Stacked Monte Carlo Methods for Option Pricing

Seminar paper
Felix Stubenvoll-Pretschuh

Matrikelnummer 01114103
e1114103@student.tuwien.ac.at

September 2020

Abstract

This seminar paper presents a Stacked Monte Carlo procedure and the algorithm’s
steps and discusses its application to the pricing of options in the Black-Scholes
model. In this procedure different control variates for variance reduction are
obtained via simple regression and fitting techniques and are ultimately combined
(’stacked’) to improve an existing standard Monte Carlo estimate. Its is shown
that it offers great improvement in precision with regards to the existing estimate
with very low additional computational cost.
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1 Introduction

The valuation of options plays an important role in modern finance and there have been
developed various methods to price such contracts. These methods include for example
the Black-Scholes formula, arguably the most popular one, which enables us to obtain
the value of European Call and Put Options in a closed form. In general however,
the characteristics of many financial instruments do not allow for closed form pricing
formulae thus, numerical methods are applied for solving the integrals and stochas-
tic differential equation through which the instrument’s price can often be expressed.
As such, the Monte Carlo technique offers a simple and flexible way to option valua-
tion problems, where an estimate is obtained via sampling from a certain underlying
distribution. However, any numerical method is prone to approximation errors and
instabilities, especially if the dimension of the problem increases. While the error from
a Monte Carlo technique can in theory be rendered arbitrarily small if only the sample
size is increased accordingly, this approach is only practical to a certain extend given
the constraints imposed by computational resources and time. Thus different meth-
ods of error or variance reduction have been developed with the objective of achieving
higher levels of stability of estimates with similar accuracy and computation time. As
one of such, the Stacked Monte Carlo method has been derived for option pricing. In
general, the term "stacking" refers to the idea of blending the output of different mod-
els. These models’ predictions are fed as inputs into a second-level learning algorithm
which aims at finding an optimal combination of predictors that should ultimately
yield better results than any single one on its own. First introduced in [I5] a stacked
predictor can be constructed in various ways ranging from simple linear forms to more
complex nonlinear combinations of inputs that require significant tuning and training
time. Stacking was successfully applied to a wide range of different problems, see for
example [4, 10} 1], 13 [16] .

The idea of the Stacked Monte Carlo procedure was introduced by Alonso, Tracey
and Wolpert aiming at improving existing standard Monte Carlo estimates. With its
original application in aeronautics the three authors developed the method to predict
the fuel consumption of future aircrafts under various assumptions about technological
advancement in the decade from 2020 to 2030 as well as to quantify super sonic boom
volume in dependency of different pressure characteristics of airplanes [I, 14]. The
method was then adopted by Jaquier, Malone and Oumgari in 2019 and applied to
the pricing of options [9]. With a standard Monte Carlo (MC) sample as input the
procedure applies cross-validation and regression techniques to obtain a number of
control variates which then yield different MC estimates. These estimates are then
stacked by taking the mean to generate the improved estimation. This seminar paper
gives an introduction and overview of the procedure presented in [9]. The following
section [ briefly introduces Monte Carlo in general and its application in quantitative
finance. Section (3| then covers the Stacked MC method and goes through the various
steps carried out to end up with a stacked estimate. Finally, in section |4 the method’s
application to pricing options in the Black-Scholes model and its results are discussed.



2 Monte Carlo in Quantitative Finance

In this section the Monte Carlo technique for pricing an option is explained in a general
setting. Assume we have an option on the underlying x with pricing function f and
maturity 7', i.e. f(x) is the option’s price given the corresponding value z of the under-
lying at maturity. x can be a single underlying or any number of underlyings following
a certain distribution F, with probability density function p(z). Under no arbitrage
arguments and with risk-neutral pricing the option’s price today is its expected value
at maturity discounted by the risk-free rate. As a function of z, the distribution of
the option’s maturity value can be obtained from the distribution of its underlying’s
terminal value. Thus, if we know the distribution of z at time T" we can derive the
option’s expected value by integration. Without loss of generality we set the risk-free
rate to zero, this gives us

F=Elf(2) = / F(@)p(z)de 1)

as fair price for our option today, where A denotes the range of integration. If we now
further know how to simulate the process governing the price of the underlying we are
able to obtain a sample of trajectories and with it a sample of terminal values (z;);—1.,
for x at time 7" which in turn gives us a sample of options prices by plugging them into
f. A Monte Carlo estimate f for f is then given by

)] 2)

This is an unbiased estimate for f which can be seen by taking E[ f] If f is integrable
over A, ie. E[|f(x;)]] < +oco and since f(;) iid, the strong law of large numbers
applies and f,, — f for n — +oo. If f is square integrable over A then we set

ot = / (f(x) — Fde. (3)

and by the central limit theorem the error

(4)

tends to a standard normal distribution with increasing n. Since we are in a setting
were f is not available in closed form, the parameter 0]20 is unknown too, but can be
estimated by the sample variance of the Monte Carlo estimate
1 n
A r
&= (fl@) - f) (5)

i=1

So, in addition to the estimate f of f we also obtain a measure for its error and since
r r 32 . . r . .. .
f—f~N(0, \s/—ﬁ) confidence limits on f can be obtained. This is not only applicable
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to the standard Monte Carlo estimator but also to the Stacked Monte Carlo estimator
introduced in section Bl

The advantages of a MC method lies in its simplicity and flexibility. The procedure
makes no assumptions about the distribution of the underlying so it is straightforward
to change for example the behavior of underlying stock prices by simply sampling from
a different stochastic process. In fact, the process can be chosen so as to exhibit mean-
reversion or jump diffusion properties [0 B]. However, it is not even necessary for the
underlying’s distribution to have an analytic form, one can simply use the empirical
one to obtain the estimate. Additionally, every parameter can be assumed to follow a
certain distribution, this makes the method applicable to stochastic volatility models
such as the Heston Model [9, 8]. These properties make the Monte Carlo method
applicable not only to pricing options but to a wide range of problems in quantitative
finance and beyond.

3 Stacked Monte Carlo

This section introduces the Stacked Monte Carlo Method (StackedMC) and its pro-
cedure. StackedMC is a post-processing technique that aims at reducing the error of
an existing Monte Carlo estimate. The idea is to learn a control variate with rather
simple regression techniques from a Monte Carlo sample such that the learnt function
is a good approximation of the original one.

3.1 Variance reduction

A central feature of the solution to a Monte Carlo problem is its standard error,
which has the form o/y/n as shown in section . Only depending on the standard
deviation of the function f and the number of samples n, the convergence rate is given
by O(n~1/2). Thus, cutting the error in half requires increasing the number of samples
by four or, improving the precision one decimal point needs plus 100 samples. This
rate is both a strength and a weakness of Monte Carlo methods. A weakness because
in general this rate can not be improved, which makes Monte Carlo a not competitive
method for calculating one-dimensional integral. Here, other methods promise better
improvements with increasing n, take for example the simple trapeziodal rule as an
estimate

I f(0)+f(1)+1"§f(1)

2n ,
=1

which a rate of O(n™?) for a twice differentiable function f. At the same time Monte
Carlo’s strength lies in the fact that its convergence rate of O(n~'/2) holds for all
dimensions d. This is especially useful in estimating integrals in high dimensional
spaces where the error of other deterministic numerical integration techniques becomes
significantly larger. Take again the product trapeziodal rule in d dimensions which has
an error of O(n=2/%).



An alternative approach to increasing n in Monte Carlo methods is to reduce the
constant o in the error term which is known as variance reduction. Various techniques
to obtain such a reduction have been developed. What they all have in common is that
the original problem f(z) gets changed and tweaked in such a way as to improve
the precision of estimates from crude Monte Carlo methods. One of these techniques
is called the Control Variate method. Its idea is to replace the original problem by
simpler yet similar one, whose solution can be computed analytically or at least at low
computational cost. Its solution is then used to improve the accuracy of more complex
problem at hand.

The StackedMC procedure aims at learning such a control variate form a given Monte
Carlo sample, such that the distribution of the learnt function approximates the one of
the original one. Suppose the function g(x), our control variate, is a reasonable good
fit for f(x). We can then rewrite the problem with some constant a as

7= / f(@)g(@)dz + a / l9(x) — g()) dz
—a / g()p(x)d + / f(z) — ag(@)] plz)da (6)
—ag+ / f(z) — ag(e)] pla)de

Now, g = [ g(z)p(z)dz can be computed analytically and since g is a good fit for f the
term f — ag will have a smaller variance than the original problem for certain choice
of a. For a sample (z;);=1., we then obtain the MC estimate

n

_ 1
frag+— [f (i) — g(s)] (7)
i=1
which has the variance
0% = 0% + a’o? — 2007 (8)
f f g 197

where 0120’ , denotes the covariance of f and g. We now seek to minimize this term and
by solving %a? = 0 we can show that this is achieved by the choosing
9fg _ 9f
o= —— = — 9
pu 7 Pf.g (9)
Plugging « into we obtain o7 = (1 — pff’g)a}%, which implies that the condition
prq 7 0 is sufficient to provide a reduction in variance. The effect of variance reduction

is demonstrated in [Figure 1}



= f(x)-c. g(x)
=—Function f(x) ||

m— Function fix)
== == = Fitting Function gix)

15¢

X
(a) Example f(z) and g(x) (b) f(z) and f(z) — g(x)

Figure 1: The original problem f and an approximation of it g. « was chosen as 0.85. We
can see the term f — ag on the right side has smaller variance than f alone. If g is a good fit
for f and the correlation between them is large, a high reduction is achieved.

3.2 Procedure
In the following sections the steps of the StackedMC’s algorithm to obtain an estimate

are described. In short, the following seven steps below are carried out:

1. Generate a Monte Carlo sample (z;);=1., according to the distribution p(x)

2. Choose a model for the control variate. Fit the model at the sample points f(z;)
3. Apply k-fold cross-validation to obtain k different estimates f, for f

4. Stacking: Obtain StackedMC estimate fgcys as mean of the fj

5. Estimate the control variates optimal weight «

6. Integrate the control variate to obtain ag

7. Plug everything into to obtain final estimate

3.2.1 Model choice for control variate

The first step is to pick a functional form for the control variate g. There are two
conditions to choosing the model. First, g must be a reasonable, however not necessarily
perfect) approximation of f, and second, the integral g must have a closed form solution
or be at least costless to compute. An easy and convenient possibility is to fit a
polynomial of order L, where the coefficients ¢ = (cg)g=o., are defined as the least
square minimizer:

2

fle) = cpa® (10)

L
g(x) :=co + Z cpx” with c = arg min
k=1 CERL




The above choice can be used if one-dimensional problems, e.g. for a European call
option. In the case of multi-dimensional problems, such as for basket options where
& = (x;)i=1.m, multivariate polynomials may be used:

= Z Ca®, o= (ag,...,ap,) € N® (11)

laa<L|

Further, since call option payoffs can be discontinuous, a piecewise-polynomial function
with zero value for parts of the domain may proof as a good choice, where g(x) = 0 if
a’x + ag < 0 and g(z) is otherwise for some truncation plane a.

3.2.2 Fitting the control variate

Fitting algorithms such as the StackedMC method bear the risk of increasing the bias of
the MC estimate. Moreover, when approximating functions there is always the danger
of over-fitting. The first issue is avoided through the construction of the estimator ().
Since the expected value of the fit ¢ is both added and subtracted, @ remains an
unbiased estimator of . The issue of over-fitting can be mitigated by using cross-
validation. Here, the dataset N of samples of z is split into K disjoint sets (or folds)
Ny. Each one of the folds is a training set once, the remaining N — N, sets are the
training-set. From each training set a different fitting function g, is obtained and its
goodness of fit is assessed using a chosen metric. This is known as the out-of-sample
error.

Following this procedure we get K fitting functions g, of f for each training-set N — Ny,
then plug them into @ and use the respective test-set data xgk) € Ny to get an
estimates for the integral term g and for f as a whole with each one of the fitters.
With ny := | Ng|:

n
fi = ag, + iz [f (xgk)> — Qg (3:5“)] , k=1.K (12)
[
Standard procedure in cross-validation would asses the out-of-sample error for each fit
and chose the best fit £* as the one with the smallest error. This fit would then be used
as single g(x) to approximate f(x), however, this again raises the issue of overfitting.
Instead, at this point the technique of stacking is adopted and a final StackedMC
estimate fsyo of f is obtained by taking the mean

fsuc = %if = %i agr + —Zf ( (k)> (xgk)>] (13)
k=1 j=1

3.2.3 Estimating the control variate parameter

We can now use the predictions for the test-sets and the true values f(z;) to estimate
« with the control variate formula @D from above. The classical unbiased empirical



estimates for mean, variance and covariance are used.

K ng
e L5 () -
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3.2.4 Integrating the control variate

This section covers the evaluation of the integral g if the model choice for the control
variate is a polynomial, as discussed in section If we look at the multivariate
case, using multi-index notation g(z) has the form:

g(x) :/ Z Cax®p(x)dx = Z ca/wap(:c)dm = Z CaE[x?] (14)

lal<L lal<L <L

with & = (a1, a9, ...,q,,) € N™ and random vector * = (2;);=1.,. The integration
hence is reduced to the computation of moments. In the Black-Scholes model x is
drawn from a one-dimensional normal distribution with zero mean, thus we obtain the
integral easily by

nlo™

2n/2(n/2)!

E[X"] = (15)

,if n is even

{o .if n is odd

In the multidimensional case, as later for Asian Options, with a mutli-variate Gaussian
distribution with covariance matrix > we are able to obtain the moments via the

moment generating function )
T
E[ewt] _ 6§t 3t (16)

Finally, if the control variate has piecewise linear form with zero value for some trun-
cated plane a, with Q, =z : a’x + ay

. Co—f—ZjCjZEj ,if$€Q+
oo ={ § e (1)

it is only necessary to compute the zeroth and first moment of the truncated Normal
distribution in order to obtain g, i.e.

/n(w)dw and / z;n(x)de, for each j=1..m
Q4 Q.

with n(.) denoting the density of the multivariate Gaussian distribution on the trun-
cated plane €2, . This form for the control variate has some computational cost advan-
tage and yields good results as shown in section [d If the integrand is linear, as it is in
our case above, the integral on a truncated domain can be computed in closed form as
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discussed in [12] and [9)].

Given the value for the integral g as well as for a we can now plug both into equation
to obtain our final Stacked Monte Carlo estimate.

4 Pricing Options in the Black-Scholes Model

In the following section the established Stacked MC procedure is applied to price a
European call option and a path depended Asian call option, both in the Black-Scholes
model. The improvement against standard Monte Carlo estimates as well as the results’
dependency on model parameters is assessed. The method can also be used in stochastic
volatility models, for its application in the Heston Model see [9].

4.1 European call option

In order to apply the Stacked MC procedure we first need to define the pricing function
f which we want to estimate as well as specify which distribution the random variable
X ~ Fx, as input for f, follows. We consider a European call option who’s payoff with
strike price K is given by

(57— K)+

whereas S denotes the stock price at time of maturity 7. In the Black-Scholes Model
the underlying stock price movements are modelled such that they follow a geometric
Brownian Motion with constant drift » and volatility o, i.e. .S; it satisfies the stochastic
differential equation

dS; = rSidt + oS, dWs, (18)

for some one dimensional Brownian Motion W. The solution to this SDE can be
derived as

St _ S()g(r—%)t-&—owt’ (19)

and from and it follows that log(S;) is normally distributed (for details see
[7], chapters 14-15) and thus the price of a call option at ¢ = 0 is given by

e TE[(Sy — K)y] =7 /R (5060"5)”0@) (s (20)

where the term in brakets in the integrand is our function f(x) in (1)) and n(z) is the
Gaussian density. By sampling x from a standard normal distribution we can apply
the StackedMC algorithm. Let’s assume a setting with the parameters:

(So, K, 7, 0,T) = (100,100, 0.05,0.2, 1) (21)

The exact option price given these parameters obtained via the Black-Scholes formula is
Cps = 10.4506. Sampling N = 10° realizations of a gaussian random variable, fitting
a polynomial of order 4 for the function ¢(.) at the sample points and using 2-fold
Cross-validation in the StackedMC procedure yields the results presented in table [I]
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MC Stacked MC Total | Improvement
Price KI Time | Price KI Time | Time | Absolute Ratio
10.4395 0.0913 0.57 | 10.4507 0.0061 0.30 | 0.87 0.0851  14.90

Table 1: StackedMC vs. standard MC for a standard European Call option

KI denotes the half width of the confidence interval for the obtained estimates calcu-
lated as o

P 20.95 Jn
where g is the mean and zgg95 = 1.96 is the Gaussian quantile at the 95% level. o,
is the sample standard deviation and calculated as such from obtained option prices
(f(2i))i=1:n in the standard Monte Carlo case and for the StackedMC one following (g)),
also using sample estimates as in section [3.2.3] Absolute improvement and improve-
ment ratio are defined as Clyc - Clgye and Clye/Clgyve respectively, time units are
seconds. For better comparison the following results are scaled using the time to price

a European Call option with n = 10° draws from table 1] (0.57 seconds) as 1 unit of
time. The above results then read

MC | StackedMC | Total | Equivalent
1 0.526 1.526 222.08

Table 2: Run times scaled to 1 unit = 0.57 seconds

The last column in table [2] states an equivalent Monte Carlo time which is the time
that would have been necessary to obtain a similar CI size as with StackedMC using
the standard Monte Carlo alone. It is defined as the standard MC time multiplied by
the squared improvement ratio. Assuming computation time increases linearly with
increasing sample size and given the convergence rate O(n~'/?) for standard MC the
equivalent time value means we would have to increase sample size by roughly 222 to
reduce the error to the size of the StackedMC one, which constitutes a nearly 15-fold
improvement to the standard approach. Opposed to this, the additional StackedMC
procedure applied on top only takes up only about half of the standard MC runtime.
The results in table [1| and [2| show that at least in this simple setting the discussed post
processing technique imposes a significant advantage in accuracy and runtime.

4.1.1 Dependency on model parameters

Every model or pricing procedure depends on its parameter settings, thus in this sec-
tion we investigate how sample size, cross-validation and number of folds as well as
choice of fitting model affect the StackedMC’s performance.

Table |3| compares the results for the standard MC as well as the StackedMC for in-
creasing sample size. Again, run time is scaled to 0.57 seconds as one unit of time.
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In column one we see that MC estimate’s variance is reduced as expected at a rate of
O(n~1/?). Standard MC’s run time scales linearly with increasing sample size so does
equivalent time in the last column. While the ratio of improvement is roughly constant
around 15-times the confidence interval’s absolut reduction decreases as the number of
draws grows, as seen in figure [2]

MC StackedMC Improvement Time
Paths CI Time CI Time | Absolute Ratio | Total Equivalent
10 109059 0.01 [ 0.0601 0.01 0.08 15.18 | 0.02 2.27

10* | 0.2895 0.10 | 0.0194 0.06 0.27 14.92 | 0.16 22.57
10° | 0.0913 1.00 | 0.0061 0.53 0.09 14.90 | 1.53 222.08
106 | 0.0288 10.15 | 0.0019 5.38 0.03 14.96 | 15.53  2271.72

Table 3: Sample size effect on variance reduction
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Figure 2: Sample size effect on variance reduction for MC and StackedMC

Figure [3| shows no significant improvement in variance reduction if the number of folds
is increased, however, runtime grows rises linearly due to the additional time spent
fitting more functions gy. Compared to random sub-sampling where an increasing
proportion of the sample is used as in-sample-set for fitting g and the rest as out-of-
sample-set to calculate o, cross-validation in general offers greater variance reduction
independent of the number of folds. Only at the smallest sample ratio of 5% the results
of sub-sampling are comparable to the ones of cross validation.

Ultimately, different fitters for g(.) are compared in figure[d] Polynomials of increasing
order as well as a piecewise linear fitting function are used in the stacking procedure.
The latter is obtained by filtering the zero-valued training data and fitting a linear
function to the remaining points. Negative values of the fitter, i.e. values to the left
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of the intersection with the x-axis, are then set set to zero. For the polynomials the
results show an increasing variance reduction up to order 8, especially from order 1
to 2 and with smaller increments thereafter. With an order higher than 8 the results
worsen again, most likely due to overfitting of g to the training data. The piecewise
linear function is at least as good as a polynomial of any order. Results of the two
different fitters are most comparable for a polynomial of order 8, however a definite
advantage of the partially linear one is the computational cost which is substantially
lower.

9]
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4.2 Asian call option

In this section the StackedMC’s performance for a path dependent option is examined.
We consider an arithmetic Asian Option with maturity 7" and strike price K which’s
price is determined by some dates (;)i=1., With 0 <t <ty < ... <t,, <T. Its payoff

is given by
1 m
m =1 +

Under no-arbitrage arguments with the risk-neutral measure the price of the option at
t = 0 then reads as
€_TTE[(I)T].

To obtain the pricing function f to be estimated we use and the independence of
Gaussian increments in the Black-Scholes model to rewrite

=1 j= 0
m i (7"—7) ti+oWe, U
e r (t )Fo(We; =We; )
_ s Z H (T‘_§>tj71+o—wt =5 Z He( 2 ) j—1)+o(We v (22)
i=1 j=0¢ o
— S, i H (=5 )ty Sty WXy, Xon)

with ¢g = 0 and (X3, ..., X,,) is a Vektor of iid A(0, 1) random variables which corre-
spond to the Brownian increments of the stock price. As Monte Carlo draw a matrix
X € R™™ of iid Gaussian samples is simulated, where n again corresponds to the
number of simulated stock price paths. Plugging the rows of X into function h from
above we would obtain a standard MC estimate for the Asian Option’s price as

NZ( Zl,...le)—K)+7 23)

where the term after the sum is our pricing function, i.e. the function f in equation
. Since each option price is now determined by m observations of the underlying
stock price, the problem of fitting the control variate g has m dimensions. With the
same parameters as in polynomial surfaces of order 2 and 4 as well as a piecewise
linear surface are fitted to the option prices obtained for each path of X. The fitted
surfaces are displayed in figure [5}

Tables and [6] present the results of the stacking procedure for an arithmetic Asian
Option with increasing number of observation points ¢;. What is most notable here is
that while the time spent to compute the standard MC estimate only grows modestly
with the number of observations, the runtime for fitting a polynomial surface to the
data increases vastly. For m = 50,100 a surface of order 4 was omitted due to its
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high computation time. This is where a piecewise linear fitter reveals its advantage

offering a nearly 20-fold improvement in variance with only a fraction of additional
computational cost.

K-fold fit to payoff function, order = 2

K-fold fit to payoff function, order = 4

=
=)
v

u
=]

e syuiod e3ed
5 O
3

N
|

=
o
S

1} 32e4NS PU
RRE
13 33MNS pUe siod e3ed
I\‘J o
G

|
-
=)

3 4

o 1 2
First step

3 4

Firs?.s-l:epl :
(a) Polynomial order 2 (b) Polynomial order 4

K-fold fit to payoff function, order = 1, piecewise

a
=
Q
=]

o
=]

3 @2eUNS pue sjuiod eje

-3 -2 -1 0 ! 2 ?
- First step

(c) Piecewise linear

Figure 5: Variance reduction of Asian Option by fitter, M = 2

Improvement Time
Fit Model Price CI Runtime Ratio Total Equivalent
MC 8.1024 0.0698  21.36
Polynomial 2 8.1108 0.0097 1.23 7.18 22.59  1100.43
StackMC Polynomial 4  8.1112 0.0064 1.54 10.97 22.90  2570.85
Piecewise Linear 8.1117 0.0042 1.27 16.71 22.63 9963.16

Table 4: MC vs. StackedMC for an Asian Option with m = 2
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Improvement Time
Fit Model Price CI Runtime Ratio Total Equivalent
MC 5.8532 0.0502  22.24
StackMC Polynomial 2~ 5.8582 0.0073  102.64 6.87 124.88  1049.08
Piecewise Linear 5.8567 0.0025 3.10 19.88 25.34 8785.44

Table 5: MC vs. Stacked MC for an Asian Option with m = 50

Improvement Time
Fit Model Price CI Runtime Ratio Total  Equivalent
MC 5.8209 0.0499  23.10
StackMC Polynomial 2 5.8100 0.0076 1149.01 6.60 1172.12  1005.32
Piecewise Linear 5.8102 0.0025 5.59 19.84 28.69 9092.11

Table 6: MC vs

. StackedMC for an Asian Option with m = 100
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5 Conclusion

StackedMC is an easy to use an efficient post-processing technique to improve a stan-
dard Monte Carlo estimate. The procedure makes neither assumptions about the
sampling process nor about the function f to be estimated. This implies that instead
of a standard Monte Carlo draw a different sampling method can be used such as Im-
portance Sampling or Markov Chain Monte Carlo and that it can be applied not only
to smooth functions f but also to discontinuous or discrete valued ones. Furthermore,
there are no assumptions made about g other than that it must predict out-of-sample
values and that we want to be able to evaluate it analytically. This offers a wide spec-
trum of methods to find a good fit g.

Applied to the pricing of options in the Black-Scholes model the method shows notable
advantages over the standard approach. In both considered cases the additional cost
was negligible compared to the equivalent time needed for simple Monte Carlo to obtain
similar precision. At the same time it offered significant variance reduction, measured
as decrease in the confidence interval halfwidth, with a 15-fold improvement for the
European option and an improvement of up to 20-fold for the Asian one. The choice
of the fitting function g plays an important role in advantage of StackedMC. Here, a
piecewise linear fitter proved to be a good choice both in terms of computational cost
and precision which is especially visible with high dimensional fitting problems as is
the case with the Asian option. While in this paper the procedure was only discussed
in the Black-Scholes model it can also be applied to stochastic volatility models. For
further results on this see [9).
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