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Abstract
We characterize the behavior of the Rough Heston
model introduced by Jaisson and Rosenbaum (2016,
Ann. Appl. Probab., 26, 2860–2882) in the small-time,
large-time, and 𝛼 →

1

2
(i.e.,𝐻 → 0) limits. We show that

the short-maturity smile scales in qualitatively the same
way as a general rough stochastic volatility model , and
the rate function is equal to the Fenchel–Legendre trans-
form of a simple transformation of the solution to the
same Volterra integral equation (VIE) that appears in El
Euch and Rosenbaum (2019, Math. Financ., 29, 3–38),
but with the drift and mean reversion terms removed.
The solution to this VIE satisfies a space–time scal-
ing property which means we only need to solve this
equation for the moment values of 𝑝 = 1 and 𝑝 = −1

so the rate function can be efficiently computed using
an Adams scheme or a power series, and we com-
pute a power series in the log-moneyness variable for
the asymptotic implied volatility which yields tractable
expressions for the implied vol skew and convexity
which is useful for calibration purposes. We later derive
a formal saddle point approximation for call options
in the Forde and Zhang (2017) large deviations regime
which goes to higher order than previous works for
rough models. Our higher-order expansion captures the
effect of both drift terms, and at leading order is of quali-
tatively the same form as the higher-order expansion for
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a general model which appears in Friz et al. (2018,Math.
Financ., 28, 962–988). The limiting asymptotic smile in
the large-maturity regime is obtained via a stability anal-
ysis of the fixed points of the VIE, and is the same as for
the standard Heston model in Forde and Jacquier (2011,
Finance Stoch., 15, 755–780). Finally, using Lévy’s con-
vergence theorem, we show that the log stock price 𝑋𝑡

tends weakly to a nonsymmetric random variable 𝑋
(
1

2
)

𝑡

as 𝛼 →
1

2
(i.e., 𝐻 → 0) whose moment generating func-

tion (MGF) is also the solution to the Rough Heston VIE

with 𝛼 =
1

2
, and we show that 𝑋

(
1

2
)

𝑡 ∕
√

𝑡 tends weakly
to a nonsymmetric random variable as 𝑡 → 0, which
leads to a nonflat nonsymmetric asymptotic smile in the
Edgeworth regime, where the log-moneyness 𝑧 = 𝑘

√
𝑡

as 𝑡 → 0, and we compute this asymptotic smile numer-
ically. We also show that the third moment of the log
stock price tends to a finite constant as 𝐻 → 0 (in con-
trast to the Rough Bergomi model discussed in Forde
et al. (2020, Preprint) where the skew flattens or blows
up) and the 𝑉 process converges on pathspace to a ran-
dom tempered distribution which has the same law as
the 𝐻 = 0 hyper-rough Heston model, discussed in Jus-
selin and Rosenbaum (2020, Math. Finance, 30, 1309–
1336) and Abi Jaber (2019, Ann. Appl. Probab., 29, 3155–
3200).

KEYWORDS
asymptotics, implied volatility, integral equations, random fields,
Rough Heston model, Rough volatility

1 INTRODUCTION

Jaisson and Rosenbaum (2016) introduced the RoughHeston stochastic volatilitymodel and show
that the model arises naturally as the large-time limit of a high-frequency market microstructure
model driven by two nearly unstable self-exciting Poisson processes (otherwise known as Hawkes
process) with a Mittag–Leffler kernel which drives buy and sell orders (a Hawkes process is a
generalized Poisson process where the intensity is itself stochastic and depends on the jump
history via the kernel). The microstructure model captures the effects of endogeneity of the
market, no-arbitrage, buying/selling asymmetry, and the presence of metaorders. El Euch and
Rosenbaum (2019) show that the characteristic function of the log stock price for the Rough
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Heston model is the solution to a fractional Ricatti equation which is nonlinear (see also El Euch,
Fukasawa, and Rosenbaum, 2018; El Euch and Rosenbaum, 2018), and the variance curve for
the model evolves as 𝑑𝜉𝑢(𝑡) = 𝜅(𝑢 − 𝑡)

√
𝑉𝑡𝑑𝑊𝑡, where 𝜅(𝑡) is the kernel for the 𝑉𝑡 process itself

multiplied by a Mittag–Leffler function (see Proposition 2.2 for a proof of this). Theorem 2.1 in
El Euch and Rosenbaum (2018) shows that a Rough Heston model conditioned on its history
up to some time is still a Rough Heston model, but with a time-dependent mean reversion level
𝜃(𝑡) which depends on the history of the 𝑉 process. Using Fréchet derivatives, El Euch and
Rosenbaum (2018) also show that one can replicate a call option under the Rough Heston model
if we assume the existence a tradeable variance swap, and the same type of analysis can be done
for the Rough Bergomi model using the Clark–Ocone formula from Malliavin calculus. See also
Dandapani, Jusselin, and Rosenbaum (2019) who introduce the super Rough Heston model to
incorporate the strong Zumbach effect as the limit of a market microstructure model driven by
quadratic Hawkes process (this model is no longer affine and thus not amenable to the Volterra
integral equation [VIE] techniques in this paper).
Gatheral and Keller-Ressel (2019) consider the more general class of affine forward variance

(AFV) models of the form 𝑑𝜉𝑢(𝑡) = 𝜅(𝑢 − 𝑡)
√

𝑉𝑡𝑑𝑊𝑡 (for which the Rough Heston model is a
special case). They show that AFV models arise naturally as the weak limit of a so-called affine
forward intensity (AFI) model, where order flow is driven by two generalized Hawkes-type pro-
cess with an arbitrary jump size distribution, and we exogenously specify the evolution of the
conditional expectation of the intensity at different maturities in the future, akin to a variance
curve model. The weak limit here involves letting the jump size tends to zero as the jump inten-
sity tends to infinity in a certain way, and one can argue that an AFI model is more realistic than
the bivariate Hawkes model in El Euch and Rosenbaum (2019), since the latter only allows for
jumps of a single magnitude (which correspond to buy/sell orders). Using martingale arguments
(which do not require considering a Hawkes process as in the aforementioned El Euch & Rosen-
baum articles) they show that the mgf of the log stock price for the affine variance model satisfies
a convolution Ricatti equation, or equivalently is a nonlinear function of the solution to a VIE.
Gerhold, Gerstenecker, and Pinter (2019) use comparison principle arguments for VIEs to show

that the moment explosion time for the Rough Heston model is finite if and only if it is finite for
the standard Heston model. Gerhold et al. (2019) also establish upper and lower bounds for the
explosion time, and show that the criticalmoments are finite for allmaturities, and formally derive
refined tail asymptotics for the Rough Heston model using Laplace’s method. A recent talk by
Keller-Ressel (joint work with Majid) states an alternate upper bound for the moment explosion
time for the Rough Heston model, based on a comparison with a (deterministic) time change of
the standard Heston model, which they claim is usually sharper than the bound in Gerhold et al.
(2019).
Jacquier & Pannier (2020) compute a small-time large deviation principle (LDP) on pathspace

for a more general class of stochastic Volterra models in the same spirit as the classical Freidlin–
Wentzell LDP for small-noise diffusion. More specifically, for a simple Volterra system of the form

𝑌𝑡 = 𝑌0 + ∫
𝑡

0

𝐾2(𝑡 − 𝑠)𝜁(𝑌𝑠)𝑑𝑊𝑠, (1)

we have the corresponding deterministic system:

𝑌𝑡 = 𝑌0 + ∫
𝑡

0

𝐾2(𝑡 − 𝑠)𝜁(𝑌𝑠)𝑣𝑠𝑑𝑠,
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where 𝑣 ∈ 𝐿2([0, 𝑇]).When𝐾2(𝑡) = 𝑐𝑜𝑛𝑠𝑡.𝑡
𝐻−

1

2 the right term is proportional to the𝛼th fractional
integral of 𝜁𝑣 (where 𝛼 = 𝐻 +

1

2
), and in this case Jacquier & Pannier (2020) show that 𝑌𝜀(.) sat-

isfies an LDP as 𝜀 → 0 with rate function

𝐼𝑌(𝜑) =
1

2
𝑐𝑜𝑛𝑠𝑡. × ∫

𝑇

0

(
𝐷𝛼(𝜑(.) − 𝜑(0))(𝑡)

𝜁(𝜑(𝑡))

)2

𝑑𝑡

(see proposition 4.3 in Jacquier & Pannier, 2020) in terms of the rate function of the underlying
Brownianmotion which is well known from Schilder’s theorem (one can also add drift terms into
(1) which will not affect 𝐼𝑌). The corresponding LDP for the log stock price is then obtained using
the usual contraction principle method, so the rate function has a variational representation, and
does not involve VIEs.
Corollary 7.1 in Friz, Gassiat, and Pigato (2018) provides a sharp small-time expansion in the

Forde and Zhang (2017) large deviations regime (valid for 𝑥-values in some interval) for a general
class of Rough Stochastic volatility models using regularity structures, which provides the next
order correction to the leading order behavior obtained in Forde and Zhang (2017), and some ear-
lier intermediate results in Bayer, Friz, Gulisashvili, Horvath, and Stemper (2018). Forde, Smith,
andViitasaari (2019) derive formal small-timeEdgeworth expansions for theRoughHestonmodel
by solving a nested sequence of linear VIEs. The Edgeworth-regime implied vol expansions in El
Euch, Fukasawa, Gatheral, and Rosenbaum (2019) and Forde et al. (2019) both include an addi-
tional𝑂(𝑇2𝐻) term, which itself contains an at-the-money, convexity, and higher-order correction
term, which are important effects to capture for these approximations to be useful in practice.
In this paper, we establish small- and large-time large deviation principles for theRoughHeston

model, via the solution to a VIE, and we translate these results into asymptotic estimates for call
options and implied volatility. The solution to the VIE satisfies a certain scaling property which
means we only have to solve the VIE for themoment values of 𝑝 = +1 and−1, rather than solving
an entire family of VIEs. Using the Lagrange inversion theorem, we also compute the first three
terms in the power series for the asymptotic implied volatility �̂�(𝑥). We later derive formal asymp-
totics for the small-time moderate deviations regime and a formal saddle point approximation for
European call options in the original Forde and Zhang (2017) large deviations regime which goes
to higher order than previous works for rough models, and captures the effect of the mean rever-
sion term and the drift of the log stock price, andwe discuss practical issues and limitations of this
result. Our higher-order expansion is of qualitatively the same form as the higher-order expan-
sion for a general model in theorem 6 in Friz, Gassiat, et al. (2018) (their expansion is not known
to hold for large 𝑥-values since in their more general setup there are additional complications
with focal points, proving nondegeneracy, etc.). For the large time, large log-moneyness regime,
we show that the asymptotic smile is the same as for the standard Heston model as in Forde and
Jacquier (2011a), and we briefly outline how one could go about computing the next order term
using a saddle point approximation, in the same spirit as Forde, Jacquier, and Mijatovic (2011).
In the final section, using Lévy’s convergence theorem and result from Gripenberg, Londen,

and Staffans (1990) on the continuous dependence of VIE solutions as a function of a param-
eter in the VIE, we show that the log stock price 𝑋𝑡 (for 𝑡 fixed) tends weakly as 𝛼 →

1

2
to a

random variable 𝑋
(
1

2
)

𝑡 whose mgf is also the solution to the Rough Heston VIE with 𝛼 =
1

2
and

whose law is nonsymmetric when 𝜌 ≠ 0. From this we show that 𝑋
(
1

2
)

𝑡 ∕
√

𝑡 tends weakly to a
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nonsymmetric randomvariable as 𝑡 → 0, which leads to a nontrivial asymptotic smile in the Edge-
worth (or central limit theorem) regime, where the log-moneyness scale as 𝑧 = 𝑘

√
𝑡 as 𝑡 → 0. We

also show that the third moment of the log stock price for the driftless version of the model tends
to a finite constant as 𝐻 → 0 (in contrast to the Rough Bergomi model discussed in Forde et al.
(2020)where the skew flattens or blows up depending on the vol-of-vol parameter 𝛾) and using the
expression inAbi Jaber, Larsson, and Pulido (2019) for𝔼(𝑒∫

𝑇

0
𝑓(𝑇−𝑡)𝑉𝑡𝑑𝑡), we show that𝑉 converges

to a random tempered distribution whose characteristic functional also satisfies a nonlinear VIE
and (from theorem 2.5 inAbi Jaber, 2019) this tempered distribution has the same law as the𝐻 = 0

hyper-rough Heston model.

2 ROUGHHESTON AND OTHER VARIANCE CURVE
MODELS—BASIC PROPERTIES

In this section, we recall the definition and basic properties and origins of the Rough Heston
model, andmore general affine and nonaffine forward variancemodels. Most of the results in this
section are given in various locations in El Euch and Rosenbaum (2018, 2019) and Gatheral and
Keller-Ressel (2019), but for pedagogical purposes we found it instructive to collate them together
in one place.
Let (Ω, , ℙ) denote a probability space with filtration (𝑡)𝑡≥0 which satisfies the usual condi-

tions, and consider the Rough Hestonmodel for a log stock price process𝑋𝑡 introduced in Jaisson
and Rosenbaum (2016):

𝑑𝑋𝑡 = −
1

2
𝑉𝑡𝑑𝑡 +

√
𝑉𝑡𝑑𝐵𝑡

𝑉𝑡 = 𝑉0 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝜆(𝜃 − 𝑉𝑠)𝑑𝑠 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝜈
√

𝑉𝑠𝑑𝑊𝑠 (2)

for𝛼 ∈
(

1

2
, 1
)
, 𝜃 > 0, 𝜆 ≥ 0, and 𝜈 > 0, where𝑊,𝐵 are two𝑡-Brownianmotionswith correlation

𝜌 ∈ (−1, 1). We assume 𝑋0 = 0 and zero interest rate without loss of generality, since the law of
𝑋𝑡 − 𝑋0 is independent of 𝑋0.

2.1 Computing 𝔼(𝑽𝒕)

Proposition 2.1.

𝔼(𝑉𝑡) = 𝑉0 − (𝑉0 − 𝜃)∫
𝑡

0

𝑓𝛼,𝜆(𝑠)𝑑𝑠, (3)

where 𝑓𝛼,𝜆(𝑡) ∶= 𝜆𝑡𝛼−1𝐸𝛼,𝛼(−𝜆𝑡𝛼), and 𝐸𝛼,𝛽(𝑧) ∶=
∑∞

𝑛=0

𝑧𝑛

Γ(𝛼𝑛+𝛽)
denotes the Mittag–Leffler

function.

Proof. (See also p. 7 in Gatheral and Keller-Ressel (2019), and proposition 3.1 in El Euch and
Rosenbaum (2018) for an alternate proof). Let 𝑟(𝑡) = 𝑓𝛼,𝜆(𝑡). Taking expectations of (2) and using
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that the expectation of the stochastic integral term is zero, we see that

𝔼(𝑉𝑡) = 𝑉0 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝜆(𝜃 − 𝔼(𝑉𝑠))𝑑𝑡 . (4)

Let 𝑘(𝑡) ∶=
𝜆𝑡𝛼−1

Γ(𝛼)
and 𝑓(𝑡) ∶= 𝔼(𝑉𝑡) − 𝜃. Then we can rewrite (4) as

𝑓(𝑡) = (𝑉0 − 𝜃) − 𝑘 ∗ 𝑓(𝑡) , (5)

where ∗ denotes convolution. Now define the resolvent 𝑟(𝑡) as the unique function which satisfies
𝑟 = 𝑘 − 𝑘 ∗ 𝑟 . Then, we claim that

𝑓(𝑡) = (𝑉0 − 𝜃) − 𝑟 ∗ (𝑉0 − 𝜃).

To verify the claim, we substitute this expression into (5) to get:

(𝑉0 − 𝜃) − 𝑘 ∗ [(𝑉0 − 𝜃) − 𝑟 ∗ (𝑉0 − 𝜃)] = (𝑉0 − 𝜃) − (𝑉0 − 𝜃) ∗ (𝑘 − 𝑘 ∗ 𝑟)(𝑡)

= (𝑉0 − 𝜃) − (𝑉0 − 𝜃) ∗ 𝑟(𝑡)

so (𝑉0 − 𝜃) − 𝑘 ∗ 𝑓(𝑡) = (𝑉0 − 𝜃) − (𝑉0 − 𝜃) ∗ 𝑟(𝑡) = 𝑓(𝑡), which is precisely the integral equa-
tion we are trying to solve. Taking Laplace transform of both sides of 𝑘 − 𝑘 ∗ 𝑟 = 𝑟 we obtain
𝑟 = �̂� − �̂�𝑟, which we can rearrange as

𝑟 =
�̂�

1 + �̂�
=

𝜆𝑧−𝛼

1 + 𝜆𝑧−𝛼
=

𝜆

𝑧𝛼 + 𝜆

and the inverse Laplace transform of 𝑟 is 𝑟(𝑡) = 𝜆𝑡𝛼−1𝐸𝛼,𝛼(−𝜆𝑡𝛼). □

2.2 Computing 𝔼(𝑽𝒖|𝒕)

Now let 𝜉𝑡(𝑢) ∶= 𝔼(𝑉𝑢|𝑡). Then 𝜉𝑡(𝑢) is an 𝑡-martingale, and

𝜉𝑡(𝑢) = 𝑉0 +
1

Γ(𝛼) ∫
𝑢

0

(𝑢 − 𝑠)𝛼−1𝜆(𝜃 − 𝔼(𝑉𝑠|𝑡)𝑑𝑠 +
1

Γ(𝛼) ∫
𝑡

0

(𝑢 − 𝑠)𝛼−1𝜈
√

𝑉𝑠𝑑𝑊𝑠.

If 𝜆 = 0, we can rewrite this expression as

𝑑𝜉𝑡(𝑢) =
1

Γ(𝛼)
(𝑢 − 𝑡)𝛼−1

√
𝑉𝑡𝑑𝑊𝑡.

Proposition 2.2. (see El Euch & Rosenbaum, 2019). For 𝜆 > 0,

𝑑𝜉𝑡(𝑢) = 𝜅(𝑢 − 𝑡)
√

𝑉𝑡𝑑𝑊𝑡 = 𝜅(𝑢 − 𝑡)
√

𝜉𝑡(𝑡)𝑑𝑊𝑡, (6)
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where 𝜅 is the inverse Laplace transform of �̂�(𝑧) =
𝜈𝑧−𝛼

1+𝑧−𝛼
, which is given explicitly by

𝜅(𝑥) = 𝜈𝑥𝛼−1𝐸𝛼,𝛼(−𝜆𝑥𝛼) ∼
1

Γ(𝛼)
𝜈𝑥𝛼−1 (7)

as 𝑥 → 0 (see also p. 6 in Gatheral & Keller-Ressel (2019) and p. 29 in El Euch and Rosenbaum
(2018)).

Proof. See Appendix A. □

Remark 2.3. Integrating (6) and setting 𝑢 = 𝑡 we see that

𝑉𝑡 = 𝜉0(𝑡) + ∫
𝑡

0

𝜅(𝑡 − 𝑠)
√

𝑉𝑠𝑑𝑊𝑠 . (8)

Remark 2.4. From (6), we see that 𝜉𝑡(.) is Markov in 𝜉𝑡(.). However, 𝑉 is not Markov in itself.

2.3 Evolving the variance curve

We simulate the variance curve at time 𝑡 > 0 using

𝜉𝑡(𝑢) = 𝜉0(𝑢) + ∫
𝑡

0

𝜅(𝑢 − 𝑠)
√

𝑉𝑠𝑑𝑊𝑠

and substituting the expression for 𝜉0(𝑡) = 𝔼(𝑉𝑡) in (3) and the expression for 𝜅(𝑡) in Proposi-
tion 2.2 (which are both expressed in terms of the Mittag–Leffler function).

2.4 The characteristic function of the log stock price

From corollary 3.1 in El Euch and Rosenbaum (2019) (see also theorem 6 in Gerhold et al., 2019),
we know that for all 𝑡 ≥ 0

𝔼(𝑒𝑝𝑋𝑡 ) = 𝑒𝑉0𝐼
1−𝛼𝑓(𝑝,𝑡)+𝜆𝜃𝐼1𝑓(𝑝,𝑡) (9)

for 𝑝 in some open interval 𝐼 ⊃ [0, 1], where 𝑓(𝑝, 𝑡) satisfies

𝐷𝛼𝑓(𝑝, 𝑡) =
1

2
(𝑝2 − 𝑝) + (𝑝 𝜌𝜈 − 𝜆)𝑓(𝑝, 𝑡) +

1

2
𝜈2𝑓(𝑝, 𝑡)2 (10)

with initial condition 𝑓(𝑝, 0) = 0, where 𝐼𝛼𝑓 denotes the fractional integral operator of order 𝛼

(see, e.g., p. 16 in El Euch&Rosenbaum, 2019, for definition) and𝐷𝛼 denotes the fractional deriva-
tive operator of order 𝛼 (see p. 17 in El Euch Rosenbaum, 2019, for definition).
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2.5 The generalized time-dependent Rough Heston model and fitting
the initial variance curve

If we now replace the constant 𝜃 with a time-dependent function 𝜃(𝑡), then

𝔼(𝑉𝑡) = 𝑉0 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝜆(𝜃(𝑠) − 𝔼(𝑉𝑠))𝑑𝑡,

which we can rearrange as

𝔼(𝑉𝑡) − 𝑉0 + 𝜆𝐼𝛼𝔼(𝑉𝑡) = 𝜆𝐼𝛼𝜃(𝑡)

so to make this generalized model consistent with a given initial variance curve 𝔼(𝑉𝑡), we set

𝜃(𝑡) =
1

𝜆
𝐷𝛼(𝔼(𝑉𝑡) − 𝑉0 + 𝜆𝐼𝛼𝔼(𝑉𝑡)) =

1

𝜆
𝐷𝛼(𝔼(𝑉𝑡) − 𝑉0) + 𝔼(𝑉𝑡)

(see also remark 3.2, theorem 3.2, and corollary 3.2 in El Euch & Rosenbaum, 2018).

2.6 Other affine and nonaffine variance curve models

Anotherwell-known (andnonaffine) variance curvemodel is theRoughBergomimodel, forwhich

𝑑𝜉𝑡(𝑢) = 𝜂(𝑢 − 𝑡)
𝐻−

1

2 𝜉𝑡(𝑢)𝑑𝑊𝑡 or the standard Bergomi model (with mean reversion) for which
𝑑𝜉𝑡(𝑢) = 𝜂𝑒−𝜆(𝑢−𝑡)𝜉𝑡(𝑢)𝑑𝑊𝑡.

3 SMALL-TIME ASYMPTOTICS

3.1 Scaling relations

Let

𝑑�̃�𝜀
𝑡 =

√
𝜀
√

𝑉𝜀
𝑡 𝑑𝐵𝑡, (11)

which satisfies

�̃�𝜀
𝑡

(d)
= �̃�𝜀𝑡.

Then, the characteristic function of �̃�𝑡 for 𝜀 = 1 is

𝔼(𝑒𝑝�̃�𝑡 ) = 𝑒𝑉0𝐼
1−𝛼𝜓(𝑝,𝑡), (12)

where 𝜓(𝑝, 𝑡) satisfies

𝐷𝛼𝜓(𝑝, 𝑡) =
1

2
𝑝2 + 𝑝𝜌𝜈𝜓(𝑝, 𝑡) +

1

2
𝜈2𝜓(𝑝, 𝑡)2 (13)
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with 𝜓(𝑝, 0) = 0. We first recall that 𝐷𝛼𝜓(𝑝, 𝑡) =
𝑑

𝑑𝑡

1

Γ(1−𝛼)
∫ 𝑡

0
𝜓(𝑝, 𝑠)(𝑡 − 𝑠)−𝛼𝑑𝑠. Then,

𝐷𝛼𝜓(𝑝, 𝜀𝑡) ∶= (𝐷𝛼𝜓)(𝑝, 𝜀𝑡) =
1

𝜀

𝑑

𝑑𝑡

1

Γ(1 − 𝛼) ∫
𝜀𝑡

0

𝜓(𝑝, 𝑠)(𝜀𝑡 − 𝑠)−𝛼𝑑𝑠

=
1

𝜀

𝑑

𝑑𝑡

1

Γ(1 − 𝛼) ∫
𝑡

0

𝜓(𝑝, 𝜀𝑢)(𝜀𝑡 − 𝜀𝑢)−𝛼𝜀𝑑𝑢

= 𝜀−𝛼 𝑑

𝑑𝑡

1

Γ(1 − 𝛼) ∫
𝑡

0

𝜓(𝑝, 𝜀𝑢)(𝑡 − 𝑢)−𝛼𝑑𝑢

= 𝜀−𝛼𝐷𝛼𝜓(𝑝, 𝜀(.))(𝑡).

Combining this with (13) we see that

𝜀−𝛼𝐷𝛼(𝜓(𝑝, 𝜀.))(𝑡) =
1

2
𝑝2 + 𝑝𝜌𝜈𝜓(𝑝, 𝜀𝑡) +

1

2
𝜈2𝜓(𝑝, 𝜀𝑡)2 . (14)

Setting 𝑝 → 𝜀𝛾𝑞 and multiplying by 𝜀−2𝛾 we have

𝜀−𝛼−2𝛾𝐷𝛼(𝜓(𝜀𝛾𝑞, 𝜀(.)))(𝑡) =
1

2
𝑞2 + 𝑞𝜌𝜈𝜀−𝛾𝜓(𝜀𝛾𝑞, 𝜀𝑡) +

1

2
𝜈2𝜀−2𝜆𝜓(𝜀𝛾𝑞, 𝜀𝑡)2. (15)

Now setting 𝛾 = −𝛼 we see that

𝐷𝛼(𝜀𝛼𝜓(𝜀−𝛼𝑞, 𝜀(.)))(𝑡) =
1

2
𝑞2 + 𝑞𝜌𝜈𝜀𝛼𝜓(𝜀−𝛼𝑞, 𝜀𝑡) +

1

2
𝜈2𝜀2𝛼𝜓(𝜀−𝛼𝑞, 𝜀𝑡)2 (16)

with 𝜓(𝜀−𝛼𝑞, 0) = 0. Thus, we see that 𝜀𝛼𝜓(𝜀−𝛼𝑝, 𝜀𝑡) and 𝜓(𝑝, 𝑡) satisfy the same VIE with the
same boundary condition, so

𝜓(𝑝, 𝑡) = 𝜀𝛼𝜓(𝜀−𝛼𝑝, 𝜀𝑡). (17)

From the form of the characteristic function in (12), the function Λ(𝑝, 𝑡) ∶= 𝐼1−𝛼𝜓(𝑝, 𝑡) is clearly
of interest too. Using the scaling relation on 𝜓(𝑝, 𝑡):

𝐼1−𝛼𝜓(𝑝, 𝜀𝑡) =
1

Γ(1 − 𝛼) ∫
𝜀𝑡

0

(𝜀𝑡 − 𝑠)−𝛼𝜓(𝑝, 𝑠)𝑑𝑠 (18)

=
𝜀

Γ(1 − 𝛼) ∫
𝑡

0

(𝜀𝑡 − 𝜀𝑢)−𝛼𝜓(𝑝, 𝜀𝑢)𝑑𝑢 (19)

=
𝜀1−𝛼

Γ(1 − 𝛼) ∫
𝑡

0

(𝑡 − 𝑢)−𝛼𝜀−𝛼𝜓(𝜀𝛼𝑝, 𝑢)𝑑𝑢 = 𝜀−2𝐻𝐼1−𝛼𝜓(𝜀𝛼𝑝, 𝑡). (20)

Thus we have established the following lemma:
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Lemma 3.1.

Λ(𝑝, 𝜀𝑡) = 𝜀−2𝐻Λ(𝜀𝛼𝑝, 𝑡) (21)

in particular

Λ(𝑝, 𝑡) = 𝑡−2𝐻Λ(𝑝𝑡𝛼, 1) . (22)

3.2 The small-time LDP

To simplify calculations, we make the following assumption throughout this section:

Assumption 3.2. 𝜆 = 0.

Remark 3.3. The formal higher-order Laplace asymptotics in subsection 3.5 indicate that 𝜆 will
not affect the leading order small-time asymptotics, that is, 𝜆 will not affect the rate function, as
we would expect from previous works on small-time asymptotics for rough stochastic volatility
models. The assumption that 𝜆 = 0 is relaxed in the next section where we consider large-time
asymptotics.

We now state the main small-time result in the paper
(
recallthat𝛼 = 𝐻 +

1

2

)
:

Theorem 3.4. For the Rough Heston model defined in (2), we have

lim
𝑡→0

𝑡2𝐻 log 𝔼

(
𝑒

𝑝

𝑡𝛼
𝑋𝑡

)
= lim

𝑡→0
𝑡2𝐻 log 𝔼

⎛⎜⎜⎝𝑒
𝑝

𝑡2𝐻
𝑋𝑡

𝑡

1
2
−𝐻

⎞⎟⎟⎠ =

{
Λ(𝑝) if 𝑇∗(𝑝) > 1,

+∞ if 𝑇∗(𝑝) ≤ 1,

)
(23)

where Λ̄(𝑝) ∶= 𝑉0Λ(𝑝), Λ(𝑝) ∶= Λ(𝑝, 1), Λ(𝑝, 𝑡) ∶= 𝐼1−𝛼𝜓(𝑝, 𝑡), and 𝜓(𝑝, 𝑡) satisfies the Volterra
differential equation

𝐷𝛼𝜓(𝑝, 𝑡) =
1

2
𝑝2 + 𝑝𝜌𝜈𝜓(𝑝, 𝑡) +

1

2
𝜈2𝜓(𝑝, 𝑡)2 (24)

with initial condition 𝜓(𝑝, 0) = 0, where 𝑇∗(𝑝) > 0 is the explosion time for 𝜓(𝑝, 𝑡)which is finite for
all 𝑝 ≠ 0 (assuming 𝜈 > 0). Moreover, the scaling relation in the previous section show that Λ(𝑝) =|𝑝| 2𝐻

𝛼 Λ(sgn(𝑝), |𝑝| 1

𝛼 ), so in fact we only need to solve (24) for 𝑝 = ±1, and we can rewrite (23) in
more familiar form as

lim
𝑡→0

𝑡2𝐻 log 𝔼

(
𝑒

𝑝

𝑡𝛼
𝑋𝑡

)
= lim

𝑡→0
𝑡2𝐻 log 𝔼

⎛⎜⎜⎝𝑒
𝑝

𝑡2𝐻
𝑋𝑡

𝑡

1
2
−𝐻

⎞⎟⎟⎠ =

{
Λ(𝑝) 𝑝 ∈ (𝑝−, 𝑝+),

+∞ 𝑝 ∉ (𝑝−, 𝑝+),

)

where𝑝± = ±(𝑇∗(±1))𝛼 , so𝑝+ > 0and𝑝− < 0. Then𝑋𝑡∕𝑡
1

2
−𝐻 satisfies the LDPas 𝑡 → 0with speed

𝑡−2𝐻 and good rate function 𝐼(𝑥) equal to the Fenchel–Legendre transform of Λ̄.
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Proof. We first consider the following family of rescaled Rough Heston models:

𝑑𝑋𝜀
𝑡 = −

1

2
𝜀𝑉𝜀

𝑡 𝑑𝑡 +
√

𝜀
√

𝑉𝜀
𝑡 𝑑𝐵𝑡, 𝑉𝜀

𝑡 = 𝑉0 +
𝜀𝛼

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)
𝐻−

1

2 𝜆(𝜃 − 𝑉𝜀
𝑠 )𝑑𝑠

+
𝜀𝐻

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)
𝐻−

1

2 𝜈
√

𝑉𝜀
𝑠𝑑𝑊𝑠 (25)

with 𝑋𝜀
𝑡 = 0, where𝐻 = 𝛼 −

1

2
∈

(
0,

1

2

]
. Then, from Appendix B, we know that

(
𝑋𝜀

(.)
, 𝑉𝜀

(.)

)
(d)
= (𝑋𝜀(.), 𝑉𝜀(.)) (26)

(note this actually holds for all 𝜆 > 0, but we are only considering 𝜆 = 0 in this proof). Proceeding
along similar lines to theorem 4.1 in Forde and Zhang (2017), we let �̃�𝜀

𝑡 denote the solution to

𝑑�̃�𝜀
𝑡 =

√
𝜀
√

𝑉𝜀
𝑡 𝑑𝐵𝑡 (27)

with �̃�𝜀
0 = 0. From eq. 8 in El Euch and Rosenbaum (2018), we know that

𝔼(𝑒𝑝�̃�𝑡 ) = 𝔼ℚ𝑝(𝑒
1

2
𝑝2 ∫ 𝑡

0
𝑉𝑠𝑑𝑠

),

where �̃�𝑡 ∶= �̃�1
𝑡 and ℚ𝑝 is defined as in El Euch and Rosenbaum (2018), but under ℚ𝑝 the value

of the mean reversion speed changes from zero to �̄� = 𝜌𝑝𝜈, so

𝔼(𝑒𝑝�̃�𝑡 ) = 𝑒𝑉0𝐼
1−𝛼𝜓(𝑝,𝑡)

on some nonempty interval [0, 𝑇∗(𝑝)), where

𝐷𝛼𝜓(𝑝, 𝑡) =
1

2
𝑝2 + 𝑝𝜌𝜈𝜓(𝑝, 𝑡) +

1

2
𝜈2𝜓(𝑝, 𝑡)2

with 𝜓(𝑝, 0) = 0. Existence and uniqueness of solutions to these kind of fractional differential
equations (FDEs) is standard, as is their equivalence to VIEs, see, for example, Gerhold et al.
(2019) and chapter 12 of Gripenberg et al. (1990) for details.
From propositions 2 and 3 in Gerhold et al. (2019), we know that 𝜓(𝑝, 𝑡) blows up at some finite

time 𝑇∗(𝑝) > 0 (i.e., case A or B in the Gerhold et al., 2019, classification).Thus, we see that

𝔼(𝑒
𝑝

𝜀𝛼
�̃�𝜀

𝑡 ) = 𝔼(𝑒
𝑝

𝜀𝛼
�̃�𝜀𝑡 ) = 𝑒

𝑉0𝐼
1−𝛼𝜓(

𝑝

𝜀𝛼
,𝜀𝑡)

= 𝑒
1

𝜀2𝐻
𝑉0𝐼

1−𝛼𝜓(𝑝,𝑡) (28)

for all 𝑡 ∈ [0, 𝑇∗(𝑝)), which we can rewrite as 𝔼(𝑒
𝑝

𝑡𝛼
�̃�𝑡 ) = 𝑒

Λ̄(𝑝)

𝑡2𝐻 . Thus, we see that

lim
𝑡→0

𝑡2𝐻 log 𝔼(𝑒
𝑝

𝑡𝛼
�̃�𝑡 ) = Λ̄(𝑝)

and Λ(𝑝) ∶= Λ(𝑝, 1) < ∞ if and only if 𝑇∗(𝑝) > 1. □
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We now have the following obvious but important corollary of the Λ scaling relation in (22):

Corollary 3.5.

Λ(𝑞) = 𝑡2𝐻Λ(
𝑞

𝑡𝛼
, 𝑡) = |𝑞| 2𝐻

𝛼 Λ(sgn(𝑞), |𝑞| 1

𝛼 ), (29)

where we have set 𝑝 = 1 =
|𝑞|
𝑡𝛼
in (22), and 𝑡∗𝑞 = |𝑞| 1

𝛼 .

Remark 3.6. This implies that Λ(𝑝) → ∞ as 𝑝 → 𝑝± ∶= ±(𝑇∗(±1))𝛼. and more generally

𝑝𝑇∗(𝑝)𝛼 = 1𝑝>0 𝑝+ + 1𝑝<0 𝑝− . (30)

To prove the LDP, we first prove the corresponding LDP for �̃�𝑡. From lemma 2.3.9 in Dembo
and Zeitouni (1998), we know that

lim
𝑡→0

𝑡2𝐻 log 𝔼(𝑒
𝑝

𝑡𝛼
�̃�𝑡 ) = Λ(𝑝) = Λ(𝑝, 1) = 𝐼1−𝛼𝜓(𝑝, 𝑡)|𝑡=1

is convex in 𝑝, and from (9) and (13) we know that

𝑑

𝑑𝑡
Λ(𝑝, 𝑡) =

1

2
𝑝2 + 𝑝𝜌𝜈𝜓(𝑝, 𝑡) +

1

2
𝜈2𝜓(𝑝, 𝑡)2

(where we have also used that 𝐷𝛼𝐷1−𝛼 = 𝐷), which shows that Λ(𝑝, 𝑡) is also differentiable in
𝑡, and thus from (29), we see that Λ(𝑝) = Λ(𝑝, 1) is differentiable in 𝑝 for 𝑝 > 0. Moreover, the
scaling relation easily yields that Λ(𝑝) is right differentiable at 𝑝 = 0, since Λ(𝑝) = 𝑜(𝑝). We also
know that 𝜓(𝑝, 𝑡) → ∞ as 𝑡 → 𝑇∗(𝑝) (see propositions 2 and 3 in Gerhold et al., 2019), soΛ(𝑝, 𝑡) =

𝐼1−𝛼𝜓(𝑝, 𝑡) also explodes at 𝑇∗(𝑝) by lemma 3 in Gerhold et al. (2019). Then fromCorollary 3.5, we

know thatΛ(𝑝) = 𝑝
2𝐻

𝛼 Λ(sgn(𝑝), |𝑝| 1

𝛼 ), soΛ(𝑝) → ∞ as 𝑝 → 𝑝± = ±(𝑇∗(±1))𝛼 and (by convexity
and differentiability) Λ is also essentially smooth, so by the Gärtner–Ellis theorem from large

deviations theory (see theorem 2.3.6 in Dembo & Zeitouni, 1998), �̃�𝜀
1∕𝜀

1

2
−𝐻 satisfies the LDP as

𝜀 → 0 with speed 𝜀−2𝐻 and rate function 𝐼(𝑥).

We now show that 𝑋𝜀
1∕𝜀

1

2
−𝐻 satisfies the same LDP, by showing that the nonzero drift of the

log stock price can effectively be ignored at leading order in the limit as 𝜀 → 0. Using that

𝔼(𝑒
𝑝

𝜀2𝛼
𝜀 ∫ 1

0
𝑉𝜀

𝑠𝑑𝑠
) = 𝔼(𝑒

𝑝

𝜀2𝐻
∫ 1

0
𝑉𝜀

𝑠𝑑𝑠
) = 𝔼(𝑒

√
2𝑝

𝜀𝛼
�̃�𝜀

1 ) = 𝑒
1

𝜀2𝐻
𝑉0Λ(

√
2𝑝)

for 𝑝 ∈ (−∞,
1

2
𝑝+) (and +∞ otherwise) so

𝐽(𝑝) ∶= lim
𝜀→0

𝜀2𝐻 log 𝔼(𝑒
𝑝

𝜀2𝛼
𝜀 ∫ 1

0
𝑉𝜀

𝑠𝑑𝑠
) = 𝑉0Λ(

√
2𝑝)

so (again using part (a) of theGärtner–Ellis theorem in Theorem 2.3.6 inDembo&Zeitouni, 1998),
𝐴𝜀 ∶= ∫ 1

0
𝑉𝜀

𝑠𝑑𝑠 satisfies the upper bound LDP as 𝜀 → 0with speed 𝜀−2𝐻 and good rate function 𝐽∗
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equal to the FL transform of 𝐽. But we also know that

𝑋𝜀
1 − �̃�𝜀

1 = −
1

2
𝜀𝐴𝜀

and for any 𝑎 > 0 and 𝛿1 > 0

ℙ(| 𝑋𝜀
1

𝜀
1

2
−𝐻

−
�̃�𝜀

1

𝜀
1

2
−𝐻

| > 𝛿) = ℙ(
1

2
𝜀

1

2
+𝐻

𝐴𝜀 > 𝛿) = ℙ(𝐴𝜀 >
2𝛿

𝜀
1

2
+𝐻

) ≤ ℙ(𝐴𝜀 > 𝑎) ≤ 𝑒
−

inf𝑎′≥𝑎 𝐽∗(𝑎′)−𝛿1

𝜀2𝐻

for any 𝜀 sufficiently small, where we have use the upper bound LDP for 𝐴𝜀 to obtain the final
inequality. Thus

lim sup
𝜀→0

𝜀2𝐻 logℙ(| 𝑋𝜀
1

𝜀
1

2
−𝐻

−
�̃�𝜀

1

𝜀
1

2
−𝐻

| > 𝛿) ≤ − inf
𝑎′>𝑎

𝐽∗(𝑎′),

but 𝑎 is arbitrary and (from lemma 2.3.9 in Dembo & Zeitouni, 1998), 𝐽∗ is a good rate function,
so in fact

lim sup
𝜀→0

𝜀2𝐻 logℙ(| 𝑋𝜀
1

𝜀
1

2
−𝐻

−
�̃�𝜀

1

𝜀
1

2
−𝐻

| > 𝛿) = −∞.

Thus, 𝑋𝜀
1

𝜀
1
2
−𝐻

and �̃�𝜀
1

𝜀
1
2
−𝐻

are exponentially equivalent in the sense of definition 4.2.10 in Dembo and

Zeitouni (1998), so (by theorem 4.2.13 in Dembo & Zeitouni, 1998) 𝑋𝜀
1

𝜀
1
2
−𝐻

satisfies the same LDP as

�̃�𝜀
1

𝜀
1
2
−𝐻
.

3.3 Asymptotics for call options and implied volatility

Corollary 3.7. We have the following limiting behavior for out-of-the-money European put and call

options with maturity 𝑡 and log-strike 𝑡
1

2
−𝐻

𝑥, with 𝑥 > 0 fixed:

lim
𝑡→0

𝑡2𝐻 log 𝔼((𝑒𝑋𝑡 − 𝑒𝑥𝑡
1
2
−𝐻

)+) = −𝐼(𝑥) (𝑥 > 0)

lim
𝑡→0

𝑡2𝐻 log 𝔼((𝑒𝑥𝑡
1
2
−𝐻

− 𝑒𝑋𝑡 )+) = −𝐼(𝑥) (𝑥 < 0).

Proof. The lower estimate follows from the exact same argument used in appendix C in Forde
and Zhang (2017) (see also theorem 6.3 in Friz, Gerhold, & Pinter, 2018). The proof of the upper
estimate is the same as in theorem 6.3 in Friz, Gerhold, et al. (2018). □

Corollary 3.8. Let �̂�𝑡(𝑥) denote the implied volatility of a European put/call option with log-
moneyness 𝑥 under the Rough Heston model in (2) for 𝜆 = 0. Then for 𝑥 ≠ 0 fixed, the implied
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volatility satisfies

�̂�(𝑥) ∶= lim
𝑡→0

�̂�𝑡(𝑡
1

2
−𝐻

𝑥) =
|𝑥|√
2𝐼(𝑥)

. (31)

Proof. Follows from corollary 7.2 in Gao and Lee (2014). See also the proof of corollary 4.1 in Friz,
Gerhold, et al. (2018) for details on this, but the present situation is simpler, as we only require the
leading order term here. □

3.4 Series expansion for the asymptotic smile and calibration

Proceeding as in lemma 12 in Gerhold et al. (2019), we can compute a fractional power series for
𝜓(𝑝, 𝑡) (and hence Λ(𝑝, 𝑡)) and then using (29), we find that

Λ̄(𝑝) =
2𝑉0

𝜈2

∞∑
𝑛=1

𝑎𝑛(1)𝑝
1+𝑛 Γ(𝛼𝑛 + 1)

Γ(2 + (𝑛 − 1)𝛼)
,

where the 𝑎𝑛 = 𝑎𝑛(𝑢) coefficients are defined (recursively) as in Gerhold et al. (2019) except for
our application here (based on (13)) we have to set 𝜆 = 0, and 𝑐1 =

1

2
𝑢2 instead of 1

2
𝑢(𝑢 − 1) (note

this series will have a finite radius of convergence). Using the Lagrange inversion theorem, we
can then derive a power series for 𝐼(𝑥) which takes the form

�̂�(𝑥) =
√

𝑉0 +
𝜌𝜈

2Γ(2 + 𝛼)
√

𝑉0

𝑥 + 𝜈2
Γ(1 + 2𝛼) + 2𝜌2Γ(1 + 𝛼)2(2 − 3

Γ(2+2𝛼)

Γ(2+𝛼)2
)

8𝑉

3

2

0 Γ(1 + 𝛼)2Γ(2 + 2𝛼)

𝑥2 + 𝑂(𝑥3) (32)

(compare this to theorem 3.6 in Bayer et al. (2018) for a general class of roughmodels and theorem
4.1 in Forde and Jacquier (2011b) for aMarkovian local-stochastic volatilitymodel).We can rewrite
this expansion more concisely in dimensionless form as

�̂�(𝑥) =
√

𝑉0 [1 +
𝜌

2Γ(2 + 𝛼)
𝑧 +

Γ(1 + 2𝛼) + 2𝜌2Γ(1 + 𝛼)2(2 − 3
Γ(2+2𝛼)

Γ(2+𝛼)2
)

8Γ(1 + 𝛼)2Γ(2 + 2𝛼)
𝑧2 + 𝑂(𝑧3)],

where the dimensionless quantity 𝑧 =
𝜈𝑥

𝑉0
.

Remark 3.9. In principle, one can use (32) to calibrate 𝑉0, 𝜌, and 𝜈 to observed/estimated values
of �̂�(0), �̂�′(0), and �̂�′′(0) (i.e., the short-end implied vol level, skew, and convexity, respectively).

3.4.1 Wing behavior of the rate function

From eq (3.2) in Roberts and Olmstead (1996), we expect that 𝜓(𝑝, 𝑡) ∼
𝑐𝑜𝑛𝑠𝑡.

(𝑇∗(𝑝)−𝑡)𝛼
as 𝑡 → 𝑇∗(𝑝)

and thus Λ(𝑝, 𝑡) = 𝐼1−𝛼𝜓(𝑝, 𝑡) ∼
𝑐𝑜𝑛𝑠𝑡.

(𝑇∗(𝑝)−𝑡)2𝛼−1
as 𝑡 → 𝑇∗(𝑝). Assuming this is consistent with the
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𝑝-asymptotics, then (by (30)) we have

Λ(𝑝) = Λ(𝑝, 1) ∼
𝑐𝑜𝑛𝑠𝑡.

(𝑇∗(𝑝) − 1)2𝛼−1
=

𝑐𝑜𝑛𝑠𝑡.

((
𝑝+

𝑝
)1∕𝛼 − 1)2𝛼−1

∼
𝑐𝑜𝑛𝑠𝑡.

(𝑝+ − 𝑝)2𝛼−1
(𝑝 → 𝑝+)

so 𝑝∗(𝑥) in 𝐼(𝑥) = sup𝑝(𝑝𝑥 − 𝑉0Λ(𝑝)) satisfies 𝑝∗(𝑥) = 𝑝+ − 𝑐𝑜𝑛𝑠𝑡. ⋅ 𝑥−1∕2𝛼(1 + 𝑜(1)), so 𝐼(𝑥) =

𝑝+𝑥 + 𝑐𝑜𝑛𝑠𝑡. ⋅ 𝑥
1−

1

2𝛼 (1 + 𝑜(1)) as 𝑥 → ∞.

3.5 Higher-order Laplace asymptotics

If we now relax the assumption that 𝜆 = 0, and work with the original 𝑋𝜀 process in (25) (as
opposed to the driftless �̃�𝜀 process in (27)), then we know that

𝔼(𝑒𝑝𝑋𝜀
𝑡 ) = 𝔼(𝑒𝑝𝑋𝜀𝑡 ) = 𝑒𝑉0𝐼

1−𝛼𝑔𝜀(𝑝,𝑡)+𝜀𝛼𝜆𝜃𝐼1𝑔𝜀(𝑝,𝑡)

for 𝑡 in some nonempty interval [0, 𝑇∗
𝜀 (𝑝)), where

𝑔𝜀(
𝑝

𝜀𝛼
, 𝑡) =

𝜓(𝑝, 𝑡)

𝜀2𝐻
, (33)

which satisfies

𝐷𝛼𝑔𝜀(𝑝, 𝑡) =
1

2
𝜀(𝑝2 − 𝑝) + (𝑝𝜌𝜈 − 𝜆)𝜀𝛼𝑔𝜀(𝑝, 𝑡) +

1

2
𝜀2𝐻𝜈2𝑔𝜀(𝑝, 𝑡)2 (34)

with initial condition 𝑔𝜀(𝑝, 0) = 0. Setting

𝑔𝜀(
𝑝

𝜀𝛼
, 𝑡) =

𝜓𝜀(𝑝, 𝑡)

𝜀2𝐻
(35)

and setting 𝑝 ↦
𝑝

𝜀𝛼
, and substituting for 𝑔𝜀(

𝑝

𝜀𝛼
, 𝑡) in (34) and multiplying by 𝜀2𝐻 as before, we find

that

𝐷𝛼𝜓𝜀(𝑝, 𝑡) =
1

2
𝑝2 + 𝑝𝜌𝜈𝜓𝜀(𝑝, 𝑡) +

1

2
𝜈2𝜓𝜀(𝑝, 𝑡)2 − 𝜀𝛼(

1

2
𝑝 + 𝜆𝜓𝜀(𝑝, 𝑡))

with 𝜓𝜀(𝑝, 0) = 0. If we now formally try a higher-order series approximation of the form

𝜓𝜀(𝑝, 𝑡) ∶= 𝜓(𝑝, 𝑡) + 𝜀
1

2
+𝐻

𝜓1(𝑝, 𝑡), we find that 𝜓1(𝑝, 𝑡)must satisfy

𝐷𝛼𝜓1(𝑝, 𝑡) = −
1

2
𝑝 − 𝜆𝜓(𝑝, 𝑡) + 𝑝𝜌𝜈𝜓1(𝑝, 𝑡) + 𝜈2𝜓(𝑝, 𝑡)𝜓1(𝑝, 𝑡)

with 𝜓1(𝑝, 0) = 0, which is a linear VIE for 𝜓1(𝑝, 𝑡).
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Remark 3.10. Let Δ𝜀(𝑝, 𝑡) = 𝜓𝜀(𝑝, 𝑡) − 𝜓(𝑝, 𝑡) − 𝜀
1

2
+𝐻

𝜓1(𝑝, 𝑡) denote the error term. Then Δ𝜀(𝑝, 𝑡)

satisfies

𝐷𝛼Δ𝜀(𝑝, 𝑡) = 𝑝𝜈𝜌Δ𝜀(𝑝, 𝑡) +
1

2
𝜈2Δ𝜀(𝑝, 𝑡)2 + 𝜈2Δ𝜀(𝑝, 𝑡)𝜓(𝑝, 𝑡)

+ 𝜀
1

2
+𝐻

Δ𝜀(𝑝, 𝑡)(−𝜆 + 𝜈2𝜓1(𝑝, 𝑡))

+ 𝜀2𝐻+1(−𝜆𝜓1(𝑝, 𝑡) +
1

2
𝜈2𝜓1(𝑝, 𝑡)2)

and the rescaled error Δ̄𝜀(𝑝, 𝑡) ∶= Δ𝜀(𝑝, 𝑡)∕𝜀
1

2
+𝐻 satisfies

𝐷𝛼Δ̄𝜀(𝑝, 𝑡) = Δ̄𝜀(𝑝, 𝑡)(𝑝𝜈𝜌 + 𝜈2𝜓(𝑝, 𝑡)) +

+ 𝜀
1

2
+𝐻

(−𝜆𝜓1(𝑝, 𝑡) +
1

2
𝜈2𝜓1(𝑝, 𝑡)2 + (−𝜆 + 𝜈2𝜓1(𝑝, 𝑡))Δ̄𝜀(𝑝, 𝑡) +

1

2
𝜈2Δ̄𝜀(𝑝, 𝑡)2).

We know that 𝜓(𝑝, 𝑡) is continuous on [0, 𝑇∗(𝑝)). In order to make this rigorous, one would need
to apply Gripenberg et al. (1990) to this, noting that the leading order solution is zero, then replace
𝑝 with 𝑖𝑘 for 𝑘 real, then show this convergence is uniform on compact sets, and then argue away
the tails as in Forde, Jacquier, and Lee (2012).

Remark 3.11. Setting 𝜓1(𝑝, 𝑡) =
∑∞

𝑛=1
𝑏𝑛(𝑝)𝑡𝛼𝑛 we see that

∞∑
𝑛=1

𝑛𝛼Γ(𝑛𝛼)

Γ(1 + (𝑛 − 1)𝛼)
𝑏𝑛(𝑝)𝑡(𝑛−1)𝛼 = −

1

2
𝑝 − 𝜆

∞∑
𝑛=1

�̄�𝑛(𝑝)𝑡𝛼𝑛

+𝑝𝜌𝜈

∞∑
𝑛=1

𝑏𝑛(𝑝)𝑡𝛼𝑛 + 𝜈2
∞∑

𝑛=1

�̄�𝑛(𝑝)𝑡𝛼𝑛
∞∑

𝑚=1

𝑏𝑚(𝑝)𝑡𝛼𝑚,

where �̄�𝑛(𝑝) =
2

𝜈2
𝑎𝑛(𝑝), and we have set 𝜆 = 0 and 𝑐1 =

1

2
𝑝2 in computing the 𝑎𝑛(𝑝) coefficients,

so

𝛼Γ(𝛼)𝑏1(𝑝) = −
1

2
𝑝,

(𝑛 + 1)𝛼Γ((𝑛 + 1)𝛼)

Γ(1 + 𝑛𝛼)
𝑏𝑛+1(𝑝) = −𝜆�̄�𝑛(𝑝) + 𝜌𝑝𝜈𝑏𝑛(𝑝)

+ 𝜈2
𝑛−1∑
𝑘=1

𝑎𝑘(𝑝)𝑏𝑛−𝑘(𝑝)

so we have fractional power series for 𝜓1(𝑝, 𝑡) on some finite radius of convergence.

Returning now to the main calculation, we see that if 𝑝𝜀(𝑥) denotes the density of 𝑋𝜀
1

𝜀𝛼
, then

𝑝𝜀(
𝑥

𝜀2𝐻
) =

1

2𝜋 ∫
∞

−∞

𝑒
−

𝑖𝑘𝑥

𝜀2𝐻 𝑒
1

𝜀2𝐻
(𝐹(𝑘)+𝜀

1
2
+𝐻

𝐺(𝑘))+
𝜀𝛼

𝜀2𝐻
𝜆𝜃(𝐹1(𝑘)+𝜀

1
2
+𝐻

𝐺1(𝑘))𝑑𝑘,
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where 𝐹(𝑘) ∶= 𝑉0𝐼
1−𝛼𝜓(𝑖𝑘, 1), 𝐺(𝑘) ∶= 𝑉0𝐼

1−𝛼𝜓1(𝑖𝑘, 1), 𝐹1 ∶= 𝐼1𝜓(𝑖𝑘, 1), and 𝐺1 ∶= 𝐼1𝜓1(𝑖𝑘, 1).
The saddle point 𝑘∗ = 𝑘∗(𝑥) = 𝑖𝑝∗(𝑥) of �̄�(𝑘) = −𝑖𝑘𝑥 + 𝐹(𝑘) satisfies �̄�′(𝑘∗) = 0 which always
falls on the imaginary axis (and in our case 𝑝∗(𝑥) ∈ (0, 𝑝+) when 𝑥 > 0 and 𝑝∗(𝑥) < 0 ∈ (𝑝−, 0)

when 𝑥 < 0), and

�̄�(𝑘) = �̄�(𝑘∗) +
1

2
𝐹′′(𝑘∗)(𝑘 − 𝑘∗)2 + 𝑂((𝑘 − 𝑘∗)3)

= �̄�(𝑘∗) −
1

2
Λ̄′′(𝑝∗)(𝑘 − 𝑘∗)2 + 𝑂((𝑘 − 𝑘∗)3)

(recall that Λ̄(𝑝) = 𝐹(−𝑖𝑝)) and𝑝∗ = 𝑖𝑘∗ ∈ (𝑝−, 𝑝+). Thenproceeding along similar lines to Forde
et al. (2012) and using Laplace’s method we have for all 𝑥 ∈ ℝ

𝑝𝜀(
𝑥

𝜀2𝐻
) =

1

2𝜋 ∫
∞

−∞

𝑒
1

𝜀2𝐻
(�̄�(𝑘)+𝜀

1
2
+𝐻

𝐺(𝑘))+𝜀
1
2
−𝐻

𝜆𝜃(𝐹1(𝑘)+𝜀
1
2
+𝐻

𝐺1(𝑘))𝑑𝑘, (36)

≈
1

2𝜋
𝑒𝜀

1
2
−𝐻

(𝐺(𝑘∗)+𝜆𝜃𝐹1(𝑘
∗)) ∫

∞

−∞

𝑒
1

𝜀2𝐻
(�̄�(𝑘∗)−

1

2
Λ̄′′(𝑝∗)(𝑘−𝑘∗)2)

𝑑𝑘, (37)

≈
1

2𝜋
𝑒𝜀

1
2
−𝐻

(𝐺(𝑘∗)+𝜆𝜃𝐹1(𝑘
∗))𝑒

−
𝐼(𝑥)

𝜀2𝐻 ∫
∞

−∞

𝑒
−

1

𝜀2𝐻
1

2
Λ̄′′(𝑝∗)(𝑘−𝑘∗)2

𝑑𝑘

=
𝜀𝐻𝑒

−
𝐼(𝑥)

𝜀2𝐻√
2𝜋Λ̄′′(𝑝∗)

[1 + 𝜀
1

2
−𝐻

(𝐺(𝑘∗) + 𝜆𝜃𝐹1(𝑘
∗)) + 𝑂(𝜀(1−2𝐻)∧2𝐻)], (38)

where the 𝑂(𝜀2𝐻) part of the error terms comes from the next order term in theorem 7.1 in chap-
ter 4 in Olver (1974), and the 𝜀(1−2𝐻) term comes from the second-order term in expanding the
exponential. The meaning of ≈ in the above estimates is as follows: we expect to have asymptotic
equality with a relative error term that does not interfere with the error term in (38), but since
we did not carry out the tail estimate of the saddle point approximation, we do not know its size.
Then letting 𝑧 =

𝑘

𝜀𝛼
, we see that

𝐶𝜀(𝑥) = 𝔼((𝑒𝑋
𝜀
1 − 𝑒𝑥𝜀

1
2
−𝐻

)+) =
1

2𝜋
𝑒𝑥𝜀

1
2
−𝐻

∫
−𝑖𝑝∗+∞

−𝑖𝑝∗−∞

Re(
𝑒−𝑖𝑧𝑥𝜀

1
2
−𝐻

−𝑖𝑧 − 𝑧2
𝔼(𝑒𝑖𝑧𝑋

𝜀
1))𝑑𝑧

=
1

2𝜋
𝑒𝑥𝜀

1
2
−𝐻

∫
−𝑖𝑝∗+∞

−𝑖𝑝∗−∞

Re(
𝑒
−𝑖

𝑘

𝜀2𝐻
𝑥

−𝑖
𝑘

𝜀𝛼
− (

𝑘

𝜀𝛼
)2

𝔼(𝑒
𝑖

𝑘

𝜀𝛼
𝑋𝜀

1))𝑑
𝑘

𝜀𝛼
, (39)

=
𝜀−𝛼

2𝜋
𝑒𝑥𝜀

1
2
−𝐻

∫
−𝑖𝑝∗+∞

−𝑖𝑝∗−∞

Re(𝑒
𝑖

𝑘

𝜀2𝐻
𝑥
(−

𝜀2𝛼

𝑘2
− 𝑖

𝜀3𝛼

𝑘3
+ 𝑂(𝜀4𝛼)) 𝔼(𝑒

𝑖
𝑘

𝜀𝛼
𝑋𝜀

1))𝑑𝑘, (40)
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=
𝜀

1

2
+2𝐻

𝑒
−

𝐼(𝑥)

𝜀2𝐻

(𝑝∗)2
√

2𝜋Λ̄′′(𝑝∗)
[1 + 𝜀

1

2
−𝐻

(𝑥 + 𝐺(𝑘∗) + 𝜆𝜃𝐹1(𝑘
∗)) + 𝑂(𝜀(1−2𝐻)∧2𝐻)]

=
𝐴(𝑥)𝜀

1

2
+2𝐻

𝑒
−

𝐼(𝑥)

𝜀2𝐻√
2𝜋

[1 + 𝜀
1

2
−𝐻

(𝑥 + 𝐺(𝑘∗) + 𝜆𝜃𝐹1(𝑘
∗)) + 𝑂(𝜀(1−2𝐻)∧2𝐻)], (41)

where

𝐴(𝑥) =
1

(𝑝∗)2
√

Λ̄′′(𝑝∗)
. (42)

The 𝜀-dependence of the leading order termhere is exactly the same as in corollary 7.1 in the recent
article of Friz, Gassiat, et al. (2018) (in Friz, Gassiat, et al. (2018) 𝜀2 = 𝑡 whereas here 𝜀 = 𝑡) which
deals with a general class of rough stochastic volatility models (which excludes Rough Heston).
The difficulty in making the expansions (38) and (41) rigorous is the step from (40) to (41), or,
more explicitly, from (36) to (37). The expansion of �̄� used in (37) is valid locally, close to the saddle
point. An estimate for the integrand in (36) is needed to argue that this is good enough, that is,
that the asymptotic behavior of (36) is captured by integrating over an appropriate neighborhood
of the saddle point. This is usually done by establishing monotonicity of the integrand, but seems
nontrivial here; cf. lemma 6.4 in Forde et al. (2012), which uses the explicit characteristic function
of the classical Heston model.
More generally, we can formally substitute a fractional power series of the form 𝜓𝜀(𝑝, 𝑡) =∑∞

𝑛=0
𝜓𝑛(𝑝, 𝑡)𝜀(𝑛+1)𝛼 (where 𝜓0(𝑝, 𝑡) ∶= 𝜓(𝑝, 𝑡)), and we find that (𝜓𝑛)𝑛≥1 satisfies a nested

sequence of linear FDEs:

𝐷𝛼𝜓1(𝑝, 𝑡) = −
1

2
𝑝 − 𝜆𝜓0(𝑝, 𝑡) + 𝑝𝜌𝜈𝜓1(𝑝, 𝑡) + 𝜈2𝜓0(𝑝, 𝑡)𝜓1(𝑝, 𝑡)

𝐷2𝛼𝜓2(𝑝, 𝑡) = −𝜆𝜓1(𝑝, 𝑡) + 𝑝𝜌𝜈𝜓2(𝑝, 𝑡) + 𝜈2𝜓0(𝑝, 𝑡)𝜓2(𝑝, 𝑡) +
1

2
𝜈2𝜓1(𝑝, 𝑡)2

⋯

𝐷𝑛𝛼𝜓𝑛(𝑝, 𝑡) = −𝜆𝜓𝑛−1(𝑝, 𝑡) + 𝑝𝜌𝜈𝜓𝑛(𝑝, 𝑡) +
1

2
𝜈2[

𝑛∑
𝑘=0

𝜓𝑘(𝑝, 𝑡)𝜓𝑛−𝑘(𝑝, 𝑡) + 11

2
𝑛∈ℕ

⋅ 𝜓1

2
𝑛
(𝑝, 𝑡)2]

(43)

with 𝜓𝑛(𝑝, 0) = 0, and in principle we can then compute fractional power series expansions for
each 𝜓𝑛(𝑝, 𝑡) of the form 𝜓𝑛(𝑝, 𝑡) =

∑∞

𝑚=1
𝑎𝑚,𝑛(𝑝)𝑡𝛼𝑚, as in Remark 3.11.

3.5.1 Higher-order expansion for implied volatility

Formal corollary of (41): Let �̂�𝑡(𝑥) denote the implied volatility of a European put/call option
with log-moneyness 𝑥 under the Rough Heston model in (2) for 𝜆 ≥ 0. Then for 𝑥 ≠ 0 fixed, the
implied volatility satisfies

�̂�𝑡(𝑡
1

2
−𝐻

𝑥)2 =
|𝑥|√
2𝐼(𝑥)

+ 𝑡2𝐻Σ1(𝑥) + 𝑜(𝑡2𝐻), (44)
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where

Σ1(𝑥) =
𝑥2 log𝐴1(𝑥)

2𝐼(𝑥)2
,

and where 𝐴1(𝑥) = 2𝐴(𝑥)𝐼(𝑥)
3

2 ∕𝑥
1 .

Proof. Let 𝐿𝑡 = − log𝐶𝑡(𝑥), where 𝐶𝑡(𝑥) is defined as in (41). Then using corollary 7.1 and eq (7.2)
in Gao and Lee (2014) we see that

|1
𝑡
𝐺2

−(𝑘𝑡, 𝐿𝑡 −
3

2
log 𝐿𝑡 + log

𝑘𝑡

4
√

𝜋
, 𝑢) − �̂�2

𝑡 (𝑘𝑡)| = 𝑜(
𝑘2
𝑡

𝐿2
𝑡 𝑡

),

where 𝐺−(𝑘, 𝑢) ∶=
√

2(
√

𝑢 + 𝑘 −
√

𝑢). Then

𝐿𝑡 −
3

2
log 𝐿𝑡 + log

𝑘𝑡

4
√

𝜋
=

𝐼(𝑥)

𝑡2𝐻
− (

1

2
+ 2𝐻) log 𝑡 − log

𝐴(𝑥)√
2𝜋

−
3

2
log(

𝐼(𝑥)

𝑡2𝐻
(1 − log𝐴(𝑥)

𝑡2𝐻

𝐼(𝑥)
))

+ log
𝑥

4
√

𝜋
+ (

1

2
− 𝐻) log 𝑡,

where 𝐴(𝑥) is defined as in (42). Collecting log 𝑡 terms we find that their sum vanishes, so

𝐿𝑡 −
3

2
log 𝐿𝑡 + log

𝑘𝑡

4
√

𝜋
=

𝐼(𝑥)

𝑡2𝐻
− log

𝐴(𝑥)√
2𝜋

−
3

2
log 𝐼(𝑥) + log

𝑥

4
√

𝜋
+ 𝑜(1)

=
𝐼(𝑥)

𝑡2𝐻
− log𝐴1(𝑥) + 𝑜(1).

Then using that

𝐺2
−(𝑘, 𝑢) =

𝑘2

2𝑢
−

𝑘3

4𝑢2
+ 𝑂(

𝑘4

𝑢3
)

as 𝑘∕𝑢 → 0, we obtain the result. □

3.5.2 Using these approximations in practice

Equation (41) is of little use in practice, since the leading order Laplace approximation ignores
the variation of the function 1

𝑘2
in the integrand, and even if we partially take account of this

effect by going to next order with Laplace’s method using the formula in theorem 7.1 in chapter
4 in Olver (1974) (which we have checked and tried), it still frequently gives a worse estimate
that the leading order estimate �̂�(𝑥) because the higher-order error terms being ignored are too
large, and since𝐻 is usually very small in practice, 𝑡𝐻 converges very slowly to zero. If we instead
compute an approximate call price using the Fourier integral along the horizontal contour going
through the saddle point in (39) (using, e.g., the NIntegrate” command in Mathematica) and use
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our higher-order asymptotic estimate𝜓(𝑖𝑘, 𝑡) + 𝜀
1

2
+𝐻

𝜓1(𝑖𝑘, 𝑡) for log 𝔼(𝑒
𝑖

𝑘

𝜀𝛼
𝑋𝜀

)), and then compute
the exact implied volatility associated with this price (which avoids the problems with the Laplace
approximation), then (for the parameters we considered) we found this approximation to be an
order ofmagnitude closer to theMonteCarlo value than the leading order approximation �̂�(𝑥) (see
graphs and table below). See Lord and Kahl (2007) for more on computing the optimal contour of
integration for such problems.

3.6 Small-time moderate deviations

Inspired by Bayer et al. (2018), if we replace (35) with

𝑔𝜀(
𝑝

𝜀𝑞
, 𝑡) =

𝜓𝜀(𝑝, 𝑡)

𝜀2𝐻−2𝛽
,

where 𝑞 =
1

2
− 𝐻 + 𝛽, then we find that

𝐷𝛼𝜓𝜀(𝑝, 𝑡) =
1

2
𝑝2 −

1

2
𝑝𝜀

1

2
−𝐻+𝛽

+ 𝑝𝜀−2𝐻+3𝛽𝜌𝜈𝜓𝜀(𝑝, 𝑡) − 𝜀
1

2
−3𝐻+4𝛽

𝜆𝜓𝜀(𝑝, 𝑡)

+
1

2
𝜀−4𝐻+6𝛽𝜈2𝜓𝜀(𝑝, 𝑡)2

and we see that all nonconstant terms on the right-hand side are 𝑜(1) as 𝜀 → 0 if 𝛽 ∈

(
2

3
𝐻,𝐻) and 𝐻 ∈ (0,

1

2
). Following similar calculations as above, we formally obtain that

lim𝑡→0 𝑡2𝐻−2𝛽 log 𝔼(𝑒
𝑝

𝑡2𝐻−2𝛽

𝑋𝑡

𝑡𝑞 ) = 𝑉0𝐼
1−𝛼𝐼𝛼(

1

2
𝑝2) =

1

2
𝑉0𝑝

2 for all 𝑝 ∈ ℝ, which (modulo some

rigour) implies that 𝑋𝑡∕𝑡
𝑞 satisfies the LDP with speed 1

𝑡2𝐻−2𝛽
and Gaussian rate function 𝐼(𝑥) =

1

2
𝑥2∕𝑉0. Note that 𝛽 = 𝐻 corresponds to the central limit or Edgeworth regime, see Forde et al.

(2019) for details.

𝒙 �̂�(𝒙)

Higher order
𝑻 = 𝟎.𝟎𝟎𝟎𝟎𝟓

Monte Carlo
𝑻 = 𝟎.𝟎𝟎𝟎𝟎𝟓

Higher order
𝑻 = 𝟎.𝟎𝟎𝟓

Monte Carlo
𝑻 = 𝟎.𝟎𝟎𝟓

−0.10 20.2068% 20.2023% 20.2020% 20.1615% 20.1589 %
−0.08 20.141% 20.1364% 20.1363% 20.0953% 20.0931%
−0.06 20.0869% 20.0822% 20.0824% 20.0407% 20.0388%
−0.04 20.045% 20.0404% 20.0407% 19.9986% 19.9968%
−0.02 20.016% 20.0113% 20.0119% 19.9693% 19.9676%
0.00 20.0000% - 19.9942% - 19.9513%
0.02 19.9973% 19.9926% 19.9921% 19.9503% 19.9509%
0.04 20.0079% 20.0033% 20.0029% 19.9610% 19.9613 %
0.06 20.0316% 20.0270% 20.0266% 19.9850% 19.9850%
0.08 20.068% 20.0634% 20.0629% 20.0218% 20.0213%
0.10 20.1166% 20.1120% 20.1114% 20.0709% 20.0699%

Notes. Table of numerical results corresponding to the right plot in Figure 3 and the left plot in Figure 4.
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F IGURE 1 Herewe have plotted the quadratic function𝐺(𝑝,𝑤) as a function of𝑤 for the four cases described
in Gerhold et al. (2019) [Color figure can be viewed at wileyonlinelibrary.com]
Note. In cases A and B, there are no roots and the solution 𝜓(𝑝, 𝑡) to (13) increases without bound whereas in cases
C and D we have a stable fixed point (the lesser of the two roots) and an unstable root, so a solution starting at the
origin increases (decreases) until it reaches the stable fixed point. For Case D, we have also drawn the curve arising
from the reflection transformation used in the proof in Appendix C.

F IGURE 2 Here we have solved for the solution 𝑓(𝑝, 𝑡) to Equation (10) numerically by discretizing the VIE
with 2,000 time steps, and plotted 𝑓(𝑝, 𝑡) a function of 𝑡 and the corresponding quadratic function 𝐺(𝑝,𝑤) as a
function of 𝑤 with 𝑝 fixed [Color figure can be viewed at wileyonlinelibrary.com]
Note. In the first case 𝛼 = .75, 𝜆 = 2, 𝜌 = −0.1, 𝜈 = .4, and 𝑝 = 2 and 𝑓(𝑝, 𝑡) tends to a finite constant, and in
the second case 𝛼 = .75, 𝜆 = 1, 𝜌 = 0.1, 𝜈 = 1, and 𝑝 = 5 and we see that 𝑓(𝑝, 𝑡) has an explosion time at some
𝑇∗(𝑝) ≈ 0.4. VIE, Volterra integral equation.
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F IGURE 3 On the left, we have plotted Λ(𝑝) using an Adams scheme to numerically solve the VIE in (13)
with 2,000 time steps combined with Corollary 3.5, for 𝛼 = .75, 𝑉0 = .04, 𝜈 = .15, 𝜌 = −0.02, and we find that
𝑝+ = 𝑇∗(1) ≈ 34.5 and 𝑝− = 𝑇∗(−1) ≈ 33.25. On the right, we have plotted the corresponding asymptotic small-
maturity smile �̂�(𝑥) (in blue) versus the higher-order approximation using Equation (39) (red “+” signs), and the
smile points obtained from a simple Euler-type Monte Carlo scheme with maturity 𝑇 = 0.00005, 105 simulations,
and 1,000 time steps in Matlab (gray crosses), Matlab andMathematica code available on request [Color figure can
be viewed at wileyonlinelibrary.com]
Note. We did not use the Adams scheme to compute �̂�(𝑥); rather have used the first 15 terms in the series expansion
for Λ̄(𝑝) in Subsection 3.4 and then numerically computed its Fenchel–Legendre transform and used this to com-
pute 𝐼(𝑥) and hence �̂�(𝑥). We see that the Monte Carlo and higher-order smile points can barely be distinguished
by the naked eye. For |𝑥| small, we have found this method of computing �̂�(𝑥) to be far superior to using an Adams
scheme, since the numerical computation of the fractional integral 𝐼1−𝛼𝑓(𝑝, 𝑡) for |𝑡| ≪ 1 can lead to numerical
artifacts when computing the FL transform of Λ̄(𝑝, 1) close to 𝑥 = 0.

4 LARGE-TIME ASYMPTOTICS

In this section, we derive large-time large deviation asymptotics for the RoughHestonmodel, and
we begin making the following assumption throughout this section:

Assumption 4.1. 𝜆 > 0, 𝜌 ≤ 0.

Recall that 𝑓(𝑝, 𝑡) in (9) satisfies

𝐷𝛼𝑓(𝑝, 𝑡) = 𝐻(𝑝, 𝑓(𝑝, 𝑡)) (45)

subject to 𝑓(𝑝, 0) = 0, where𝐻(𝑝,𝑤) ∶=
1

2
𝑝2 −

1

2
𝑝 + (𝑝𝜌𝜈 − 𝜆)𝑤 +

1

2
𝜈2𝑤2. We write

𝑈1(𝑝) ∶=
1

𝜈2
[𝜆 − 𝑝𝜌𝜈 −

√
𝜆2 − 2𝜆𝜌𝜈𝑝 + 𝜈2𝑝(1 − 𝑝�̄�2)]

for the smallest root of𝐻(𝑝, .), and note that 𝑈1(𝑝) is real if and only if 𝑝 ∈ [𝑝, �̄�], where

𝑝 ∶=
𝜈 − 2𝜆𝜌 −

√
4𝜆2 + 𝜈2 − 4𝜆𝜌𝜈

2𝜈(1 − 𝜌2)
, �̄� ∶=

𝜈 − 2𝜆𝜌 +
√

4𝜆2 + 𝜈2 − 4𝜆𝜌𝜈

2𝜈(1 − 𝜌2)
.
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F IGURE 4 On the left herewe have the same plot as above but with𝑇 = 0.005 and for the right plot𝑇 = 0.005

and 𝛼 = .6 (i.e.,𝐻 = 0.1), and again we see that the higher-order approximation makes a significant improvement
over the leading order smile [Color figure can be viewed at wileyonlinelibrary.com]
Note. Of coursewewould not expect such close agreement for smaller values of𝛼, or larger values of𝑇, |𝑥|, or |𝜌|, for
example,𝜌 = −0.65 reported in, for example, El Euch,Gatheral&Rosenbaum (2018), but the point here is really just
to verify the correctness of the asymptotic formula in (31), and give a starting point for other authors/practitioners
who wish to test refinements/variants of our formula. We have not repeated numerical results for the large-time
case at the current time, since it is intuitively fairly clear that our largematurity formula is correct (since it just boils
down to computing the stable fixed point of the VIE) and for maturities ≈30 years with a small step size, the code
would take a prohibitively long time to give good results given that each simulation takes𝑂(𝑁2) for a rough model
(where 𝑁 is the number of time steps), and it is difficult to verify the formula numerically even for the standard
Heston model.

F IGURE 5 Here we have plotted
the𝐻 = 0 asymptotic short-maturity
smile (i.e., �̂�0(𝑥) in (51)), for 𝜈 = .2,
𝜌 = −0.1, and 𝑉0 = .04 [Color figure can
be viewed at wileyonlinelibrary.com]
Note. We have used a 10-term small-𝑡
series approximation to the solution to
(48) combined with the scaling property
in (49), and the Alan Lewis Fourier
inversion formula for call options given
in, for example, eq (1.4) in El Euch,
Gatheral & Rosenbaum (2018) using
Gauss–Legendre quadrature for the
inverse Fourier transform with 1,600
points over a range of [0,40].



226 FORDE et al.

Proposition 4.2.

𝑉(𝑝) ∶= lim
𝑡→∞

1

𝑡
log 𝔼(𝑒𝑝𝑋𝑡 ) =

{
𝜆𝜃𝑈1(𝑝) 𝑝 ∈ [𝑝, �̄�],

+∞ 𝑝 ∉ [𝑝, �̄�].

)

Proof. Gerhold et al. (2019) show that the explosion time for the Rough Heston model 𝑇∗(𝑝) < ∞

if and only if 𝑇∗(𝑝) < ∞ for the corresponding standard Heston model (i.e., the case 𝛼 = 1).

From the usual quadratic solution formula −𝑏±
√

𝑏2−4𝑎𝑐

2𝑎
, we know that 𝐻(𝑝, .) has two distinct

real roots (or a single root) if and only if

(𝜆 − 𝜌𝑝𝜈)2 ≥ (𝑝2 − 𝑝)𝜈2, (46)

which is the same as the condition 𝑒1(𝑝) ≥ 0 in condition (C) in Gerhold et al. (2019). We note
that �̄�, 𝑝 are the zeros of 𝑒1(𝑝).
We now have to verify that under our assumptions that 𝜆 > 0 and 𝜌 ≤ 0, 𝑇∗(𝑝) < ∞ if and only

𝑒1(𝑝) < 0. We have two cases to consider to verify this claim:

∙ Suppose 𝑒1(𝑝) ≥ 0. Then case B in Gerhold et al. (2019) is impossible by definition, and 𝑝 ∈

[𝑝, �̄�], and eq. (3.5) in Forde and Jacquier (2011a) is satisfied. Eq. (3.4) in Forde and Jacquier
(2011a) is

𝜆 > 𝜌𝜈𝑝

in our current notation, and by the assertion on p. 769 in Forde and Jacquier (2011a) that “(3.4)
is implied by (3.5)”, we see that it holds, which is equivalent to 𝑒0(𝑝) < 0. Therefore, case A is
impossible. So we are in the nonexplosive case C or D of the Gerhold et al. (2019) classification.
We note that case C is by definition equivalent now to 𝑐1(𝑝) > 0.

∙ Suppose 𝑒1(𝑝) < 0. By definition we are not in case C. And we have 𝑝 ∉ [𝑝, �̄�], but from p. 769
in Forde and Jacquier (2011a), we know the interval [0,1] is strictly contained in [𝑝, �̄�]. Hence,
case D is also impossible, and we are in the explosive cases A or B.

Hence our claim is verified. We can now rewrite (45) in integral form as

𝑓(𝑝, 𝑡) =
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝐻(𝑝, 𝑓(𝑝, 𝑠))𝑑𝑠.

Clearly, we have 𝐻(𝑝,𝑤) ↘ 0 as 𝑤 ↗ 𝑈1(𝑝). Assume to begin with that 𝑈1(𝑝) > 0 (by an easy
calculation, this is exactly case C in the Gerhold et al. (2019) classification). Then from the proof
of proposition 4 in Gerhold et al. (2019), we know that 0 ≤ 𝑓(𝑝, 𝑡) ≤ 𝑈1(𝑝).
Moreover,𝑤∗ = 𝑈1(𝑝) is the smallest root of𝐻(𝑝,𝑤), so𝐻(𝑝,𝑤) ≥ 𝐻𝛿 ∶= 𝐻(𝑝,𝑈1(𝑝) − 𝛿) for

𝑤 ≤ 𝑈1(𝑝) − 𝛿 and 𝛿 ∈ (0,𝑈1(𝑝)); hence we must have

𝐻𝛿

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−11𝑓(𝑝,𝑠)≤𝑈1(𝑝)−𝛿 𝑑𝑠 < 𝑈1(𝑝)
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for all 𝑡 > 0. This implies that 𝐻𝛿

Γ(𝛼)
(𝑡 − 1)𝛼−1 ∫ 𝑡

1
1𝑓(𝑝,𝑠)≤𝑈1(𝑝)−𝛿𝑑𝑠 < 𝑈1(𝑝), or equivalently

𝑡 − 1 − ∫
𝑡

1

1𝑓(𝑝,𝑠)>𝑈1(𝑝)−𝛿 𝑑𝑠 ≤ Γ(𝛼)

𝐻𝛿
𝑈1(𝑝)(𝑡 − 1)1−𝛼.

Then we see that

1

𝑡 ∫
𝑡

0

𝑓(𝑝, 𝑠)𝑑𝑠 ≥ 1

𝑡 ∫
𝑡

1

𝑓(𝑝, 𝑠)𝑑𝑠 ≥ 1

𝑡 ∫
𝑡

1

𝑓(𝑝, 𝑠)1𝑓(𝑝,𝑠)>𝑈1(𝑝)−𝛿𝑑𝑠

≥ 1

𝑡
(𝑈1(𝑝) − 𝛿)(𝑡 − 1 −

Γ(𝛼)

𝐻𝛿
𝑈1(𝑝)(𝑡 − 1)1−𝛼)

≥ 𝑈1(𝑝) − 2𝛿

for 𝑡 sufficiently large. Thus, 𝑈1(𝑝) − 2𝛿 ≤ 1

𝑡
∫ 𝑡

0
𝑓(𝑝, 𝑠)𝑑𝑠 ≤ 𝑈1(𝑝), so 1

𝑡
∫ 𝑡

0
𝑓(𝑝, 𝑠)𝑑𝑠 → 𝑈1(𝑝) as

𝑡 → ∞. Then using that

log 𝔼(𝑒𝑝𝑋𝑡 ) = 𝑉0𝐼
1−𝛼𝑓(𝑝, 𝑡) + 𝜆𝜃𝐼𝑓(𝑝, 𝑡)

and that 𝑓(𝑝, 𝑡) is bounded, the result follows. We proceed similarly for the case 𝑈1(𝑝) < 0 (i.e.,
case D in the Gerhold et al. (2019) classification, see also Lemma 4.5). □

Corollary 4.3. 𝑋𝑡∕𝑡 satisfies the LDP as 𝑡 → ∞ with speed 𝑡 and rate function 𝑉∗(𝑥) equal to the
Fenchel–Legendre transform of 𝑉(𝑝), as for the standard Heston model.

Proof. Since 𝑈′
1(𝑝) → +∞ as 𝑝 → �̄� and 𝑈′

1(𝑝) → −∞ as 𝑝 → 𝑝, the function 𝜆𝜃𝑈1(𝑝) is essen-
tially smooth; so the stated LDP follows from the Gärtner–Ellis theorem in large deviations
theory. □

Remark 4.4. We can easily add stochastic interest rates into this model by modeling the short rate
𝑟𝑡 by an independent Rough Heston process, and proceeding as in Forde and Kumar (2016) (we
omit the details), see also Forde (2011).

Note that we have not proved that 𝑓(𝑝, 𝑡) → 𝑈1(𝑝), but to establish the leading order behavior
in Proposition 4.2, this is not necessary, rather we only needed to show that 𝐼1𝑓(𝑝, 𝑡) ∼ 𝑡𝑈1(𝑝).
Nevertheless, this convergence would be required to go to higher order, so for completeness we
prove this property as well, as a special case of the following general result:

Lemma 4.5. Consider functions 𝐺(𝑦) and 𝐾(𝑧) which satisfy the following:

∙ 𝐺(𝑦) is analytic and increasing on [0, 𝑦0] and decreasing on [𝑦0,∞) where 𝑦0 ≥ 0;
∙ 𝐺(0) ≥ 0;
∙ 𝐾(𝑧) is positive, continuous, and strictly decreasing for 𝑧 > 0;
∙ ∫ 𝑡

0
𝐾(𝑧)𝑑𝑧 is finite for each 𝑡 > 0 and diverges as 𝑡 → ∞;

∙ 𝐾(𝑧 + 𝛼)∕𝐾(𝑧) is strictly increasing in z for each fixed 𝛼 greater than zero.
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Then the solution to 𝑦(𝑡) = ∫ 𝑡

0
𝐾(𝑡 − 𝑠)𝐺(𝑦(𝑠))𝑑𝑠 is monotonically increasing, and if 𝐺 has at least

one positive root then 𝑦(𝑡) converges to the smallest positive root of 𝐺 as 𝑡 → ∞.

Proof. See Appendix C. □

This lemma can be applied to both cases C andD.As shown inGerhold et al. (2019), the solution
in caseC is bounded between zero and the smallest positive root of𝐺 (denoted𝑎 in that paper) so𝐺

need only satisfy the conditions of the above lemmaon the interval [0, 𝑎]which it doeswith 𝑦0 = 0.
For case D, multiplying the defining integral equation by −1 and applying the transformations
−𝑦(𝑡) → 𝑦(𝑡) and−𝐺(−𝑦(𝑡)) → 𝐺(𝑦(𝑡)) (see final plot in Figure 3) we recover an integral equation
of the desired form (again𝐺 need only satisfy the conditions of the lemma over the corresponding
interval [0, 𝑎]).

4.1 Asymptotics for call options and implied volatility

Corollary 4.6. We have the following large-time asymptotic behavior for European put/call options
in the large-time, large log-moneyness regime:

− lim
𝑡→∞

1

𝑡
log 𝔼(𝑆𝑡 − 𝑆0𝑒

𝑥𝑡)+ = 𝑉∗(𝑥) − 𝑥 (𝑥 ≥ 1

2
�̄�),

− lim
𝑡→∞

1

𝑡
log(𝑆0 − 𝔼(𝑆𝑡 − 𝑆0𝑒

𝑥𝑡)+) = 𝑉∗(𝑥) − 𝑥 (−
1

2
𝜃 ≤ 𝑥 ≤ 1

2
�̄�),

− lim
𝑡→∞

1

𝑡
log(𝔼(𝑆0𝑒

𝑥𝑡 − 𝑆𝑡)
+) = 𝑉∗(𝑥) − 𝑥 (𝑥 ≤ −

1

2
𝜃),

where �̄� =
𝜆𝜃

𝜆−𝜌𝜈
.

Proof. See corollary 2.4 in Forde and Jacquier (2011a). □

Corollary 4.7. We have the following asymptotic behavior in the large-time, large log-moneyness
regime, where �̂�𝑡(𝑘𝑡) is the implied volatility of a European put/call option with strike 𝑆0𝑒

𝑥𝑡:

�̂�∞(𝑥)2 = lim
𝑡→∞

�̂�2
𝑡 (𝑥𝑡) =

𝜔1

2
(1 + 𝜔2𝜌𝑥 +

√
(𝜔2𝑥 + 𝜌)2 + 𝜌2),

where

𝜔1 =
4𝜆𝜃

𝜈2�̄�2
[
√

(2𝜆 − 𝜌𝜈)2 + 𝜈2�̄�2 − (2𝜆 − 𝜌𝜈)], 𝜔2 =
𝜈

𝜆𝜃
.

Proof. See proposition 1 in Gatheral and Jacquier (2011) (note that for the Rough Heston model 𝜆
has to be replaced with 𝜆

Γ(𝛼)
and 𝜈 replaced with 𝜈

Γ(𝛼)
, but the effect of the 𝛼 here cancels out in

the final formula for �̂�∞(𝑘). □
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4.2 Higher-order large-time behavior

We can formally try going to higher order; indeed, using the ansatz 𝑓(𝑝, 𝑡) = 𝑈1(𝑝)𝑡 +

𝑈2(𝑝)𝑡−𝛼(1 + 𝑜(1)) for 𝑝 ∈ [𝑝, �̄�], and we find that

𝑈2(𝑝) = −
𝑈1(𝑝)

(𝜆 − 𝑈1(𝑝)𝜈2 − 𝑝𝜌𝜈)Γ(1 − 𝛼)

but if we try and go higher order again, the fractional derivative on the left-hand side of (10) does
not exist. Using the same approach as in Forde et al. (2011), one should be able to use this to
compute a higher-order large-time saddle point approximation for call options. For the sake of
brevity, we defer the details of this for future work.

5 ASYMPTOTICS IN THE𝑯 → 𝟎 LIMIT

In this section, we will show that for fixed 𝑡, the log stock price 𝑋
(𝛼)
𝑡 ∶= 𝑋𝑡 converges as 𝛼 →

1

2
that is, as 𝐻 → 0 in an appropriate sense. To match the assumptions of theorem 13.1.1 on p. 384
of Gripenberg et al. (1990) (on the continuity of the solutions to a parameterized family of VIEs),
we define ℎ(𝛼,𝑤) ∶= 𝐺(𝑝,𝑤) for 𝛼 ≥ 1

2
(which is independent of 𝛼). The kernel 𝑎(𝑡, 𝑠, 𝛼) ∶= (𝑡 −

𝑠)𝛼−1∕Γ(𝛼) is of continuous type; see definition 9.5.2 in Gripenberg et al. (1990), and the remark
to theorem 12.1.1 in Gripenberg et al. (1990), which states local integrability of 𝑘 as a sufficient
condition for this property, and we can easily verify that

sup
𝑡∈[0,𝑇]

|∫ 𝑡

0

(𝑎(𝑡, 𝑠, 𝛼) − 𝑎(𝑡, 𝑠,
1

2
))𝑑𝑠| → 0

as 𝛼 →
1

2
, so the uniform continuity assumption in theorem 13.1.1 of Gripenberg et al. (1990) is

satisfied. Moreover, the solution to the VIE is unique for 𝛼 ∈ (0, 1), see theorem 3.1.4 in Brunner
(2017), or Satz 1 in Dinghas (1958). Note that the Lipschitz condition (3.1) in Dinghas (1958) has a
fixed Lipschitz constant Γ(𝛼 + 1), but since the function 𝐻 defining our VIE (see (45)) does not
depend on time, the factor 𝑡𝛼 on the left-hand side of condition (3.1) in Dinghas (1958) (using our
notation) allows for an arbitrary Lipschitz constant, on a sufficiently small time interval. More-
over, once uniqueness on a small time interval is established, there is a unique continuation (if
any) by a standard extension procedure described on p. 107 of Brunner (2017).
Then from theorem 13.1.1(ii) in Gripenberg et al. (1990), 𝑓(𝑝, 𝑡; 𝛼) is continuous in 𝛼 and 𝑡 on

{(𝛼, 𝑡) ∶ 𝛼 ∈ [
1

2
, 1), 0 ≤ 𝑡 < �̂�𝛼(𝑝)}, where [0, �̂�𝛼(𝑝)) denotes themaximal interval onwhich a con-

tinuous solution of the VIE exists. Moreover, since theorem 13.1.1 of Gripenberg et al. (1990) is
multidimensional, we can apply it to (Re(𝑓), Im(𝑓)) to conclude that 𝑓(𝑖𝜃, 𝑡; 𝛼) → 𝑓(𝑖𝜃, 𝑡;

1

2
) for

𝜃 ∈ ℝ. Using the analyticity of 𝑓(., 𝑡, 0), for example, from lemma 7 in Gerhold et al. (2019), we
have that 𝑓(𝑖𝜃, 𝑡;

1

2
) is continuous at 𝜃 = 0, so we can apply Lévy’s convergence theorem and verify

that 𝑋(𝛼)
𝑡 tends weakly to some random variable 𝑋

(
1

2
)

𝑡 as 𝛼 →
1

2
, for which

𝔼(𝑒𝑝𝑋
(
1
2
)

𝑡 ) = 𝑒𝑉0𝐼
1
2 𝑓(𝑝,𝑡)+𝜆𝜃𝐼1𝑓(𝑝,𝑡)
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for 𝑝 in some open interval 𝐼 = (𝑝−(𝑡), 𝑝+(𝑡)) ⊃ [0, 1], where 𝑓(𝑝, 𝑡) satisfies

𝐷
1

2 𝑓(𝑝, 𝑡) =
1

2
(𝑝2 − 𝑝) + (𝑝𝜌𝜈 − 𝜆)𝑓(𝑝, 𝑡) +

1

2
𝜈2𝑓(𝑝, 𝑡)2

with initial condition 𝑓(𝑝, 0) = 0.

Thus we have a 𝐻 = 0 “model,” or more precisely a family of marginals for 𝑋
(
1

2
)

𝑡 for all 𝑡 ∈

[0, 𝑇]), with nonzero skewness. This is in contrast to the Rough Bergomi model, which for the
vol-of-vol 𝛾 ∈ (0, 1) tends to a model with zero skew in the limit as𝐻 → 0 (see Forde et al., 2020,
for details).
Then using similar scaling arguments to Section 3, we know that

𝔼(𝑒𝑝𝑋
(
1
2
)

𝜀𝑡 ) = 𝑒𝑉0𝐼
1
2 𝑓𝜀(𝑝,𝑡)+𝜀

1
2 𝜆𝜃𝐼1𝑓𝜀(𝑝,𝑡)

for 𝑝 ∈ (𝑝−(𝜀𝑡), 𝑝+(𝜀𝑡)) ⊃ [0, 1], where 𝑓𝜀(𝑝, 𝑡) satisfies

𝐷
1

2 𝑓𝜀(𝑝, 𝑡) =
1

2
𝜀(𝑝2 − 𝑝) + 𝜀

1

2 (𝑝𝜌𝜈 − 𝜆)𝑓𝜀(𝑝, 𝑡) +
1

2
𝜈2𝑓𝜀(𝑝, 𝑡)2

with initial condition 𝑓𝜀(𝑝, 0) = 0. Then setting 𝑓𝜀(
𝑝√
𝜀
, 𝑡) = 𝜙𝜀(𝑝, 𝑡) as in eq. 49 in Forde et al.

(2019), we find that 𝜙𝜀(𝑝, 𝑡) satisfies

𝐷
1

2 𝜙𝜀(𝑝, 𝑡) =
1

2
𝑝2 −

1

2
𝑝
√

𝜀 + 𝑝𝜌𝜈𝜙𝜀(𝑝, 𝑡) +
1

2
𝜈2𝜙𝜀(𝑝, 𝑡)2 − 𝜆𝜀

1

2 𝜙𝜀(𝑝, 𝑡) (47)

with 𝜙𝜀(𝑝, 0) = 0, for 𝑝 ∈ (
𝑝−(𝜀𝑡)√

𝜀
,
𝑝+(𝜀𝑡)√

𝜀
). We can then apply theorem 13.1.1 in Gripenberg et al.

(1990) as above to show that 𝜙𝜀(𝑝, 𝑡) tends to the solution 𝜙 of

𝐷
1

2 𝜙(𝑝, 𝑡) =
1

2
𝑝2 + 𝑝𝜌𝜈𝜙(𝑝, 𝑡) +

1

2
𝜈2𝜙(𝑝, 𝑡)2 (48)

as 𝜀 → 0 for𝑝 ∈ (𝑝0
−, 𝑝0

+)where𝑝0
± ∶= lim𝜀→0

𝑝±(𝜀𝑡)√
𝜀
. Thus setting 𝑡 = 1, we see (again usingLévy’s

convergence theorem) that𝑋
(
1

2
)

𝜀 ∕
√

𝜀 tendsweakly to a (non-Gaussian) randomvariable𝑍 as 𝑡 → 0

for which𝔼(𝑒𝑝𝑍) = 𝑒𝑉0𝐼
1
2 𝜙(𝑝,.)(1). Two interesting and difficult open questions now arise: (a) is this

property time-consistent, that is, does it remain true at a future time 𝑡 when we condition on the
history of 𝑉 up to 𝑡, and (b) is 𝑉 itself a well-defined process in the 𝛼 →

1

2
limit, or does it, for

example, tend to a non-Gaussian field which is not pointwise defined. We answer the second
question in Subsections 5.2 and 5.3.

Remark 5.1. Note that the scaling property in this case simplifies to

Λ(𝑝, 𝑡) = Λ(𝑝𝑡
1

2 , 1), (49)

where Λ(𝑝, 𝑡) ∶= 𝐼1−𝛼𝜙(𝑝, 𝑡) with 𝛼 =
1

2
.
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5.1 Implied vol asymptotics in the𝑯 = 𝟎, 𝒕 → 𝟎 limit—full smile
effect for the Edgeworth FX options regime

Following a similar argument to lemma 5 in Mijatovic & Tankov (2016) one can establish the
following small-time behavior for European put options in the Edgeworth regime:

1√
𝑡
𝔼((𝑒𝑥

√
𝑡 − 𝑒𝑋𝑡 )+) ∼ 𝑒𝑥

√
𝑡 𝔼((𝑥 −

𝑋𝑡√
𝑡
)+) ∼ 𝔼((𝑥 −

𝑋𝑡√
𝑡
)+) ∼ 𝑃(𝑥) ∶= 𝔼((𝑥 − 𝑍)+)

as 𝑡 → 0, where 𝑍 is the non-Gaussian random variable defined in the previous subsection, and
𝑓 ∼ 𝑔 here means that 𝑓∕𝑔 → 1. From, for example, Fukasawa (2017) or lemma 3.3 in Forde et al.
(2019), we know that for the Black–Scholes model with volatility 𝜎

1√
𝑡
𝔼((𝑒𝑥

√
𝑡 − 𝑒𝑋𝑡 )+) ∼ 𝑃𝐵(𝑥, 𝜎) ∶= 𝔼((𝑥 − 𝜎𝑊1)

+), (50)

where𝑊 is a standard Brownian motion. From this, we can easily deduce that

�̂�0(𝑥) ∶= lim
𝑡→0

�̂�𝑡(𝑥
√

𝑡, 𝑡) = 𝑃𝐵(𝑥, .)−1(𝑃(𝑥)) (51)

for 𝑥 > 0, where �̂�𝑡(𝑥, 𝑡) denotes the implied volatility of a European put option with strike 𝑒𝑥
√

𝑡,
maturity 𝑡, and 𝑆0 = 1, and 𝑃𝐵(𝑥, 𝜎) is the Bachelier model put price formula. Hence, we see the
full smile effect in the small-time FX options Edgeworth regime unlike the 𝐻 > 0 case discussed
in, for example, Fukasawa (2017), El Euch et al. (2019), and Forde et al. (2019), where the leading
order term is just Black–Scholes, followed by a next order skew term, followed by an even higher-
order term.

5.2 A closed-form expression for the skew, the𝑯 → 𝟎 limit, and
calibrating a time-dependent correlation function

Wenow consider a driftless version of themodel where 𝑑𝑋𝑡 =
√

𝑉𝑡𝑑𝐵𝑡 and𝑉𝑡 = 𝑉0 +
1

Γ(𝛼)
∫ 𝑡

0
(𝑡 −

𝑠)𝛼−1𝜈
√

𝑉𝑠𝑑𝑊𝑠. Then

𝔼(𝑋3
𝑇) = 3𝔼(𝑋𝑇⟨𝑋⟩𝑇) = 3𝔼(∫

𝑇

0

√
𝑉𝑠(𝜌𝑑𝑊𝑠 + �̄�𝑑𝐵𝑠)∫

𝑇

0

𝑉𝑡𝑑𝑡) = 3𝜌 𝔼(∫
𝑇

0

√
𝑉𝑠𝑑𝑊𝑠 ∫

𝑇

0

𝑉𝑡𝑑𝑡)

so formally we need to compute

𝔼(
√

𝑉𝑠𝑉𝑡𝑑𝑊𝑠) = 𝔼(
√

𝑉𝑠(𝑉0 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑢)𝛼−1𝜈
√

𝑉𝑢𝑑𝑊𝑢)𝑑𝑊𝑠)

= 𝔼(
√

𝑉𝑠
𝜈

Γ(𝛼)
(𝑡 − 𝑠)𝛼−1

√
𝑉𝑠𝑑𝑠 1𝑠<𝑡)

=
𝜈

Γ(𝛼)
(𝑡 − 𝑠)𝛼−1 1𝑠<𝑡 𝔼(𝑉𝑠)𝑑𝑠 =

𝜈

Γ(𝛼)
(𝑡 − 𝑠)𝛼−1 1𝑠<𝑡 𝑉0𝑑𝑠.
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Thus

𝔼(𝑋3
𝑇) = 3𝜌 ∫

𝑇

0
∫

𝑡

0

𝔼(
√

𝑉𝑠𝑉𝑡𝑑𝑊𝑠) =
3𝑉0𝜌𝜈𝑇

1+𝛼

Γ(𝛼)𝛼(1 + 𝛼)
. (52)

If we now relax the assumption that 𝑉 is driftless and assume a given initial variance curve 𝜉0(𝑡)

and a general 𝐿2 kernel 𝜅 then

𝑉𝑡 = 𝜉0(𝑡) + ∫
𝑡

0

𝜅(𝑡 − 𝑠)
√

𝑉𝑠𝑑𝑊𝑠

(where 𝜅 is computed in Proposition 2.2). Then

𝔼(
√

𝑉𝑠𝑉𝑡𝑑𝑊𝑠) = 𝔼(
√

𝑉𝑠(𝜉0(𝑡) + ∫
𝑡

0

𝜅(𝑡 − 𝑢)
√

𝑉𝑢𝑑𝑊𝑢)𝑑𝑊𝑠) = 𝜅(𝑡 − 𝑠) 1𝑠<𝑡𝔼(𝑉𝑠)

and

𝔼(𝑋3
𝑇) = 3𝜌 ∫

𝑇

0
∫

𝑡

0

𝔼(
√

𝑉𝑠𝑉𝑡𝑑𝑊𝑠) = 3𝜌 ∫
𝑇

0
∫

𝑡

0

𝜅(𝑡 − 𝑠) 𝜉0(𝑠)𝑑𝑠𝑑𝑡.

Remark 5.2. If we allow 𝜌 to be time-dependent, then 𝔼(𝑋3
𝑡 ) = 3𝜌(𝑡) ∫ 𝑇

0
∫ 𝑡

0
𝜅(𝑡 − 𝑠) 𝜉0(𝑠)𝑑𝑠𝑑𝑡 and

we can use this equation to calibrate 𝜌(𝑡) to the observed skew term structure, that is, the value
of 𝔼(𝑋3

𝑡 ) at each 𝑡 in some interval [0, 𝑇] implied by European option prices via the Breeden–
Litzenberger formula. Note we have ignored the drift terms of 𝑋 to simplify the computations
here but in the small-time limit these drift terms will be higher order.

5.3 Weak convergence of the 𝑽 process on pathspace to a tempered
distribution, and the hyper-rough Heston model

From theorem 4.3 in Abi Jaber et al. (2019) with 𝛼 ∈ (
1

2
, 1), 𝑎(𝑣) = 𝜈2𝑣, 𝜎(𝑣) = 𝜈

√
𝑣, 𝑏(𝑣) = 𝜆(𝜃 −

𝑣), 𝐴(𝑣) = 𝜈2𝑣, and 𝑓 ∈ 𝐿1([0, 𝑇]), we know that

𝔼(𝑒∫
𝑇

0
𝑓(𝑇−𝑡)𝑉𝑡𝑑𝑡) = 𝑒

𝑉0 ∫ 𝑇

0
𝑓(𝑡)𝑑𝑡 +

1

2
𝜈2𝑉0 ∫ 𝑇

0
𝜓𝛼(𝑡)2𝑑𝑡

,

where 𝜓𝛼 satisfies the Ricatti–Volterra equation:

𝜓𝛼(𝑡) = ∫
𝑡

0

𝑐𝛼(𝑡 − 𝑠)𝛼−1(𝑓(𝑠) +
1

2
𝜈2𝜓𝛼(𝑠)

2)𝑑𝑠 (53)

and 𝑐𝛼 =
1

Γ(𝛼)
.

Proposition 5.3. 𝑉 tends to a random tempered distribution 𝑉
(
1

2
) in distribution as 𝛼 →

1

2
with

respect to the strong andweak topologies (see p. 2 in Bierme, Durieu, andWang, 2017, for definitions),



FORDE et al. 233

where 𝑉
(
1

2
) is a random tempered distribution2 and for all 𝑓 in the Schwartz space  we have

𝔼(𝑒∫
𝑇

0
𝑓(𝑇−𝑡)𝑉

(
1
2
)

𝑡 𝑑𝑡) = 𝑒
𝑉0 ∫ 𝑇

0
𝑓(𝑡)𝑑𝑡 +

1

2
𝜈2𝑉0 ∫ 𝑇

0
𝜓(𝑡)2𝑑𝑡

,

where 𝜓 satisfies the following VIE:

𝜓(𝑡) = ∫
𝑡

0

𝑐 1

2

(𝑡 − 𝑠)
−

1

2 (𝑓(𝑠) +
1

2
𝜈2𝜓(𝑠)2)𝑑𝑠.

Proof. See Appendix D. □

Let𝐴𝑡 satisfy𝐴𝑡 = 𝑉0𝑡 +
𝜈

Γ(
1

2
)
∫ 𝑡

0
(𝑡 − 𝑠)

−
1

2 𝑊𝐴𝑠
𝑑𝑠. Then𝐴𝑡 is of the same form as𝑋𝑡 in Abi Jaber

(2019), with their 𝑑𝐺0(𝑡) = 𝑉0𝑑𝑡. Then from theorem 2.5 in Abi Jaber (2019) (with 𝑎 = 𝑏 = 0 and
𝑐 = 𝜈2) we know that

𝔼(𝑒∫
𝑇

0
𝑓(𝑇−𝑡)𝑑𝐴𝑡 ) = 𝑒∫

𝑇

0
𝐹(𝑇−𝑠,𝜓(𝑇−𝑠))𝑑𝐺0(𝑠) = 𝑒

𝑉0 ∫ 𝑇

0
(𝑓(𝑇−𝑠)+

1

2
𝜈2𝜓(𝑇−𝑠)2)𝑑𝑠

= 𝑒
𝑉0 ∫ 𝑇

0
(𝑓(𝑠)+

1

2
𝜈2𝜓(𝑠)2)𝑑𝑠

, (54)

where 𝐹(𝑠, 𝑢) = 𝑓(𝑢) +
1

2
𝑐𝑢2, and 𝜓 satisfies

𝜓(𝑡) = ∫
𝑡

0

𝐾(𝑡 − 𝑠)𝐹(𝑠, 𝜓(𝑠))𝑑𝑠 = ∫
𝑡

0

𝑐 1

2

(𝑡 − 𝑠)
−

1

2 (𝑓(𝑠) +
1

2
𝜈2𝜓(𝑠)2)𝑑𝑠.

The process 𝐴𝑡 here is the driftless hyper-rough Heston model for 𝐻 = 0 discussed in the next
subsection, and note that 𝜓 satisfies the same VIE as (53) (and by, e.g., theorem 3.1.4 in Brunner,

2017, we know the solution is unique), so the limiting field 𝑉
(
1

2
) has the same law as the random

measure 𝑑𝐴𝑡. Moreover, from proposition 4.6 in Jusselin and Rosenbaum (2020) (which uses the
law of the iterated logarithm for 𝐵) 𝐴 is a.s. not continuously differentiable but is only known to
be 2𝛼 − 𝜀Hölder continuous for all 𝜀 > 0. Hence𝐴 exhibits (non-Gaussian) “field”-type behavior.

5.4 The hyper-rough Heston model for𝑯 = 𝟎—driftless and general
cases

If 𝜆 = 0 and 𝛼 ∈ (
1

2
, 1) and we set 𝐴𝑡 ∶= ∫ 𝑡

0
𝑉𝑠𝑑𝑠, then using the stochastic Fubini theorem, we

see that

𝐴𝑡 − 𝑉0𝑡 =
1

Γ(𝛼) ∫
𝑡

0
∫

𝑠

0

(𝑠 − 𝑢)
𝛼−1

𝜈
√

𝑉𝑢𝑑𝑊𝑢ds =
1

Γ(𝛼) ∫
𝑡

0

𝜈
√

𝑉𝑢𝑑𝑊𝑢 ∫
𝑡

𝑢

(𝑠 − 𝑢)
𝛼−1ds

=
𝜈

𝛼Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑢)
𝛼√

𝑉𝑢𝑑𝑊𝑢
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(using Dambis-Dubins-Schwarz time change)

=
𝜈

𝛼Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑢)
𝛼
𝑑𝐵𝐴𝑢

(where 𝐵𝑡 ∶= 𝑋𝑇𝑡
, 𝑇𝑡 = inf {𝑠 ∶ 𝐴𝑠 > 𝑡}) so 𝐵 is a Brownian motion)

=
𝜈

𝛼Γ(𝛼)
𝐵𝐴𝑢

(𝑡 − 𝑢)
𝛼|𝑡𝑢=0 +

𝜈

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑢)
𝛼−1

𝐵𝐴𝑢
du

= 𝜈𝐼𝛼𝐵𝐴𝑡
.

We can now take

𝐴𝑡 = 𝑉0𝑡 + 𝜈𝐼𝛼𝐵𝐴𝑡
(55)

as the definition of the Rough Heston model for 𝛼 ∈ [
1

2
, 1) (i.e., allowing for the possibility that

𝛼 =
1

2
), where 𝐵 is now a given Brownian motion (this is the so-called hyper-rough Hestonmodel

introduced in Jusselin andRosenbaum (2020) for the case of zero drift. Note that for a given sample
path 𝐵𝑡(𝜔), we can regard (55) as a (random) fractional ordinary differential equation (ODE) of
the form:

𝐴(𝑡) = 𝑉0𝑡 + 𝐼𝛼𝑓(𝐴(𝑡)), (56)

where 𝑓(𝑡) = 𝐵𝑡(𝜔).

5.4.1 The case 𝝀 > 𝟎

For the case when 𝜆 > 0, using (8) we see that

𝐴𝑡 − ∫
𝑡

0

𝜉0(𝑠)𝑑𝑠 = ∫
𝑡

0
∫

𝑠

0

𝜅(𝑠 − 𝑢)
√

𝑉𝑢𝑑𝑊𝑢𝑑𝑠 = ∫
𝑡

0

√
𝑉𝑢 ∫

𝑡

𝑢

𝜅(𝑠 − 𝑢)𝑑𝑠 𝑑𝑊𝑢

= ∫
𝑡

0

𝐹(𝑡 − 𝑢)
√

𝑉𝑢𝑑𝑊𝑢 (where 𝐹(𝑡 − 𝑢) = ∫
𝑡

𝑢

𝜅(𝑠 − 𝑢)𝑑𝑠)

= ∫
𝑡

0

𝐹(𝑡 − 𝑢)𝑑𝑀𝑢

(where 𝑑𝑀𝑡 =
√

𝑉𝑡𝑑𝑊𝑡)

= ∫
𝑡

0

𝐹(𝑡 − 𝑢)𝑑𝐵𝐴𝑢

(where 𝐵𝑡 ∶= 𝑀𝑇𝑡
, 𝑇𝑡 = inf {𝑠 ∶ 𝐴𝑠 > 𝑡}) so 𝐵 is a Brownian motion)

= 𝐵𝐴𝑢
𝐹(𝑡 − 𝑢)|𝑡𝑢=0 + ∫

𝑡

0

𝜅(𝑡 − 𝑢)𝐵𝐴𝑢
𝑑𝑢
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= ∫
𝑡

0

𝜅(𝑡 − 𝑢)𝐵𝐴𝑢
𝑑𝑢,

where we have used (7) to verify that 𝐹(𝑡 − 𝑢) → 0 as 𝑢 → 𝑡.
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APPENDIX A: COMPUTING THE KERNEL FOR THE ROUGHHESTON VARIANCE
CURVE
Let 𝑍𝑡 = ∫ 𝑡

0

√
𝑉𝑠𝑑𝑊𝑠, and we recall that

𝑉𝑡 = 𝑉0 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝜆(𝜃 − 𝑉𝑠)𝑑𝑠 +
1

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1𝜈
√

𝑉𝑠𝑑𝑊𝑠

= �̃�0(𝑡) −
𝜆

𝜈
(𝜑 ∗ 𝑉) + 𝜑 ∗ 𝑑𝑍,

where ∗ denotes the convolution of two functions, 𝜑 ∗ 𝑑𝑍 = ∫ 𝑡

0
𝜑(𝑡 − 𝑠)𝑑𝑍𝑠 and �̃�0(𝑡) = 𝑉0 +

1

Γ(𝛼)
∫ 𝑡

0
(𝑡 − 𝑠)𝛼−1𝜆𝜃𝑑𝑠 = 𝑉0 +

𝜆𝜃

𝛼Γ(𝛼)
𝑡𝛼, and 𝜑(𝑡) =

𝜈

Γ(𝛼)
𝑡𝛼. Now define 𝜅 to be the unique function

which satisfies

𝜅 = 𝜑 −
𝜆

𝜈
(𝜑 ∗ 𝜅) . (A.1)

Such a 𝜅 exists and is known as the resolvent of 𝜑. Then we see that

𝑉𝑡 −
𝜆

𝜈
𝜅 ∗ 𝑉𝑡 = �̃�0(𝑡) −

𝜆

𝜈
𝜑 ∗ 𝑉 + 𝜑 ∗ 𝑑𝑍 −

𝜆

𝜈
𝜅 ∗ [ �̃�0(𝑡) −

𝜆

𝜈
𝜑 ∗ 𝑉 + 𝜑 ∗ 𝑑𝑍]

= 𝜉0(𝑡) −
𝜆

𝜈
(𝜑 −

𝜆

𝜈
𝜅 ∗ 𝜑) ∗ 𝑉 + (𝜑 −

𝜆

𝜈
𝜅 ∗ 𝜑) ∗ 𝑑𝑍

= 𝜉0(𝑡) −
𝜆

𝜈
𝜅 ∗ 𝑉 + 𝜅 ∗ 𝑑𝑍,

where 𝜉0(𝑡) = �̃�0(𝑡) −
𝜆

𝜈
𝜅 ∗ �̃�0(𝑡), and we have used (A.1) in the final line. Canceling the−

𝜆

𝜈
𝜅 ∗ 𝑉

terms, we see that

𝑉𝑡 = 𝜉0(𝑡) + 𝜅 ∗ 𝑑𝑍 = 𝜉0(𝑡) + ∫
𝑡

0

𝜅(𝑡 − 𝑠)
√

𝑉𝑠𝑑𝑊𝑠

⇒ 𝜉𝑡(𝑢) = 𝔼(𝑉𝑢|𝑡) = 𝜉0(𝑢) + ∫
𝑡

0

𝜅(𝑢 − 𝑠)
√

𝑉𝑠𝑑𝑊𝑠

and thus

𝑑𝜉𝑡(𝑢) = 𝜅(𝑢 − 𝑡)
√

𝑉𝑡𝑑𝑊𝑡,

that is, the correct 𝜅 function is the solution to (A.1). If we take the Laplace transform of (A.1), we
get

�̂�(𝑧) = �̂�(𝑧) −
𝜆

𝜈
�̂�(𝑧)�̂�(𝑧) , (A.2)
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and (A.2) is just an algebraic equation now, which we can solve explicitly to get �̂�(𝑧) =
�̂�(𝑧)

1+
𝜆

𝜈
�̂�(𝑧)

.

But we know that 𝜑(𝑡) =
𝜈

Γ(𝛼)
𝑡𝛼 whose Laplace transform is �̂�(𝑧) = 𝜈𝑧−𝛼, so �̂�(𝑧) evaluates to

�̂�(𝑧) =
𝜈𝑧−𝛼

1 + 𝜆𝑧−𝛼
.

Then the inverse Laplace transform of �̂�(𝑧) is given by

𝜅(𝑥) = 𝜈𝑥𝛼−1𝐸𝛼,𝛼(−𝜆𝑥𝛼).

APPENDIX B: THE RESCALEDMODEL
We first let

𝑑𝑋𝜀
𝑡 = −

1

2
𝜀𝑉𝜀

𝑡 𝑑𝑡 +
√

𝜀
√

𝑉𝜀
𝑡 𝑑𝑊𝑡

𝑉𝜀
𝑡 − 𝑉0 =

𝜀𝛾

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)
𝐻−

1

2 𝜆(𝜃 − 𝑉𝜀
𝑠 )𝑑𝑠 +

𝜀𝐻

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)
𝐻−

1

2 𝜈
√

𝑉𝜀
𝑠𝑑𝑊𝑠

(d)
=

𝜀𝛾

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)
𝐻−

1

2 𝜆(𝜃 − 𝑉𝜀
𝑠 )𝑑𝑠 +

𝜀
𝐻−

1

2

Γ(𝛼) ∫
𝑡

0

(𝑡 − 𝑠)
𝐻−

1

2 𝜈
√

𝑉𝜀
𝑠𝑑𝑊𝜀𝑠

=
𝜀𝛾

Γ(𝛼) ∫
𝜀𝑡

0

(𝑡 −
𝑢

𝜀
)
𝐻−

1

2 𝜆(𝜃 − 𝑉𝜀
𝑢∕𝜀

)
1

𝜀
𝑑𝑢 +

𝜀
𝐻−

1

2

Γ(𝛼) ∫
𝜀𝑡

0

(𝑡 −
𝑢

𝜀
)
𝐻−

1

2 𝜈
√

𝑉𝜀
𝑢∕𝜀

𝑑𝑊𝑢 ,

where we have set 𝑢 = 𝜀𝑠. Now set 𝑉′
𝜀𝑡 = 𝑉𝜀

𝑡 . Then

𝑉′
𝜀𝑡 − 𝑉0 =

𝜀𝛾−1

Γ(𝛼) ∫
𝜀𝑡

0

(𝑡 −
𝑢

𝜀
)
𝐻−

1

2 𝜆(𝜃 − 𝑉′
𝑢)𝑑𝑢 +

𝜀
𝐻−

1

2

Γ(𝛼) ∫
𝜀𝑡

0

(𝑡 −
𝑢

𝜀
)
𝐻−

1

2 𝜈

√
𝑉′

𝑢 𝑑𝑊𝑢

=
𝜀𝛾−1

𝜀
𝐻−

1

2 Γ(𝛼)
∫

𝜀𝑡

0

(𝜀𝑡 − 𝑢)
𝐻−

1

2 𝜆(𝜃 − 𝑉′
𝑢)𝑑𝑢 +

𝜀
𝐻−

1

2

𝜀
𝐻−

1

2 Γ(𝛼)
∫

𝜀𝑡

0

(𝜀𝑡 − 𝑢)
𝐻−

1

2 𝜈

√
𝑉′

𝑢 𝑑𝑊𝑢

=
1

Γ(𝛼) ∫
𝜀𝑡

0

(𝜀𝑡 − 𝑢)
𝐻−

1

2 𝜆(𝜃 − 𝑉′
𝑢) 𝑑𝑢 +

1

Γ(𝛼) ∫
𝜀𝑡

0

(𝜀𝑡 − 𝑢)
𝐻−

1

2 𝜈

√
𝑉′

𝑢 𝑑𝑊𝑢,

where the last line follows on setting 𝛾 − 1 = 𝐻 −
1

2
, that is, 𝛾 = 𝛼. Thus for this choice of 𝛾,

𝑉𝜀(.)
(d)
= 𝑉𝜀

(.)
.
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APPENDIX C: PROOF OFMONOTONICITY OF THE SOLUTION FOR A GENERAL
CLASS OF VOLTERRA INTEGRAL EQUATIONS
Recall that 𝑦(𝑡) satisfies

𝑦(𝑡) = ∫
𝑡

0

𝐾(𝑡 − 𝑠)𝐺(𝑦(𝑠))𝑑𝑠.

One can easily verify that the kernel used for the Rough Heston model satisfies the stated proper-
ties in Lemma 4.5.
In the classical case 𝐾(𝑡) ≡ 1, the integral equation clearly reduces to an ODE, and it is well

known that the solution of this is at least continuously differentiable on the domain of existence.
In the following, it will be assumed that the solution 𝑦(𝑡) is analytic for 𝑡 > 0. This is proved for
the kernel relevant to the RoughHestonmodel inMiller and Feldstein (1971) (theorem 6), see also
the end of p. 14 in Gerhold et al. (2019).
What follows is a natural extension of the technique used in Mann and Wolf (1951) (theorem

8). Using the properties of convolution and differentiating under the integral sign, we have

𝑦(𝑡) = ∫
𝑡

0

𝐾(𝑡 − 𝑠)𝐺(𝑦(𝑠))𝑑𝑠 = ∫
𝑡

0

𝐾(𝑠)𝐺(𝑦(𝑡 − 𝑠))𝑑𝑠, (C.1)

𝑦′(𝑡) = 𝐾(𝑡)𝐺(0) + ∫
𝑡

0

𝐾(𝑠)𝐺′(𝑦(𝑡 − 𝑠))𝑦′(𝑡 − 𝑠)𝑑𝑠, (C.2)

= 𝐾(𝑡)𝐺(0) + ∫
𝑡

0

𝐾(𝑡 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠 (C.3)

𝐺(0) > 0 so 𝑦′(𝑡) → +∞ as 𝑡 → 0+ and since 𝐺(𝑦) is increasing for 𝑦 ≤ 𝑦0 we have that 𝑦′(𝑡) > 0

until 𝑦(𝑡) reaches 𝑦0, that is, the solution increases. For 𝑦 ≥ 𝑦0, 𝐺(𝑦) is decreasing and suppose
that 𝑦(𝑡) ceases to be increasing at some point. This implies (assuming a continuous derivative)
the existence of a 𝑡0 and an interval 𝐼 = [𝑡0, 𝑡1] such that 𝑦′(𝑡0) = 0 and 𝑦′(𝑡1) < 0 for all 𝑡1 ∈ 𝐼 (if
𝑦(𝑡) and hence 𝑦′(𝑡) is analytic then the zeros of the derivative are isolated and a sufficiently small
interval 𝐼 exists). Using the integral equation for 𝑦′(𝑡):

𝑦′(𝑡0) = 𝐾(𝑡0)𝐺(0) + ∫
𝑡0

0

𝐾(𝑡0 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠 = 0, (C.4)

𝑦′(𝑡1) = 𝐾(𝑡1)𝐺(0) + ∫
𝑡0

0

𝐾(𝑡1 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠 + ∫
𝑡1

𝑡0

𝐾(𝑡1 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠.

We can rewrite the kernels in the first and second terms of the expression for 𝑦′(𝑡1) as

𝐾(𝑡1) =
𝐾(𝑡1)

𝐾(𝑡0)
𝐾(𝑡0), 𝐾(𝑡1 − 𝑠) =

𝐾(𝑡1 − 𝑠)

𝐾(𝑡0 − 𝑠)
𝐾(𝑡0 − 𝑠)
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and we can easily check that the quotient in the second expression here decreases monotonically
from 𝐾(𝑡1)∕𝐾(𝑡0) to zero.
By the mean value theorem for definite integrals there exists a 𝜏 ∈ (0, 𝑡0) such that:

∫
𝑡0

0

𝐾(𝑡1 − 𝑠)

𝐾(𝑡0 − 𝑠)
𝐾(𝑡0 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠 =

𝐾(𝑡1 − 𝜏)

𝐾(𝑡0 − 𝜏) ∫
𝑡0

0

𝐾(𝑡0 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠

= −
𝐾(𝑡1 − 𝜏)

𝐾(𝑡0 − 𝜏)
𝐾(𝑡0)𝐺(0), (C.5)

where the second equality follows from (C.4). Substituting this into our expression for 𝑦′(𝑡1):

𝑦′(𝑡1) =
𝐾(𝑡1)

𝐾(𝑡0)
𝐾(𝑡0)𝐺(0) +

𝐾(𝑡1 − 𝜏)

𝐾(𝑡0 − 𝜏) ∫
𝑡0

0

𝐾(𝑡0 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠

+ ∫
𝑡1

𝑡0

𝐾(𝑡1 − 𝑠)𝐺′(𝑦(𝑠))𝑦′(𝑠)𝑑𝑠

= 𝐾(𝑡0)𝐺(0) (
𝐾(𝑡1)

𝐾(𝑡0)
−

𝐾(𝑡1 − 𝜏)

𝐾(𝑡0 − 𝜏)
)

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
>0

+∫
𝑡1

𝑡0

𝐾(𝑡1 − 𝑠) 𝐺′(𝑦(𝑠))𝑦′(𝑠)
⏟ ⎴⎴⏟ ⎴⎴⏟

>0

𝑑𝑠 > 0 (C.6)

and we have used (C.4) in the second line. But this is a contradiction so the solution
remains increasing.
As discussed elsewhere in this paper, when studying the Rough Heston model, the nonlinear-

ity in the integral equation has the generic form 𝐺(𝑦) = (𝑦 − 𝜃1)
2 + 𝜃2, that is, a quadratic with

positive leading coefficient (for simplicity set to 1 here) and minimum of 𝜃2 obtained at 𝑦 = 𝜃1.
Depending on the values of {𝜃1, 𝜃2}, the following cases due to Gerhold et al. (2019) are distin-
guished:

∙ (C) 𝐺(0) > 0, 𝜃1 > 0 and 𝜃2 < 0
∙ (D) 𝐺(0) ≤ 0

Case C is already in the form considered here with 𝑦0 = 0. In case D, applying the transforma-
tion 𝑦(𝑡) → −𝑦(𝑡) and−𝐺(−𝑦(𝑡)) → 𝐺(𝑦(𝑡)) (reflecting in the 𝑥 and then 𝑦-axis) yields a function
𝐺(𝑦) which is a quadratic with negative leading coefficient and thus increases until it reaches it’s
maximum after which it decreases which is of the type considered here.

APPENDIX D
From theorem 13.1.1(ii) in Gripenberg et al. (1990), the unique solution 𝜓(𝛼) to

𝜓(𝛼)(𝑡) = ∫
𝑡

0

𝑐𝛼(𝑡 − 𝑠)𝛼−1(𝑓(𝑠) +
1

2
𝜈2𝜓(𝛼)(𝑠)2)𝑑𝑠



FORDE et al. 241

tends pointwise to the solution of

𝜓1

2

(𝑡) = ∫
𝑡

0

𝑐 1

2

(𝑡 − 𝑠)
−

1

2 (𝑓(𝑠) +
1

2
𝜈2𝜓1

2

(𝑠)2)𝑑𝑠,

which is also unique by, for example, theorem 3.1.4 in Brunner (2017). Now consider any sequence
𝑓𝜀 ∈  with ‖𝑓𝜀‖𝑚,𝑗 → 0 as 𝜀 → 0 for all𝑚, 𝑗 ∈ ℕ𝑛

0 for any 𝑛 ∈ ℕ (i.e., under the Schwartz space
seminormdefined in eq. 1 in Bierme, Durieu, andWang, 2017). Then the convergence here implies
in particular that 𝑓𝜀 tends to 𝑓 pointwise. Then from theorem 13.1.1. in Gripenberg et al. (1990),
the unique solution 𝜓𝜀 to

𝜓𝜀(𝑡) = ∫
𝑡

0

𝑐 1

2

(𝑡 − 𝑠)
−

1

2 (𝑓𝜀(𝑠) +
1

2
𝜈2𝜓𝜀(𝑠)

2)𝑑𝑠

tends pointwise to the solution to

𝜓0(𝑡) = ∫
𝑡

0

𝑐 1

2

(𝑡 − 𝑠)
−

1

2
1

2
𝜈2𝜓0(𝑠)

2𝑑𝑠

which is zero. Then from Lévy’s continuity theorem for generalized random fields in the space of
tempered distributions (see theorem 2.3 and corollary 2.4 in Bierme, Durieu, & Wang, 2017), we
obtain the stated result.
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