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1 Introduction

The ”central limit theorem”, CLT, is a collective term for theorems about the con-
vergence of distributions, densities or discrete probabilities. The term itself was first
used by George Pólya, in his article from 1920.

The most well-known version of the CLT is about the convergence of the normed
sums of (Xk), a sequence of independent and identically distributed random variables
on a common probability space with expectations ak.
Define we bn = Var

∑n
k=1Xk.

r ∈ R : P (
∑n

k=1
(Xk−ak)√
bn

≤ r) → Φ(r) for n→ ∞,

where Φ(r) is the distribution function of the standard normal distribution

Φ(r) =
∫ r
−∞

1√
2π
e−

x2

2
dx.

The CLT had a very long history, until it get his place in mathematics. In the
next pages we will learn about how it changed between 1810 and 1935.

But, before I start, we need to talk about Abraham de Moivre’s approximations
to binomial distributions, even if it doesn’t fit the characterization of the CLT, it
still had an impact on the later approaches.

1.1 De Moivre’ approximation

In 1733, De Moivre found an approximation to binomial distributions.
De Moivre wanted to find an approximation to P (|Z − [n

2
]| ≤ t) which is the

same as
∑t
i=−t P (Z = [n

2
]+i) for a large number of n fair trials.

In his work he used Jakob Bernoulli’s ”Law of Large Numbers”, where Bernoulli
showed that for n identical and independent trials, if hn is the relative frequency of
a perticular event occuring with the probability p then

limn→∞ P (|hn.p|) ≤ ϵ) = 1 ∀ϵ.

De Moivre needed an approximation for P (Z = [n
2
+ i) which is the probability

of [n
2
] + i ”successes” for a large number of n fair trials, where the fairness of the

trials means that p = 1
2
. So he started to work with

P (Z = [n
2
] + i) = 2−n

(
n

[n
2
]+i

)
.

First he approximated(
n
[n
2
]

)
2n

≈ 2√
2πn

and log

(
n

[n
2
]+i

)
(

n
[n
2
]

) ≈ −2 i
2

n

3



That follows:

P (Z = [n
2
] + i) ≈ 2√

2πn
e−2 i2

n

This equality could be considered as a local limit theorem, but that wasn’t de
Moivre’s main goal. It was to find an approximation

P (|Z − [n
2
]| ≤ t) ≈ 2 2√

2πn

∑t
i=0 e

−2 i2

n ≈ 4√
2πn

∫ t
0 e

−2x2

n dx.
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2 The beginning of the History

The history of the CLT starts with Pierre-Simon Laplace, who didn’t have a con-
crete theorem and mostly used his approach to the CLT as a tool to solve other
mathematical problems. A few author tried to dicuss Laplace’s work for example
Robert Leslie Ellis in 1844. In 1856 Anton Meyer even presented a proof for the
special case of the CLT, for two-valued random variables, his paper was accepted
for publication, but the publication failed and Meyer died in a short time. An other
author, who had an influence on later authors was Siméon Denis Poisson.

Later Peter Gustav Lejeune Dirichlet and Augustin Louis Cauchy both published
articles, which could be considered as a proof of the CLT.

In this stage of its history, it was connected to error theory. It wasn’t a math-
ematical problem of its own, the authors mostly used it as a tool to solve other
problems.

2.1 Laplace

Laplace’s work in probability theory is really important. He published his ”Théorie
analytique des probabilitiés”(TAP) in 1812, which includes typical problems,stochastic
models, and analytic methods.

Laplace worked with sums of independent random variables since the beginning.
He also developed the ”Laplacian method” for approximating integrals. His basic
idea was, that if f(x) depends on a very large parameter such that the function
f has a single, very sharp peak and only a small interval around this maximum
results as appreciable for the integral, then f asymptotically equal to a function
f(a)e−α(x−a)

2k+..., if f has its maximum at x = a. Laplace used this method for
example in the case of the Gamma function.

He had his first approach to the CLT in 1810, after almost forty years work, but
he didn’t state a theorem in his work. We can demonstrate his approach to the CLT
in the special case of identically distributed random variables X1 . . . Xn, although he
worked with errors of observation, presupposing they are mutual independent, with
∀j: EXj = 0 and P (Xj =

k
m
) = pk, for m ∈ N k ∈ {−m,−m+1, . . . ,m− 1,m}, to

calculate

Pj := P (
∑n
l=1Xl =

j
m
) for j ∈ {−nm,−nm+ 1, . . . , nm− 1, nm}.

Laplace used the generating function T (t) =
∑m
k=−m pkt

k, where Pj is equal to
the coefficient of tj after the multiplication of [T (t)]n. But he used a trick, he worked
with eix, where i =

√
−1, instead of t. Then from the introduction of a special case

of characteristic functions:

1
2π

∫ π
−π e

−itxeisxdx = δts (t, s ∈ (Z)),

follows that the coefficient to tj is:

Pj =
1
2π

∫ π
−π e

−ijx
[∑m

k=−m pke
ikx
]n
dx.
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We know that eikx =
∑∞
l=0

(ikx)l

l!
, what means∑m

k=−m pke
ikx =

∑∞
l=0(ix)

l∑m
k=−m pk

kl

l!
.∑m

k=−m pkk = 0, since the expectation is 0 . Then we define m such that m2σ2 =∑m
k=−m pkk

2, the other terms ilxl also have constant coefficients Al ∀l ∈ {3, 4, . . .},
so we get:

Pj =
1
2π

∫ π
−π e

−ijx
[
1− m2σ2x2

2
+
∑∞
l=3Al(ix)

l
]n
dx

Then we can find z(x), such that:

logz(x) = log[1− m2σ2x2

2
+
∑∞
l=3

(ikx)l

l!
]n

z(x) = e−
nm2σ2x2

2 (1 +
∑∞
l=3

n(ikx)l

l!
).

And with z(x)

Pj =
1
2π

∫ π
−π e

−itxz(x)dx,

where if we consider y =
√
nx, then we get:

Pj =
1

2π
√
n

∫ π√n
−π

√
n e

−ij y√
n e−

m2σ2y2

2 (1 +
∑∞
l=3

(iky)l
√
n
l−2

l!
)dy,

that means, if n→ ∞, then

Pj ≈ 1
2π

√
n

∫∞
−∞ e

−ij y√
n e−

m2σ2y2

2 dy = 1
mσ

√
2πn

e
j2

2m2σ2n .

The last equality was showed by Laplace.
This can be used to find P (r1

√
n ≤ ∑

Xl ≤ r2
√
n), which can be approximated

as the sum of P (
∑
Xl =

j
m
) for all j

m
∈ [r1

√
n; r2

√
n], what could be approximated

with integration, like at de Moivre’s distribution:

P (r1
√
n ≤ ∑

Xl ≤ r2
√
n) ≈

∫ r2
r1

1
σ
√
2π
e−

x2

2σ2 dx.

So we became the integral form of the CLT.
In his work Laplace trusted in the power of series expansions, and didn’t de-

termine the errors of approximations. For Laplace the CLT wasn’t a mathematical
problem itself, but a tool, what could solve other problems, for example:

� The comet problem

At this problem he observed the ”randomness” of 97 comets. He used the CLT
to calculate the probability of all angles of inclination falls within a certain
interval.

� The problem of foundation method of least squares

He used the CLT at this problem too, but his arguments were only valid for
an ”infinitely large” number of observation, which in this case was unrealistic.

� The problem of risk in the game of chance

Here Laplace, with the help of the CLT, dealt with a sequence of games, each
with two possible outcomes ”gain and ”loss”.
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2.2 Poisson

Poisson wrote two article about the CLT, one in 1824 and the other in 1829. His
work on the CLT was important for two main reasons. Firstly, he created a new
concept ”choses”, which could be an early form of random variables, and used it
to formulate and prove his theorems. Secondly, he also used counterexamples to
discuss the validity of his theorem.

In his version of the CLT he considered X1,...Xs to be a great number of choses,
whose density functions fn decrease sufficiently fast. He also supposed that for the
absolute values ρn(α) of the characteristic functions of Xn, which he defined

ρn(α)cosϕn :=
∫ b
a fn(x)cos(αx)dx and ρn(α)sinϕn :=

∫ b
a fn(x)sin(αx)dx,

there exist a function r(α) independent of n with 0 ≤ r(α) < 1 ∀α ̸= 0 and it is
valid that

ρn(α) ≤ r(α).

Then for arbitrary γ1, γ2,

P
(
γ1 ≤

∑s

n=1
(Xn−EXn)√

2
∑s

n=1
V arXn

≤ γ2
)
≈ 1√

π

∫ γ2
γ1
e−u

2
du.

The difference between the two side tends to zero if s tends to infinity.
As we can see Poisson used the distribution function of a normal distribution

with expectation 0 and variance 1
2
. If we would like to make his approximation a

little more familiar, with the standard normal distribution, we can reform the left
side of the approximation, using u = v√

2
:

1√
π

∫ γ2
γ1
e−u

2
du = 1√

2π

∫√2γ2√
2γ1

e
−v2

2 dv.

And we become the CLT in a more familiar form:

P
(
γ1
√
2 ≤

∑s

n=1
(Xn−EXn)√∑s

n=1
V arXn

≤ γ2
√
2
)
≈ 1√

2π

∫√2γ2√
2γ1

e
−v2

2 dv.

Poisson also believed that his CLT could be used also for discrete random vari-
ables.

2.3 Dirichlet

In 1846, Dirichlet discussed linear combinations of random errors, this discusson
could be a rigorous proof of the CLT.

The discussed errors were considered to have symmetric densities, which are
concentrated on a fixed interval [−a, a], this also assumes that the expectations are
zero. He also presupposed that for the linear combination α1x1 + . . . + αnxn the
sequence of αv has a positive lower and a positive upper bound. For his proof, to
be useful for non-identically distributed observational errors too, there had to be a
C, for which was valid that ∀x ∈ [−a; a]: C > |f ′

v(x)| for every density functions fv.
His main result was:
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∣∣∣P(− λ
√
n ≤ ∑n

v=1 αvxv ≤ λ
√
n
)
− 2√

π

∫ λ
r
0 e−s

2
ds
∣∣∣→ 0 (n→ 0)

where

r = 2
√

1
n

∑n
v=1 kvα

2
v,

he defined kv in his proof as:

kv :=
1
2

∫ a
−a z

2fv(z)dz

So he found a limit for the error of the approximation, which was actually far
from the optimal, but it also wasn’t his intention. He just wanted to show that
his modification of the Laplace’s method of approximation could be used also to
calculate the probabilities of linear combination of random errors.

As we can see, in his formula he uses the integral form of the CLT with a few
differences between this and the modern form of the CLT, where we usually use the
normal distribution with variance 1. But if we would divide the sum of errors with
(1
2
r
√
n) and in the integral, which could be defined also for s ∈ [−λ

r
, λ
r
], because of

the symmetric densities, use x√
2
instead of s, what also means that it’s defined for

x ∈ [−
√
2λ
r
;
√
2λ
r
], we would get a more familiar form of the CLT:∣∣∣P(−2λ
r

≤
∑n

v=1
αvxv√∑n

v=1
kvα2

v

≤ 2λ
r

)
− 1√

2π

∫ √
2λ
r

−
√
2λ

r

e
−x2

2 dx
∣∣∣→ 0 for (n→ 0)

where we can consider
√∑n

v=1 kvα
2
v as the variance of the linear combination of

errors.

2.4 Cauchy

In 1853, Cauchy established upper bounds for the error of a normal approximation
to the distribution of a linear combination of identically distributed independent
errors. He wrote it in a discussion with Bienaymé on least squares.

His conditions were similar as Dirichlets. So the errors ϵj had symmetric densities
fj, which vanished for arguments beyond the compact interval [−k; k]. He added
that for the linear combination

∑n
j=1 λjϵj should be valid that λj should have the

”order of magnitude” of 1
n
or less, which means:

∃α, β > 0 independent of n such that ∀j ∈ {1, . . . , n}∃γ(j) ≥ 1 with
α ≤ nγ(j)|λj| ≤ β,

and Λ :=
∑
λ2j should be of order 1

n
.

Cauchy used the notation c :=
∫ k
0 x

2f(x)dx and he get for v > 0:∣∣∣P(− v ≤ ∑n
i=1 λiϵi ≤ v

)
− 2√

π

∫ v

2
√
cΛ

0 e−θ
2
dθ
∣∣∣ ≤ C1(n) + C2(n, v) + C3(n)

where the functions C1, C2 and C3 tends to 0 if n increases.
We can get upper bounds for the absolute error of the approximation of the CLT

If we consider a sequence of independent random variables Xj, distributed like the
errors before, and λj =

1
n
, v = a√

n
(a > 0), c = 1

2
V arX1:
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∣∣∣P(− a
√
n ≤ ∑n

i=1Xi ≤ a
√
n
)
− 2√

π

∫ a
2
√
c

0 e−xdx
∣∣∣ ≤ C1(n) + C2(n,

a√
n
) + C3(n) → 0

for n→ ∞.

We can also, like at Dirichlet’s case, form a more familiar formula with the
standard normal distribution, if we divide the sums of random variables with (

√
2nc),

and in the integral we use y := x
√
2. So we get the formula:∣∣∣P( −a√

2c
≤

∑n

i=1
Xi√

nV arX1
≤ a√

2c

)
− 1√

2π

∫ a√
2c

− a√
2c

e
−y
2 dy

∣∣∣→ 0 for n→ ∞.

And since we consider the errors to be independent and identically distributed,
we can consider

√
nV arX1 as the variance of

∑n
i=1Xi.
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3 The founders of ”St. Peterburg school”

The founders of ”St. Peterburg school”, especially Pafnutii Lvovich Chebyshev, An-
drei Andreevich Markov, and Aleksandr Mikhailovich Ljapunov, all had an influence
on the history of the CLT.

Chebyshev and Markov both worked with moments, and in their work they both
used the CLT to illustrate their methods in moment theory, while Ljapunov worked
with it as a mathematical object of its own and he was the first, who rigorously
proved the CLT.

3.1 Chebychev

In 1887, Chebyshev published an article with an uncomplete proof of the CLT,
where the method he used was somewhat different from the authors before him.
The French translation of this article was published three years later, in 1890.

In his work he presented the CLT in the following form:
Let ui be a sequence of ”independent quantités” with zero expectations and nonneg-
ative densities ϕi, also with moments of arbitrary high order. Under the assumption
that for each order for all ”quantités” an upper and a lower bound of the moments
existed , he stated that ∀t1 < t2 ∈ R:

limn→∞ P
(
t1 ≤

∑n

i=1
ui√

2
∑n

i=0
Eu2i

≤ t2
)
= 1√

π

∫ t2
t1
e−x

2
dx.

As we can see, he also used the distribution function of a normal distribution
with variance 1

2
, but if we use in the integral y =

√
x and make a few changes in the

probability, then we become the CLT in the well-known form, what we mostly use
today. To make it a little less complicated we can define r1 :=

√
2t1 and r2 :=

√
2t2,

then with these changes we get:

limn→∞ P
(
r1 ≤

∑n

i=1
ui√∑n

i=0
Eu2i

≤ r2
)
= 1√

2π

∫ r2
r1
e−y

2
dy.

Actually we can consider
√∑n

i=0Eu
2
i as the root of the variance of

∑n
i=0 ui, since

they are independent and for all j is valid that Euj = 0 what means V aruj = Eu2j .
Chebychev didn’t proved the CLT rigorously, but his theorem is still important.

One of the two reason for its importance that he stated his theorem for ”quantités”
and not for errors as the other authors before him. The other is that he explicitly
stated conditions for the validity of the assertion and so he was the first to expressed
the CLT as a limit theorem proper.

3.2 Markov

Although Markov became Chebychev’s successor in teaching probability theory in
1882, he wasn’t too active in this field and only around 1898 started to work on
a moment theoretic proof of the CLT. Actually his proof of the CLT was just a
corollary of more general moment theoretic results.
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He wrote an article in 1898, where he definied the CLT for ”independent quantities”
u1, u2 . . .. He stated three conditions which these these quantitiés obeyed .
Firstly, they had to have zero expectations.
Secondly, there had to be a constant Cm ∀m such that |Eumk | < Cm ∀k ∈ N
And lastly, Eu2k had to have a positive lower bound.
And he got ∀α < β:

P
(
α
√
2
∑n
i=0Eu

2
i ≤

∑n
i=1 ui ≤ β

√
2
∑n
i=0Eu

2
i

)
→ 1√

π

∫ β
α e

−x2dx.

As we can see this is the same form as the one that Chebychev used, with a little
difference in the conditions. They both considered upper and lower bounds for the
moments in each order, but Markov presupposed, in his third condition, that Eu2k
doesn’t tend to 0 if k grows.

In his article he didn’t state a complete proof about the convergence of the
moments of the normed sums to the normal distribution, which would be important
for his approach to the CLT. He proved that in a letter exchange with Vasilev,
this proof was published in 1899. The main result of this theorem was that under
particular conditions: (∑n

i=1
(Xi−EXi)√

2
∑n

i=1
σ2
i

)m
→ 1√

π

∫∞
−∞ tme−t

2
dt.

In his earlier works the CLT wasn’t an independent research subject, it was
mostly a corollary to other moment theoretic results. But Ljapunov’s proof of the
CLT had an impact on Markov, and after he retired from teaching, he started to
work on probability theory more seriously. In 1908 he could also prove the CLT
under the so called Ljapunov condition with moment methods.

3.3 Ljapunov

Ljapunov was influenced by Chebychev, but he barely worked with moments, he
considered Chebyshev’s and Makov’s work on the CLT to be complicated and he
tried to find more general conditions for the CLT.

In 1900, he proved the CLT for the so called ”Ljapunov condition”. He let
x1,x2,... be an infinite sequence of independent random variables (”variables inde-
pendentes”), with Exi =: αi, E(xi − αi)

2 =: ai and E|x3i | =: li.

And he also defined An :=
∑n

i=1
ai

n
and L3

n := max1≤i≤nli.
Then he proved that under the condition

L2
n

An
n− 1

3 → 0 (n→ ∞)

for all z1 < z2∣∣∣P (z1√2nAn <
∑n
i=1(xi − αi) < z2

√
2nAn)− 1√

π

∫ z2
z1
e−z

2
dz
∣∣∣ < Ωn,

where Ωn is independent of z1, z2 and

Ωn → 0 for n→ ∞.
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As we can see in his formula, he didn’t used the distribution function of the
standard normal distribution, just like the other authors he also used the distribution
function of the normal distribution with expectation zero and variance half.

In 1901, he could weaken his condition, with

(d1+d2+...+dn)2

(a1+a2+...+an)2+δ → 0

where di := E|xi − αi|2+δ with an arbitrary small δ > 0.
Ljapunov took the CLT seriously as a distinct mathematical object. His proofs,

as we can see in the example of Markov, had an impact on authors in Russia and
also in Western Europe.

12



4 The CLT in the twenties

After the First World War probability theory began to be more important and the
CLT became an object of study within mathematics itself.

In the twenties a lot of authors started to work with the CLT, like Richard von
Mises, George Pólya, Paul Lévy and Felix Hausdorff. Jarl Waldemar Lindeberg also
worked with the CLT, he proved it for the ”Lindeberg condition”. We also need
to talk about Sergei Natanovich Bernshtein, whose ”lemma fondamental” was also
important in the history of the CLT.

4.1 Von Mises and Pólya

In 1919, von Mises published his article ”Fundamental Limit Theorems of Prob-
ability Theory”, in German ”Fundamentalsätze der Wahrscheinlichkeitrechnung”,
where he formulated and proved his local and integral CLTs, althought his results
were obsolete in the one-dimensional case. He also created the term ”distribution”,
which also have German translation, ”Verteilung”, for a monotonically increasing,
right continuous function, which has the limit 0 as x tends to −∞ and 1 as x tends
to ∞.

The CLT received its name from an article Pólya wrote in 1920, this article
should be recognized as a response to von Mises. The two mathematicans had an
exchange of letters, where Pólya critized von Mises’s treatment of the CLT, mostly
because it was inferior to Ljapunov’s and Markov’s work.

4.2 Lindeberg

Lindebergs most important result in his mathematical work was his proof of the
CLT.

In 1920, he proved the CLT under a very weak condition, he did this without
knowing about Ljapunov’s works. In this work the discussed random variables,
”quantites” Xk, which were mutually independent and had the distribution Uk,
with EXk = 0, V arXk = EX2

k = σ2
k and with finite absolute moment of third order.

He also presupposed

1
r3n

∑n
k=1

∫∞
−∞ |x|3dUk(x) → 0 for (n→ 0),

where he defined

rn :=
√∑n

k=1 σ
2
k.

After certain modifications he could weaken his conditions, so Xk didn’t nec-
essary have finite absolut moment of third order, and he published his results in
1922.

In his work he considered (Uk)k∈{1...n} to be the distribution functions of n mutu-
ally independent random variables (Xk)k∈{1...n} with EXk = 0, V arXk = EX2

k = σ2
k,

also he presupposed that
∑n
k=1 σ

2
k = 1.

He defined U to be the distribution of the sum of all random variables

13



U(x) :=
∫∞
−∞

∫∞
−∞ . . .

∫∞
−∞ Un(x− t1 − t2 − . . .− tn−1)dUn−1(tn−1) . . . U1(t1),

and a function s

s(x) =

{
|x|3 if |x| < 1
x2 else

.

He proved that ∀ϵ > 0, even if it is taken arbitrarily small, ∃η > 0 such that∣∣∣U(x)− ∫ x
−∞

e−
t2

2√
2π
dt
∣∣∣ < ϵ

if

∑n
k=1

∫∞
−∞ s(x)dUk < η.

Since U is the distribution of the sum of all random variables, it is equal to

P (
∑n
k=1 Uk < x). And with ak = EUk = 0 and bn =

√∑n
k=1 σ

2
k = 1, We can wrote:

U(x) = P (
∑n

k=1
(Uk−ak)
bk

< x).

We also can see that he used e−
t2

2√
2π

in the integral, which is the density function
of the standard normal distribution.

He used an entirely new method for his arguments.

4.3 Hausdorff

Hausdorff was mainly interested in the integral version of the CLT. He studied
Ljapunov’s and von Mises’s work. He also studied Lindeberg proof of the CLT,
he was mostly interested in his method. Later he deduced a theorem, which is a
version of the CLT, with the name ” Ljapunov’s limit theorem”, the translation
of ”Grenzwerthsatz von Liapunoff”. For his theorem he presupposed ”variables”
X1, . . . X2 and for all j: EXj = 0, EX2

j = a2j and E|X3
j | = c3 . He considered Φn to

be the distribution function of
∑n
k=1

Xk

bn
√
2
, where b2n =

∑n
j=1 a

2
j , and dn = (

∑n
j=1 c

3
j)

1
3 ,

then

|Φn − Φ| ≤ µ
(
dn
bn

) 3
4 ,

where µ is a ”numerical constant” and Φ(x) = 1√
π

∫ x
−∞ e−t

2
dt.

As we can see, he also used the the distribution function of a normal distribution
with variance 1

2
and expectation 0, Φ0; 1

2
, instead of the standard normal distribution.

He also noticed a sufficient condition for the convergence of Φn to Φ

dn
bn

→ 0 for (n→ 0).
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If we look closer to this condition, we can find out that the ”Ljapunov condition”
from 1901, with δ = 1 implies it. To prove that, we show that a2i = EX2

i =
E(Xi − EXi)

2 and c3i = E|Xi|3 = E|Xi − EXi|3, since EXi = 0, and then we use
the ”Ljapunov condition”, which says:

(c31+c
3
2+...+c

3
n)

2

(a21+a
2
2+...+a

2
n)

3 → 0.

With that(
dn
bn

) 3
4 =

(
(c31+c

3
2+...+c

3
n)

1
3

(a21+a
2
2+...+a

2
n)

1
2

) 3
4 =

(c31+c
3
2+...+c

3
n)

1
4

(a21+a
2
2+...+a

2
n)

3
8
=
(

(c31+c
3
2+...+c

3
n)

2

(a21+a
2
2+...+a

2
n)

3

) 1
4 → 0.

4.4 Lévy

In his earlier works Lévy used counterexamples to discuss the CLT.
Lévy created certain probability laws, he called them ”laws of type Lα,β. In this

laws he worked with constants c0 > 0, c1 and with characteristic functions in the
form eψ(t), where

ψ(t) = −(c0 + sgn(t)c1i)|t|α

and

c1
c0

=

{
βtanπ

2
α for α ∈]0; 1[∪]1; 2[

β for α ∈ {1; 2} .

He also showed that ∀β,α ̸= 1,2 exists a probability density function f with a
characteristic function ϕ such that(

ϕ
(

t

n
t
α

))n
→ eψ(t).

In 1922, he had a version of the CLT, as a special case of his theorem on the
convergence to distributions of type Lα,β. In his version of the CLT he considered
a sequence of independent random variables (Xk), with distribution functions Fk,
which have expectation 0 and variance 1. He also presupposed

∀ϵ > 0∃a > 0 ∈ N :
∫
|η|≤a η

2dFk(η) ≥ 1− ϵ,

although it was only important, because it was a condition for ”the laws of Lα,β”.
Then he considered a sequence (mk)k∈N>0 with:

max1≤k≤nm
2
k∑n

k=1
m2

k

→ 0 for n→ ∞.

Then

limn→∞ P
(∑n

k=1
mkXk∑n

k=1
m2

k

≤ x
)
= 1√

2π

∫ x
−∞ e−

t2

2 dt.

Unfortunately, Lévy, wasn’t lucky with the CLT, since he always had priority
conflict with other authors about the publication of similar, sometimes the same,
results. He had his first such conflict, about his version above, with Lindeberg.
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4.5 Bernshtein

In 1922, Bernshtein published an article, where he used a lemma, the so called
”lemme fondamental”, with that the CLT could be used for ”almost independent
random variables” and it also had an influence in the history of the martingale
theorems. But Bernshtein didn’t give any proof, also the wording of this lemma
wasn’t entirely clear, so his article didn’t had any impact.

The version with the proof was published in 1926.

16



5 Necessary and sufficient conditions for the CLT

In 1935, both Paul Lévy and Willy Feller proved that there are conditions, which
are necessary and also sufficient for the CLT.

5.1 Lévy

As I mentioned before Lévy already worked on the CLT in the twenties.
He tried to get the newest results on the CLT, rather than a well-organized

theory, so he often didn’t prove the assertions, which he used in his discussion. He
also used his newly created analytical tools of concentration and dispersion.

He created ”dispersion” to compere the size of a random variable to the overall
sum, he also created its inverse and called it ”concentration”. This two new term
were very useful in discussing the convergence of series of random variables.

He defined the concentration fX(l), which is the maximum probability to an
interval length l > 0, of a random variable X as

fX(l) := sup−∞<a<∞ P (a < X < a+ l).

And he defined the dispersion ϕX(γ), the minimum interval length to the prob-
ability γ ∈ [0, 1[, of a random variable X as

ϕX := inf{x ∈ R+
0 |fX ≥ γ}.

In his theorems he let γ ∈]0, 1[ to be an arbitrary, but fixed probability and he
considered Ln to be the dispersion of

∑n
k=1Xk assigned to γ. Lévy always assumed

Ln ̸= 0 from a certain number n, although he later showed that this is almost
evident.

As I mentioned before he used the dispersion to compere the size of random
variables. He called Xk ”invidually negligible” in terms of the dispersion of the
total sum, if

∀ϵ: P
(
|Xk| > ϵLn

)
→ 0 for (n→ ∞).

He also expressed that ”all terms are invidually small” if

∀ϵ > 0: limn→∞ P
(
max1≤n |Xk| > ϵLn

)
= 0.

He used concentration and dispersion in the case of the CLT too.
First he proved the ”classical case” of the CLT, where he considered the (Xk) to

be a sequence of identically distributed random variables then

P
(∑

k=1nXk√
n

≤ x
)
→ Φ(x) for n→ ∞,

where Φ is the standard normal distribution, if and only if EX2
1 = 1 and EX1 = 0.

In this case, he only had to show that if the distribution of
∑

k=1nXk√
n

tends to 0

then EX2
1 <∞, because of the properties of the CLT. .
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After that, he started to work with the general case, with not identically dis-
tributed random variables, where he assumed that the random variables are negli-
gible in terms of the dispersion of the total sum. In this case he proved that the
necessary and sufficient conditions are that ∀ϵ1, ϵ2 > 0 and ∀n ∈ N ∃X(n) such that

X(n)√
V ar

∑n

k=1
Ynk

≤ ϵ1, where Ynk :=

{
Xk, if |Xk| ≤ X(n)
0, else

and
∑n
k=1 P (|Xk| > X(n)) ≤ ϵ2

5.2 Feller

Feller started to work on probability theory only around 1934. He knew how to deal
with characteristic functions and he get some benefit from this knowledge, since he
used the characteristic functions as his main tool in his theorem. He also used some
auxiliary theorems, which he proved in his article.

His ideas were easy to understand, since he explicitly presented his methods and
the characteristic functions were also familiar for his audience.

For the distribution functions Vk of the random variables Xk he also presupposed
the negligibility with respect to the respective convolution function Wn. It means
that ∃an, bk ∀x ̸= 0:

max1≤k≤n |Vn(anx+ bk)− E(x)| → 0 for n→ 0

with

E(x) =

{
0, for x < 0
1, else

,

it could be written also in the form:

∀ϵ: max1≤k≤n P (|Xk − bk| > ϵan) → 0.

He found out that for a sequence of distributions Vk, which all have zero median,
the sufficient and necessary condition for using the CLT is that

∀δ > 0: limn→∞
1

p2n(δ)

∑n
v=1

∫
|x|≤pn(δ) x

2dV(x) = ∞,

where

pn(δ) = min{r ∈ R+
0 |
∑n
v=1

∫
|x|>r dV(x) ≤ δ}.

In his article Feller also wrote a separate discussion of the Lindeberg condition.
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5.3 Results

Their results are similar.
If we want to see both of them results we can consider Xk to be a sequence of

independent random variables, with distribution functions Vk, which all have the
median 0.

Feller’s main result was: ∃an ∈ R+ and ∃bk ∈ R such that

P
(

1
an

∑n
k=1(Xk − bk) ≤ x

)
→ Φ(x)

and max1≤k≤nP (|Xk − bk| > ϵan) → 0 (∀ϵ > 0)

as n→ ∞ if and only if

∀δ > 0∀η > 0∃n(δ, η)∀n ≥ n(δ, η): p2n(δ)∑n

k=1

∫
|x|≤pn(δ)

x2dVk(x)
,

where pn(δ) = min{r ∈ R+
0 |P (|Xk| > r) ≤ δ}.

Lévy in his version considered Ln to be the dispersion of
∑n
k=1Xk assigned to an

arbitrary, however fixed, probability γ ∈]0; 1[. So his theorem looks like: ∃an ∈ R+

and ∃bn ∈ R such that

P
(

1
an

∑n
k=1(Xk − bk) ≤ x

)
→ Φ(x)

and max1≤k≤nP (|Xk| > ϵLn) → 0 (∀ϵ > 0)

as n→ ∞ if and only if

∀δ > 0∀η > 0∃n(δ, η)∀n ≥ n(δ, η)∃X(n) > 0:

X2(n)∑n

k=1

(∫
|x|≤X(n)

x2dVk(x)−(
∫
|x|≤X(n)

xdVk(x))2
)

and
∑n
k=1 P (|Xk| > X(n)) < δ.

In their theorems they both had criterion about the negligibility of the random
variables, and both criterion implies

max1≤k≤nP (|Xk| > ϵan) → 0,

which could be proved in Feller’s case with the help of the zero median property of
all distributions and in Lévy’s case with the asymptotically equality of the orders of
magnitude of an and Ln.

5.4 Priority

As I mentioned before Lévy always had priority conflict in his works about the
CLT. In the case of the sufficient and necessary conditions of the CLT, he had such
problems again.
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Feller’s results were given more attention, as Lévy said, the reason for that was
that Feller published his work earlier. Later, Le Cam studied the cronology of the
publication of their articles and he found out that although Lévy published his work
only in December, he made his work, in the form of a ” prepint” available for the
audience earlier than Feller, what means that he is entitled to the priority. And it
was also not certain that Feller’s article was published earlier, since we don’t know
the exact delivery date.

Lévy often wasn’t acknowledged for his work. For example, Gnedenko and Kol-
mogorov didn’t mention him in connection with this subject. Even Cramér, who
usually had high praise for his work, mentions only Feller in a discussion about nec-
essary and sufficient conditions of the CLT. In the end he realized that there aren’t
any meaningfully speak about ”priority” for two works, which are so different in
style and methods.
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6 Conclusion

In this study we discussed the history of the central limit theorem.
It started with Laplace, who used it as a tool to solve other mathematical prob-

lems. Poisson also had an influence on the history of the CLT, he gave counterexam-
ples to it and also created a new concept, ”choses”, for random variables. We also
talked about Dirichlet’s discussion of the linear combination of observational errors
and Cauchy’s upper bounds for the error of the approximation to the distribution
of a linear combination of errors, which both could be considered as a proof of the
CLT.

Chebyshev expressed the CLT proper and he used it for ”quantites”. Markov
also gave proofs for the CLT, although his first proof was more likely a corollary
of other moment theoretic results. The first one, who considered the CLT as a
mathematical problem on its own, was Ljapunov. He also proved it for the so called
”Ljapunov condition”. After Ljapunov’s work, Markov also proved the CLT under
the ”Ljapunov condition” with moment methods.

After the First World War the CLT became a mathematical problem itself. More
author started to work with it. It got its name in 1920, from an article wroted by
Pólya. Lindeberg also proved it, for even weaker conditions than Ljapunov, although
he didn’t knew about his work. Bernshtein’s ”lemme fondamental” was important
too.

The CLT also have sufficient and necessary conditions, Lévy and Feller both
found these conditions, in nearly the same time, but with different methods. Feller
used more ”traditional” methods, while Lévy used his newly invented concentration
and dispersion. In the end, they get similar results.
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