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Abstract 

The following seminar paper is based on the book “Loss Coverage : Why Insurance 
Works Better With Some Adverse Selection”, written by Guy Thomas and published 
in 2017. For some reason the book caught my attention by the title, so I began my 
investigation of this book, reading it and pondering over its contents. It offered me 
something more than I had previously known about adverse selection. The main focus 
of  the book is  the argument  that  some restrictions on risk classification,  far  from 
having adverse effects, can actually make insurance work better, in the sense of in-
crease loss coverage. Loss coverage is defined as the expected losses compensated by 
insurance. Personally, I find it’s a very well written and interesting book.
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1 Introduction

1.1 What is adverse selection? 
 

Adverse selection is a term commonly used in economics, insurance, and risk mana-
gement   that  describes  a  situation where market  participation is  affected by asym-
metric information. Information asymmetry is known as a state that “When buyers 
and sellers have different information”  
 
Why is it something to be avoided at all cost based on the orthodox views? 
In the orthodox views that held by the insurance industry, actuaries and economists, 
this asymmetry creates an imbalance of power in transactions, which can sometimes 
cause the transactions to go awry, a kind of market failure in the worst case. 

 
A succinct statement of this orthodoxy is given in the policy document “Insurance @ 
superannuation risk classification policy” published by the institute of Actuaries in 
Australia, which explains:

 
“In the absence of a system that allows for distinguishing by price between indivi-
duals  with  different  risk  profiles,  insurers  would  provide  an  insurance  or  annuity 
product at a subsidy to some while overcharging others. In an open market,  basic 
economics dictates that individuals with low risk relative to price would conclude that 
the product is overpriced and thus reduce or possibly forgo their insurance. Those  
individuals with a high level of risk relative to price would view the price as attractive 
and therefore retain or increase their insurance. As a result the average cost of the 
insurance would increase, thus pushing prices up. Then, individuals with lower loss 
potential would continue to leave the marketplace, contributing to further price spiral. 
Eventually  the  majority  of  consumers,  or  the  majority  of  providers  of  insurance, 
would withdraw from the marketplace and the remaining products  would become 
financially unsound.” 1

 
Adverse selection spiral 
Adverse selection spiral or “death spiral”  is known as the sequence of a rise in insur-
ance prices and fall in numbers insured, followed by a further rise in insurance prices 
and fall in numbers insured, and so on .

 
1.2 Scope & Focus

 
The focus is on Personal Insurances, particularly those contingent in some way on the 
insured’s  life  and  health  (life  insurance,  annuities,  income  protection  insurance, 
critical  illness  insurance  and  health  insurance  (medical  expenses  insurance)).  For 
these insurance, higher risk often face not only prospective disadvantage, but also 
some degree of  current  disadvantage (e.g some degree of  current  ill-health).  To a 
lesser extent, he also have in mind other personal insurances, such as travel, home and 
car insurance.  

 Loss Coverage: Why Insurance Works Better With Some Adverse Selection, p.3-41

!1



The insurances where the insured is a corporation of comparable strategic sophis-
tication to the insurer, or where the insured views the contract as part of a speculative 
investment portfolio, rather than as protection against some unlikely and undesirable 
contingency is not in the consideration and the intuitions about public policy, and 
particularly perceptions of fairness in risk classification, are highly sensitive to this 
scope and focus.

 
2 Introduction to The Argument  

 
2.1 Adverse Selection and Loss Coverage 

 
The main innovation is  the  concept  of  “Loss  Coverage”.  The impact  of  adverse 
selection should be measured, not in terms of the number of insured, but rather in 
terms of loss coverage.  
Consider an insurance market where individuals can divided into two risk-groups, one 
higher risk and one lower risk, based on the information which is fully observable by 
insurers. Assume that all losses and insurance are of unit amount. Also assume that an 
individual’s  risk is  unaffected by the purchase of  insurance,  i.e  there  is  no moral 
hazard.  If  insurers  can,  they  will  charge  risk-differentiated  prices  to  reflect  the 
different risks. If instead the insurers are banned from differentiating between higher 
and lower risks, and have to charge a single pooled price for all risks, a pooled price 
equal to the simple average of the risk-differentiated prices will seem cheap to higher 
risks and expensive to lower risks. Higher risks will buy more insurances, and lower 
risks will buy less. To break even, insurers will then need to raise the pooled price 
above the simple average of  the prices.  Also,  since the number of  higher risks is 
typically smaller than the number of lower (or standard) risks, higher risks buying 
more and lower risks buying less implies that  the total  number of  people insured 
usually  falls.This  combination  of  a  rise  in  price  and  a  fall  in  demand  is  usually 
portrayed as a bad outcome, for both insurers and society.  
However, from the social perspective, it is arguable that higher risks are those more in 
need of insurance. Also, the compensation of many types of loss by insurance appears 
to be widely regarded as a desirable objective, which public policymakers often seek 
to promote by public education, by exhortation and sometimes by incentives such as 
tax relief on premiums. Insurance of one higher risk contributes more in expectation 
to this objective than insurance of one lower risk.  
This  suggests  that  public  policymakers  might  welcome  increased  purchasing  by 
higher risks, except for the usual story about adverse selection.  
The usual story about adverse selection overlooks one point: with a pooled premium 
and  adverse  selection,  loss  coverage  can  still  be  higher  than  with  fully  risk-
differentiated premiums and no adverse selection. Although pooling (pooled price) 
leads to a fall in numbers insured, it also leads to a shift in coverage towards higher 
risks. From the public policymaker’s viewpoint, this means that more of the ‘right’ 
risks - those more likely to suffer loss - buy insurance.  If the shift in coverage is large 
enough, it can more than outweigh the fall in numbers insured.  
This result of higher loss coverage can be seen as a better outcome for society than 
that obtained with no adverse selection.  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2.2 Toy Example 
 
The argument above can be illustrated by this toy example. Consider a population of 
just ten risks (lives), with three scenarios for adverse selection.  
The first scenario, risk-differentiates prices are charged, and a subset of the population 
buys insurance.(no adverse selection). The second and third scenarios, risk classifi-
cation is banned, leading to adverse selection: a different subset of the population 
buys insurance.  
In Figure 1-3, each ‘H’ represents one high risk and each ‘L’ represents one low risk. 
The Population has typical predominance of lower risks : eight lower risks each with 
probability of loss  0.01, and two higher risks each with probability of loss 0.04.  
In  each  scenarios,  the  shaded  ‘cover’ above  some  ‘H’ and  ‘L’ denotes  the  risks 
covered by insurance.  

Cover = The risks covered by insurance.  
 
Figure 1 : High and low risks covered in same proportions as in population  
=> No adverse selection (base outcome)

 
Scenario 1  
In  Scenario  1  (no adverse  selection),  in  Figure  1,  risk-differentiated  premium are 
charged. Higher and lower risk-group each face a price equivalent to their prob-ability 
of  loss  (  an  actually  fair  price  ).  The  demand response  of  each  risk-group to  an 
actually fair price is the same: exactly half the members of each group buy insurance. 
The shading shows that a total of five risks are covered. Note that the equal areas of 
shading over one ‘H’ and  four ‘L’ represent equal expected losses.

 
The Weighted Average of the Premiums :   � .

 
Since higher and lower risks are insured the same proportion as they exist in the popu-
lation, there is no adverse selection. 

(4 × 0.01) + (1 × 0.04)
5

= 0.016
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The expected losses compensated by insurance for the whole population can be 
indexed by: 

Loss Coverage  =    �

 
Figure 2 : Higher weighted average premium, lower numbers insured  
=> Moderate adverse selection

 
The shift in coverage towards higher risks more than offsets lower numbers insured 
=> higher loss coverage (better outcome)  
 
Scenario 2  
In Scenario 2 (moderate adverse selection), in Figure 2, risk classification has been 
banned, and so insurers have to charge a common ‘pooled’ premium to both higher 
risks and lower risks. Higher risks buy more insurance and lower risks buy less. The 
shading shows that three risks (compared with five previously) are now covered. The 
pooled premium is  set  as  the weighed average of  the true risks,  so that  expected 
profits on low risks exactly offset expected losses on high risks.

 
This Weighted Average of the Premiums is :   �

 
Note that the weighted average premium is higher in Scenario 2, and the number of 
risks insured is smaller. These are the essential features of adverse selection, which 
Scenario 2 accurately and completely represents. But there is a surprise: despite the 
adverse selection in Scenario 2, the expected losses compensated by insurance for the 
whole population are now larger.  Visually,  this is  represented by the larger are of 
shading in Scenario 2 .  
 

(4 × 0.01) + (1 × 0.04)
(8 × 0.01) + (2 × 0.04)

= 50 %

(1 × 0.01) + (2 × 0.04)
3

= 0.03
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The loss coverage in Scenario 2 is:  

Loss Coverage  =    �

 
Figure 3 : Only one individual (higher risk) remains insured  
=> Severe adverse selection  

Shift in coverage towards higher risks does not offset lower numbers insured  
=> lower loss coverage (worse outcome)

 
Scenario 3
A ban on risk classification can also reduce loss coverage, if the adverse selection 
which the ban induces becomes too severe. This possibility is illustrated in Scenario 3 
(Severe adverse selection). Adverse selection has progressed to the point where only 
one higher risk, and no lower risks, buys insurance. The expected losses compensated 
by insurance for the whole population are now lower. That is, 25% of the population’s 
expected losses are now compensated by insurance, compared with 50% in Scenario 
1, and 56% in Scenario 2.

 
Summary  
The key idea is that loss coverage is increased only by the “right amount” of adverse 
selection,  but  reduced  by  “too  much”  adverse  selection.  Which  of  Scenario  2  or 
Scenario 3 actually prevails depends on the demand elasticities of higher and lower 
risks.

3 The Argument
In this chapter,  more detailed and realistic numerical examples than the toy 
examples will be given, showing that while loss coverage is increased by ‘the 
right  amount’ of  adverse selection,  it  can be reduced if  there is  ‘too much’ 
adverse selection. “ The Argument that some degree of adverse selection makes 
the insurance system work better ” will be presented in three way ; 3.1 the key 
argument, 3.2 numerical examples and 3.3 mathematical details.

(1 × 0.01) + (2 × 0.04)
(8 × 0.01) + (2 × 0.04)

= 56 %
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3.1 The Key Argument

The key argument repeats the first part of “Adverse Selection and Loss Cover-age”. 
Another  perspective  on this  argument  is  that  a  public  policymaker  designing risk 
classification policies in the context of adverse selection normally faces a trade-off 
between insurance of the ‘right’ risks and insurance of a large number of risks. The 
optimal trade-off depends on the response of higher and lower risk-groups to different 
prices, (technically, the demand elasticity of different risk-groups), indwell normally 
involve a least some adverse selection. The concept of loss coverage quantifies this 
trade-off, and provides a metric for comparing the effects of different risk classifi-
cation schemes.

3.2 Numerical Examples
 

Numerical  examples  are  similar  in  nature  to  the  three  scenarios  illustrating  ‘no 
adverse selection’,  ‘some adverse selection’ (moderate  adverse selection)  and ‘too 
much’ adverse selection (severe adverse selection) in the toy example above. Suppose 
that,

• a population of 1000 risks, 
• 16 losses are expected every year
• there are 2 risk-groups 
• 200 high risks
• 800  low risks
• the high risks have a probability of loss 4 times higher than the low risks. 
• We assume that all losses and insurance are of unit amount, and that there is 

no moral hazard. An individual’s risk-group is fully observable to insurers.

Table 1 Full Risk-Classification: no adverse selection (base outcome)
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Table 2 Risk-Classification banned : moderate adverse selection leading to higher loss 
coverage (better outcome)  

Table 3  Risk-Classification banned: severe adverse selection leading to lower loss 
coverage (Worse outcome)  

Under  the  initial  risk  classification regime,  insurers  operate  full  risk  classification 
charging actuarially fair premiums to members of each risk-group. We assume that the 
proportion of each risk-group which buys insurance under these conditions - the ‘ fair-
premium demand’ - is 50% which is realistic for life insurance in the UK and the USA 
(base on the Author research).  
The Table 1 shows the outcome, which can be summarised as follows: There is no 
adverse selection. The average of the insurance premiums, weighted by numbers of 
insurance buyers at each  price, is 0.016 (final column, fourth line). This is the same 
as the population-weighted average risk (final column, first line). Dividing the first by 
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the second, we index the adverse selection as  � , indicating a neutral position 
(i.e.  no  adverse  selection).  Half  the  losses  in  the  population  are  compensated  by 
insurance. We heuristically characterise this as a ‘loss coverage’ of  0.5.  
Now suppose the a new risk classification regime is introduced, where insurers are 
obliged to charge “a common ‘pooled’ premium” to members of both the low and 
high risk-groups.  
One possible outcome is show in Table 2, which can be summarised as follows: The 
pooled  premium of  0.02  at  which  insurers  make  zero  profits  is  calculated  as  the 
demand-weighted  average  of  risk  premiums:  � .  The 
pooled premium is expensive for low risks, so 25% fewer of them buy insurance (300, 
compared with 400 before).  The pooled premium is cheap for high risks,  so 50% 
more of them buy insurance (150, compared with 100 before). Because there are 4 
times as many low risks as high risks in the population, the total number of policies 
sold falls (450, compared with 500 before). There is moderate adverse selection. The 
pooled premium of 0.02 exceeds the population-weighted average premium of 0.016, 
giving adverse selection: � .  The resulting loss coverage is 0.5625. The 
shift in coverage towards high risks more than outweighs the fall in number of the 
policies sold:  9 of 16 losses (56%) in the population as a whole are now compensated 
by insurance (compares with 8 of  16 before).Another possible outcome under the 
restricted risk classification scheme the time with more severe adverse selection, is 
shown in  Table  3  which  can  be  summarised  as  follows:  The  pooled  premium of 
0.02154 at which insurers make zero profits is calculated as the demand-weighted 
average  of  the  risk  premiums:  � .  There  is  severe 
adverse selection, with further increase in the pooled premium and a significant fall in 
numbers insured. The loss coverage is 0.4375. The shift in coverage towards high 
risks is not sufficient to outweigh the fall in number of policies sold : 7 of 16 losses 
(43.75%) in the population as a whole are now compensated by insurance ( compared 
with 8 of 16 in Table 1, and 9 out of 16 in Table 2).  
Taking the three tables together, we cam summarise by saying that compared with an 
initial position of no adverse selection in Table 1, moderate adverse selection leads to 
higher expected losses compensated by insurance ( higher loss coverage) in Table 2 , 
but  too  much  adverse  selection  leads  to  lower  expected  losses  compensated  by 
insurance (lower loss coverage) in Table 3.  
This  argument  that  moderate  adverse  selection  increases  loss  coverage  is  quite 
general: it does not depend on any unusual choice of numbers for the examples.   
It also does not assume any bias by the policymakers towards (or against) compen-
sating the losses of the high risk-group in preference to those of low risk-group. The 
same preference is giving to compensation of losses anywhere in the population ex 
post, when all uncertainty about who will suffer a loss has been resolved. This implies 
giving higher preference to insurance cover for higher risks ex ante, before we now 
who will suffer a loss, but only in proportion to their higher risk.  
 
Summary 
This way it has suggested that the usual arguments that adverse selection alway makes 
insurance work less well, and that more adverse selection is always worse than less, 
are misconceived.Adverse selection implies a fall in numbers insured, and also a shift 
in coverage towards higher risks. If the shift in coverage outweighs the fall in num-
bers,  the  expected  losses  compensated  by insurance  are  increased.  From a  public 

0.016
0.016 = 1

(300 × 0.01) + (150 × 0.04)
450

= 0.02

0.02
0.016 = 1.25

(200 × 0.01) + (125 × 0.04)
325

= 0.02154
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policy perspective,  a degree a so-called ‘adverse’ selection in insurance is  a good 
thing. 

 
3.3 Mathematical Details

 
The discussion before was informal. Now let’s look at Mathematical Details , since 
we are mathematics students. In mathematical details will be divided it in two parts, 
which  gonna  be  ,3.3.1  Basic  Mathematics  of  Loss  Coverage  and  3.3.2  Further 
Mathematics of Loss Coverage.  
Throughout these, we assume a population of risks can be divided into low risk-group 
and high risk-group, based of information which is fully observable to insurers.  
Just two risk-groups is of course not a realistic model of most insurance markets, but 
it is enough to illustrate principles.  2
We also assume that all losses and insurance cover are of unit size, and no moral 
hazard, that is, giving the risk-group, the probability of loss is not affected by the 
purchase of insurance.

 
3.3.1 Basic Mathematics of Loss Coverage

 
A Model for an Insurance Market  
Let  �  and  �  be the probabilities of loss for the low and high risk-groups.  
Let �  and �  the the population fractions for the low and high risk-groups, that is the 
proportions of the total population represented by each risk-group.  
This means a risk chosen at random from the entire population has a probability �  of 
belonging to the low-group.

 
All  quantities  defined  below   are  for  a  single  risk  sampled  at  random  from  the 
population (unless the context requires otherwise).

 
The Expected Loss is denoted by �  ( L for Loss) and given by : 

� 1.1

 
�  corresponds to a unit version of the third row of the table 1-3.

 
In  absence  of  limits  on  risk  classification,  insurers  will  charge  risk-differentiated 
premiums equal to the probabilities of loss, �  and �  for risk-groups 1 and 
2, respectively.

 
The Expected Insurance Demand is denoted by �  (Q for Quantity) and given 
by:

� 1.2

μ1 μ2
p1 p2

p1

𝔼[L]

𝔼[L] =
2

∑
i=1

μi pi

𝔼[L]

π1 = μ1 π2 = μ2

𝔼[Q]

𝔼[Q] =
2

∑
i=1

d(μi, πi)pi

 (The extension to N risk-groups is straightforward, see for example Hao et al. [2016b])2
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where  �  is  the  proportional  demand  for  insurance  for  risk-group  �  when 
premium �  is charged, that is the probability that an individual selected at random 
from the risk-group buys insurance.  
 
The Expected Premium is denoted by �  ( �  for Premium) and given by :  

 � 1.3

 
The Expected Insurance Claim is denoted by �  and given by : 

� 1.4

 
Adverse Selection  
The phrase ‘adverse selection’ is  typically  associated with positive correlation (or 
equivalently,  covariance)  of  cover  �  and  loss  � ;  most  papers  testing  for  adverse 
selection  in  economics  literature  use  this  definition.  “This  section  makes  this 
definition precise, in a form which will later help to highlight the relationship between 
advise selection and loss coverage.”

 
By the standard definition, the Covariance of �  and �  is :

� 1.5 
 
While  the  economics  literature  typically  uses  covariance  ( � )  >  0  as  a  test  for 
adverse selection, it is more convenient to note that when the covariance is zero, the 
two term in Equation (5) must be the same.  
 
Then Adverse Selection is denoted by �  and defined as : 

� 1.6

 
This enable us to index different types of selective behaviour by insurance customers 
as follows : 

�  < 1 : advantageous selection
A = 1 : no selection
A > 1 : adverse  selection  

(See in Tables 1-3)  
 
To  compare  the  severity  of  adverse  selection  under  different  risk-classification 
regimes, we need to define a reference level of adverse selection.  
Adverse selection under alternative schemes can then be expressed as a fraction of 
adverse selection under the reference scheme.  
A  convenient  reference  scheme  is  risk-differentiated  premiums  (actuarially  fair 

d(μi, πi) i
πi

𝔼[Π] Π

𝔼[Π] =
2

∑
i=1

d(μi, πi)piπi

𝔼[QL]

𝔼[QL] =
2

∑
i=1

d(μi, πi)piμi

Q L

Q L

Cov(Q, L) = 𝔼[(Q − 𝔼[Q])(L − 𝔼[L])] = 𝔼[QL] − 𝔼[Q]𝔼[L]

Q, L

A

A =
𝔼[QL]

𝔼[Q]𝔼[L]

A
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premiums).  
Then  using  subscript  0  to  denote  quantities  evaluated  under  risk-differentiated 
premiums, we define the adverse selection ratio as :  

Adverse selection Ratio =  � 1.7

 
In words, adverse selection ratio is the ratio the expected claim per policy under the 
actual  risk  classification  scheme  to  the  expected  claim  per  policy  under  risk-
differentiated premiums.  
Adverse Selection ratio can also be thought of as the ratio of the demand-weighted 
average premiums required for insurance to break even under each risk classification 
scheme.  
 
Loss Coverage  
Loss Coverage in this book is defined as the expected insurance claim ( as previously 
evaluated in equation (1.4) ) : 

Loss Coverage = � 1.8

 
The product  of  random variables  �  and �  can alternatively  be  thought  of  as  the 
following ‘ indicator’ random variable: 

�  = {1 if the individual both incurs a loss and has cover, 0 otherwise} 1.9
 

Loss Coverage can then be thought of as indexing the ‘overlap’ of cover �  and losses
�   in the population. It represent the extent to which insurance cover is concentrated 
over the ‘ right’ risks (those most likely to suffer loss). It measures the efficacy of 
insurance in compensating the population’s losses.  
The right-hand side of Equation (1.8) also shows that loss coverage can be contrasted 
with  unweighted  insurance  demand,  which  corresponds  to  the  ‘number  of  risks 
insured’ often referenced in information discussions of adverse selection.

 
Loss Coverage Ratio  
When comparing alternative risk classification schemes, it is often helpful to define 
loss coverage to be 1 under some suitable reference scheme. Loss Coverage under 
alternative schemes can then be expressed as a fraction of loss coverage under the 
reference scheme.  
It is convenient to use the same approach as for adverse selection above, that is, I use 
risk-differentiated premiums as the reference scheme.  
Then  using  subscript  0  the  denote  quantities  evaluated  under  risk-differentiated 
premiums, I define the loss coverage ratio (LCR) as :  

�  1.10

A
A0

𝔼[QL] =
2

∑
i=1

d(μi, πi)piμi

Q L

QL

Q
L

LCR =
𝔼[QL]
𝔼0[QL]
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Note that in the numerical examples in Chapter 1 and 3 , the fraction between 0 and 1 
which I heuristically labelled ‘loss coverage’ was, more precisely, a loss coverage 
ratio  with  the  reference  scheme  (i.e  under  which  loss  coverage  =  1)  defined  as 
compulsory  insurance  of  the  whole  population.  Clearly  the  choice  of  reference 
scheme - risk-differentiated premiums, compulsory insurance or something else - does 
not  matter,  provided  we  use  a  consistent  reference  when  making  comparisons  of 
different proposed risk classification schemes.  
Now note that loss coverage ratio in Equation (1.10) can also be expanded into: 

� 1.11

 
Then  by  noting  that  expected  population  losses  are  the  same irrespective  of  risk 
classification scheme (i.e. � ), we see that the first term on the right-hand 
side of Equation (1.11) i the adverse selection ratio in Equation (1.7). The second term 
on the right-hand side of Equation (1.11) is the ratio of demand under the actual risk 
classification scheme to demand under risk-differentiated premiums, which I call the 
demand ratio.  
So Equation (1.11) can then be interpreted as: 

� Adverse Selection Ratio �  Demand Ratio 1.12
 

Table 4 : Decomposition of loss coverage ratio into adverse selection rationed demand 
ratio for Tables 1 - 3.  

We can  illustrate  this  decomposition  of  loss  coverage  ratio  by  applying  it  to  the 
numerical examples from above. The decomposition is shown in Table 4. In each of 
the three columns in the table, loss coverage ratio (the third line)  is the product of 

LCR =
( 𝔼[QL]

𝔼[Q]𝔼[L] )

(
𝔼0[QL]

𝔼0[Q]𝔼[L] )
×

𝔼[Q]
𝔼0[Q]

𝔼[L] = 𝔼0[L]

LCR = ×
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adverse selection ratio and demand ratio (the first and the second lines).  
The decomposition of loss coverage ratio into adverse selection ratio and demand 
ratio  is  sometimes  helpful  in  correcting  casual  intuitions  and  commentary  about 
restrictions on risk classification. Casual intuitions and commentary often reference 
rising average prices (adverse selection) and falling demand (numbers insured), but 
without considering how the two effects interact. But depending on the product of two 
effects, loss coverage ratio may be higher or lower than 1 (that is, loss coverage may 
be increased or decreased). The decomposition highlight that predicting or observing 
a rise in average price  and fall in demand und a new risk classification scheme is not 
sufficient to demonstrate a worse outcome. The outcome in term of loss coverage 
depends on the product of two effects.

Figure 1.1: Loss Coverage ratio as a function of adverse selection ration 
 

An  illustration  of  the  trade-off  between  loss  coverage  and  adverse  selection  is 
provided by Figure 1. This graph plot loss coverage ratio against adverse selection 
ratio, based on the two risk-group model in this chapter with plausible form for the 
demand function. It can be seen that the maximum point for loss coverage corres-
ponds to an intermediate degree of adverse selection, not too low and not too high. 
The shape of this graph, with the interior maximum showing that loss coverage is 
maximised by an intermediate level of adverse selection, is the most important image 
in  this  book.  A similar  invited  U  shape  is  obtained  for  any  reasonable  demand 
function.Note that highest loss coverage is obtained not despite the adverse selection, 
but because of the adverse selection. In moderation, adverse selection is a good thing. 
figure 1.1 is based on a relative risk  �  . If the relative risk is lower, the β =

μ2
μ1

= 4
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maximum value of loss coverage is lower, and this maximum is attained with the 
lower level of adverse selection . This is illustrated in Figure 2 , which shows the plot 
of loss coverage ratio against adverse selection ratio for two values of relative risk, 
�  and � . The maximum of the dashed curve for �  lies below and to the 
left on the maximum of the solid curve for � .

Figure 1.2: Loss Coverage ratio as a function of adverse selection ration, for 
two relative risks.  
 
Note the the right-hand terminal points of each curve in figure 1.1 and 1.2  corres-
pond to limiting values, not point at which I arbitrarily chose to stop drawing the 
curve.These limiting values represent the scenario where all lower risks have dropped 
out of insurance and only higher risk remain; clearly, adverse selection that cannot 
increase any more. In figure 1.2, the terminal point for �  lies to the left and below 
the terminal point for � . To understand this, note that when all the higher risks 
have dropped out the market and only lower risks remain, lower relative risk �  
implies a lower break-even premiums (lower adverse selection), and also that a lower 
fraction of the total risk in the population is covered (lower loss coverage). 

 
3.3.2 Further Mathematics of Loss Coverage 
 
The previous part of mathematical details gave mathematical definitions of loss cover-
age and related quantities. This part introduces models of insurance markets which 
enable us to study how loss coverage varies with changes in the fraction of the popu-
lation represented by higher risk and lower risks, probabilities of loss and demand 
elasticities. In this part we also use the same two risk-group model as in previous part.  

β = 3 β = 4 β = 3
β = 4

β = 3
β = 4

β = 3
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We  focus  first  on  a  simple  iso-elastic  demand  function,  and  then  consider  more 
general demand functions. 

 
Two Risk-Group with Iso- elastic Demand 

 
In the previous part,  a generic function for proportion of the population insurance 
demand �  was used to define the quantities �  (expected population loss), 
�  (expected insurance demand), �  (expected premium), and �  (expected 
claim (Loss Coverage)). A form for the demand function was not specified, nor detail 
of how the premiums �  charged to each risk-group were determined. In this part, a 
form for the demand function will be specified. The zero-profit equilibrium condition 
which determines the ‘pooled’ premium when all risks are pooled at the same price 
also will be specified.

 
Specifying an Insurance Demand Function  
To recap, the proportional demand for insurance �  is the proportional of the 
risk-group the the probability of loss �  which buys insurance when a premium of �  is 
charged to members of that risk-group.  
As a preliminary, it is helpful to define the concept of demand elasticity.  
 
Demand Elasticity is defined as : 

Demand elasticity = � 2.1

 
Roughly  speaking,  this  is  the  percentage  change  in  demand  for  a  very  small 
percentage  change in premium. It measures the responsiveness of demand to small 
changes in premium.  
Note that  the derivative within the above expression in normally negative (as  the 
premium rises, demand falls). The minus sign ensure that demand elasticity as defined 
here will normally be positive; this makes the subsequence mathematical presentation 
tidier.  
It is sometimes more convenient to rewrite Equation (2.1) as the log-log derivative of 
the demand function with respect to the premium, that is : 

Demand elasticity = � 2.2

 
What properties should the demand function possess?  

(a) Decreasing in Premium:  �  is decreasing function of the premium �  
for all risk-groups.

(b) Increasing in Risk : � , that is at any given premium �  
the proportional demand function is higher for the higher risk-group.

(c) Decreasing  in  Premium loading  :  �  is  decreasing  function  of  the 
premium loading  �  . 

d(μi, πi) 𝔼[L]
𝔼[Q] 𝔼[Π] 𝔼[QL]

πi

d(μi, πi)
μi πi

πi

d(μi, πi)
⋅

∂d(μi, πi)
∂πi

−
∂ log[d(μi, πi)]

∂ log πi

d(μi, πi) πi

d(μ1, π0) < d(μ2, π0) π0

d(μi, πi)πi
μi
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(d)  Capped at 1 : � , that is the highest possible demand is when all 
members of the risk-group buy insurance.
 

A simple demand function which satisfies these requirements can be obtained by the 
demand elasticity in Equation 2.2 equal to a constant, say � . Solving this differential 
equation leads to the so-called iso-elastic demand function : 

� 2.3

• �  is the fair-premium demand for the risk-group �  , that is the 
proportion of the risk-group �  who buy insurance at an actuarially fair premium, that 
is when � .

• �  is the risk ( probability of loss ) for members of risk-group � .
�  is the demand elasticity for members of the risk-group � , as already defined.  

 
To interpret the demand formula in Equation (2.3) , observe that it specifies demand 
as  a  function  of  the  premium loading  �  .  When  the  premium loading  is  high 
(insurance is expensive), demand is low and vice versa. The ‘iso-elastic’ terminology 
reflects that price elasticity of demand is the same constant �  everywhere along the 
demand curve.

Figure 2.1: Iso-elasticity demand curves for � .  

The �  parameter controls the shape of the demand curve. This is illustrated in Figure 
2.1,  which  shows  plots  of  demand  from  higher  and  lower  risk-groups  for  three 
different values of �  in the demand function of Equation (2.3).  
The demand function in Equation (2.3) clearly satisfies axioms (a) and (c) above. 
Axioms (b) and (d) appear superficially to require conditions on the fair-premium 
demands �  and � . In other words, we need to be careful that modelled demand from 
the lower risk-group is always lower than from the higher risk-group (axiom (b)) ; and 
also  that  modelled  demand  from the  higher  risk-group  does  not  exceed  1  at  the 
equilibrium premium (axiom (d)).  

d(μi, πi) ≤ 1
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)−λi
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i
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In Figure 2.1, we can see that the latter point might be a concern for the highest curve 
in the right panel, the case � , if the equilibrium-pooled premium happened to 
be below about 0.016.  
However, for the purposes of analysing the mathematical properties of the model, it is 
convenient to use the following trick Recall that �  and �  are the fractions of the total 
population represented by lower risks and higher risk, respectively. Then define the 
fair-premium  demand-share  of  the  lower  risk-group  as  the  proportion  of  total 
demand which the risk-group represents when actuarially fair premiums are charged 
to both risk-groups.  
Fair-Premium Demand-Share :

� , � 2.4

 
Clearly  � ,  the  fair-premium  demand-share  of  the  higher  risk-group,  is  just  the 
complement of �  (i.e. � ).  
We can then analyse the mathematical properties of the model for the full range of 
possible fair-premium demand-shares � , without worrying about specifying 
any particular values for the fair-premium demands �  and the population fractions � . 
It suffices to note that for every possible � , there will be some hypothetical combi-
nation  of  population  structure  �  and  fair-premium demand  �  which  satisfies  the 
axioms (b) and (d) above. 

 
Specifying a Zero-Profit Equilibrium Condition  
Suppose now that the premiums charged to members of the low risk-group and high 
risk-group are �  and � , respectively.  
The Insurance income (Premiums) per member of the population will be the sum of 
the products of demand and premium for each risk-group:  
 

Insurance Income = � 2.5
 

The Insurance Outgo (Claims) per member of the population will be the sum of the 
products of demand and the probability of loss for each risk-group: 

Insurance Outgo = � 2.6
 

The right-hand  side  Equation  (2.6)  looks  like  the  definition  of  Loss  Coverage  in 
Equation (1.8) in the previous part. However, loss coverage refers specifically to this 
quantity  at  equilibrium.  The insurance outgo in  Equation (2.6)  is  defined for  any 
premiums, not just equilibrium premiums.  
To determine equilibrium premiums, note that the insurer’s expected profit (loss, if 
negative) is expected income less expected outgo, that is Equations (2.5) - (2.6). So 
any pair of premiums �  which equates Equation (2.5) and Equation (2.6) (=), is 
an Equilibrium.  
One equilibrium is  obvious  from inspection:  full  risk  classification  (or  ‘full  risk-
differentiated premiums’), that is � . This represent one extreme.  
Another equilibrium - and the main focus in this part - is a common ‘pooled’ premium 
�  for both risk-groups: nil risk classification (or ‘pooling’) that is � . This 
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represents the other extreme.  
There will always exist some value of �  which gives a pooling equilibrium. 

 
Examples  
To illustrate the use of the model, set �  (i.e. relative risk � ) 
and  �  that  is  90%  of  the  insurance  demand  under  the  risk-differentiated 
premiums is from lower risks. These parameter values are used throughout this part of 
mathematical  details,  except  where  stated  otherwise.  The  parameters  have  been 
chosen by loose analogy with the life insurance market, where typically around 90% 
of accepted risks are assigned to large ‘standard’ risk-group with low mortality, and 
around 10% of accepted risks are charged a range of higher premiums ranging from 
+50% to +300% over  the standard risk-group’s premium. But these values merely 
hypothetical and illustrative; they are not presented as a calibrated model of any real 
market.

 
Figure 2.2 : Low Elasticity: � , giving increased loss coverage under pooling.  

Figure 2.2 shows the equilibrium for relatively inelastic demand, � . 
Figure 2.2 can be interpreted as follows:  
The horizontal dashed line is a reference level representing income and outgo if risk-
differentiated premiums are charged: that is , if �   in Equation (2.5) 
and (2.6).  
The curves represent how income and outgo as defined in Equation (2.5) and (2.6) 
vary with the level of a common (‘pooled’) premium which is charged to both risk-
groups. 

π0

μ1 = 0.01, μ2 = 0.04 β = 4
α1 = 0.9

λ = 0.5

λ = 0.5
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On the left-hand side of the graph, where the premium �  is low, demand for insurance 
at this price is high, and so the outgo is high.  
Because of  the very low premium, income is  low (despite  the high demand);  the 
markets is far from equilibrium and insurers make large losses.  
Insurers will therefore increase the pooled premium, and some customers will leave 
the  market.  As  customers  leave  the  market,  outgo  decreases  monotonically  (the 
downward sloping curve), but income increases because the number of the customers 
leaving the market is outweighed by the increasing in premium collected for each 
remaining customer. So for demand elasticity � , the curve of  total income slopes 
upwards. The intersection (shown by the arrow) of the curves for income and outgo 
represents a pooling equilibrium. The premium at this intersection is the equilibrium 
pooled premium � . 
Note that the arrowed intersection is at  a higher level of income and dugout than 
under full risk differentiation. In other words, with the low demand elasticity �  
assumed here,  loss coverage under pooling is increased compared with that under 
risk-differentiated premiums.

Figure 2.3 High elasticity : � , giving reduced loss coverage.

 
Figure  2.3  shows  the  result  for  more  elasticity  demand  �  ,  with  all  other 
parameter as Figure 5.2. Note that the equilibrium is at a lower than level of income 
and outgo when risk-differentiated premiums are charged. In other words, the higher 
demand  elasticity  �  assumed  here,  loss  coverage  under  pooling  is  reduced 
(decreased) compared with that under risk-differentiated premiums.  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λ = 0.5

λ = 1.5
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General Results for Iso-elastic Demand with Common Elasticity �  
 
This  section  states  and  illustrates  general  results  for  adverse  selection,  insurance 
demand (cover) and loss coverage under the iso-elastic demand function as per  
Equation  (2.3)  ,  with  a  common  elasticity  parameter  �  for  both  risk-groups. 
Mathematical proofs are omitted in the book, but have been published in Hao et al. 
(2015, 2016a).  
In interpreting these results, note that a loss coverage ratio (LCR) above 1 (LCR >1) 
signifies a ‘good’ outcome from restricting risk classification, and LCR < 1 signifies a 
‘bad’ outcome.

 

 

 
Figure  2.4  :  Adverse  selection  ratio  and  demand  ratio  as  a  function  of  demand 
elasticity, for two relative risks.

(a) Adverse Selection ratio increases monotonically with demand elasticity, to 
an upper limit where the only remaining insureds are high risks. This is shown in 
upper panel of Figure 2.4 for two different relative risks �  and � . Note 
that the asymptotic limiting values of adverse selection ratio are equivalent to the 
pooled premium when all lower risks have left the insurance market, divided by 
the weighed average premium under risk-differentiated premiums.

λ

λ

β = 3 β = 4
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(b) The corresponding change in demand ratio is shown in the lower panel of 
Figure 2.4.  Recall  from the previous part  of mathematical  details  that  demand 
ratio represents insurance demand when risk classification is restricted divided by 
insurance  demand  under  fully  risk-differentiated  premiums.  Demand  ratio  is 
therefore a measure of the reduction in cover which arises from adverse selection, 
it  is  realisation in our model of  what economic rhetoric typically describes as 
‘efficiency losses’ or ‘inefficiency’ arising from adverse selection.  

Figure 2.5 Loss Coverage ratio as a function of demand elasticity, for two relative 
risks.

(c)  In contrast to adverse selection ratio and demand ratio, LCR as a function 
of demand elasticity has an interior maximum, as shown in Figure 2.5.  
In  other  words,  loss  coverage  is  maximised with  a  non zero  level  of  adverse 
selection,  irrespective  of  whether  adverse  section  is  characterised  as  ‘positive 
correlation of cover and losses’ (as in this book, and as in most econometric zests 
for  adverse  selection)  or  as  ‘reduction  in  cover’ (what  economic  rhetoric  call 
‘efficiency losses’).

(d) For iso-elastic demand, demand elasticity of 1 always gives LCR of 1, as 
shown in Figure 2.5 (i.e. both curves pass through the coordinate(1,1)).  
Lower values of demand elasticity given LCR above 1 and vice versa,  that  is
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� , �  ,  � . 
So  for  the  iso-elastic  demand  function,  �  represents  a  critical  value  of 
demand  elasticity,  which  determines  whether  loss  coverage  is  increased  or 
reduced by pooling all  risks in a single class, as compared with loss coverage 
under risk-differentiated premiums.

(e) For high values of � , loss coverage flattens out at a lower limit where the 
only remaining insureds are high risks. This is shown towards the right side of the 
main graph in Figure 2.5.

(f) The smaller graph on the lower right in Figure 2.5 zooms over the upper left 
region of the main graph , that is the region where � . It can be seen that 
as demand elasticity increases from zero, LCR increases from 1 to a maximum at 
around  demand  elasticity  � .  A  higher  relative  risk  �  gives  a  higher 
maximum  value  of  LCR.Note  that  in  this  region  � ,  the  common 
characterisation  of  adverse  selection  as  ‘inefficient’ seems  unreasonable.  With 
adverse selection, more risk is being voluntarily traded, and more losses are being 
compensated.

(g) The value of the maximum for LCR in the zoom region in Figure 2.5 is 
higher for �  than for  � . The maximum is also affected by the population 
structure. To be precise, the maximum depends on the fair-premium risk-share, 
say  �  (note:  not  the  same  as  the  fair-premium demand-share  �  ,  previously 
defined in Equation (2.4) ), i.e. the fraction of total insured risk which lower risks 
represent when actuarially fair premiums are charged :     
 
                                                       �                                           2.8

(h) Figure 2.6 (see below) shows loss coverage for three population structures, 
all with relative risk � . The smaller graph on the lower right zooms over the 
region  � .  The  curve  with  the  highest  maximum  for  LCR  is  that 
correlation to population structure � ; this corresponds to a fair-premium 
risk-share:  
 
                                             �                      2.9

(i) For the iso-elastic demand function used in this chapter, it can be shown 
that if both dean elasticity and population structure can vary, the maximum value 
for LCR occurs when �  and � . 
This maximum value for LCR is :          
 
                             �                                             2.10 

(j) The form of  Equation 5.10 combined with the requirement  for  �  
suggests that pooling will be particularly beneficial to loss coverage when there is 
small risk-group with very high risk (since this combination allows high relative 
risk  �  to  be  combined  with  fair-premium  risk-share  �  ).  One  obvious 
example is a small fraction of population with an adverse  genetic profile .                           
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Figure 2.6: Loss coverage ratio as a function of demand elasticity, for three population 
structures.

 
General Results for Iso-elastic Demand with Different Elasticities �

 
When the elasticity parameter �  and �  for low and high risk-groups are different, it 
becomes  harder  to  make  concise  general  statements  about  how  they  affects  loss 
coverage.  The general  pattern  of  results  is  shown in  Figure  2.7  .  This  shows the 
regions in the �  plane where LCR is above or below 1 (i.e pooling gives higher 
or  lower  loss  coverage  than  risk-differentiated  premiums).  This  graph  can  be 
explained as follows. 

(a) First, ignore the two dishes curves in Figure 2.7 and focus just on the solid 
curve for �  (a relative risk of 4, e.g  �  ).  
This curve demarcates a left-hand unshaded region containing all combinations of 
�  for  which  LCR  >1  ,  and  a  right-hand  shaded  region  containing  al 
combinations of �  for which LCR < 1.  
Note that LCR > 1 is associated with moment towards the the upper left of the 
graph: that is, to give LCR >1, �  needs to be ‘sufficiently low’ relative to � .

(b) Second,  note  that  �  sufficiently  low relative  to  �  does  not  necessarily 
mean � lower than � . In particular, in the lower part of the unshaded area inside 
the unit square in Figure 2.7 (the narrow segment below the dashed 45 �  line, but 
above the solid curve), �  is slightly higher than � , and yet still ‘sufficiently low’ 
to give LCR > 1.

(c) Third, focus now on the two dashed curves in Figure 2.7. The dashed curves 
illustrate how the solid curve demarcating the left-hand LCR > 1b (unshaded) and 
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right-hand LCR < 1 (shaded) regions shifts as the relative risk �  changes. Note 
that as relative  risk �  increases, the curve demarcating the regions becomes more 
convex, so that a greater range of combinations of  �  and �  inside the unit square 
gives LCR > 1.  
But the effect is small: increasing the relative risk from 4 to 40 times or even 400 
times makes only as small difference to the curve.  

 
Figure 2.7: Regions of �  space where loss coverage ratio is greater or less than 
1.

 
Comparison with Empirical Demand Elasticities:  �  < 1 is  Realistic

 
The result summarised in Figures 2.4 - 2.7 suggest that under iso-elastic demand , 
pooling will give higher loss coverage than fully risk-differentiated premiums:

(a) in the equal elasticities case, whenever demand elasticity is less than 1;
(b) in the different elasticities case, whenever �  and �  (in Figure 

2.7, the part of the unshaded region vertically above the �  diagonal and to 
the left of � );

(c) for some values outside this range, provided �  is ‘sufficiently low’ relative 
to �  (in Figure 2.7, other parts of the unshaded region).
 

How do these limits compare with demand elasticities in the real world? There is 
some evidence that insurance demand elasticities are less than 1 in many markers. 
Table 2.1 shows some relevant empirical estimates. (For convenience the elasticity 
parameter in this part of mathematical details was defined as a positive constant, but 
estimates in empirical papers are generally given with the negative sign, so the table 
quotes  them in  that  form.)  These  estimates  suggest  that  if  the  iso-elastic  demand 
model  is  reasonable,  loss  coverage  might  often  be  increased  by  restricting  risk 
classification.  
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Table 2.1 Estimates of demand elasticity for various insurance markets
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4 Conclusion

The purpose of this paper is to dispute the conventional thinking of actuaries and 
economists about the value of adverse selection in insurance pricing markets with the 
concept of loss coverage. The argument in this paper are based on the book “Loss 
Coverage : Why Insurance Works Better With Some Adverse Selection”, written by 
Guy Thomas, which argues that actuaries and economists are overlooking an impor-
tant point about adverse selection. In the introduction of this paper introduces you to 
the meaning of adverse selection and some related topics, and the scope and focus of 
the argument, which leads to the argument. The argument is divided in two parts. The 
first part is the introduction to the argument, of course this part introduces you to the 
argument and there is also an easy to understand toy example that tells us that some 
adverse selection may lead to a beneficial aggregate position for society in terms of 
increasing the overall level of loss coverage. In the second part there is the argument 
(with some helpful figures and table) that is built with a mathematical foundation that 
examine the demand elasticities for both higher and lower-risk groups in different 
markets and.
Three interesting topics that I haven’t mentioned in this paper but worth knowing: 

• Loss Coverage under alternative Demand Functions3

• Multiple Equilibrium : A Techical Curiosity4

• Partial Risk Classification, Separation and Inclusivity5

Loss Coverage: Why Insurance Works Better With Some Adverse Selection, Appendix A, p.245-2513

 Loss Coverage: Why Insurance Works Better With Some Adverse Selection, Appendix B, p.252-2584

 Loss Coverage: Why Insurance Works Better With Some Adverse Selection, Partial Risk Classification, 5

Separation and Inclusivity p.89-103
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	3 The Argument
	In this chapter, more detailed and realistic numerical examples than the toy examples will be given, showing that while loss coverage is increased by ‘the right amount’ of adverse selection, it can be reduced if there is ‘too much’ adverse selection. “ The Argument that some degree of adverse selection makes the insurance system work better ” will be presented in three way ; 3.1 the key argument, 3.2 numerical examples and 3.3 mathematical details.

