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Abstract

We study non-Gaussian fractional stochastic volatility models. The volatility in such a model is
escribed by a positive function of a stochastic process that is a fractional transform of the solution
o an SDE satisfying the Yamada–Watanabe condition. Such models are generalizations of a fractional
ersion of the Heston model considered in Bäuerle and Desmettre (2020). We establish sample path
nd small-noise large deviation principles for the log-price process in a non-Gaussian model. We also
llustrate how to compute the second order Taylor expansion of the rate function, in a simplified example.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we introduce and study a general class of non-Gaussian stochastic volatility
odels. The main building block of the volatility in such a model is a Volterra type integral

ransform of the solution to a stochastic differential equation satisfying the Yamada–Watanabe
ondition, while the volatility is described by a positive function of such an integral transform.
nteresting special cases of non-Gaussian models are the models in which the kernels appearing
n the integral transforms possess certain fractional features. Examples of such kernels are the
ernels of fractional Brownian motion, the Riemann–Liouville fractional Brownian motion, or
he fractional Ornstein–Uhlenbeck process. We call the corresponding models non-Gaussian
ractional stochastic volatility models. Our class of models is related to the fractional Heston
odel (see [1,11]), as explained in Section 4.
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In a Gaussian model, the stochastic volatility is described by a positive function of a Volterra
aussian process. Such models have recently become popular objects of study. Numerous

xamples of Gaussian models are given in [10,12,13]. The non-Gaussian stochastic volatility
odels are less studied. To our knowledge, the general class of models introduced in the present

aper has never been considered before.
The main results obtained in the present paper are Theorems 1.6 and 1.7. In these theorems,

mall-noise and sample path large deviation principles are established for the log-price process
n a non-Gaussian stochastic volatility model. In the proofs of Theorems 1.6 and 1.7, we use
n the one hand known techniques form the general theory of large deviations, and on the other
and also employ new techniques. For example, a part of our proof of Theorem 1.7 is based
n the results of Chiarini and Fischer (see [5]) concerning small-noise large deviations for Itô
rocesses. Although we cannot use heavy machinery of the theory of Gaussian processes in
he non-Gaussian case, we still borrow some techniques employed in [9,12,13] in the proofs
f large deviation theorems for Gaussian models. In Section 5 of the present paper, we show
ow to obtain a Taylor expansion of the rate function in a simplified example.

Recently, there has been a surge of interest in using stochastic Volterra equations for financial
odelling. While small-noise large deviations for such equations are well studied in the case of
ipschitz coefficients (see [17,18,20,21]), similar LDPs for equations in which non-Lipschitz

unctions are used in the description of the dynamics are scarce. In the papers [8] and [11],
oncrete models with finite-dimensional parameter spaces are considered, whereas [4,9,12–14]
eal with large deviation principles for Gaussian models. In the present paper, we assume that
he volatility process is a positive function σ of the following process:

V̂t =

∫ t

0
K (t, s)U (Vs) ds, (1.1)

where U is a continuous non-negative function, assumptions on the kernel K will be specified
below, and V solves a one-dimensional SDE, driven by a Brownian motion B and satisfying
the Yamada–Watanabe condition. A (semi-)explicit generating function, as is available in the
rough resp. fractional Heston models considered in [8,11], is not required. Also, our process
V̂ is clearly non-Gaussian in general, which sets our results apart from the related papers
with Gaussian drivers mentioned above. While our setup allows a lot of freedom in choosing
the diffusion V and the other ingredients, we note that truly rough models are not covered,
because (1.1) is a Lebesgue integral and not an integral w.r.t. Brownian motion. However, the
models that we are considering may be rough at t = 0 (see Remark 4.2). The asset price is
given by

d St = Stσ (V̂t )(ρ̄ dWt + ρ d Bt ), 0 ≤ t ≤ T,

S0 = 1.
(1.2)

Here, B,W are independent standard Brownian motions, ρ ∈ (−1, 1) and ρ̄ =
√

1 − ρ2. The
xtension to arbitrary S0 > 0 is straightforward. We now specify the conditions under which

our main results, Theorems 1.6 and 1.7, are valid. Assumptions 1.1, 1.3 and 1.4 formulated
below are in force throughout the paper.

Assumption 1.1. Throughout the paper, K is a kernel on [0, T ]2 satisfying the following
onditions:
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(a)

sup
t∈[0,T ]

∫ T

0
K (t, s)2 ds < ∞. (1.3)

(b) The modulus of continuity of the kernel K in the space L2[0, T ] is defined as follows:

M(h) = sup
{t1,t2∈[0,T ]:|t1−t2|≤h}

∫ T

0
|K (t1, s) − K (t2, s)|2 ds, 0 ≤ h ≤ T . (1.4)

It is assumed that there exist constants c > 0 and r > 0 such that

M(h) ≤ chr (1.5)

for all h ∈ [0, T ].
(c) K (t, s) = 0 for all 0 ≤ t < s ≤ T .

The function K is a Volterra kernel in the sense of [12] and [13]. The conditions in
ssumption 1.1 have been used earlier; e.g., (b) and (c) are parts of the definition of a Volterra

ype Gaussian process in [15,16]. It is a standard fact that the associated integral operator

K(h)(t) =

∫ T

0
K (t, s)h(s) ds (1.6)

s compact from L2[0, T ] into C[0, T ]; see e.g. Lemma 2 of [12] for a proof. A standard
xample of a kernel satisfying Assumption 1.1 is the fractional kernel Γ (H +

1
2 )−1(t − s)H−1/2,

≤ s ≤ t , with Hurst parameter H ∈ (0, 1). We note that Γ denotes the gamma function here,
hereas later we will use the letter Γ for the solution map of the ODE (1.16).

efinition 1.2. Let ω be an increasing modulus of continuity on [0,∞), that is ω : R+ → R+

s an increasing function such that ω(0) = 0 and lims→0 ω(s) = 0. A function h defined on R
s called locally ω-continuous, if for every δ > 0 there exists a number L(δ) > 0 such that for
ll x, y ∈ [−δ, δ]

|h(x) − h(y)| ≤ L(δ)ω(|x − y|). (1.7)

ssumption 1.3. The function U : R+ → R+ is continuous, and σ is a positive function on
+ that is locally ω-continuous for some modulus of continuity ω as in Definition 1.2.

The process V in (1.1) is assumed to solve the SDE

dVt = b̄(Vt ) dt + σ̄ (Vt ) d Bt , 0 ≤ t ≤ T,

V0 = v0 > 0,
(1.8)

here σ̄ and b̄ satisfy the Yamada–Watanabe condition in Assumption 1.4. A well-known
xample is the CIR process, where σ̄ is the square root function.

ssumption 1.4.

(R1) The dispersion coefficient σ̄ : R → [0,∞) is locally Lipschitz continuous on R\{0},
has sub-linear growth at ∞, and σ̄ (0) = 0, while σ̄ (x) > 0 for all x ̸= 0. Moreover,
there exists a continuous increasing function γ : (0,∞) → (0,∞) such that∫

∞ du
2 = ∞ (1.9)
0+ γ (u)
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|σ̄ (x) − σ̄ (y)| ≤ γ (|x − y|) for all x, y ∈ R, x ̸= y.

Here, the sub-linear growth at ∞ is understood in the sense that for every x0 there exists
a µ such that for all x > x0 we have

|σ̄ (x)|2 ≤ µ(1 + |x |
2).

(R2) The drift coefficient b̄ : R → R is locally Lipschitz continuous, has sub-linear growth
at ∞, and b̄(0) > 0.

The process V is non-negative (see the remark after Theorem 2.2). Next, introducing a
mall-noise parameter ε > 0, we define the scaled version V ε of the process V by

dV ε
t = b̄(V ε

t ) dt +
√
εσ̄ (V ε

t ) d Bt ,

V ε
0 = v0 > 0,

(1.10)

nd the scaled asset price by

d Sεt =
√
εSεt σ (V̂ ε

t )(ρ̄ dWt + ρ d Bt ). (1.11)

ere, we write V̂ ε for the process

V̂ ε
t =

∫ t

0
K (t, s)U (V ε

s ) ds. (1.12)

he scaled log-price process X ε
= log Sε, which is the process of interest for our large

eviations analysis, is now given by

X ε
t = −

1
2
ε

∫ t

0
σ (V̂ ε

s )2 ds +
√
ε

∫ t

0
σ (V̂ ε

s ) d(ρ̄Ws + ρBs), 0 ≤ t ≤ T . (1.13)

efinition 1.5. In addition to K from (1.6), we define the integral operators

·̂ : C[0, T ] → C[0, T ],

·̌ : H 1
0 [0, T ] → C[0, T ]

y

f̂ (t) =

∫ t

0
K (t, s)U ( f (s)) ds, t ∈ [0, T ], (1.14)

ǧ(t) =

∫ t

0
K (t, s)U (v(s)) ds, t ∈ [0, T ], (1.15)

here v is the solution of the ODE

v̇ = b̄(v) + σ̄ (v)ġ, v(0) = v0. (1.16)

Clearly, we have ǧ = v̂, where v solves the ODE (1.16). Moreover, f̂ = K(U ◦ f )
nd ǧ = K(U ◦ Γ (g)), where Γ maps g to the solution of (1.16). By Assumption 1.1 the
ntegral operators of Definition 1.5 are well-defined. In fact, for our kernel K , we get that

: L2[0, T ] → C[0, T ]. Note that for h ∈ H 1
0 [0, T ], we have h ∈ C[0, T ]. Further, for

f ∈ H 1
0 [0, T ] we have U ◦ f ∈ L2[0, T ] and for g ∈ H 1

0 [0, T ] we have U ◦v ∈ L2[0, T ]. This
an be easily seen using the fact that U is continuous and the input functions are continuous
n a bounded interval and hence bounded themselves.

We can now state our main results.
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Theorem 1.6. The family X ε
T satisfies the small-noise large deviation principle (LDP) with

speed ε−1 and good rate function IT given by

IT (x) = inf
f ∈H1

0

[T
2

(
x − ρ⟨σ (K(U ◦ Γ ( f ))), ḟ ⟩

)2

ρ̄2⟨σ (K(U ◦ Γ ( f )))2, 1⟩
+

1
2
⟨ ḟ , ḟ ⟩

]
(1.17)

or all x ∈ R, wherever this expression is finite. The validity of the LDP means that for every
orel subset A of R, the following estimate holds, where A◦ and Ā denote the interior resp.

he closure of A:

− inf
x∈A◦

IT (x) ≤ lim inf
ε↘0

ε log P(X ε
T ∈ A) ≤ lim sup

ε↘0
ε log P(X ε

T ∈ A) ≤ − inf
x∈Ā

IT (x).

(1.18)

heorem 1.7. The family of processes X ε satisfies the sample path LDP with speed ε−1 and
good rate function Q given by

Q(g) = inf
f ∈H1

0

[1
2

∫ T

0

( ġ(t) − ρσ (K(U ◦ Γ ( f ))(t)) ḟ (t)
ρ̄σ (K(U ◦ Γ ( f ))(t))

)2
dt +

1
2

∫ T

0
| ḟ (t)|

2
dt

]
or all g ∈ H 1

0 [0, T ], and by Q(g) = ∞, for all g ∈ C[0, T ]\H 1
0 [0, T ]. The validity of the

DP means that for every Borel subset A of C[0, T ], the following estimate holds:

− inf
g∈A◦

Q(g) ≤ lim inf
ε↘0

ε log P(X ε
∈ A) ≤ lim sup

ε↘0
ε log P(X ε

∈ A) ≤ − inf
g∈Ā

Q(g).

(1.19)

Using the definition of K, the rate functions in Theorems 1.6 and 1.7 can be equivalently
ritten as

IT (x) = inf
f ∈H1

0

[
T
2

(
x − ρ

∫ T
0 σ (

∫ t
0 K (t, s)U (Γ ( f )(s)) ds) ḟ (t) dt

)2

ρ̄2
∫ T

0 σ (
∫ t

0 K (t, s)U (Γ ( f )(s)) ds)2 dt
+

1
2

∫ T

0
ḟ (t)2 dt

]
nd

Q(g) = inf
f ∈H1

0

[
1
2

∫ T

0

(
ġ(t) − ρσ (

∫ t
0 K (t, s)U (Γ ( f )(s)) ds) ḟ (t)

ρ̄σ (
∫ t

0 K (t, s)U (Γ ( f )(s)) ds)

)2

dt+
1
2

∫ T

0
| ḟ (t)|

2
dt

]
,

espectively.
The structure of this paper is as follows. In Section 2, we recall small-noise large deviations

or SDEs satisfying the Yamada–Watanabe condition. In Section 3, we prove the main results,
.e. the small-noise LDP for the log-price. In Section 4 we clarify the relation of a special case
f our setup to fractional Heston models considered in the literature. In Section 5 we compute
he coefficients in the second-order Taylor expansion of the rate function in Theorem 1.6 for

special, simplified example. As was mentioned above, Assumptions 1.1, 1.3 and 1.4 are
upposed to be satisfied throughout the rest of the paper.

. LDPs for the driving processes

.1. Sample path LDP for the diffusion

We apply a result of [5], which is based on a representation formula for functionals of
rownian motion obtained in [3], to obtain an LDP for (

√
εB, V ε). While the Yamada–

atanabe condition from Assumption 1.4 covers virtually all one-dimensional diffusions that
584
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have been suggested in financial modelling, we note that Assumption 1.4 could still be
weakened, if desired, e.g. by inspecting the proof of Theorem 4.3 in [3].

If assumptions (H1)–(H6) of [5] hold, then the family of processes (
√
εB, V ε). which satisfy

he two-dimensional SDE(√
εd Bt

dV ε
t

)
=

(
0

b̄(V ε
t )

)
dt +

√
ε

(
1

σ̄ (V ε
t )

)
d Bt , (2.1)

dmits an LDP due to Theorem 1 in [5]. For V ε, (H1)–(H6) have been checked in [5, pp. 1143–
144]. For (

√
εB, V ε), the proofs are similar. The assumptions (H1)–(H3) are clearly satisfied.

et us check condition (H4), namely unique solvability of the control equation (7) in [5]. Here,
t is (

ϕ1(t)
ϕ2(t)

)
=

(
0
v0

)
+

∫ t

0

(
0

b̄(ϕ2(s))

)
ds +

∫ t

0

(
1

σ̄ (ϕ2(s))

)
f (s) ds, (2.2)

here f ∈ L2[0, T ] is the control function. We also have ϕ1, ϕ2 ∈ C[0, T ]. It follows that

he unique solution of (2.2) is given by Γ̄v0 ( f ) =

(∫
·

0 f (s) ds
ϕ2

)
, where the function ϕ2 is the

nique solution of the equation

ϕ2(t) = v0 +

∫ t

0
b̄(ϕ2(s)) ds +

∫ t

0
σ̄ (ϕ2(s)) f (s) ds, t ∈ [0, T ], (2.3)

hich exists, and is positive, by [5, Proposition 1]. This establishes condition (H4) in our
etting. Note at this point, that the ODE (2.3) is formulated for f ∈ L2[0, T ] to match the
otation of [5]. Alternatively it can also be written, with a g ∈ H 1

0 , and ġ instead of f , see
1.16). Condition (H5) for the second component of Γ̄v0 was checked in [5, p. 1144]. For the
rst component, (H5) is true by the following simple fact.

emma 2.1. The map f ↦→
∫

·

0 f (s) ds is continuous from Br into C[0, T ], where Br is the
losed ball of radius r > 0 in L2[0, T ] endowed with the weak topology.

roof. If fn ∈ Br converges weakly to f , then the convergence is uniform on compact subsets
f L2[0, T ]. Since {1[0,t] : 0 ≤ t ≤ T } is compact, we have

sup
t∈[0,T ]

⏐⏐⏐⏐∫ t

0
f (u) du −

∫ t

0
fn(u) du

⏐⏐⏐⏐ → 0, n → ∞. □ (2.4)

The tightness assumption (H6) can be established as in [5]. The verification, which is based
n the sub-linear growth of b̄ and σ̄ and the uniform moment estimate in Lemma A.2 of [5],
s found on pp. 1137–1138 of [5]. See also Section 4.2 of [5]. Now, Theorem 1 of [5] implies
he following assertion, in fact a Laplace principle. But since the rate function is a good
ate function (which is shown in [5]), we also get an LDP with the same rate function. See
heorems 1.2.1 and 1.2.3 of [7].

heorem 2.2. The family of processes (
√
εB, V ε) satisfies an LDP in the space C[0, T ]2

ith speed ε−1 and good rate function I : C[0, T ]2
→ [0,∞] given by

I (ϕ1, ϕ2) = inf{
f ∈L2[0,T ]: Γ̄v0 ( f )=

⎛⎝ϕ1
ϕ

⎞⎠} 1
2

∫ T

0
f (t)2 dt, (2.5)
2
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whenever
{

f ∈ L2[0, T ] : Γ̄v0 ( f ) =

(
ϕ1
ϕ2

)}
̸= ∅, and I (ϕ1, ϕ2) = ∞ otherwise. Here, Γ̄v0 ( f )

aps f to the solution of (2.2).

Note that the positivity of the solution of (2.3) shows that I (ϕ1, ϕ2) = ∞ whenever ϕ2 is
egative at some point. Thus, Theorem 2.2 implies that V is a non-negative process, as noted
fter Assumption 1.4.

The condition Γ̄v0 ( f ) =

(
ϕ1
ϕ2

)
implies that

∫ t
0 f (s) ds = ϕ1(t), or f (t) = ϕ̇1(t). Therefore

ϕ̇2(t) = b̄(ϕ2(t)) + σ̄ (ϕ2(t))ϕ̇1(t),

nd hence (recall that ϕ2 is positive by [5, Proposition 1])

ϕ̇1(t) =
ϕ̇2(t) − b̄(ϕ2(t))

σ̄ (ϕ2(t))
. (2.6)

Therefore, the following statement holds:

Corollary 2.3. For every ϕ2 that is absolutely continuous on [0, T ] with ϕ2(0) = v0

I
(∫

·

0

ϕ̇2(t) − b̄(ϕ2(t))
σ̄ (ϕ2(t))

dt, ϕ2

)
=

1
2

∫ T

0

( ϕ̇2(t) − b̄(ϕ2(t))
σ̄ (ϕ2(t))

)2
dt, (2.7)

f the integral is finite, and I (ϕ1, ϕ2) = ∞ in all the remaining cases.

.2. Sample path LDP for (
√
εB, V̂ ε)

In this subsection we lift the sample path LDP in Theorem 2.2 to one for the family of
processes we get when applying the “hat” operator defined in (1.12) to V ε.

emma 2.4. The mapping f ↦→ f̂ is continuous from the space C[0, T ] into itself.

Proof. For f ∈ C[0, T ] and all t1, t2 ∈ [0, T ],

| f̂ (t1) − f̂ (t2)| ≤ M(|t1 − t2|)
1
2

(∫ T

0
U ( f (s))2 ds

) 1
2

≤ C f |t1 − t2|
r
2 .

The number r in the exponent of the last term comes from an estimate for the modulus of
continuity of the kernel given by (1.5). Here we used the local boundedness of the continuous
function U , and also (1.4). Now, it is clear that the function f̂ is continuous on [0, T ]. It
remains to prove the continuity of the mapping f ↦→ f̂ on C[0, T ]. Suppose fk → f in

[0, T ]. Then we have

∥ f̂ − f̂k∥C[0,T ] ≤

(∫ T

0
|U ( f (s)) − U ( fk(s))|2 ds

) 1
2 sup

t∈[0,T ]

(∫ T

0
K (t, s)2 ds

) 1
2
. (2.8)

Moreover,

C0 = max
{
∥ f ∥C[0,T ], sup

k
∥ fk∥C[0,T ]

}
< ∞.

It follows from Assumption 1.1 and (2.8) that there exists a constant C1 for which

∥ f̂ − f̂k∥C[0,T ] ≤ C1 sup
⏐⏐U ( f (s)) − U ( fk(s))

⏐⏐, (2.9)

s∈[0,T ]
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p
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and the previous expression converges to zero by the uniform continuity of U on [−C0,C0].
his completes the proof. □

The next assertion establishes the LDP for (
√
εB, V̂ ε).

Theorem 2.5. The family of processes (
√
εB, V̂ ε) satisfies an LDP in the space C[0, T ]2

ith speed ε−1 and good rate function given by

Ĩ
(
ψ1,K(U ◦ Γ (ψ1))

)
=

1
2

∫ T

0
ψ̇1(t)2 dt, (2.10)

f the expression in (2.6) exists, and Ĩ (ψ1, ψ2) = ∞ otherwise. As above, Γ is the solution
map of the one-dimensional ODE (1.16), which means that ϕ = Γ (ψ1) solves the ODE
˙ = b̄(ϕ) + σ̄ (ϕ)ψ̇1.

roof. We know that (
√
εB, V ε) satisfies the LDP in Theorem 2.2. The mapping (ϕ1, ϕ2) ↦→

ϕ1, ϕ̂2) of C[0, T ]2 into itself is continuous due to Lemma 2.4. Hence, we can use the
contraction principle, which gives

Ĩ (ψ1, ψ2) = inf
{(ϕ1,ϕ2)∈C[0,T ]2: (ψ1,ψ2)=(ϕ1,ϕ̂2)}

I (ϕ1, ϕ2) = inf
ϕ̂2=ψ2

I (ψ1, ϕ2).

The necessary condition under which we have I (ψ1, ϕ2) < ∞ is ψ̇1 =
ϕ̇2−b̄(ϕ2)
σ̄ (ϕ2) (see

orollary 2.3). □

Since B and W are independent, the following result is an immediate consequence of
Theorem 2.5 and Schilder’s theorem.

Corollary 2.6.

(i) The family (
√
εWT ,

√
εB, V̂ ε) satisfies an LDP with speed ε−1 and rate function

Î
(
y, ψ1,K(U ◦ Γ (ψ1))

)
=

T
2

y2
+

1
2

∫ T

0
ψ̇2

1 (t)dt, (2.11)

for y ∈ R and ψ1 ∈ H 1
0 [0, T ], if all the expressions are finite, and Î (y, ψ1, ψ2) = ∞

otherwise.
(ii) The family of processes (

√
εW,

√
εB, V̂ ε) satisfies an LDP with speed ε−1 and rate

function

Î
(
ψ0, ψ1,K(U ◦ Γ (ψ1))

)
=

1
2

∫ T

0
ψ̇0(t)2 dt +

1
2

∫ T

0
ψ̇2

1 (t)dt, (2.12)

for ψ0, ψ1 ∈ H 1
0 [0, T ], if all the expressions are finite, and Î (ψ0, ψ1, ψ2) = ∞

otherwise.

. Proof of the LDP for the log-price

.1. Proof of Theorem 1.6 (one-dimensional LDP)

It is clear that the one-dimensional LDP in Theorem 1.6 is a special case of the sample
ath LDP in Theorem 1.7. For the reader’s convenience, though, it seemed better to us to first
rove Theorem 1.6, and then refer to some parts of this proof in the proof of Theorem 1.7.
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We build on some ideas of [12]. To match the notation there, we note that εH B̂ from [12]
orresponds to our process V̂ ε as defined in (1.12). In the original proof of [12] the author
rst supposes T = 1. Here, for convenience, we immediately allow a general T > 0. By the
ollowing lemma, it suffices to prove an LDP for the drift-less process

d X̂ ε
t =

√
εσ (V̂ ε

t )(ρ̄ dWt + ρ d Bt ), 0 ≤ t ≤ T . (3.1)

Lemma 3.1. The families (X ε
T )ε>0 and (X̂ ε

T )ε>0 are exponentially equivalent, i.e. for every
> 0, the following equality holds:

lim sup
ε↘0

ε log P(|X ε
T − X̂ ε

T | > δ) = −∞. (3.2)

roof. By the same reasoning as in Section 5 of [12], there is a strictly increasing continuous
unction η : [0,∞) → [0,∞) with limu↗∞ η(u) = ∞ and σ̄ (u)2

≤ η(u) for all u ∈ R. Let
−1

: [0,∞) → [0,∞) be the inverse function. Replacing
√
ε B̂ in [12] by V̂ ε, we get the

stimate

P(|X ε
T − X̂ ε

T | > δ) = P
(1

2
ε

∫ T

0
σ (V̂ ε

s )2 ds > δ
)

≤ P
(1

2
ε

∫ T

0
η(V̂ ε

s ) ds > δ
)

≤ P
(1

2
ε

∫ T

0
η( sup

0≤t≤T
|V̂ ε

t |) ds > δ
)

= P
(1

2
εTη( sup

0≤t≤T
|V̂ ε

t |) > δ
)

= P
(
η( sup

0≤t≤T
|V̂ ε

t |) >
2δ
εT

)
= P

(
sup

0≤t≤T
|V̂ ε

t | > η−1(
2δ
εT

)
)

≤ exp
(
−
ε−1

2
J (A)

)
,

(3.3)

where J is the rate function of sup0≤t≤T |V̂ ε
t |, and A = (η−1( 2δ

εT ),∞). Since J is a good rate
function, we know that J (x,∞) ↗ ∞ as x ↗ ∞, so we get (3.2). □

We will next reason as in [12], p. 1121, using the LDP for (
√
εWT ,

√
εB, V̂ ε) in

orollary 2.6. Analogously to [12], we define the functional Φ on the space M = R×C[0, T ]2

y

Φ(y, f, g) = ρ̄
(∫ T

0
σ (g(s))2 ds

)1/2
y + ρ

∫ T

0
σ (g(s)) ḟ (s) ds, (3.4)

f ( f, g) = ( f, f̌ ) with f ∈ H 1
0 [0, T ], and Φ(y, f, g) = 0 otherwise (recall the defini-

ion (1.15)). Further, for any integer m ≥ 1, define a functional on M by

Φm(y, h, l) = ρ̄
(∫ T

0
σ (l(s))2 ds

)1/2
y + ρ

m−1∑
k=0

σ (l(tk))
(
h(tk+1) − h(tk)

)
, (3.5)

here tk :=
kT
m for k ∈ {0, . . . ,m}. The following approximation property is the key to applying

he extended contraction principle (see (4.2.24) in [6]).

emma 3.2. For every α > 0,

lim sup
m→∞

sup
{ f ∈H1

0 [0,T ]: T
2 y2+

1
2

∫ T
0 ḟ (s)2 ds≤α}

|Φ(y, f, f̌ ) − Φm(y, f, f̌ )| = 0. (3.6)
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Proof. The proof is similar to that of Lemma 21 in [12]. We need to change the range
f the integrals and suprema to [0, T ] instead of [0, 1]. Hence, the grid points for hm are

tk :=
T k
m for k ∈ {0, . . . ,m}, like in (3.5). We use a different integral operator than [12],

and so we have to show that the set Eβ = { f̌ : f ∈ Dβ} is precompact in C[0, T ] for
Dβ = { f ∈ H 1

0 [0, T ] :
∫ T

0 ḟ (s)2 ds < β}. For f ∈ Dβ , we have ḟ ∈ L2[0, T ] and therefore
can use Eq. (16) of [5] to estimate the solution of the ODE

v = v0 +

∫
·

0
b̄(v(s)) ds +

∫
·

0
σ̄ (v(s)) ḟ (s) ds

as follows:

sup
0≤s≤T

|v(s)|2 ≤
(
3|v0|

2
+ 6µ2T 2

+ 6µ2T ∥ ḟ ∥
2
2

)
e6µ2T (T +∥ ḟ ∥

2
2)

=: C2
β .

Here, µ comes from the sub-linear growth condition for the coefficient functions of the
diffusion equation for V in Assumption 1.4. Since the continuous function U is bounded on
the interval [−Cβ,Cβ],

{U ◦ v : f ∈ Dβ, v̇ = b̄(v) + σ̄ (v) ḟ } (3.7)

is a bounded subset of C[0, T ]. The compact operator K, as defined in (1.6), maps the set
in (3.7) to a precompact set in C[0, T ]. So we can conclude that Eβ is precompact. After that,
the proof continues like in [12]. □

Definition 3.3. Let t ∈ [0, T ] be fixed. Consider the grid tk := T k
m for k ∈ {0, . . . ,m}. There

is a k such that t ∈ [tk, tk+1). Denote by Ξ (t) the left end of the previous interval. Explicitly,
we put

Ξ (t) :=
T
m

[
mt
T

], (3.8)

where [a] stands for the integer part of the number a ∈ R. For T = 1, this reduces to
Ξ (t) =

[mt]
m .

We will next prove that Φm(
√
εWT ,

√
εB, V̂ ε) is an exponentially good approximation as

↗ ∞ to (
√
εWT ,

√
εB, V̂ ε). We start with an auxiliary result.

Lemma 3.4. For every y > 0,

lim sup
m→∞

lim sup
ε↘0

ε log P
(

sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ (t)| > y
)

= −∞. (3.9)

roof. This corresponds to Lemma 23 in [12], but we need to adjust some estimates in the
proof, since we do not have Gaussianity in our setting. As in [12] we use

P
(

sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ (t)| > y
)

≤ P
(

sup
t1,t2∈[0,T ]

|V̂ ε
t2

− V̂ ε
t1
| > y

)
. (3.10)
|t2−t1|≤T/m
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Then, for |s − t | ≤ T/m, we have

|V̂ ε
t − V̂ ε

s | =

⏐⏐⏐ ∫ T

0

(
K (t, v) − K (s, v)

)
U (V ε

v ) dv
⏐⏐⏐

≤

√
M(

T
m

) sup
v∈[0,T ]

|U (V ε
v )|

≤

(cT
m

)r/2
sup
v∈[0,T ]

|U (V ε
v )|,

where M is the modulus of continuity of the kernel function in Assumption 1.1. We know that
V ε satisfies an LDP, by Theorem 2.2. Using this, we can estimate

P
(

sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ (t)| > y
)

≤ P
(

sup
s∈[0,T ]

|U (V ε
s )| > yc−r/2T −r/2mr/2

)
≤ exp

(
−
ε−1

2
· J

(
(y(

m
cT

)
r
2 ,∞)

))
,

or ε small enough. Here, J is the good rate function corresponding to sups∈[0,T ] |U (V ε
s )|, which

atisfies an LDP, as seen from applying the contraction principle to the continuous mapping
f ↦→ sups∈[0,T ] |U ( f (s))|. From this, we can write

lim sup
ε↘0

ε log P
(

sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ (t)| > y
)

≤ −
1
2

J
((

y
( m

cT

) r
2 ,∞

))
. (3.11)

ince J has compact level sets, the term on the right-hand side explodes for m ↗ ∞. □

Next, we show that the discretization functionals Φm yield an exponentially good approxi-
ation.

emma 3.5. For every δ > 0,

lim
m→∞

lim sup
ε↘0

ε log P
(⏐⏐Φ(

√
εWT ,

√
εB, V̂ ε) − Φm(

√
εWT ,

√
εB, V̂ ε)

⏐⏐ > δ
)

= −∞.

(3.12)

roof. This lemma corresponds to Lemma 22 in [12]. As in the proof of that lemma, it suffices
o show

lim
m→∞

lim sup
ε↘0

ε log P
(

√
ε|ρ| sup

t∈[0,T ]

⏐⏐⏐ ∫ t

0
σ (m)

s d Bs

⏐⏐⏐ > δ

)
= −∞, (3.13)

here σ (m)
t = σ (V̂ ε

t )−σ (V̂ ε
Ξ (t)). We have to redefine ξ (m)

η in order to take a general T > 0 into
ccount:

ξ (m)
η = inf

{
t ∈ [0, T ] :

η

q(η)
|V̂ ε

| + |V̂ ε
t − V̂ ε

Ξ (t)| > η
}

∧ T .

ote that we use the convention inf ∅ = ∞ here. The equations (55)–(65) in [12] remain the
ame, except that we replace εH B̂ by V̂ ε and use our redefined versions of σ (m) and ξ (m). Thus,
η
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formula (65) in [12] can be applied. The estimates (66) and (67) have to be replaced by

P
(

√
ε|ρ| sup

t∈[0,T ]

⏐⏐⏐ ∫ t

0
σ (m)

s d Bs

⏐⏐⏐ > δ

)
≤ P(ξ (m)

η < T ) + P
(

√
ε|ρ| sup

t∈[0,ξ (m)
η ]

⏐⏐⏐ ∫ t

0
σ (m)

s d Bs

⏐⏐⏐ > δ

)
and

P(ξ (m)
η < T ) ≤ P

(
sup

t∈[0,T ]

( η

q(η)
|V̂ ε

t | + |V̂ ε
t − V̂ ε

Ξ (t)|
)
> η

)
≤ P

(
sup

t∈[0,T ]
|V̂ ε

t | >
q(η)

2

)
+ P

(
sup

t∈[0,T ]
|V̂ ε

t − V̂ ε
Ξ (t)| >

η

2

)
.

(3.14)

sing Lemma 3.4, we can handle the second term, and so it remains to find an appropriate
stimate for the first term. Here we need to adapt the reasoning in [12] because of the lack
f Gaussianity. By the LDP for V̂ ε and the contraction principle applied to the mapping

f ↦→ supt∈[0,T ] | f (t)|, we get

P
(

sup
t∈[0,T ]

|V̂ ε
t | >

q(η)
2

)
≤ exp

(
−
ε−1

2
· Isup

(
( 1

2 q(η),∞)
))
, (3.15)

or ε > 0 small enough, where Isup is the rate function of supt∈[0,T ] |V̂
ε

t |. Note that q(η) ↗ ∞

or η ↘ 0. So, we get

lim sup
η↘0

lim sup
ε↘0

ε log P
(

sup
t∈[0,T ]

|V̂ ε
t | >

q(η)
2

)
= −∞. (3.16)

sing (3.9) and (3.16), we get (73) and (74) of [12]. Finally, we can complete the proof as
n [12]. □

Let us continue the proof of Theorem 1.6. Lemma 3.2 states that condition (4.2.24)
n [6] is satisfied. Furthermore, due to Lemma 3.5, we know that Φm(

√
εWT ,

√
εB, V̂ ε) is

n exponentially good approximation of Φ(
√
εWT ,

√
εB, V̂ ε) as m ↗ ∞. Hence, we can use

he extended contraction principle (Theorem 4.2.23 in [6]), and get that X̂ ε
T satisfies an LDP

ith good rate function I and speed ε−1. We know from Lemma 3.1 that X̂ ε
T and X ε

T are
xponentially equivalent, and so we finally arrive at Theorem 1.6.

According to the extended contraction principle, we have

IT (x) = inf
{

Î (y, f, g) : x = Φ(y, f, g)
}
.

he rate function Î is only finite for

Î
(
y, f,K(U ◦ Γ ( f ))

)
=

T
2

y2
+

1
2
⟨ ḟ , ḟ ⟩.

Recall that Γ is the one-dimensional solution map that takes f to the solution of the ODE
v̇ = b̄(v) + σ̄ (v) ḟ , v(0) = v0, and that the function Φ can be written as

Φ(y, f, g) = ρ̄
√

⟨σ (g)2, 1⟩y + ρ⟨σ (g), ḟ ⟩.

Hence, if x = Φ(y, f, g), then

y =
x − ρ⟨σ (g), ḟ ⟩√

2
.

ρ̄ ⟨σ (g) , 1⟩
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Inserting this into the rate function obtained through the contraction principle, we get

IT (x) = inf
{

Î (y, f, g) : x = Φ(y, f, g), f ∈ H 1
0 , g = K(U ◦ Γ ( f ))

}
= inf

{T
2

y2
+

1
2
⟨ ḟ , ḟ ⟩ : y =

x − ρ⟨σ (K(U ◦ Γ ( f ))), ḟ ⟩

ρ̄
√

⟨σ (K(U ◦ Γ ( f )))2, 1⟩
, f ∈ H 1

0

}
= inf

f ∈H1
0

{T
2

( x − ρ⟨σ (K(U ◦ Γ ( f ))), ḟ ⟩

ρ̄
√

⟨σ (K(U ◦ Γ ( f )))2, 1⟩

)2
+

1
2
⟨ ḟ , ḟ ⟩

}
.

(3.17)

.2. Proof of Theorem 1.7 (a sample path LDP)

We adapt the arguments on pp. 3655–3658 in [13]. As in the preceding section, our
tarting point is that we already have an LDP for (

√
εW,

√
εB, V̂ ε), see Corollary 2.6. We

edefine the functions Φ and Φm so that they map C[0, T ]3 to C[0, T ]. For l ∈ H 1
0 [0, T ] and

( f, g) ∈ C[0, T ]2 such that f ∈ H 1
0 [0, T ] and g = f̌ ,

Φ(l, f, g)(t) = ρ̄

∫ t

0
σ ( f̌ (s))l̇(s) ds + ρ

∫ t

0
σ ( f̌ (s)) ḟ (s) ds, 0 ≤ t ≤ T . (3.18)

n addition, for all the remaining triples (l, f, g), we set Φ(l, f, g)(t) = 0 for all t ∈ [0, T ]. By
he following lemma, we can remove the drift term.

emma 3.6. The families of processes X ε and X̂ ε are exponentially equivalent, i.e. for every
> 0, the following equality holds:

lim sup
ε↘0

ε log P(∥X ε
− X̂ ε

∥C[0,T ] > δ) = −∞. (3.19)

ere, X̂ ε is defined in (3.1).

roof. By taking into account the proof of Lemma 3.1, we see that just one additional estimate
s needed, namely

∥X ε
− X̂ ε

∥C[0,T ] = sup
0≤t≤T

|X ε
t − X̂ ε

t | ≤
1
2
εTη

(
sup

0≤t≤T
|V̂ ε

t |
)
.

Then we directly get

P(∥X ε
− X̂ ε

∥ > δ) ≤ P
(1

2
εTη

(
sup

0≤t≤T
|V̂ ε

t |
)
> δ

)
= P

(
sup

0≤t≤T
|V̂ ε

t | > η−1( 2δ
εT

))
,

which is exactly the same expression as in the proof of (3.2). □

The sequence of functionals (Φm)m≥1 from C[0, T ]3 to C[0, T ] is given for (r, h, l) ∈

[0, T ]3 and t ∈ [0, T ] by

Φm(r, h, l)(t) = ρ̄

([ mt
T −1]∑
k=0

σ (l(tk))[r (tk+1) − r (tk)] + σ
(
l(Ξ (t))

)[
r (t) − r (Ξ (t))

])

+ρ

([ mt
T −1]∑
k=0

σ (l(tk))[h(tk+1) − h(tk)] + σ
(
l(Ξ (t))

)[
h(t) − h(Ξ (t))

])
.

(3.20)

t is not hard to see that for every m ≥ 1, the mapping Φm is continuous.
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Lemma 3.7. For every ζ > 0 and y > 0,

lim sup
m↗∞

sup
{(r, f )∈H1

0 [0,T ]2:
1
2

∫ T
0 ṙ (s) ds+ 1

2
∫ T

0 ḟ (s) ds≤ζ }

∥Φ(r, f, f̌ )−Φm(r, f, f̌ )∥C[0,T ]2 = 0. (3.21)

roof. Lemma 3.7 can be obtained from the proofs of Lemma 3.2, Lemma 21 in [12] and
emma 2.13 in [13]. The only difference here is that the supremum is taken over two functions

rom Dη = {w ∈ H 1
0 [0, T ] :

∫ T
0 ẇ

2 ds ≤ η}. By the uniform bound in the proof of Lemma 21
f [12], this is actually irrelevant. □

Next, we will show that the family Φm(
√
εW,

√
εB, V̂ ε) is an exponentially good approxi-

ation for Φ(
√
εW,

√
εB, V̂ ε), as m ↗ ∞.

Lemma 3.8. For every δ > 0

lim
m→∞

lim sup
ε↘0

ε log P(∥Φ(
√
εW,

√
εB, V̂ ε) − Φm(

√
εW,

√
εB, V̂ ε)∥C[0,T ] > δ) = −∞.

(3.22)

roof. In the proof of Lemma 3.5, the estimate (3.13) was formulated stronger than needed.
e can directly use this to show (2.13) of [13]. We can also get (2.14) of [13] this way. The

ngredients of (55)–(65) in [12] do in fact depend on the Brownian motion B via the process
V̂ ε. However, the reasoning for the estimate

P
(

sup
t∈[0,ξ (m)

η ]

εH
⏐⏐⏐ ∫ t

0
σ (m)

s d Bs

⏐⏐⏐ > δ

)
≤ exp

(
−

δ2

2ε2H L(q(η))2ω(η)2

)
(3.23)

n [12] stays the same if we replace the driving Brownian motion B by W . The rest of the
roof from here on is essentially the same as in the proof of Theorem 2.9 in [13]. □

Just as in the preceding section, we combine Lemmas 3.6–3.8 to see that Theorem 1.7
ollows from the extended contraction principle. We have

Q(g) = inf{ Î (ψ0, ψ1, ψ1) : g = Φ(ψ0, ψ1, ψ2)}.

he rate function Î is only finite for

Î (ψ0, ψ1, ψ2) =
1
2
⟨ψ̇0, ψ̇0⟩ +

1
2
⟨ ḟ , ḟ ⟩,

where ψ1 = f and ψ2 = K(U ◦ Γ ( f )) for some f ∈ H 1
0 [0, T ]. Recall that the function Φ is

given by

Φ(l, f, g)(t) = ρ̄

∫ t

0
σ (g(s))l̇(s) ds + ρ

∫ t

0
σ (g(s)) ḟ (s) ds,

ence we can write

l̇ =
∂t (Φ(l, f, g)) − ρσ (g) ḟ

.

ρ̄σ (g)
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Finally, we get the rate function as follows:

Q(g) = inf{ Î (ψ0, ψ1, ψ2) : g = Φ(ψ0, ψ1, ψ2)}

= inf
{1

2
⟨ψ̇0, ψ̇0⟩ +

1
2
⟨ ḟ , ḟ ⟩ : f ∈ H 1

0 , ψ1 = f, ψ2 = K(U ◦ Γ ( f )),

ψ̇0 =
∂t (Φ(ψ0, ψ1, ψ2)) − ρσ (ψ2)ψ̇1

ρ̄σ (ψ2)
, g = Φ(ψ0, ψ1, ψ2)

}
= inf

{
1
2
⟨ψ̇0, ψ̇0⟩ +

1
2
⟨ ḟ , ḟ ⟩ : f ∈ H 1

0 , ψ̇0 =
ġ − ρσ (K(U ◦ Γ ( f ))) ḟ
ρ̄σ (K(U ◦ Γ ( f )))

}
= inf

f ∈H1
0

{
1
2

∫ T

0

( ġ(t) − ρσ (K(U ◦ Γ ( f ))(t)) ḟ (t)
ρ̄σ (K(U ◦ Γ ( f ))(t))

)2
dt +

1
2

∫ T

0
| ḟ (t)|

2
dt

}
.

(3.24)

. Fractional CIR stochastic volatility

We describe an example of a model that fits our assumptions, and has already been studied
n the literature on fractional volatility modelling [1]. Let V be a CIR process with positive
arameters κ , θ and σCIR, satisfying 2κθ > σ 2

CIR. In this case,

b̄(x) = κ(θ − x) and σ̄ (x) = σCIR
√

x,

nd the dynamics of V are

dVt = κ(θ − Vt )dt + σCIR

√
Vt d Bt .

We choose the fractional kernel K (t, s) = Γ (α)−1(t −s)α−1, 0 ≤ s ≤ t , and U = id, so that the
rocess V̂ defined in (1.1) is the Riemann–Liouville integral of order α of the process V . We
ssume α ∈ ( 1

2 ,
3
2 ), which overlaps with the parameter range α ∈ (0, 1) considered in Section 2

of [1], and implies our assumption (1.3). The definition of the model is completed by putting

σ (x) =

√
σ 2

0 + x, x ≥ 0,

where σ0 > 0 is the initial value of the stochastic volatility process σ (V̂t ). Note a small
ifference in notation compared to [1]: We write v0 = V0 for the initial value of V , and not for

the initial value of the variance process σ (V̂t )2 of the stock, which we denote by σ 2
0 . Unlike [1],

hich is a paper on portfolio optimization, we set the drift of the stock to zero, because the
pplication we have in mind is approximate option pricing in the small-noise regime.

The advantages of using a fractional CIR process instead of the classical CIR process are
escribed in [1], Section 2, and the references given there. The model captures volatility
ersistence, in particular, steep implied volatility smiles for long maturity options and the
omovement between implied and realized volatility. The paper [1] also gives a formula that
akes the long-range dependence of the variance process explicit.
The model we just described is also closely related to the fractional Heston model from [11].

he main difference, besides the zero correlation assumption imposed in [11], is the range of α.
They assume α ∈ (− 1

2 ,
1
2 ), whereas we have α ∈ ( 1

2 ,
3
2 ). Thus, the models we consider in this

paper could be seen as a complement to the fractional Heston model of [11], with positive
correlation and rather general functions b̄(·), σ̄ (·) and σ (·), but at the price of losing roughness
of the volatility paths.

Remark 4.1. The paths of the CIR process V are ( 1
2 −δ)-Hölder continuous for any δ ∈ (0, 1

2 )
(see Lemma 7.1 in [1]). If we choose the fractional kernel K (t, s) = Γ (H +

1 )−1(t − s)H−1/2,
2
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H ∈ (0, 1), in the model considered in the present section, then the paths of V̂ are in the Hölder
pace HH+1−δ . See Definition 1.1.6 (p. 6) and Corollary 1.3.1 (p. 56) in [19]. In particular,

since H + 1 − δ > 1 for small δ, the paths of V̂ are C1 on (0, T ). By modifying the model,
sing U (x) = |x − V0|

κ with κ ∈ (0, 1] instead of U = id, the paths of V̂ become less smooth,
amely ( 1

2κ + H +
1
2 − δ)-Hölder continuous. In addition, if σ (x) = σ0(1 + xβ), β ∈ (0, 1),

then the volatility paths t ↦→ σ0(1 + (V̂t )β) are ( 1
2κβ + (H +

1
2 )β − δ)-Hölder continuous on

[0, T ], for any small enough δ > 0. While this Hölder exponent can be smaller than 1
2 , the

volatility process is not rough, because σ (·) is smooth away from zero, and so “roughness”
occurs only at time zero. Note that in truly rough models, the volatility process is constructed
using stochastic integrals

∫ t
0 K (t, s)dWs or related processes, which is not the case in our setup.

5. Second order Taylor expansion of the rate function

In order to compute the rate function, a certain variational problem needs to be solved
numerically. It might be preferable to use the Taylor expansion of the rate function instead,
if it can be computed in closed form. In principle, this can be done using the approach used
in [2], but would involve rather cumbersome calculations. We therefore illustrate the method by
the example V = B (a Brownian motion; thus b̄ ≡ 0 and σ̄ ≡ 1), U (x) = x2, v0 = 0. It is very
easy to see that our main results hold for this example. Indeed, the required results from [5],
for which we made our assumptions on the SDE for V , trivially hold here. The control ODE is
degenerate, and its solution mapping Γ is just the identity map. The statement of Theorem 2.5
follows from Schilder’s theorem and the contraction principle, and the transfer to the log-price
is a simplified version of the arguments in Section 3.

Proposition 5.1. Let U (x) = x2 and V = B. Furthermore, assume that σ is smooth (at least
locally around 0). Suppose that the rate function I is also smooth locally around 0. Then, with
σ0 = σ (0), its Taylor expansion is

I (x) = I (0) + I ′(0)x + I ′′(0)x2
+ O(x3)

= I ′′(0)x2
+ O(x3)

=
1

2σ 2
0

x2
+ O(x3). (5.1)

emark 5.2. Formula (5.1) gives the second order Taylor expansion. However, the ideas in
the proof of Proposition 5.1 can be used for higher orders. Clearly, the computations for the
expansions get even more cumbersome in the latter case.

5.1. Proof of Proposition 5.1

The proof is very similar to the one of Theorem 3.1 in [2]. In the following, we will outline
t which points adjustments are needed. Note that for the special we are treating we have
(x) = x2 and Γ ≡ id. To simplify computations in the proof, we put T = 1 and write I = I1

for the rate function. In Proposition 5.1 of [2], there is a representation of the rate function that
coincides with ours, except that different integral transforms are used. For our special case, we
have

I (x) = inf
1

[ (x − ρG̃( f ))2

2 ˜
+

1
2

Ẽ( f )
]

= inf
1
Ix ( f ), (5.2)
f ∈H0 2ρ̄ F( f ) f ∈H0
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where

G̃( f ) :=

∫ 1

0
σ ((K( f 2))(s)) ḟ (s) ds = ⟨σ (K( f 2)), ḟ ⟩, (5.3)

F̃( f ) :=

∫ 1

0
σ ((K( f 2))(s))2 ds = ⟨σ 2(K( f 2)), 1⟩, (5.4)

Ẽ( f ) :=

∫ 1

0
| ḟ (s)|

2
ds = ⟨ ḟ , ḟ ⟩. (5.5)

Recall that K f =
∫

·

0 K (·, s) f (s) ds. In [2] the authors use the same integral transform as used
in [12,13], i.e. K ḟ . We have to adjust this to our case of K( f 2). Here, Ix denotes the functional
hat needs to be minimized to get the value of the rate function at x .

First, we need to get a representation for the minimizing configuration f x of the functional

x . This is done like in Proposition 5.2 in [2]. The corresponding expansions of the ingredients
f the rate function for our setting for δ > 0 are

Ẽ( f + δg) ≈ Ẽ( f ) + 2δ⟨ ḟ , ġ⟩, (5.6)

F̃( f + δg) ≈ F̃( f ) + 2δ⟨(σ 2)′(K( f 2)),K( f g)⟩, (5.7)

G̃( f + δg) ≈ G̃( f ) + δ(⟨σ (K( f 2)), ġ⟩ + 2⟨σ ′(K( f 2)), ḟ K( f g)⟩) (5.8)

ote, that “ ≈ ” is defined in [2] as

A ≈ B :⇔ A = B + o(δ), δ ↘ 0. (5.9)

If f = f x is a minimizer then δ ↦→ Ix ( f + δg) has a minimum at δ = 0 for all g. Using
(5.6)–(5.8) we expand

Ix ( f + δg) =
(x − ρG̃( f + δg))2

2ρ̄2 F̃( f + δg)
+

1
2

Ẽ( f + δg)

≈
(x − ρG̃( f ))2

− 2δρ(x − ρG̃( f ))
(
⟨σ (K( f 2)), ġ⟩ + 2⟨σ ′(K( f 2)), ḟ K( f g)⟩

)
2ρ̄2 F̃( f )

(
1 +

2δ
F̃( f )

⟨(σ 2)′(K( f 2)), K ( f g)⟩
)

+
1
2

Ẽ( f ) + δ⟨ ḟ , ġ⟩

≈
(x − ρG̃( f ))2

− 2δρ(x − ρG̃( f ))
(
⟨σ (K( f 2)), ġ⟩ + 2⟨σ ′(K( f 2)), ḟ K( f g)⟩

)
2ρ̄2 F̃( f )

−
(x − ρG̃( f ))2

2ρ̄2 F̃( f )

2δ

F̃( f )
⟨(σ 2)′(K( f 2)),K( f g)⟩ +

1
2

Ẽ( f ) + δ⟨ ḟ , ġ⟩.

(5.10)

ow, as a consequence, for f = f x and every g ∈ H 1
0 [0, 1],

0 = ∂δ(Ix ( f + δg))δ=0 = −
2ρ(x − ρG̃( f ))

(
⟨σ (K( f 2)), ġ⟩ + 2⟨σ ′(K( f 2)), ḟ K( f g)⟩

)
2ρ̄2 F̃( f )

−
(x − ρG̃( f ))2

2ρ̄2 F̃2( f )
2⟨(σ 2)′(K( f 2),K( f g)⟩ + ⟨ ḟ , ġ⟩.

(5.11)
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We have f x
0 = 0, for any x . We now test with ġ = 1[0,t] for a fixed t ∈ [0, 1] and obtain

f x
t =

ρ(x − ρG̃( f x ))
(
⟨σ (K(( f x )2)),1[0,t]⟩ + 2⟨σ ′(K(( f x )2)), ḟ xK( f x id≤t )⟩

)
ρ̄2 F̃( f x )

+
(x − ρG̃( f x ))2

2ρ̄2 F̃2( f x )
2⟨(σ 2)′(K(( f x )2)),K( f x id≤t )⟩,

(5.12)

here we write

id≤t (s) = g(s) =

∫ s

0
ġ(u) du =

∫ s

0
1[0,t](u) du =

∫ s∧t

0
1 du = s ∧ t. (5.13)

Let us recall the ansatz in [2]. The authors of [2] choose for fixed x the optimizing function
f x for Ix , i.e. f x

= argmin f ∈H1
0
Ix ( f ). Therefore, the first order condition is I ′

x ( f x ) = 0. The
uthors of [2] use the implicit function theorem to show that the minimizing configuration f x

s a smooth function in x (locally around x = 0). As Ix is a smooth function, too, this implies
he smoothness of x ↦→ Ix ( f x ) = I (x), at least in a neighbourhood of 0. Note that for (26) and
emma 5.3 in [2], the embedding K : H 1

0 → C works, because we have already established
hat K(U ◦ f ) is continuous (see Lemma 2.4).

In order to apply the implicit function theorem, the authors of [2] show that the ingredients
f the rate function are Fréchet differentiable by computing their Gateaux derivative. This is
ore complicated in our case, because of the different integral transform we use. Therefore we

ssume that the rate function is locally smooth around 0 in Proposition 5.1, and, consequently,
hat Lemma 5.6 in [2] holds. After establishing that the implicit function theorem can be used,
e can proceed as in [2] up to Theorem 5.12 there.
Next, we will imitate the computations in Theorem 5.12 of [2] in order to get the expansion

f the minimizing configuration in our setting. In fact, if we just want to obtain the second
rder expansion of the rate function in our setting for Brownian motion squared, it suffices to
nd the first order expansion of f x . Assuming the ansatz

f x
t = αt x + O(x2), (5.14)

e get

f x
t = αt x + O(x2),

ḟ x
t = α̇t x + O(x2),

σ (K(( f x )2)) = σ0 + O(x2),

σ ′(K(( f x )2)) = σ ′

0 + O(x2),

F̃( f x ) = σ 2
0 + O(x2),

G̃( f x ) = ⟨σ0, α̇⟩x + O(x2).

herefore,

⟨σ (K(( f x )2)),1[0,t]⟩ = σ0t + O(x),

2⟨σ ′(K(( f x )2)), ḟ xK( f x id≤t )⟩ = O(x),

2⟨(σ 2)′(K(( f x )2)),K( f x id≤t )⟩ = O(x),

x − ρG̃( f x ) = (1 − ρσ0α1)x + O(x2),

(x − ρG̃( f x ))2
= O(x2).
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We use the previous formulas in (5.12) to obtain

f x
t =

ρ((1 − ρσ0α1)x + O(x2))(σ0t + O(x))
ρ̄2(σ 2

0 + O(x2))
+

O(x2)
2ρ̄2(σ 4

0 + O(x2))
O(x)

=
ρ(1 − ρσ0α1)xσ0t

ρ̄2σ 2
0

+ O(x2).
(5.15)

omparing the coefficients, we get the same result as the authors of [2] for the first order
xpansion, i.e.

αt =
ρ(1 − ρσ0α1)

ρ̄2σ0
t. (5.16)

etting t = 1 and then computing α1 leads to the formula

αt =
ρ

σ0
t. (5.17)

ote that the first order expansion of the minimizing configuration f x is exactly the same as
n [2]. The reason is that the expansions of the ingredients of (5.12) are relevant here, and these
xpansions coincide. For the second order expansion of the rate function, we need second order
xpansions of its ingredients. These are given in the following formulas, where id2 denotes the
uadratic function s ↦→ s2:

1
2

Ẽ( f x ) =
1
2
ρ2

σ 2
0

x2
+ O(x3),

(x − ρG̃( f x ))2
= ρ̄4x2

+ O(x3)

F̃( f x ) = σ 2
0 + (σ 2

0 )′⟨K(α2), 1⟩x2
+ O(x3)

= σ 2
0 + (σ 2

0 )′
ρ2

σ 2
0
⟨K(id2), 1⟩x2

+ O(x3).

Finally, we get the Taylor expansion of the rate function by taking into account the reasoning
bove. We insert the expansion

f x
t = αt x + O(x2) =

ρ

σ0
t x + O(x2) (5.18)

nd the expansions above into Eq. (5.12) for the minimizing configuration. Then, we get

Ix ( f x ) =
(x − ρG̃( f x ))2

2ρ̄2 F̃( f x )
+

1
2

Ẽ( f x )

=
ρ̄4x2

+ O(x3)

2ρ̄2
(
σ 2

0 + (σ 2
0 )′ ρ

2

σ 2
0
⟨K(id2), 1⟩x2 + O(x3)

) +
1
2
ρ2

σ 2
0

x2
+ O(x3)

=
ρ̄2

2σ 2
0

x2
+ O(x3) +

1
2
ρ2

σ 2
0

x2
+ O(x3)

=
1

2σ 2
0

(ρ̄2
+ ρ2)x2

+ O(x3)

=
1

2σ 2
0

x2
+ O(x3), (5.19)
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and hence the following expansion holds:

I (x) = Ix ( f x ) =
1

2σ 2
0

x2
+ O(x3). (5.20)
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