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Abstract

The following seminar paper is based on the book “Loss Coverage : Why Insurance
Works Better With Some Adverse Selection”, written by Guy Thomas and published
in 2017. For some reason the book caught my attention by the title, so I began my
investigation of this book, reading it and pondering over its contents. It offered me
something more than I had previously known about adverse selection. The main focus
of the book is the argument that some restrictions on risk classification, far from
having adverse effects, can actually make insurance work better, in the sense of in-
crease loss coverage. Loss coverage is defined as the expected losses compensated by
insurance. Personally, I find it’s a very well written and interesting book.
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1 Introduction

1.1 What is adverse selection?

Adverse selection is a term commonly used in economics, insurance, and risk mana-
gement that describes a situation where market participation is affected by asym-
metric information. Information asymmetry is known as a state that “When buyers
and sellers have different information”

Why is it something to be avoided at all cost based on the orthodox views?

In the orthodox views that held by the insurance industry, actuaries and economists,
this asymmetry creates an imbalance of power in transactions, which can sometimes
cause the transactions to go awry, a kind of market failure in the worst case.

A succinct statement of this orthodoxy is given in the policy document “Insurance @
superannuation risk classification policy” published by the institute of Actuaries in
Australia, which explains:

“In the absence of a system that allows for distinguishing by price between indivi-
duals with different risk profiles, insurers would provide an insurance or annuity
product at a subsidy to some while overcharging others. In an open market, basic
economics dictates that individuals with low risk relative to price would conclude that
the product is overpriced and thus reduce or possibly forgo their insurance. Those
individuals with a high level of risk relative to price would view the price as attractive
and therefore retain or increase their insurance. As a result the average cost of the
insurance would increase, thus pushing prices up. Then, individuals with lower loss
potential would continue to leave the marketplace, contributing to further price spiral.
Eventually the majority of consumers, or the majority of providers of insurance,
would withdraw from the marketplace and the remaining products would become
financially unsound.” !

Adverse selection spiral

Adverse selection spiral or “death spiral” is known as the sequence of a rise in insur-
ance prices and fall in numbers insured, followed by a further rise in insurance prices
and fall in numbers insured, and so on

1.2 Scope & Focus

The focus is on Personal Insurances, particularly those contingent in some way on the
insured’s life and health (life insurance, annuities, income protection insurance,
critical illness insurance and health insurance (medical expenses insurance)). For
these insurance, higher risk often face not only prospective disadvantage, but also
some degree of current disadvantage (e.g some degree of current ill-health). To a
lesser extent, he also have in mind other personal insurances, such as travel, home and
car insurance.

1 Loss Coverage: Why Insurance Works Better With Some Adverse Selection, p.3-4
1



The insurances where the insured is a corporation of comparable strategic sophis-
tication to the insurer, or where the insured views the contract as part of a speculative
investment portfolio, rather than as protection against some unlikely and undesirable
contingency is not in the consideration and the intuitions about public policy, and
particularly perceptions of fairness in risk classification, are highly sensitive to this
scope and focus.

2  Introduction to The Argument

2.1 Adverse Selection and Loss Coverage

The main innovation is the concept of “Loss Coverage”. The impact of adverse
selection should be measured, not in terms of the number of insured, but rather in
terms of loss coverage.

Consider an insurance market where individuals can divided into two risk-groups, one
higher risk and one lower risk, based on the information which is fully observable by
insurers. Assume that all losses and insurance are of unit amount. Also assume that an
individual’s risk is unaffected by the purchase of insurance, i.e there is no moral
hazard. If insurers can, they will charge risk-differentiated prices to reflect the
different risks. If instead the insurers are banned from differentiating between higher
and lower risks, and have to charge a single pooled price for all risks, a pooled price
equal to the simple average of the risk-differentiated prices will seem cheap to higher
risks and expensive to lower risks. Higher risks will buy more insurances, and lower
risks will buy less. To break even, insurers will then need to raise the pooled price
above the simple average of the prices. Also, since the number of higher risks is
typically smaller than the number of lower (or standard) risks, higher risks buying
more and lower risks buying less implies that the total number of people insured
usually falls.This combination of a rise in price and a fall in demand is usually
portrayed as a bad outcome, for both insurers and society.

However, from the social perspective, it is arguable that higher risks are those more in
need of insurance. Also, the compensation of many types of loss by insurance appears
to be widely regarded as a desirable objective, which public policymakers often seek
to promote by public education, by exhortation and sometimes by incentives such as
tax relief on premiums. Insurance of one higher risk contributes more in expectation
to this objective than insurance of one lower risk.

This suggests that public policymakers might welcome increased purchasing by
higher risks, except for the usual story about adverse selection.

The usual story about adverse selection overlooks one point: with a pooled premium
and adverse selection, loss coverage can still be higher than with fully risk-
differentiated premiums and no adverse selection. Although pooling (pooled price)
leads to a fall in numbers insured, it also leads to a shift in coverage towards higher
risks. From the public policymaker’s viewpoint, this means that more of the ‘right’
risks - those more likely to suffer loss - buy insurance. If the shift in coverage is large
enough, it can more than outweigh the fall in numbers insured.

This result of higher loss coverage can be seen as a better outcome for society than
that obtained with no adverse selection.



2.2 Toy Example

The argument above can be illustrated by this toy example. Consider a population of
just ten risks (lives), with three scenarios for adverse selection.

The first scenario, risk-differentiates prices are charged, and a subset of the population
buys insurance.(no adverse selection). The second and third scenarios, risk classifi-
cation is banned, leading to adverse selection: a different subset of the population
buys insurance.

In Figure 1-3, each ‘H’ represents one high risk and each ‘L’ represents one low risk.
The Population has typical predominance of lower risks : eight lower risks each with
probability of loss 0.01, and two higher risks each with probability of loss 0.04.

In each scenarios, the shaded ‘cover’ above some ‘H’ and ‘L’ denotes the risks
covered by insurance.

Cover = The risks covered by insurance.

Figure 1 : High and low risks covered in same proportions as in population
=> No adverse selection (base outcome)
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Scenario 1

In Scenario 1 (no adverse selection), in Figure 1, risk-differentiated premium are
charged. Higher and lower risk-group each face a price equivalent to their prob-ability
of loss ( an actually fair price ). The demand response of each risk-group to an
actually fair price is the same: exactly half the members of each group buy insurance.
The shading shows that a total of five risks are covered. Note that the equal areas of
shading over one ‘H’ and four ‘L’ represent equal expected losses.

. . (4x0.01) + (1 x0.04)
The Weighted Average of the Premiums : 5 = 0.016.

Since higher and lower risks are insured the same proportion as they exist in the popu-
lation, there is no adverse selection.



The expected losses compensated by insurance for the whole population can be
indexed by:

(4x0.01) + (1 x0.04) _
(8x0.01)+(2%x0.04)

Loss Coverage = 50 %

Figure 2 : Higher weighted average premium, lower numbers insured
=> Moderate adverse selection
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The shift in coverage towards higher risks more than offsets lower numbers insured
=> higher loss coverage (better outcome)

Scenario 2

In Scenario 2 (moderate adverse selection), in Figure 2, risk classification has been
banned, and so insurers have to charge a common ‘pooled’ premium to both higher
risks and lower risks. Higher risks buy more insurance and lower risks buy less. The
shading shows that three risks (compared with five previously) are now covered. The
pooled premium is set as the weighed average of the true risks, so that expected
profits on low risks exactly offset expected losses on high risks.

1 x0.01)+(2x0.04
This Weighted Average of the Premiums is : ( ) 3 ( ) =0.03

Note that the weighted average premium is higher in Scenario 2, and the number of
risks insured is smaller. These are the essential features of adverse selection, which
Scenario 2 accurately and completely represents. But there is a surprise: despite the
adverse selection in Scenario 2, the expected losses compensated by insurance for the
whole population are now larger. Visually, this is represented by the larger are of
shading in Scenario 2 .



The loss coverage in Scenario 2 is:

(1x0.01)+ (2x0.04)
Loss Coverage = =56 %
(8 x0.01) + (2x0.04)

Figure 3 : Only one individual (higher risk) remains insured
=> Severe adverse selection
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Shift in coverage towards higher risks does not offset lower numbers insured
=> lower loss coverage (worse outcome)

Scenario 3

A ban on risk classification can also reduce loss coverage, if the adverse selection
which the ban induces becomes too severe. This possibility is illustrated in Scenario 3
(Severe adverse selection). Adverse selection has progressed to the point where only
one higher risk, and no lower risks, buys insurance. The expected losses compensated
by insurance for the whole population are now lower. That is, 25% of the population’s
expected losses are now compensated by insurance, compared with 50% in Scenario
1, and 56% in Scenario 2.

Summary

The key idea is that loss coverage is increased only by the “right amount” of adverse
selection, but reduced by “too much” adverse selection. Which of Scenario 2 or
Scenario 3 actually prevails depends on the demand elasticities of higher and lower
risks.

3  The Argument

In this chapter, more detailed and realistic numerical examples than the toy
examples will be given, showing that while loss coverage is increased by ‘the
right amount’ of adverse selection, it can be reduced if there is ‘too much’
adverse selection. “ The Argument that some degree of adverse selection makes
the insurance system work better ” will be presented in three way ; 3.1 the key
argument, 3.2 numerical examples and 3.3 mathematical details.
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3.1 The Key Argument

The key argument repeats the first part of “Adverse Selection and Loss Cover-age”.
Another perspective on this argument is that a public policymaker designing risk
classification policies in the context of adverse selection normally faces a trade-off
between insurance of the ‘right’ risks and insurance of a large number of risks. The
optimal trade-off depends on the response of higher and lower risk-groups to different
prices, (technically, the demand elasticity of different risk-groups), indwell normally
involve a least some adverse selection. The concept of loss coverage quantifies this
trade-off, and provides a metric for comparing the effects of different risk classifi-
cation schemes.

3.2 Numerical Examples

Numerical examples are similar in nature to the three scenarios illustrating ‘no
adverse selection’, ‘some adverse selection’ (moderate adverse selection) and ‘too
much’ adverse selection (severe adverse selection) in the toy example above. Suppose
that,

a population of 1000 risks,

16 losses are expected every year

there are 2 risk-groups

200 high risks

800 low risks

the high risks have a probability of loss 4 times higher than the low risks.

We assume that all losses and insurance are of unit amount, and that there is

no moral hazard. An individual’s risk-group is fully observable to insurers.

Table 1 Full Risk-Classification: no adverse selection (base outcome)

Low nisk-group  High risk-group  Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1 000
Expected population 8 S 16
losses
Break-even 0.01 0.04 0.016
premiums
Insk-differentiated
Numbers insured 400 100 500
Insured losses 4 4 Q
Adverse selection
Loss coverage 0.5




Table 2 Risk-Classification banned : moderate adverse selection leading to higher loss
coverage (better outcome)

Low nisk-group  High nisk-group  Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1 000
Expected population S S 16
losses

Break-even 0.02 0.02 0.02
premiums (pooled)

Numbers insured 300 150 450
Insured losscs 3 6 9
Adverse selection 1.25
Loss coverage 0.5625

Table 3 Risk-Classification banned: severe adverse selection leading to lower loss
coverage (Worse outcome)

Low risk-group  High risk-group  Aggregate

Risk 0.0! 0.04 0.016
Total population 800) 200 1000
Expected population 8 8 16

losses

Break-even 0.02154 0.02154 0.02154
premiums |pooled!

Numbers insured 200 125 325
Insured losses 2 5 7
Adverse selection 1.34625
Loss coverage 0.4375

Under the initial risk classification regime, insurers operate full risk classification
charging actuarially fair premiums to members of each risk-group. We assume that the
proportion of each risk-group which buys insurance under these conditions - the * fair-
premium demand’ - is 50% which is realistic for life insurance in the UK and the USA
(base on the Author research).

The Table 1 shows the outcome, which can be summarised as follows: There is no
adverse selection. The average of the insurance premiums, weighted by numbers of
insurance buyers at each price, is 0.016 (final column, fourth line). This is the same
as the population-weighted average risk (final column, first line). Dividing the first by
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0.016

the second, we index the adverse selection as 0016 = 1, indicating a neutral position
(i.e. no adverse selection). Half the losses in'the population are compensated by
insurance. We heuristically characterise this as a ‘loss coverage’ of 0.5.

Now suppose the a new risk classification regime is introduced, where insurers are
obliged to charge “a common ‘pooled’ premium” to members of both the low and
high risk-groups.

One possible outcome is show in Table 2, which can be summarised as follows: The
pooled prerpium of 0.02 at whiph insure'rs makgogir&%rgf;lltgoixso%%%culated as the
demand-weighted average of risk premiums: 3 = 0.02. The
pooled premium is expensive for low risks, so 25% fewer 0% t%em buy insurance (300,
compared with 400 before). The pooled premium is cheap for high risks, so 50%
more of them buy insurance (150, compared with 100 before). Because there are 4
times as many low risks as high risks in the population, the total number of policies
sold falls (450, compared with 500 before). There is moderate adverse selection. The
pooled premium of 0.02 exceeds the population-weighted average premium of 0.016,
giving adverse selection: % = 1.25. The resulting loss coverage is 0.5625. The
shift in coverage towards high risks more than outweighs the fall in number of the
policies sold: 9 of 16 losses (56%) in the population as a whole are now compensated
by insurance (compares with 8 of 16 before).Another possible outcome under the
restricted risk classification scheme the time with more severe adverse selection, is
shown in Table 3 which can be summarised as follows: The pooled premium of
0.02154 at which insurers.make G589 QB?P-ESQESS )g%l&glated as the demand—yveighted
average of the risk premiums: 3 = 0.02154. There is severe
adverse selection, with further increase in the pooled premium and a significant fall in
numbers insured. The loss coverage is 0.4375. The shift in coverage towards high
risks is not sufficient to outweigh the fall in number of policies sold : 7 of 16 losses
(43.75%) in the population as a whole are now compensated by insurance ( compared
with 8 of 16 in Table 1, and 9 out of 16 in Table 2).

Taking the three tables together, we cam summarise by saying that compared with an
initial position of no adverse selection in Table 1, moderate adverse selection leads to
higher expected losses compensated by insurance ( higher loss coverage) in Table 2 ,
but too much adverse selection leads to lower expected losses compensated by
insurance (lower loss coverage) in Table 3.

This argument that moderate adverse selection increases loss coverage is quite
general: it does not depend on any unusual choice of numbers for the examples.

It also does not assume any bias by the policymakers towards (or against) compen-
sating the losses of the high risk-group in preference to those of low risk-group. The
same preference is giving to compensation of losses anywhere in the population ex
post, when all uncertainty about who will suffer a loss has been resolved. This implies
giving higher preference to insurance cover for higher risks ex ante, before we now
who will suffer a loss, but only in proportion to their higher risk.

Summary

This way it has suggested that the usual arguments that adverse selection alway makes
insurance work less well, and that more adverse selection is always worse than less,
are misconceived.Adverse selection implies a fall in numbers insured, and also a shift
in coverage towards higher risks. If the shift in coverage outweighs the fall in num-
bers, the expected losses compensated by insurance are increased. From a public
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policy perspective, a degree a so-called ‘adverse’ selection in insurance is a good
thing.

3.3 Mathematical Details

The discussion before was informal. Now let’s look at Mathematical Details , since
we are mathematics students. In mathematical details will be divided it in two parts,
which gonna be ,3.3.1 Basic Mathematics of Loss Coverage and 3.3.2 Further
Mathematics of Loss Coverage.

Throughout these, we assume a population of risks can be divided into low risk-group
and high risk-group, based of information which is fully observable to insurers.

Just two risk-groups is of course not a realistic model of most insurance markets, but
it is enough to illustrate principles. 2

We also assume that all losses and insurance cover are of unit size, and no moral
hazard, that is, giving the risk-group, the probability of loss is not affected by the
purchase of insurance.

3.3.1 Basic Mathematics of Loss Coverage

A Model for an Insurance Market

Let u, and p, be the probabilities of loss for the low and high risk-groups.

Let p; and p, the the population fractions for the low and high risk-groups, that is the
proportions of the total population represented by each risk-group.

This means a risk chosen at random from the entire population has a probability p, of
belonging to the low-group.

All quantities defined below are for a single risk sampled at random from the
population (unless the context requires otherwise).

The Expected Loss is denoted by E[L] ( L for Loss) and given by :

2
E[L] = ) up, 1.1

i=1
[E[L] corresponds to a unit version of the third row of the table 1-3.

In absence of limits on risk classification, insurers will charge risk-differentiated
premiums equal to the probabilities of loss, #; = y; and 7, = p, for risk-groups 1 and
2, respectively.

The Expected Insurance Demand is denoted by E[Q] (Q for Quantity) and given
by:

2
E[Q] = Z d(u;, )p, 12

i=1

2 (The extension to N risk-groups is straightforward, see for example Hao et al.[2016b])

9



where d(p;, m;) is the proportional demand for insurance for risk-group i when
premium 7; is charged, that is the probability that an individual selected at random
from the risk-group buys insurance.

The Expected Premium is denoted by E[II] (I for Premium) and given by :

2
E[IT] = ) d(u.m)pir, 13
i=1

The Expected Insurance Claim is denoted by E[Q L] and given by :

2
E[QL] = ) d(umm)pis; 14

i=1

Adverse Selection

The phrase ‘adverse selection’ is typically associated with positive correlation (or
equivalently, covariance) of cover O and loss L; most papers testing for adverse
selection in economics literature use this definition. “This section makes this
definition precise, in a form which will later help to highlight the relationship between
advise selection and loss coverage.”

By the standard definition, the Covariance of Q and L is :

Cov(Q,L) = E[(Q —E[QD(L — E[LD] = E[QL] - E[Q]E[L] 1.5

While the economics literature typically uses covariance (Q,L) > 0 as a test for
adverse selection, it is more convenient to note that when the covariance is zero, the
two term in Equation (5) must be the same.

Then Adverse Selection is denoted by A and defined as :

E[QL]

= —— 1.6
E[QIE[L]
This enable us to index different types of selective behaviour by insurance customers
as follows :
A < 1 : advantageous selection
A =1 : no selection
A > 1 :adverse selection
(See in Tables 1-3)

To compare the severity of adverse selection under different risk-classification
regimes, we need to define a reference level of adverse selection.

Adverse selection under alternative schemes can then be expressed as a fraction of
adverse selection under the reference scheme.

A convenient reference scheme is risk-differentiated premiums (actuarially fair

10



premiums).
Then using subscript O to denote quantities evaluated under risk-differentiated
premiums, we define the adverse selection ratio as :

Adverse selection Ratio = — 1.7
0

In words, adverse selection ratio is the ratio the expected claim per policy under the
actual risk classification scheme to the expected claim per policy under risk-
differentiated premiums.

Adverse Selection ratio can also be thought of as the ratio of the demand-weighted
average premiums required for insurance to break even under each risk classification
scheme.

Loss Coverage
Loss Coverage in this book is defined as the expected insurance claim ( as previously
evaluated in equation (1.4) ) :

2
Loss Coverage = E[QL] = Z d(p,, )p; ;i 1.8

i=1

The product of random variables Q and L can alternatively be thought of as the
following ‘ indicator’ random variable:

QL = {1 if the individual both incurs a loss and has cover, 0 otherwise} 1.9

Loss Coverage can then be thought of as indexing the ‘overlap’ of cover Q and losses
L in the population. It represent the extent to which insurance cover is concentrated
over the ‘ right’ risks (those most likely to suffer loss). It measures the efficacy of
insurance in compensating the population’s losses.

The right-hand side of Equation (1.8) also shows that loss coverage can be contrasted
with unweighted insurance demand, which corresponds to the ‘number of risks
insured’ often referenced in information discussions of adverse selection.

Loss Coverage Ratio

When comparing alternative risk classification schemes, it is often helpful to define
loss coverage to be 1 under some suitable reference scheme. Loss Coverage under
alternative schemes can then be expressed as a fraction of loss coverage under the
reference scheme.

It is convenient to use the same approach as for adverse selection above, that is, I use
risk-differentiated premiums as the reference scheme.

Then using subscript 0 the denote quantities evaluated under risk-differentiated
premiums, I define the loss coverage ratio (LCR) as :

_ E[QL]

= 1.10
EolQL]

11



Note that in the numerical examples in Chapter 1 and 3 , the fraction between 0 and 1
which I heuristically labelled ‘loss coverage’ was, more precisely, a loss coverage
ratio with the reference scheme (i.e under which loss coverage = 1) defined as
compulsory insurance of the whole population. Clearly the choice of reference
scheme - risk-differentiated premiums, compulsory insurance or something else - does
not matter, provided we use a consistent reference when making comparisons of
different proposed risk classification schemes.

Now note that loss coverage ratio in Equation (1.10) can also be expanded into:

( E[QL] ) E

LCR = [E[éQ“EE” o £L1O] 1.11
(ﬂ) EolQ]
EolQIE[L]

Then by noting that expected population losses are the same irrespective of risk
classification scheme (i.e. E[L] = Ey[L]), we see that the first term on the right-hand
side of Equation (1.11) i the adverse selection ratio in Equation (1.7). The second term
on the right-hand side of Equation (1.11) is the ratio of demand under the actual risk
classification scheme to demand under risk-differentiated premiums, which I call the
demand ratio.

So Equation (1.11) can then be interpreted as:

LCR = Adverse Selection Ratio X Demand Ratio 1.12

Table 4 : Decomposition of loss coverage ratio into adverse selection rationed demand
ratio for Tables 1 - 3.

Table 1 Table 2 Table

Adverse selection ratio: 1.0 1.25 1.3361
I \
( risk-weighted average premium
\ ropuiation \\'x‘:‘,’,htc\i AVETIRE premuium

)
Demand ratio 1.0 0.90 0.65
l\ numbers insured
Loss coverage ratio produce of above 1.0 1.125 U875
J p. .

loss coverage under pooled premium )
loss coverage under risk-differentiated premiums

\

J

We can illustrate this decomposition of loss coverage ratio by applying it to the
numerical examples from above. The decomposition is shown in Table 4. In each of
the three columns in the table, loss coverage ratio (the third line) is the product of

12



adverse selection ratio and demand ratio (the first and the second lines).

The decomposition of loss coverage ratio into adverse selection ratio and demand
ratio is sometimes helpful in correcting casual intuitions and commentary about
restrictions on risk classification. Casual intuitions and commentary often reference
rising average prices (adverse selection) and falling demand (numbers insured), but
without considering how the two effects interact. But depending on the product of two
effects, loss coverage ratio may be higher or lower than 1 (that is, loss coverage may
be increased or decreased). The decomposition highlight that predicting or observing
a rise in average price and fall in demand und a new risk classification scheme is not
sufficient to demonstrate a worse outcome. The outcome in term of loss coverage
depends on the product of two effects.

o™
—
O 4
6
<0 ry
2 <)
o
w
o
.-?- 1\
o
N -
C‘
o |
O | ——— ’ c—_ - —_ - -— — |
1.0 1.5 2.0 25 3.0 35
Adverse selection ratio
lago: 2, v i actine eapoomntial demtarad Sanlion

Figure 1.1: Loss Coverage ratio as a function of adverse selection ration

An illustration of the trade-off between loss coverage and adverse selection is
provided by Figure 1. This graph plot loss coverage ratio against adverse selection
ratio, based on the two risk-group model in this chapter with plausible form for the
demand function. It can be seen that the maximum point for loss coverage corres-
ponds to an intermediate degree of adverse selection, not too low and not too high.
The shape of this graph, with the interior maximum showing that loss coverage is
maximised by an intermediate level of adverse selection, is the most important image
in this book. A similar invited U shape is obtained for any reasonable demand
function.Note that highest loss coverage is obtained not despite the adverse selection,
but because of the adverse selection. In moderation, adverse selection is a good thing.
figure 1.1 is based on a relative risk f = /;—? = 4 . If the relative risk is lower, the
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maximum value of loss coverage is lower, and this maximum is attained with the
lower level of adverse selection . This is illustrated in Figure 2 , which shows the plot
of loss coverage ratio against adverse selection ratio for two values of relative risk,
f =3 and f = 4. The maximum of the dashed curve for = 3 lies below and to the
left on the maximum of the solid curve for f = 4.

1.2

1.0

08

uz;=0.04 (ie.p = 4)

;=003 (iep=3) °

02 04 086

1.0 1.5 20 25 3.0 3.5
Advearse selecton ratio

Figure 1.2: Loss Coverage ratio as a function of adverse selection ration, for
two relative risks.

Note the the right-hand terminal points of each curve in figure 1.1 and 1.2 corres-
pond to limiting values, not point at which I arbitrarily chose to stop drawing the
curve.These limiting values represent the scenario where all lower risks have dropped
out of insurance and only higher risk remain; clearly, adverse selection that cannot
increase any more. In figure 1.2, the terminal point for # = 3 lies to the left and below
the terminal point for f = 4. To understand this, note that when all the higher risks
have dropped out the market and only lower risks remain, lower relative risk f = 3
implies a lower break-even premiums (lower adverse selection), and also that a lower
fraction of the total risk in the population is covered (lower loss coverage).

3.3.2 Further Mathematics of Loss Coverage

The previous part of mathematical details gave mathematical definitions of loss cover-
age and related quantities. This part introduces models of insurance markets which
enable us to study how loss coverage varies with changes in the fraction of the popu-
lation represented by higher risk and lower risks, probabilities of loss and demand
elasticities. In this part we also use the same two risk-group model as in previous part.

14



We focus first on a simple iso-elastic demand function, and then consider more
general demand functions.

Two Risk-Group with Iso- elastic Demand

In the previous part, a generic function for proportion of the population insurance
demand d(y;, ;) was used to define the quantities E[L] (expected population loss),
E[Q] (expected insurance demand), E[IT] (expected premium), and E[Q L] (expected
claim (Loss Coverage)). A form for the demand function was not specified, nor detail
of how the premiums 7; charged to each risk-group were determined. In this part, a
form for the demand function will be specified. The zero-profit equilibrium condition
which determines the ‘pooled’ premium when all risks are pooled at the same price
also will be specified.

Specifying an Insurance Demand Function

To recap, the proportional demand for insurance d(y;, 7;) is the proportional of the
risk-group the the probability of loss y; which buys insurance when a premium of 7, is
charged to members of that risk-group.

As a preliminaryi, it is helpful to define the concept of demand elasticity.

Demand Elasticity is defined as :

7

od (u;, m)

. 2.1
d(p;, ;) or;

Demand elasticity =

Roughly speaking, this is the percentage change in demand for a very small
percentage change in premium. It measures the responsiveness of demand to small
changes in premium.

Note that the derivative within the above expression in normally negative (as the
premium rises, demand falls). The minus sign ensure that demand elasticity as defined
here will normally be positive; this makes the subsequence mathematical presentation
tidier.

It is sometimes more convenient to rewrite Equation (2.1) as the log-log derivative of
the demand function with respect to the premium, that is :

0 logld(u;, n;
Demand elasticity = — ag[l (i 7)) 22
0g 7;

What properties should the demand function possess?

(a) Decreasing in Premium: d(y;, ;) is decreasing function of the premium 7,
for all risk-groups.

(b) Increasing in Risk : d(p, 7y) < d(u,, 7y), that is at any given premium 7,
the proportional demand function is higher for the higher risk-group.

(c) Decreasing in Premium loading : d(y;, 7;) is decreasing function of the
premium loading ﬂ .

Hi
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(d) Capped at 1 :d(u;, r;) <1, that is the highest possible demand is when all
members of the risk-group buy insurance.

A simple demand function which satisfies these requirements can be obtained by the
demand elasticity in Equation 2.2 equal to a constant, say 4;. Solving this differential
equation leads to the so-called iso-elastic demand function :

d(u.z) = (Ziy-2, 2.3
() = 7,( .) :

1

7; = d(u;, m;) is the fair-premium demand for the risk-group i , that is the
proportion of the risk-group i who buy insurance at an actuarially fair premium, that
is when 7z; = ;.

u; is the risk ( probability of loss ) for members of risk-group i.

A; is the demand elasticity for members of the risk-group i, as already defined.

To interpret the demand formula in Equation (2.3) , observe that it specifies demand
7j . S
as a function of the premium loading (7) . When the premium loading is high

(insurance is expensive), demand is low and vice versa. The ‘iso-elastic’ terminology
reflects that price elasticity of demand is the same constant A; everywhere along the
demand curve.

Figure 2.1: Iso-elasticity demand curves for A = 0.5,1,1.5.

Lower risk-group Higher risk-group

\“ \
\ \ H
075 075 =% X
. NN —h=05
.- .
s 0.5 ! 0.5 \ ‘s\\ ______ e 1
= T
@ Sen —_—— A=1E
0025 y bty -t 0.25 + =P
Sram———
; i T S ——
7 RS i ¥ T T R
0.01 0.02 0.03 004 0.01 0.02 003 0.04
Pooled premium o Pooled premium

Bxsis: p 09: ¢ t 0.25; 4 0.01, 5 008

The A; parameter controls the shape of the demand curve. This is illustrated in Figure
2.1, which shows plots of demand from higher and lower risk-groups for three
different values of A in the demand function of Equation (2.3).

The demand function in Equation (2.3) clearly satisfies axioms (a) and (c) above.
Axioms (b) and (d) appear superficially to require conditions on the fair-premium
demands 7, and 7,. In other words, we need to be careful that modelled demand from
the lower risk-group is always lower than from the higher risk-group (axiom (b)) ; and
also that modelled demand from the higher risk-group does not exceed 1 at the
equilibrium premium (axiom (d)).
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In Figure 2.1, we can see that the latter point might be a concern for the highest curve
in the right panel, the case 4 = 1.5, if the equilibrium-pooled premium happened to
be below about 0.016.
However, for the purposes of analysing the mathematical properties of the model, it is
convenient to use the following trick Recall that p; and p, are the fractions of the total
population represented by lower risks and higher risk, respectively. Then define the
fair-premium demand-share of the lower risk-group as the proportion of total
demand which the risk-group represents when actuarially fair premiums are charged
to both risk-groups.
Fair-Premium Demand-Share :

4= —P i=12 24

T1p1+ P2

Clearly a,, the fair-premium demand-share of the higher risk-group, is just the
complement of a; (ie. @, = 1 — ay).

We can then analyse the mathematical properties of the model for the full range of
possible fair-premium demand-shares 0 < a; < 1, without worrying about specifying
any particular values for the fair-premium demands 7; and the population fractions p;.
It suffices to note that for every possible a;, there will be some hypothetical combi-
nation of population structure p; and fair-premium demand 7; which satisfies the
axioms (b) and (d) above.

Specifying a Zero-Profit Equilibrium Condition

Suppose now that the premiums charged to members of the low risk-group and high
risk-group are 7; and 7,, respectively.

The Insurance income (Premiums) per member of the population will be the sum of
the products of demand and premium for each risk-group:

Insurance Income = d(u,, m))p7, + d(yy, 75)po 7, 25

The Insurance Outgo (Claims) per member of the population will be the sum of the
products of demand and the probability of loss for each risk-group:

Insurance Outgo = d(py, m)pipy + d(po, 7)o 2.6

The right-hand side Equation (2.6) looks like the definition of Loss Coverage in
Equation (1.8) in the previous part. However, loss coverage refers specifically to this
quantity at equilibrium. The insurance outgo in Equation (2.6) is defined for any
premiums, not just equilibrium premiums.

To determine equilibrium premiums, note that the insurer’s expected profit (loss, if
negative) is expected income less expected outgo, that is Equations (2.5) - (2.6). So
any pair of premiums (7, 7,) which equates Equation (2.5) and Equation (2.6) (=), is
an Equilibrium.

One equilibrium is obvious from inspection: full risk classification (or ‘full risk-
differentiated premiums’), that is 7; = p,, 7, = p,. This represent one extreme.
Another equilibrium - and the main focus in this part - is a common ‘pooled’ premium
7y for both risk-groups: nil risk classification (or ‘pooling’) that is 7; = &, = 7. This
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represents the other extreme.
There will always exist some value of 7, which gives a pooling equilibrium.

Examples

To illustrate the use of the model, set y; = 0.01, u, = 0.04 (i.e. relative risk f = 4)
and a; = 0.9 that is 90% of the insurance demand under the risk-differentiated
premiums is from lower risks. These parameter values are used throughout this part of
mathematical details, except where stated otherwise. The parameters have been
chosen by loose analogy with the life insurance market, where typically around 90%
of accepted risks are assigned to large ‘standard’ risk-group with low mortality, and
around 10% of accepted risks are charged a range of higher premiums ranging from
+50% to +300% over the standard risk-group’s premium. But these values merely
hypothetical and illustrative; they are not presented as a calibrated model of any real
market.

Figure 2.2 : Low Elasticity: 4 = 0.5, giving increased loss coverage under pooling.
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Figure 2.2 shows the equilibrium for relatively inelastic demand, A = 0.5.

Figure 2.2 can be interpreted as follows:

The horizontal dashed line is a reference level representing income and outgo if risk-
differentiated premiums are charged: that is , if 7y = y;, 7, = u, in Equation (2.5)
and (2.6).

The curves represent how income and outgo as defined in Equation (2.5) and (2.6)
vary with the level of a common (‘pooled’) premium which is charged to both risk-
groups.
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On the left-hand side of the graph, where the premium x is low, demand for insurance
at this price is high, and so the outgo is high.

Because of the very low premium, income is low (despite the high demand); the
markets is far from equilibrium and insurers make large losses.

Insurers will therefore increase the pooled premium, and some customers will leave
the market. As customers leave the market, outgo decreases monotonically (the
downward sloping curve), but income increases because the number of the customers
leaving the market is outweighed by the increasing in premium collected for each
remaining customer. So for demand elasticity 4 < 1, the curve of total income slopes
upwards. The intersection (shown by the arrow) of the curves for income and outgo
represents a pooling equilibrium. The premium at this intersection is the equilibrium
pooled premium 7.

Note that the arrowed intersection is at a higher level of income and dugout than
under full risk differentiation. In other words, with the low demand elasticity 4 = 0.5
assumed here, loss coverage under pooling is increased compared with that under
risk-differentiated premiums.

Figure 2.3 High elasticity : 4 = 1.5, giving reduced loss coverage.
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Figure 2.3 shows the result for more elasticity demand 4 = 1.5 , with all other
parameter as Figure 5.2. Note that the equilibrium is at a lower than level of income
and outgo when risk-differentiated premiums are charged. In other words, the higher
demand elasticity 4 = 1.5 assumed here, loss coverage under pooling is reduced
(decreased) compared with that under risk-differentiated premiums.
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General Results for Iso-elastic Demand with Common Elasticity A

This section states and illustrates general results for adverse selection, insurance
demand (cover) and loss coverage under the iso-elastic demand function as per
Equation (2.3) , with a common elasticity parameter A for both risk-groups.
Mathematical proofs are omitted in the book, but have been published in Hao et al.
(2015, 20164a).

In interpreting these results, note that a loss coverage ratio (LCR) above 1 (LCR >1)
signifies a ‘good’ outcome from restricting risk classification, and LCR < 1 signifies a
‘bad’ outcome.

@ - (a) Adverse selection ratio
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Figure 2.4 : Adverse selection ratio and demand ratio as a function of demand
elasticity, for two relative risks.

(a) Adverse Selection ratio increases monotonically with demand elasticity, to
an upper limit where the only remaining insureds are high risks. This is shown in
upper panel of Figure 2.4 for two different relative risks # = 3 and f# = 4. Note
that the asymptotic limiting values of adverse selection ratio are equivalent to the
pooled premium when all lower risks have left the insurance market, divided by
the weighed average premium under risk-differentiated premiums.
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(b) The corresponding change in demand ratio is shown in the lower panel of
Figure 2.4. Recall from the previous part of mathematical details that demand
ratio represents insurance demand when risk classification is restricted divided by
insurance demand under fully risk-differentiated premiums. Demand ratio is
therefore a measure of the reduction in cover which arises from adverse selection,
it is realisation in our model of what economic rhetoric typically describes as
‘efficiency losses’ or ‘inefficiency’ arising from adverse selection.
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Figure 2.5 Loss Coverage ratio as a function of demand elasticity, for two relative
risks.

(¢) In contrast to adverse selection ratio and demand ratio, LCR as a function
of demand elasticity has an interior maximum, as shown in Figure 2.5.
In other words, loss coverage is maximised with a non zero level of adverse
selection, irrespective of whether adverse section is characterised as ‘positive
correlation of cover and losses’ (as in this book, and as in most econometric zests
for adverse selection) or as ‘reduction in cover’ (what economic rhetoric call
‘efficiency losses’).

(d) For iso-elastic demand, demand elasticity of 1 always gives LCR of 1, as
shown in Figure 2.5 (i.e. both curves pass through the coordinate(1,1)).
Lower values of demand elasticity given LCR above 1 and vice versa, that is
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A<I=>LCR>1,1>1=LCR<1,A=1=>LCR=1.

So for the iso-elastic demand function, A =1 represents a critical value of
demand elasticity, which determines whether loss coverage is increased or
reduced by pooling all risks in a single class, as compared with loss coverage
under risk-differentiated premiums.

(e) For high values of A, loss coverage flattens out at a lower limit where the
only remaining insureds are high risks. This is shown towards the right side of the
main graph in Figure 2.5.

(f) The smaller graph on the lower right in Figure 2.5 zooms over the upper left
region of the main graph , that is the region where O < 4 < 1. It can be seen that
as demand elasticity increases from zero, LCR increases from 1 to a maximum at
around demand elasticity 4 = 0.5. A higher relative risk f gives a higher
maximum value of LCR.Note that in this region 0 < A <1, the common
characterisation of adverse selection as ‘inefficient’ seems unreasonable. With
adverse selection, more risk is being voluntarily traded, and more losses are being
compensated.

(g) The value of the maximum for LCR in the zoom region in Figure 2.5 is
higher for # = 4 than for # = 3. The maximum is also affected by the population
structure. To be precise, the maximum depends on the fair-premium risk-share,
say w (note: not the same as the fair-premium demand-share «; , previously
defined in Equation (2.4) ), i.e. the fraction of total insured risk which lower risks
represent when actuarially fair premiums are charged :

a
W= 28

a1y + iy

(h) Figure 2.6 (see below) shows loss coverage for three population structures,
all with relative risk # = 4. The smaller graph on the lower right zooms over the
region 0 < A < 1. The curve with the highest maximum for LCR is that
correlation to population structure a; = 0.8; this corresponds to a fair-premium
risk-share:

0.8 x0.01

0.8 x0.01 +0.2x0.04

(i) For the iso-elastic demand function used in this chapter, it can be shown
that if both dean elasticity and population structure can vary, the maximum value
for LCR occurs when 4 = 0.5 and w = 0.5.

This maximum value for LCR is :

1 1
max,, ,LCR = 5(\4/,3 +-=) 2.10

VP

(j) The form of Equation 5.10 combined with the requirement for w = 0.5
suggests that pooling will be particularly beneficial to loss coverage when there is
small risk-group with very high risk (since this combination allows high relative
risk # to be combined with fair-premium risk-share w ~ 0.5 ). One obvious
example is a small fraction of population with an adverse genetic profile .
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Figure 2.6: Loss coverage ratio as a function of demand elasticity, for three population
structures.

General Results for Iso-elastic Demand with Different Elasticities (1, # 1,)

When the elasticity parameter 4; and 4, for low and high risk-groups are different, it
becomes harder to make concise general statements about how they affects loss
coverage. The general pattern of results is shown in Figure 2.7 . This shows the
regions in the (4, 4,) plane where LCR is above or below 1 (i.e pooling gives higher
or lower loss coverage than risk-differentiated premiums). This graph can be
explained as follows.

(a) First, ignore the two dishes curves in Figure 2.7 and focus just on the solid
curve for f = 4 (arelative risk of 4,e.g y; = 0.01, p, =0.04).

This curve demarcates a left-hand unshaded region containing all combinations of
(44, 4,) for which LCR >1 , and a right-hand shaded region containing al
combinations of (4,, 4,) for which LCR < 1.

Note that LCR > 1 is associated with moment towards the the upper left of the
graph: that is, to give LCR >1, 4, needs to be ‘sufficiently low’ relative to 4,.

(b) Second, note that A, sufficiently low relative to 4, does not necessarily
mean A;lower than 4,. In particular, in the lower part of the unshaded area inside
the unit square in Figure 2.7 (the narrow segment below the dashed 45° line, but
above the solid curve), 4, is slightly higher than 4,, and yet still ‘sufficiently low’
to give LCR > 1.

(c) Third, focus now on the two dashed curves in Figure 2.7. The dashed curves
illustrate how the solid curve demarcating the left-hand LCR > 1b (unshaded) and
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right-hand LCR < 1 (shaded) regions shifts as the relative risk f# changes. Note
that as relative risk S increases, the curve demarcating the regions becomes more
convex, so that a greater range of combinations of A; and 4, inside the unit square
gives LCR > 1.

But the effect is small: increasing the relative risk from 4 to 40 times or even 400
times makes only as small difference to the curve.
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Figure 2.7: Regions of (4;, 4,) space where loss coverage ratio is greater or less than
1.

Comparison with Empirical Demand Elasticities: 1 <1 is Realistic

The result summarised in Figures 2.4 - 2.7 suggest that under iso-elastic demand ,
pooling will give higher loss coverage than fully risk-differentiated premiums:
(a) in the equal elasticities case, whenever demand elasticity is less than 1;
(b) in the different elasticities case, whenever 4; < 1 and 4; < 4, (in Figure
2.7, the part of the unshaded region vertically above the 4, = 4, diagonal and to
the left of 4, = 1);
(c) for some values outside this range, provided 4, is ‘sufficiently low’ relative
to A, (in Figure 2.7, other parts of the unshaded region).

How do these limits compare with demand elasticities in the real world? There is
some evidence that insurance demand elasticities are less than 1 in many markers.
Table 2.1 shows some relevant empirical estimates. (For convenience the elasticity
parameter in this part of mathematical details was defined as a positive constant, but
estimates in empirical papers are generally given with the negative sign, so the table
quotes them in that form.) These estimates suggest that if the iso-elastic demand
model is reasonable, loss coverage might often be increased by restricting risk
classification.
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Table 2.1 Estimates of demand elasticity for various insurance markets

Estimated
demand
Market and country elasticities References
Yearly renewable term -0.4 to 0.5 Pauly et al. {2003)
life insurance, USA
Term life insurance, -0.66 Viswanathan et al. (2007)
USA
Whole life insurance, ~0.71 to —0.92  Babbel {1985]
USA
Health insurance, 0to-02 Chemew et al. {1997),
USA Blumberg et al. (2001,
Buchmueller and Ohri [2006)
Health insurance, -0.35 0o -0.50 Butler (1999)
Australia
Farm crop insurance, -0.32 10 -0.73 Goodwin (1993

USA
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4 Conclusion

The purpose of this paper is to dispute the conventional thinking of actuaries and
economists about the value of adverse selection in insurance pricing markets with the
concept of loss coverage. The argument in this paper are based on the book “Loss
Coverage : Why Insurance Works Better With Some Adverse Selection”, written by
Guy Thomas, which argues that actuaries and economists are overlooking an impor-
tant point about adverse selection. In the introduction of this paper introduces you to
the meaning of adverse selection and some related topics, and the scope and focus of
the argument, which leads to the argument. The argument is divided in two parts. The
first part is the introduction to the argument, of course this part introduces you to the
argument and there is also an easy to understand toy example that tells us that some
adverse selection may lead to a beneficial aggregate position for society in terms of
increasing the overall level of loss coverage. In the second part there is the argument
(with some helpful figures and table) that is built with a mathematical foundation that
examine the demand elasticities for both higher and lower-risk groups in different
markets and.
Three interesting topics that I haven’t mentioned in this paper but worth knowing:

Loss Coverage under alternative Demand Functions?

Multiple Equilibrium : A Techical Curiosity*

Partial Risk Classification, Separation and Inclusivity>

3Loss Coverage: Why Insurance Works Better With Some Adverse Selection, Appendix A, p.245-251
4 Loss Coverage: Why Insurance Works Better With Some Adverse Selection, Appendix B, p.252-258

5 Loss Coverage: Why Insurance Works Better With Some Adverse Selection, Partial Risk Classification,
Separation and Inclusivity p.89-103
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	3 The Argument
	In this chapter, more detailed and realistic numerical examples than the toy examples will be given, showing that while loss coverage is increased by ‘the right amount’ of adverse selection, it can be reduced if there is ‘too much’ adverse selection. “ The Argument that some degree of adverse selection makes the insurance system work better ” will be presented in three way ; 3.1 the key argument, 3.2 numerical examples and 3.3 mathematical details.

