a lot of layers) is in the feature extraction. What I mean is
that neural networks make our lives easier extracting features by itself from a big amount
of data, so we don’t have to do it manually. What can we classify as a big amount
of data? Well, I would start talking about it if we had 1 million samples or more. In
Figure 1 we can see how performance of deep learning algorithm grows proportionally
to the amount of training data. It is quite clear why we would consider using neural
networks when we have a lot of data. We must take into consideration that too much
data can also be a bad thing leading us to the overfitting problem. It is worth mention-
ing that computation time must be invested upfront (training of the neural networks)
and it can take up to months, but once is finished deep learning model is incredibly fast.
Since our computational cost is rising proportionally to the depth of NNs and a number of
data samples, we started using powerful graphic processing units, better known as GPUs.

A Performance

Deep Learning

Classical Learning

>
1
Amount of Training Data

Figure 1: Performance difference between Neural Networks and classical machine
learning methods

Artificial Neural Network consists of three different kinds of layers: input, hidden and
output layer. Every layer consists of main building blocks called neurons which are
connected with each neuron in the next layer if the model is dense. Except neurons,
we have weights telling us how each node (neuron) is ”significant” for the one in the
next layer, biases, activation functions solving the problem of nonlinearity and an error
function showing us how good our prediction with respect to the real value is. Figure 2
shows us how one neural network for regression problem looks like.

Mddcn layers

output layer

input layer

Figure 2: Neural Network with 6 inputs,1 output and 2 hidden layers

2.2 Forward Propagation

Table 1: Notations

Notation Definition

X; X; Input, j-th element of input layer

y Output

y® Predicted output for the i-th training example
L Number of layers

bJ[l] Bias vector for the I-th layer and j-th element
WJ[I] Weight matrix on the l-th layer and j-th element
o(z) Activation function

all Result of the l-th neuron

alol: all] Input, output layer

C(WI bl [Cost function

0
J
when it is the input layer) al ™!

J
bg” and get:

Each neuron in the new layer a;' takes a vector of inputs from the previous one (except

, gets multiplied by a weight vector ij, we add a bias

) =l 8
or in a matrix notation:
ZWU — wldgl-11 4 gl (2)

Table 2: Most popular non-linear activation functions

Function Definition Type
Rectified linear unit (ReLU) max(0, z) Regression
Leaky ReLu max(0.01z, z) Regression
Sigmoid 1/(14¢e77) Classification
tanH (e* — e *)/(e* + e *) | Classification

When we apply non-linear activation function o(z), we get:

! = o(Z10). (3)

Every neuron in the same layer uses the same activation function but different layers
can have different activation functions. They have to be non-linear and continuously
differentiable in order to be useful. We "give” input features to our neural network and
then they are ”forward propagated” through our layers to the end point, our output (take
a look at Figure 2). In mathematical sense equations (1) and (2) describe this forward
propagation from al®) = z (input) to the a*! (ouput). Different number of layers and
different number of nodes (neurons) are one of the hyperparameters we have to think
about when we want to make the best possible prediction. Because of them training time
can vary quite a lot and it is not always true that more layers and nodes mean better
prediction. Quite often as many as two or three layers can give us the best results. In this
paper we will always talk about one output but neural networks are also used to solve
classification problems with multiple discrete outputs. Different problems use different
activation functions (Table 2).

2.3 Backward Propagation

The main goal behind backward propagation is to optimize the value of our weights so
that we find the global minimum of our cost function. Initial weights are most of the
time randomly generated and then updated to minimize the error. There are a lot of cost
functions for regression problems (root mean squared error, mean absolute error...), but
we are going to focus ourselves to mean squared error (MSE):

COVIL) = o > (@Y = y)* (4)

Why did we change MSE and add 2 in front of N. The % term doesn’t really matter
because the optimal value for the weights would remain the same in both cases. When
we get a derivative of a squared function terms % and 2 cancel each other out and we get
a prettier expression.

By calculating the derivative of our cost function C(WH, bl) with respect to each weight
W]m we attain:

oC(wi by ﬁja 2\ 1 9
o) = 5> (5)
aW][z] 171 8W[l]<) N p aw[l]

Since, for the purposes of derivation, we want to make our equations as simple as possible
and that is why we will concern ourselves with only one input-output pair. Thus,with
help of equation (5), the cost function in question for derivation is:

C= 5@—9)2- (6)

In order to explain a derivative of the cost function with respect to weights, we first
derive:

7IL]
O = o (a1) (7)
= glt~1l (8)
dalt! 0
o7 = 5zm (72") ©)
= o' (7 (10)
aC o 1/, \2
mm:&ﬂﬁ@_@ (1)
o 1 2
_) _
~ 0alll2 < y) (12)
=@ -y (13)

I have to note that § = o(al*) in equation (11-13), but since we are using linear acti-
vation function in the last layer equality of the equation is justified. With help of these
derivatives (equations 7-13) and using the chain rule we get:

oc oz adth oC

L—-1 LN/~
oWl — oWl 921l galtl — " o' (Z1)(g -). (14)
We are going to do the same thing for our bias:
oC o7 oalll oC .
b bl o7 gkl ~ ? (2!])(y) (15)

6

with derivative of ZI" with respect to bl¥ equal to 1:

YA)
AbILT — plL]

(W[L]a[L_l] + b[L]) ~1. (16)

Just to make things as clear as possible, with the same logic, going back one more step,
we attain:

oc oz 9dH oC

OalL=1 9alL=1 9ZIL PalL]

= W' (Z1) () — y) (18)

oCc 0zE-U gal-U oC 1)
oW IL—1] OWIL—1] 9 Z1L—1] §alL—1]

= al" 2o’ (2w He! (ZH) (5 —). (20)

We "backpropagate” our algorithm all the way up until we get to the input. Figure 3
nicely shows us how one neural network looks like with all the weights and nodes (we
don’t have any bias here). As the formulas showed us backpropagation begins with the
last layer and error made by the prediction of the neural network.

<)

ws,?

15t Layer 2" Layer 3n Layer
(input layer) (hidden layer) (output layer)

Figure 3: Neural Network with 4 inputs, 1 output and 1 hidden layer

2.4 Gradient Descent

By now, you must be asking yourselves how exactly do we optimize our weights and what
do we need derivatives of the cost function with respect to weights and biases for? Well,
that’s where gradient descent comes to play and theory starts getting more exciting, since
we have one more hyperparameter to optimize.

A

Initial

Weight] Gradient
Cost s 'I'/
l

Incremental
Step

!
!
!
!
l

/ e" Minimum Cost
Derivative of Cost /

>
Weight

Figure 4: Gradient descent

Figure 4 shows us a graph with weight values on the x-axis and cost values on the y-axis.
What does this graph actually present? Well, it tells us dependence between the cost
function and weights and that is exactly what gradient is. As we said earlier, we want
to minimize our cost function so we take this gradient (derivative of the cost function
with respect to weights) and see if it is negative or positive. If it is negative it will be on
the left side of our slope, respectively if positive on the right side. Now, we try to get as
near as possible to out minimum so we take incremental step (step size), also known as
learning rate, in the direction opposite to the gradient. We do this trick many times until
we find ourselves at the minimum. Mathematically, we update our weights like this:

oC
L] — w2
W =W ST (21)
where a represents the learning rate. We do the same thing for our biases:
oC
(L] _ plL] _
b =10 SETE (22)

Learning rate is the hyperparameter I was talking about. There are two large prob-
lems concerning the learning rate. First, if it is too small we converge too slowly to
our minimum, hence computational cost gets bigger. Second, if it is too big we will be
oscillating quite a lot. We usually set it to lie between 0.05 and 0.10. Figure 5 shows us
nicely how a gradient descent looks in a 3-dimensional space with the x-axis representing
weights, the y-axis biases and the z-axis cost function.

Figure 5: Gradient descent in 3- dimensional space

We say we completed one "epoch” of gradient descent each time we update parameters
using gradients. Important to add is that we do not train the model to fully minimize
the cost function, as that could result in overfitting, leading to poor performance on new
data.

2.5 Stochastic Gradient Descent

I will begin this subsection by defining a very important term we use called ”batch”.
Batch is the total number of data samples we use to calculate gradient in a single epoch.
Why is that important? Well, if we use whole batch (gradient descent) in a training set
with a billions of data samples and a lot of features, we are going to have a hard time
training it. The computational cost will be enormous. That is where some other methods,
besides gradient descent, become relevant. The most extreme one is stochastic gradient
descent or SGD. It uses just one data sample that is randomly picked, hence stochastic
in name, to perform each iteration. You can clearly see the difference (Figure 6) in
performance between gradient descent, that uses whole trainings data set as a batch, and
a stochastic gradient descent.

Stochastic Gradient

Figure 6: Difference in performance between 2 methods, where center presents
minimum of the cost function

Another popular method is mini-batch stochastic gradient descent. It typically uses be-
tween 10 and 10 000 randomly chosen examples. Mini-batch SGD reduces the noise
obtained by SGD and has a much lower computational cost than full batch (Figure 7).

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Figure 7: Differences in performance including mini-batch

10

2.6 Adam Optimizer

In a room of different optimization algorithms there is one that stands out and has taken
deep learning community by storm. As you probably guessed it, its name is Adam,
shortened from Adaptive moment estimation. Before, I was talking how learning rate
is one of the hyperparameters we are trying to optimize. It was a constant value that
we defined at the beginning of our learning process and kept it as a constant throughout
whole training. Adam optimizer adapts each network parameter (weight, bias) separately
as learning unfolds. Some of the most attractive benefits of using Adam are represented
by its authors, as follows:

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order moments. The
method is straightforward to implement, is computationally efficient, has little memory

requirements, is invariant to diagonal rescaling of the gradients, and is well suited for
problems that are large in terms of data and/or parameters. The method is also
appropriate for non-stationary objectives and problems with very noisy and/or sparse
gradients. The hyper-parameters have intuitive interpretations and typically require little
tuning.

First, I would like to define:

t = timestep(iteration), (23)
E[m;] = E[VCy], (24)
Bl = BIVE (25)

where V' represents a gradient of the cost function. Logic behind the method is that
it stores exponentially decaying average of previous gradients m; and an exponentially
decaying average of previous gradients squared v; and calculates the parameter updates
in the following way:

my = Bimy—1 + (1 = 31)VC, (26)

Uy = 52%—1 =+ (1 - B2)(VC)27 (27)
A my

my = 1 _ 517 (28)

& 1 ftﬁf (29)

11

With help of equations (26-29), we obtain final weight and bias update rule:

~

my

~ Y
VU + €

nmy

\/f)_t—l—e’ (31)

VVt = Wt—l — (30)

bt :bt—l —

where §; and [, are the exponential decay factors with default values equal to 0.9 and
0.99, respectively. ¢ is a small number created to avoid zero division with 107% as a
default value.

Pseudo-code of Adam

g < 0 (Initialize 1*' moment vector)
v +— 0 (Initialize 2™ moment vector)
t + 0 (Initialize tumestep)
while #; not converged do
t+t+1
gy + Vg fi(0;-1) (Get gradients w.r.t. stochastic objective at timestep)
mg + 51 - me—1 + (1 — 51) - g« (Update biased first moment estimate)
vt PBa v+ (1 = Ba) - yf (Update biased second raw moment estimate)
img + my /(1 = 3%) (Compute bias-corrected first moment estimate)
Uy + v /(1 — 3%) (Compute bias-corrected second raw moment estimate)

0y « B1—1 — v - ime /(\/Tr + €) (Update parameters)

12

3 Option pricing

3.1 Black-Scholes Formula

People in finance field are constantly trying to figure out new methods of option eval-
uations and deep learning is just one of them. In this section I will be talking only
about option pricing using the Black-Scholes model, since we are going to concentrate
on European call options in this paper, but worth mentioning is that you can apply NNs
on any derivative. European call option is a financial contract between two parties, the
buyer and the seller. The buyer has the right, but not the obligation to buy an agreed
quantity of the underlying commodity from the seller at the expiration date (T) for a
certain price (Strike price). Why do we want to train the deep learning model on Black-
Scholes formula? The answer to that question could be:” Because we want to see if the
neural network can start "mimicking” Black-Scholes model without explicitly seeing the
formula. Before we start with preprocessing and implementation, I should first present
main equations behind the Black-scholes formula. I won’t go in depth, since this pa-
per is mostly concerned with logic behind the neural networks and its implementation.
European call option using the Black-Scholes formula is represented, as follows:

V(S,t) = S®(d) — Ke "0 (dy), (32)
In(S/K)+ (r+02/2)(T —t)
dl - O_\/m) (33)

dg = d1 — Um (34)

where S is the current stock price, K is the option strike price, T is option maturity,®
is the distribution function of the standard normal distribution, r is the risk-free rate,
o is the annualized volatility. When calculating maturity we should be careful with
computation, because there is approximately 252 Trading days in a year and not 365.

3.2 Greeks

Greeks are quantities that are very popular in quantitative finance because of the in-
formation they hold about the stock. They have also been called risk sensitivities, risk
measures or hedge parameters. They are represented in the following way:

oV
D A=
elta 5 (35)

measures the sensitivity of an options theoretical value (obtained in Black-Scholes for-
mula) to a change in the price of the underlying asset,

13

v
052

Gamma —T" = (36)

measures the rate of change in the delta for each one-point increase in the underlying
asset,

ov

the rate at which the price of a derivative changes relative to a change in the risk-free
rate of interest,

Theta — © = 8(9_‘15/ (38)

a measure of the time decay of an option, the dollar amount that an option will lose each
day due to the passage of time,

Vega— = g_‘a/ (39)

measures the sensitivity of the price of an option to changes in volatility.
I use greeks here as input features, but NNs can also be used to compute the greeks.
Correlation plot made in python using the seaborn library on Apple data:

Theoretical -
-0.8
I
Delta - 0.4
Gamrma
Rho 0.0
Theta
-0.4
Vega
Maturity 08

IV

Theoretical

Delta

Gamma

Rho

Theta
Vega -
Maturity -

Figure 8: Correlation plot

14

4 Implementation

4.1 Hyperparameter Tuning

Let’s take a step back and try to remember all the hyperparameters we tried to optimize.
Those were learning rate, number of samples in a batch and we mentioned the number
of layers and a number of nodes in those layers. I won’t explicitly talk about how many
layers and how many nodes there should be, because every problem will have different
optimal values, but you should keep in mind that these hyperparameters, if adjusted
properly, can make a huge difference. Code written in python is not optimal code used
to get the best prediction of the European call option. It is merely presented here so
you could use it in your own implementation and see how easy it is to implement it.
Main library used is called Keras, very popular library for neural networks with a lot of
amazing tools. Other libraries used are pandas, numpy, seaborn, scipy, sklearn...

4.2 Preprocessing

I downloaded data from the site http: //www.barchart.com and started extracting features
that I am going to use. Worth mentioning is that Furopean call option can be priced using
only four inputs (E.g time to maturity, implied colatility, risk-free rate and spot/strike).
We should always normalize our data before training. What I mean by that in this case is
we should devide our current stock price with a strike price, hence spot /strike. That is the
reason why our output will be V/K (theoretical price of European call option devided by
the strike price). When we finished extracting and normalizing data it would be good if
we shuffled the data so that the model can learn from a wide variety of examples without
any order.

4.3 Python Code
4.3.1 Splitting the Data Set

import sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

predictors=df_all [["Spot/Strike’,’IV’, " Maturity >, ’Delta’, 'Gamma’ ,
"Rho’, "Theta’, ’Vega’ ||

target=df_all [["Theoretical /Strike ||

X _train , X_test ,y_train ,y_test=sklearn.model_selection .
train_test_split (predictors ,target test_size=0.3,

random _state=42)

Splitting the data set on training and test data in proportion 70:30. Input data are
spot/strike, implied volatility,time to maturity and greeks. Output data is theoretical
value divided by the strike price.

15

4.3.2 Model with Adam optimizer
n_cols=predictors.shape|[1]
model = Sequential ()

model . add (Dense (256, activation="relu’,input_shape=(n_cols ,)))
model . add (Dense (512, activation="relu’))

model . add (Dense (256, activation="relu ’))

model . add (Dense (1))

model . compile(optimizer="adam’ ,loss="mean_squared_error ’)

#early_stopping_monitor=FEarlyStopping (patience=23)
#validation_split=0.2, callbacks=[early_stopping_-monitor],
verbose=True

model_1_training=model. fit (X_train ,y_train ,epochs=100,
verbose=False)

prediction = model. predict (X _test)
MSE = mean_squared_error (y_test , prediction)

print ("MEAN.SQUARED ERROR.=" ,MSE)

Sequential model is model that connects nodes from the previous layer only with nodes in
the next layer. Dense, as mentioned before means each node is connected with the node
in the next layer. Numbers 256,512,256 are numbers of nodes in hidden layers. ReLu
activation function. EarlyStopping function can be used if we want that our training
stops when model doesn’t improve in ”patience many” epochs.

16

4.3.3 Model with SGD
from keras.optimizers import SGD
def get_new_model (input_shape=(n_cols ,)):
model = Sequential ()
model . add (Dense (128 ,activation="relu’,input_shape=(n_cols ,)))
model . add (Dense (256, activation="relu’))
model . add (Dense (128 ,activation="relu’))
model . add (Dense (1))
return (model)
Ir_to_test = [0.01,0.1,1]

for Ir in Ir_to_test:

model2=get_new_model ()
my_optimizer=SGD(1r=Ir)

model2 . compile(optimizer=my_optimizer ,loss="mean_squared_error’)
model_2 _training=model2. fit (X_train ,y_train ,epochs=100,
verbose=False)

prediction2 = model2. predict (X _test)

MSE = mean_squared _error (y_test , prediction2)
print ('MEAN_SQUARED_ERROR.=" MSE)

plt .plot (model_1_training. history[’loss’|, ’'r’
model_2_training. history |’ loss’], 'b’)

)

plt.xlabel ("Epochs’)
plt.ylabel(’loss.score’)
plt .show ()

Model trained with 3 different learning rates for SGD: 0.01, 0.1, 1. I wanted to plot the
the models to see the difference between 2 models, hence plot.

17

4.4 Possible Problems
4.4.1 Dying Neuron

First possible problem I will talk about is the dying neuron problem. Even if the learning
rate is fine tuned we can still run into this problem. Why is it called " The dying neuron
problem”? Problem occurs when a neuron takes a value less than zero for all rows of data
in the training set. Since we use ReLu activation function every output coming from this
node will be equal to zero and since every output is equal to zero every gradient will be
equal to zero, which means that this neuron brings nothing to our neural network and
hence the name ”dying neuron”.

ReLU function derivative of ReLU
o} : ' : ol ; . .
’r 0.8 |- : :
61 o6l derivative exadgtly zero here
r 0.4 [
‘ 0.2
0 0.0 |
o s o s 1 T I T

Figure 9: ReLu activation function

4.4.2 Vanishing Gradient

In the second section I mentioned 4 activation function. One of them was tanH and I am
going to use this activation function as an example of the problem of vanishing gradient.
Let’s take a look at a Figure 10 to see how tanH function looks like.

= tanh
= derivative
0.5 |
L (_f\
-4 -3 -2 -1 1 2 3 4
—0.5
-1.0L

Figure 10: tanH activation function with its derivative

18

As you can see from the name of the problem gradient starts vanishing, but why? If we
take another look at the Figure 10, we will see that derivatives are getting smaller if we
move further away from the origin. The thing is as we are moving further away from the
origin updates become smaller and smaller, resulting in no learning.

19

References

1]
2]

3]

[7]

[9]

Ryan Ferguson and Andrew Green: Deeply Learning Derivatives, 14/10/2018

Robert Culkin and Sanjin R. Das: Machine learning in Finance: The case of Deep
Learning for Option Pricing, Santa Clara University August2, 2017

Axel Bromstrom and Richard Kristiansson: Fzotic Deriwvatives and Deep Learning,
Stockholm, Sweden 2018.

Sang Il Lee and Seong Joon Yoo: Multimodal Deep Learning for Finance: Integrating
and Forecasting International Stock Markets,Department of Computer Engineering,
Sejong University, Seoul, Republic of Korea

Luyang Chen, Markus Pelgery and Jason Zhuz: Deep Learning in Asset Pricing,April
2, 2019

Rosdyana Mangir Irawan Kusumal, Trang-Thi Ho, Wei-Chun Kao, Yu-Yen Ou and
Kai-Lung Hua: Using Deep Learning Neural Networks and Candlestick Chart Repre-
sentation to Predict Stock Market, Department of Computer Science and Engineering,
Yuan Ze University, Taiwan Roc Department of Computer Science and Engineering,
National Taiwan University of Science and Technology, Taiwan Roc Omniscient Cloud
Technology

Tugce Karatas, Amir Oskoui, Ali Hirsa: Supervised Deep Neural Networks (DNNs)
for Pricing/Calibration of Vanilla/Ezotic Options Under Various Different Processes

Backpropagation: https://brilliant.org/wiki/backpropagation/

Deep Learning in Python, Advanced Deep Learning with Keras in Python:
https://www.datacamp.com/home

[10] Deep Neural Networks for regression problems: https://towardsdatascience.com

20

