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Abstract. Recently, Forde et al. [The Rough Bergomi model as H → 0 – skew flatten-
ing/blow up and non-Gaussian rough volatility; preprint] found an explicit expression for
the third moment of the log-price in the rough Bergomi model, in terms of a double inte-
gral, whose integrand involves a hypergeometric function. One of the parameters of this
financial market model, the Hurst parameter H, is observed to be small in practice. We
analyse the third moment asymptotically as H tends to zero, using as our main tools hyper-
geometric transformation formulas and uniform asymptotic expansions for the incomplete
gamma function.
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1. Introduction

The rough Bergomi model, introduced in [3], belongs to the family of rough volatility
models, which are non-Markovian stochastic volatility models driven by fractional
Brownian motion or related processes. For further information on the rough Bergomi
model and many references on rough volatility, we refer to [6, 7, 9]. The smoothness
of the paths, as well as the option prices the model delivers, depend crucially on
the Hurst parameter H ∈ (0, 12 ). As H appears to be close to zero in practice and
handling rough volatility models numerically is challenging, asymptotic approxima-
tions for H ↓ 0 are of interest. In [5], this question was investigated at the process
level for a variant of the rough Bergomi model, and an expression for the third mo-
ment was obtained as a byproduct. To state the latter, define stochastic processes
XH , V H , ZH by

dXH
t =

√
V Ht (ρdBt + ρ̄dWt),

V Ht = exp
(
γZHt − 1

2γ
2Var(ZHt )

)
,

ZHt =

∫ t

0

(t− s)H−1/2dBt, (1)
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where B andW are independent Brownian motions. The parameters are H ∈ (0, 12 ),
ρ ∈ (−1, 1), ρ̄2 = 1− ρ2, and γ > 0. Then XH is the log-price process of the variant
of the rough Bergomi model we are going to study. It is important to note here that
the standard parametrisation, as introduced in [3], includes a factor

√
2H in (1), and

then the rBergomi model tends weakly to the Black-Scholes model forH ↓ 0 (see [5]).
The present parametrisation is motivated by the rich asymptotic behavior, involving
Gaussian multiplicative chaos, uncovered in [5]. The process ZH is Gaussian and
satisfies Var(ZHt ) = t2H/(2H). According to [5], we have

E[(XH
T )3] = 3γρ

∫ T

0

∫ t

0

exp
(

1
2γ

2
(
RH(s, t)− s2H/(8H)

))
(t− s)H−1/2ds dt (2)

for T > 0, where

RH(s, t) :=

∫ s∧t

0

(s− u)H−1/2(t− u)H−1/2du. (3)

Consequently, the time derivative of the third moment is

∂

∂t
E[(XH

t )3] = 3γρ

∫ t

0

exp
(
1
2γ

2(RH(s, t)− s2H/(8H))
)
(t− s)H−1/2ds. (4)

The purpose of this note is to establish logarithmic asymptotics for (2) and (4) as
H ↓ 0 for fixed T > 0 resp. t > 0; see Theorems 1 and 2 below. Results of this kind
can be applied to compare the marginal distribution of the model to the observed
risk-neutral distribution implied by quoted option prices. We will see that both (2)
and (4) have the same first order exponential behavior. They decay or increase
exponentially, according to whether γ is smaller or larger than the unique solution

γ0 = 1.61710802076 . . . (5)

in (1,∞) of the equation

−1

4
− 1

2
log γ +

3γ2

16
= 0.

Indeed, the left hand side of this equation is the coefficient of the leading term 1/H
in our logarithmic asymptotics. The constant γ0 can be expressed by a branch of
the Lambert W function (see [4]) as

γ0 =
√
− 4

3W−1

(
− 3/(4e)

)
.

We note that γ0 is numerically close to the golden ratio, although this does not seem
to have any significance. Since the variance

Var[XH
T ] = E[(XH

T )2] = T

of XH
T does not depend on H, it is clear that Pearson’s moment coefficient of skew-

ness E[(XH
T )3]/Var[XH

T ]3/2 has the same decay resp. growth behavior as E[(XH
T )3]

for H ↓ 0.
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In all our statements, γ > 0 is a fixed parameter. Notation: we write

f(H) ≍ g(H) (6)

if
f(H) = O(g(H)) and g(H) = O(f(H)), H ↓ 0.

We write C for various positive constants whose value is irrelevant. In Section 2,
they may depend on t, which is a fixed parameter there. In Section 3, C is always
independent of t. Moreover, define the function

ψ(H) := exp(− 1
H log(1/H) ), (7)

which satisfies ψ(H) = o(1) and ψ(H)H = 1 +O(1/ log 1
H ) for H ↓ 0.

2. Single integral

For 0 ≤ a ≤ b ≤ t, define

IH(a, b) :=

∫ b

a

exp
(
1
2γ

2(RH(s, t)− s2H/(8H))
)
(t− s)H−1/2ds.

As t > 0 is fixed in this section, the dependence of the integrand on t is suppressed
in the notation IH(a, b).

Theorem 1. Fix t > 0. Then the integral in (4) satisfies

IH(0, t) = exp
(
−r(γ)

H
+ o

( 1

H

))
as H ↓ 0, where

r(γ) :=

{
γ2/16 0 < γ < 1,
1
4 + 1

2 log γ − 3γ2/16 γ ≥ 1.
(8)

The rest of this section is devoted to the proof of this theorem, which will be
divided into a sequence of lemmas.

Note that r(γ) ≤ γ2/16, and that r(γ) is negative for γ larger than its unique
root (5), which makes the integral explode as H ↓ 0 for such values of γ. We first
recall some uniform asymptotic results for the incomplete gamma function, which
will be used at several places. As usual, we write

γ(a, z) :=

∫ z

0

e−wwa−1dw (9)

for the lower incomplete gamma function, and

Γ(a, z) :=

∫ ∞

z

e−wwa−1dw

for the upper incomplete gamma function.
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Lemma 1. For z ↑ ∞, we have

γ(a, z) = za exp(−z +O(log z)), (10)

uniformly w.r.t. a ≥ z. The upper incomplete gamma function satisfies

Γ(a, z) = za exp(−z +O(log z)) (11)

as z ↑ ∞, uniformly w.r.t. a ≤ z.

Proof. This is a special case of the expansions in [10], to which we also refer for
earlier references on the asymptotics of γ(·, ·) and Γ(·, ·). Indeed, (2.13) in [10]
yields (10). Note that the expression in curly braces in (2.13) of [10] is of polyno-
mial growth in z; polynomial expressions resp. bounds for ck and R−

n are explicitly
given in [10], and the first formula on p. 328 of [10] yields the polynomial growth

of dk, because the exponential factor eχ
2/4 cancels with the exponential term in the

expansion of the parabolic cylinder function D−k−1, which is given on p. 1029 of [8].
Similarly, (11) follows from the formula above (2.15) in [10].

We now express (3) in terms of the Gaussian hypergeometric function. Substi-
tuting s− u = w and then v = w/s, we get

RH(s, t) = (t− s)H−1/2sH+1/2

∫ 1

0

vH−1/2(1 + s
t−sv)

H−1/2dv

= (t− s)H−1/2sH+1/2Γ(H + 1
2 )

Γ(H + 3
2 )

2F1

( 1
2 −H,H + 1

2

H + 3
2

∣∣∣− s

t− s

)
(12)

= tH−1/2sH+1/2 1

H + 1
2

2F1

( 1
2 −H, 1

H + 3
2

∣∣∣s
t

)
. (13)

The second equality follows from Euler’s integral representation of 2F1, and the third
from Pfaff’s transformation identity (Theorems 2.2.1 and 2.2.5 in [2]). Theorem 1
is a consequence of the following four lemmas, and the (easily verified) fact that

r(γ) ≤ γ2/16, γ > 0, (14)

which is used to compare the decay rates of the exponential estimates obtained in
the lemmas.

Lemma 2. For H ↓ 0, we have

IH(0,H) ≤ exp
(
−r(γ)

H
+ o

( 1

H

))
. (15)

Proof. By (13), there is a constant C such that RH(s, t) ≤ CsH+1/2 for 0 ≤ s ≤ H
with H sufficiently small. From this it easily follows that

exp
(
1
2γ

2RH(s, t)
)
(t− s)H−1/2 ≍ 1, H small, 0 ≤ s ≤ H,
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and thus (recall notation (6))

IH(0,H) ≍
∫ H

0

exp
(
−γ

2s2H

16H

)
ds

=
A−1/(2H)

2H

∫ AH2H

0

e−ww1/(2H)−1dw

=
A−1/(2H)

2H
γ(1/(2H), AH2H), (16)

where we define A = A(H) := γ2/(16H), and γ(·, ·) is the lower incomplete gamma
function (9). We have

AH2H =
γ2

16H
exp

(
−2H log

1

H

)
=

γ2

16H

(
1 + o(1)

)
.

First, suppose that γ2 < 8. Then, the first argument of γ(·, ·) in (16) is larger than
the second one for small H. It then follows from (10) that

γ(1/(2H), AH2H) = zae−z|a=1/(2H), z=AH2H × eo(1/H)

= (AH2H)1/(2H) exp
(
−AH2H + o(1/H)

)
= A1/(2H) exp

(
− γ2

16H

(
1 + o(1)

))
.

Together with (16) and (14) this implies (15).
Now assume γ2 ≥ 8. From (16), we obtain

IH(0,H) ≤ eo(1/H)A−1/(2H)Γ(1/(2H)). (17)

From Stirling’s formula, Γ(z) = zze−z+o(z), we get

Γ(1/(2H)) = H−1/(2H) exp
(1
2

(
log

1

2
− 1

) 1

H
+ o

( 1

H

))
.

We clearly have

A−1/(2H) = H1/(2H) exp
(
−1

2
log

(γ2
16

) 1

H

)
,

and inserting the latter two equations into (17) yields

IH(0,H) = exp
(
−1

2
log

(γ2
16

) 1

H
+

1

2

(
log

1

2
− 1

) 1

H
+ o

( 1

H

))
= exp

(
−1

2

(
1 + log

(γ2
8

)) 1

H
+ o

( 1

H

))
.

Now (15) follows from r(γ) ≤ 1
2

(
1 + log(γ2/8)

)
.

Recall the transformation formula 15.3.7 in [1],

2F1

(a, b
c

∣∣∣z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a 2F1

(a, a− c+ 1

a− b+ 1

∣∣∣1
z

)
+

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b 2F1

(b, b− c+ 1

b− a+ 1

∣∣∣1
z

)
.
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Combining this with (12), we get

RH(s, t) =
1

2H
s2H 2F1

( 1
2 −H,−2H

1− 2H

∣∣∣− t− s

s

)
+

Γ(H + 3
2 )Γ(−2H)

(H + 1
2 )Γ(

1
2 −H)

(t− s)2H . (18)

Lemma 3. Fix t > 0. Then, with ψ defined in (7),

IH
(
H, t− ψ(H)

)
≤ exp

(
− γ2

16H

(
1 + o(1)

))
.

Proof. Fix 0 < ε < t. From (13), we have RH(s, t) → R0(s, t) uniformly w.r.t. s
for H ≤ s ≤ ε. This easily implies that

IH(H, ε) ≤ exp
(
− γ2

16H

(
1 + o(1)

))
,

and so it remains to prove

IH
(
ε, t− ψ(H)

)
≤ exp

(
− γ2

16H

(
1 + o(1)

))
.

For ε ≤ s ≤ t−ψ(H), −(t−s)/s is bounded and bounded away from the singularity
of 2F1 at 1, and so (18) yields

RH(s, t) =
1

2H

(
s2H(1 +O(H))− (t− s)2H(1 +O(H))

)
=

1

2H

(
s2H − (t− s)2H

)
+O(1), ε ≤ s ≤ t− ψ(H). (19)

But for these s we have s2H = 1 +O(H) and

(t− s)2H = 1 +O
(
1/ log

1

H

)
,

and thus

RH(s, t) = O
( 1

H

(
log

1

H

)−1
)
.

We conclude

IH
(
ε, t− ψ(H)

)
≤ exp

(
− γ2

16H
+O

( 1

H

(
log

1

H

)−1
))∫ t

ε

(t− s)H−1/2ds

= exp
(
− γ2

16H

(
1 + o(1)

))
.

The following lemma identifies the main contribution to integral (4).
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Lemma 4. Fix t > 0. For any c > 0 sufficiently large,

IH
(
t− ψ(H), t− e−c/H

)
= exp

(
−r(γ)

H
+ o

( 1

H

))
.

Proof. It is easy to see that (19) holds for s ≥ t − ψ(H). Moreover, s2H ∼ 1
uniformly in the integration range, and so, with B = B(H) = γ2/(4H),

IH
(
t− ψ(H), t− e−c/H

)
= exp

( 3γ2

16H
+ o

( 1

H

)) ∫ t−e−c/H

t−ψ(H)

exp
(
− γ2

4H
(t− s)2H

)
(t− s)H−1/2ds

= exp
( 3γ2

16H
+ o

( 1

H

))
B−1/(4H)

∫ B exp(−2/ log
1
H )

Be−2c

e−ww1/2+1/(4H)−1dw (20)

= exp
( 3γ2

16H
+ o

( 1

H

))
B−1/(4H)

(
γ
(
1
2 + 1

4H , B exp(−2/ log 1
H )

)
− γ

(
1
2 + 1

4H , Be
−2c

))
. (21)

First suppose that γ ≤ 1. Then, by (10),

γ
(
1
2 + 1

4H , B exp(−2/ log 1
H )

)
= B1/(4H) exp

(
− γ2

4H
+ o

( 1

H

))
,

and hence (21) yields

IH
(
t− ψ(H), t− e−c/H

)
≤ exp

(
− γ2

16H
+ o

( 1

H

))
.

Now let γ > 1 and γ2e−2c ≤ 1. The integral in (20) equals

∫ B exp(−2/ log
1
H )

Be−2c

e−ww1/2+1/(4H)−1dw

= Γ
(
1
2 + 1

4H

)
− γ

(
1
2 + 1

4H , Be
−2c

)
− Γ

(
1
2 + 1

4H , B exp(−2/ log 1
H )

)
. (22)

Stirling’s formula yields

Γ( 12 + 1
4H ) = B1/(4H) exp

(
− 1

4H
− log γ

2H
+ o

( 1

H

))
. (23)

The other two terms in (22) can be treated by Lemma 1. The resulting estimates
are

γ
(
1
2 + 1

4H , Be
−2c

)
= B1/(4H) exp

(
− c

2H
− γ2e−2c

4H
+ o

( 1

H

))
and

Γ
(
1
2 + 1

4H , B exp(−2/ log 1
H )

)
= exp

(
− γ2

4H
+ o

( 1

H

))
.

As c is large, and γ2/4 ≥ 1
4 + 1

2 log γ, these are negligible compared to (23). We
have thus shown that integral (22) can be replaced by (23) in (20), which yields the
assertion.
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Lemma 5. Fix t > 0. For any c ≥ γ2/2,

IH(t− e−c/H , t) ≤ exp
(
− γ2

16H

(
1 + o(1)

))
.

Proof. For any s, t with 0 ≤ s ≤ t ≤ T , we have the estimate

RH(s, t) ≤
∫ s

0

(s− u)2H−1du

=
s2H

2H
≤ T 2H

2H
=

1

2H

(
1 + o(1)

)
. (24)

Since s2H/(8H) ∼ 1/(8H) in the integration range, we get

IH(t− e−c/H , t) ≤ exp
( 3γ2

16H

(
1 + o(1)

)) ∫ t

t−e−c/H

(t− s)H−1/2ds

= exp
( 3γ2

16H
− c

2H
+ o

( 1

H

))
,

which yields the assertion.

The proof of Theorem 1 is complete.

3. Double integral

We now show that (2) has the same first order exponential asymptotic behavior
as (4).

Theorem 2. Fix T > 0. Then the integral in (2) satisfies∫ T

0

∫ t

0

exp
(
1
2γ

2(RH(s, t)− s2H/(8H))
)
(t− s)H−1/2dsdt = exp

(
−r(γ)

H
+ o

( 1

H

))
as H ↓ 0, where r(γ) is defined in (8).

We divide the integration domain into several parts depending on H, according
to the following lemmas. The lower bound is established by Lemma 9, and the upper
bound by Lemmas 6–12. We write C for various positive constants whose value is
irrelevant. Unlike in the previous section, they do not depend on t. We write f for
the integrand,

f(s, t,H) := exp
(
1
2γ

2(RH(s, t)− s2H/(8H))
)
(t− s)H−1/2.

Throughout this section, T > 0 is fixed.

Lemma 6. For any ĉ > 0, there is c > 0 such that∫ e−c/H

0

∫ t

0

f(s, t,H)dsdt ≤ exp
(
− ĉ

H

(
1 + o(1)

))
.
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Proof. By (24),∫ e−c/H

0

∫ t

0

f(s, t,H)dsdt ≤ exp
(C
H

)∫ e−c/H

0

∫ t

0

(t− s)H−1/2dsdt

= exp
(C
H

(
1 + o(1)

)) ∫ e−c/H

0

tH+1/2dt

= exp
(C
H

− 3c

2H
+ o

( 1

H

))
.

Lemma 7. For any ĉ > 0, there is c > 0 such that∫ T

e−c/H

∫ e−c/H

0

f(s, t,H)dsdt ≤ exp
(
− ĉ

H

(
1 + o(1)

))
.

Proof. Again, using (24), we can estimate this integral by

exp
(C
H

)∫ T

e−c/H

∫ e−c/H

0

(t− s)H−1/2dsdt

= exp
(C
H

+ o
( 1

H

))∫ T

e−c/H

(
tH+1/2 − (t− e−c/H)H+1/2

)
dt.

The assertion follows from∫ T

e−c/H

(
tH+1/2 − (t− e−c/H)H+1/2

)
dt

= TH+3/2 − e−c(H+3/2)/H − (T − e−c/H)H+3/2

= TH+3/2 − exp
(
− 3c

2H
+O(1)

)
− TH+3/2 exp

(
(H + 3

2 ) log(1− T−1e−c/H)
)

= TH+3/2 − exp
(
− 3c

2H
+O(1)

)
− TH+3/2 +O(e−c/H)

≤ exp
(
− c

H
+O(1)

)
.

Estimates very similar to Lemma 6 and Lemma 7, building on (24), work when-
ever the inner or the outer integral is taken over an exponentially small domain of
size e−c/H . Therefore, in what follows, we will omit these negligible integrals. For in-
stance, in the following lemma we allow the inner integration to begin at s = 1

2e
−c/H

instead of s = 0 without further ado.

Lemma 8. For any c > 0, we have∫ ψ(H)

e−c/H

∫ t/2

1
2 e

−c/H

f(s, t,H)dsdt ≤ exp
(
−r(γ)

H
+ o

( 1

H

))
.

Proof. Since s/t is bounded away from 1, the singularity of 2F1, using (13) and
s ≤ t/2, we get

RH(s, t) ≤ CtH−1/2sH+1/2 ≤ Ct2H = O(1) (25)
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and

(t− s)H−1/2 ≤ (t/2)H−1/2.

Using these bounds and Fubini’s theorem, we can bound the integral by

C

∫ ψ(H)

e−c/H

∫ t/2

1
2 e

−c/H

tH−1/2 exp
(
−γ

2s2H

16H

)
dsdt

= C

∫ 1
2ψ(H)

1
2 e

−c/H

exp
(
−γ

2s2H

16H

)∫ ψ(H)

2s

tH−1/2dtds

= exp
(
o
( 1

H

)) ∫ 1
2ψ(H)

1
2 e

−c/H

exp
(
−γ

2s2H

16H

)
ds

≤ exp
(
o
( 1

H

))
IH(0,H).

The statement now follows from Lemma 2.

The following lemma proves the lower bound in Theorem 2 and another part of
the upper bound.

Lemma 9. For any c > 0 sufficiently large, we have

∫ ψ(H)

e−c/H

∫ t− 1
2 e

−c/H

t/2

f(s, t,H)dsdt = exp
(
−r(γ)

H
+ o

( 1

H

))
.

Proof. If we assume s ≥ t/2, then −(t − s)/s ∈ [−1, 0] in (18) is bounded and
bounded away from the singularity of 2F1, and so, similarly to the proof of Lemma
3, we have

RH(s, t) =
1

2H

(
s2H − (t− s)2H

)
+O(1), t/2 ≤ s ≤ t ≤ T. (26)

Therefore, we see that the integral is

≍
∫ ψ(H)

e−c/H

∫ t− 1
2 e

−c/H

t/2

exp
( γ2
4H

(
s2H − (t− s)2H

)
− γ2s2H

16H

)
(t− s)H−1/2dsdt. (27)

We write g(s, t,H) for the integrand in (27). From a drawing and Fubini’s theorem,
we see that the latter integral equals

∫ 1
2ψ(H)

1
2 e

−c/H

∫ 2s

s+ 1
2 e

−c/H

g(s, t,H)dtds

+

∫ ψ(H)− 1
2 e

−c/H

1
2ψ(H)

∫ ψ(H)

s+ 1
2 e

−c/H

g(s, t,H)dtds =: I(1)(H) + I(2)(H).
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Now, defining B = B(H) = γ2/(4H), we have (similarly to the proof of Lemma 4)

I(1)(H) =

∫ 1
2ψ(H)

1
2 e

−c/H

exp
(3γ2s2H

16H

)∫ 2s

s+ 1
2 e

−c/H

exp
(
− γ2

4H
(t− s)2H

)
(t− s)H−1/2dtds

= eo(
1
H )B−1/(4H)

∫ 1
2ψ(H)

1
2 e

−c/H

exp
(3γ2s2H

16H

)
(
γ( 12 + 1

4H , Bs
2H)− γ( 12 + 1

4H , B( 12 )
2He−2c)

)
ds

=: I(1,1)(H)− I(1,2)(H).

We now show that I(1,2)(H) is negligible, which is straightforward because the
incomplete gamma factor does not depend on s. We again use the asymptotics
γ(a, z) = zae−zeo(1/H), for a ≥ z (see Lemma 1), which imply

γ( 12 + 1
4H , B( 12 )

2He−2c) = B1/(4H) exp
(
− c

2H
− γ2e−2c

4H
+ o

( 1

H

))
.

Hence,

I(1,2)(H) ≤ exp
(3γ2ψ(H)2H

16H
− c

2H
− γ2e−2c

4H
+ o

( 1

H

))
.

Since ψ(H)H ∼ 1, we have arbitrarily fast exponential decay here by taking c large.
Now we estimate I(1,1)(H) . First assume γ < 1. Then, the factor γ(a, z) in the
integrand of I(1,1)(H) satisfies a ≥ z for any s in the integration range and small H.
Evaluating its asymptotics zae−zeo(1/H) yields

γ( 12 + 1
4H , Bs

2H) = B1/(4H)sH+1/2 exp
(
−γ

2s2H

4H
+ o

( 1

H

))
,

and so, since sH+1/2 ≤ TH+1/2 = O(1),

I(1,1)(H) = eo(
1
H )

∫ 1
2ψ(H)

1
2 e

−c/H

exp
(
−γ

2s2H

16H

)
sH+1/2ds

≤ eo(
1
H )IH(0,H).

Now proceed as in the proof of Lemma 2. The lower estimate follows from

I(1,1)(H) ≥ eo(
1
H )

∫ 1
2ψ(H)

1
3ψ(H)

exp
(
−γ

2s2H

16H

)
sH+1/2ds

≥ exp
(
− γ2

16H
+ o

( 1

H

))
.

To estimate I(1,1)(H) for γ ≥ 1, we have to split the integration in order to apply
the correct asymptotics for γ(·, ·). The lower part 1

2e
−c/H ≤ s ≤ γ−1/H is handled

analogously to the case γ < 1; the upper bound eo(
1
H )IH(0,H) suffices. To complete

our analysis of I(1)(H), it remains to bound the portion γ−1/H ≤ s ≤ 1
2ψ(H) of the
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integral I(1,1)(H) for γ ≥ 1. We estimate γ(·, ·) by the complete gamma function
Γ(·), which is also good enough for the lower bound, again by using (11) for the
upper incomplete gamma function Γ(·, ·). By (23), the upper portion of I(1,1)(H) is

B−1/(4H)eo(
1
H )

∫ 1
2ψ(H)

γ−1/H

exp
(3γ2s2H

16H

)
Γ( 12 + 1

4H )ds

= exp
(
−
(1
4
log(γ2) +

1

4

) 1

H
+ o

( 1

H

)) ∫ 1
2ψ(H)

γ−1/H

exp
(3γ2s2H

16H

)
ds

= exp
(
−
(1
4
log(γ2) +

1

4

) 1

H
+

3γ2

16H
+ o

( 1

H

))
= exp

(
−r(γ)

H
+ o

( 1

H

))
.

The estimate for I(2)(H) is similar and yields the same result as for I(1)(H).

Lemma 10. For any c > 0∫ T

ψ(H)

∫ t/2

e−c/H

f(s, t,H)dsdt ≤ exp
(
−r(γ)

H
+ o

( 1

H

))
.

Proof. Since s ≤ t/2, we can use bound (25). The resulting integral∫ T

ψ(H)

∫ t/2

e−c/H

exp
(
−γ

2s2H

16H

)
(t− s)H−1/2dsdt

=

∫ 1
2ψ(H)

e−c/H

exp
(
−γ

2s2H

16H

)∫ T

ψ(H)

(t− s)H−1/2dtds

+

∫ T/2

1
2ψ(H)

exp
(
−γ

2s2H

16H

)∫ T

2s

(t− s)H−1/2dtds

is straightforward to bound, after explicitly evaluating the inner integrals and using
Lemma 2 for the first outer integral.

Lemma 11. ∫ T

ψ(H)

∫ t− 1
2ψ(H)

t/2

f(s, t,H)dsdt ≤ exp
(
− γ2

16H

(
1 + o(1)

))
.

Proof. We use (26) and observe that in this integration range we have

s2H = 1 + o(1) and (t− s)2H = 1 + o(1).

The cancellation in (26) then shows that RH(s, t) = O(1). Now the estimate

exp
(
−γ

2s2H

16H

)
≤ exp

(
−γ

2s2H

16H

)∣∣∣
s= 1

2ψ(H)

= exp
(
− γ2

16H

(
1 + o(1)

))
easily implies the result.
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The following lemma completes the proof of Theorem 2; recall the remark after
Lemma 7.

Lemma 12. For any c > 0 sufficiently large, we have∫ T

ψ(H)+e−c/H

∫ t−e−c/H

t− 1
2ψ(H)

f(s, t,H)dsdt ≤ exp
(
−r(γ)

H
+ o

( 1

H

))
.

Proof. By (26), the integrand can be estimated by the integrand of (27). From a
drawing and Fubini’s theorem, we obtain the upper bound (up to a constant factor)

∫ ψ(H)

1
2ψ(H)+e−c/H

exp
(3γ2s2H

16H

)∫ s+ 1
2ψ(H)

ψ(H)+e−c/H

exp
(
− γ2

4H
(t− s)2H

)
(t− s)H−1/2dtds

+

∫ T− 1
2ψ(H)

ψ(H)

exp
(3γ2s2H

16H

)∫ s+ 1
2ψ(H)

s+e−c/H

exp
(
− γ2

4H
(t− s)2H

)
(t− s)H−1/2dtds

+

∫ T−e−c/H

T− 1
2ψ(H)

exp
(3γ2s2H

16H

)∫ T

s+e−c/H

exp
(
− γ2

4H
(t− s)2H

)
(t− s)H−1/2dtds.

Each of the inner integrals can be expressed by the incomplete gamma function as
in the proof of Lemma 9. Then, we estimate the incomplete gamma function by the
ordinary gamma function and use (23) to obtain the upper bound

exp
(
−
(1
4
log(γ2) +

1

4

) 1

H
+ o

( 1

H

))
,

which does not depend on s, for each of the inner integrals. It now suffices to use

s ≤ T in the factor exp
(

3γ2s2H

16H

)
to conclude the statement.
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