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ASYMPTOTICS OF SOME GENERALIZED
MATHIEU SERIES

STEFAN GERHOLD, FRIEDRICH HUBALEK and ŽIVORAD TOMOVSKI

(Dedicated to Prof. Tibor Pogány on the occasion of his 65th birthday)

Abstract
We establish asymptotic estimates of Mathieu-type series defined by sequences with power-
logarithmic or factorial behavior. By taking the Mellin transform, the problem is mapped to
the singular behavior of certain Dirichlet series, which is then translated into asymptotics for the
original series. In the case of power-logarithmic sequences, we obtain precise first order asymp-
totics. For factorial sequences, a natural boundary of the Mellin transform makes the problem
more challenging, but a direct elementary estimate gives reasonably precise asymptotics. As a
byproduct, we prove an expansion of the functional inverse of the gamma function at infinity.

1. Introduction and main results

Define, for μ ≥ 0, r > 0, and sequences a = (an)n≥0, b = (bn)n≥0, the
generalized Mathieu series

Sa,b,μ(r) :=
∞∑
n=0

an

(bn + r2)μ+1
. (1.1)

The parametrization (i.e., r2 and not r , μ + 1 and not μ) is along the lines
of [28]. Assumptions on the sequences a and b will be specified below. The
study of such series began with 19th century work of Mathieu on elasticity
of solid bodies, and has produced a considerable amount of literature, much
of which focuses on integral representations and inequalities. See, e.g., [18],
[28], [29], [30] for historical remarks, recent results and many references. As a
special case of (1.1), define, for α, β, r > 0, μ ≥ 0, with α− β(μ+ 1) < −1
and γ, δ ∈ R,

Sα,β,γ,δ,μ(r) :=
∞∑
n=2

nα(log n)γ

(nβ(log n)δ + r2)μ+1
. (1.2)
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Note that the summation in (1.2) starts at 2 to make the summand always
well-defined. The series (1.2) is closely related to a paper by Paris [23] (see
also [33]), but the presence of logarithmic factors is new. Another special case
of (1.1) is the series

S!
α,β,μ(r) :=

∞∑
n=0

(n!)α

((n!)β + r2)μ+1
, (1.3)

defined for α,μ ≥ 0, β, r > 0 with α − β(μ + 1) < 0. We are not aware
of any asymptotic estimates for (1.3) in the literature. See [30] for integral
representations for some series of this kind. The subject of the present paper is
the asymptotic behavior of the Mathieu-type series (1.2) and (1.3) for r ↑ ∞.
For the classical Mathieu series, the asymptotic expansion

∞∑
n=1

n

(n2 + r2)2
∼

∞∑
k=0

(−1)k
B2k

2r2k+2
, r ↑ ∞,

was found by Elbert [7], whereas Pogány et al. [26] showed the expansion

∞∑
n=1

(−1)n−1 n

(n2 + r2)2
∼

∞∑
k=1

(−1)kG2k

4r2k+2
, r ↑ ∞, (1.4)

for its alternating counterpart; the Bn and Gn are Bernoulli resp. Genocchi
numbers. (As noted by Paris [23], the factor (−1)k on the right hand side of (1.4)
is missing in [26].) We refer to [23] for further references on asymptotics of
Mathieu-type series, to which we add §19 and §20 of [13]. To formulate our
results on (1.2), for

δ(α + 1)/β − γ /∈ N = {1, 2, . . .}, (1.5)

we define the constant

Cα,β,γ,δ,μ :=
(

1
2β

)δ(α+1)/β−γ−1
�

(
δ
β
(α + 1)− γ + 1

)
2�(μ+ 1)�

(− δ
β
(α + 1)+ γ + 1

)

× �

(
−α + 1

β
+ μ+ 1

)
�

(
α + 1

β

)
.

If, on the other hand, m := δ(α+ 1)/β − γ ∈ N is a positive integer, then we
define

Cα,β,γ,δ,μ := βm−1�
(− α+1

β
+ μ+ 1

)
�

(
α+1
β

)
2m�(μ+ 1)

. (1.6)
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Theorem 1.1. Let α, β > 0,μ ≥ 0, with α−β(μ+1) < −1, and γ, δ ∈ R.
Then we have

Sα,β,γ,δ,μ(r) ∼ Cα,β,γ,δ,μ r
2(α+1)/β−2(μ+1)(log r)−δ(α+1)/β+γ , r ↑ ∞.

(1.7)

Of course, the exponent of r is negative:

2(α + 1)/β − 2(μ+ 1) = 2

β

(
α + 1 − β(μ+ 1)

)
< 0.

Also, we note that for γ = δ = 0 (no logarithmic factors), condition (1.5) is
always satisfied, and the asymptotic equivalence (1.7) agrees with a special
case of Theorem 3 in [23]. A bit more generally than Theorem 1.1, we have:

Theorem 1.2. Let the parameters α, β, γ, δ, μ be as in Theorem 1.1. Let a
and b be positive sequences that satisfy

an ∼ nα(log n)γ , bn ∼ nβ(log n)δ, n ↑ ∞.

Then Sa,b,μ(r) has the asymptotic behavior stated in Theorem 1.1, i.e.

Sa,b,μ(r) ∼ Cα,β,γ,δ,μ r
2(α+1)/β−2(μ+1)(log r)−δ(α+1)/β+γ , r ↑ ∞.

This result includes sequences of the form (log n!)α , see Corollary 5.1.
Also, it clearly implies that shifts such as an = (n + a)α(log(n + b))β are
not visible in the first order asymptotics. Theorems 1.1 and 1.2 are proved in
Section 2. The series (1.3) is more difficult to analyze than (1.2) by Mellin
transform (see Appendix A for details), but it turns out that it is asymptotically
dominated by only two summands. This yields the following result, which is
proved in Section 3. We write {x} for the fractional part of a real number x,
and �−1 for the functional inverse of the gamma function.

Theorem 1.3. Let α, β > 0, μ ≥ 0, with α− β(μ+ 1) < 0, and 0 < d1 <

d2 < 1. Then

S!
α,β,μ(r) = r−2(μ+1−α/β) exp

(−m(r) log log r +O(log log log r)
)

(1.8)

as r → ∞ in the set

R := {
r > 0 : d1 ≤ {�−1(r2/β)} ≤ d2

}
, (1.9)

where the function m(·) is defined by

m(r) := min
{
α{�−1(r2/β)}, (β(μ+ 1)− α

)(
1 − {�−1(r2/β)})} > 0.
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Thus, under the constraint (1.9), the seriesS!
α,β,μ(r)decays like r−2(μ+1−α/β),

accompanied by a power of log r , where the exponent of the latter depends
on r and fluctuates in a finite interval of negative numbers. The expression
inside the fractional part {·} grows roughly logarithmically (see Appendix B):

�−1(r2/β) ∼ 2 log r

β log log r
, r ↑ ∞.

Clearly, the proportion limr↑∞ r−1 meas(R ∩ [0, r]) of “good” values of r can
be made arbitrarily close to 1 by choosing d1 and 1 − d2 sufficiently small.
Without the Diophantine assumption (1.9), a more complicated asymptotic
expression for S!

α,β,μ(r) is obtained by combining (3.2), (3.10), and (3.11)
below. From this expression it is easy to see that, for any ε > 0, we have

r2α/β−2(μ+1)−ε 
 S!
α,β,μ(r) 
 r2α/β−2(μ+1)+ε, r ↑ ∞, (1.10)

as well as logarithmic asymptotics:

log S!
α,β,μ(r) = −2(μ+ 1 − α/β) log r +O(log log r), r ↑ ∞. (1.11)

The following result contains an asymptotic upper bound; like (1.10) and
(1.11), it is valid without restricting r to (1.9):

Theorem 1.4. Let α, β > 0, μ ≥ 0, with α − β(μ+ 1) < 0. Then

S!
α,β,μ(r) ≤ r−2(μ+1−α/β) exp

(
o(log log r)

)
, r → ∞. (1.12)

Theorem 1.4 is proved in Section 3, too. The proofs of Theorems 1.3 and 1.4
use an asymptotic expansion for the inverse of the gamma function, which is
established in Appendix B. In Appendix A, we use a different method to show
the following bound. It gives a weaker estimate, but also holds for α = 0.

Theorem 1.5. Let α,μ ≥ 0, β > 0 with α − β(μ+ 1) < 0. Then

S!
α,β,μ(r) = O

(
r−2(μ+1−α/β) log r

log log r

)
, r ↑ ∞.

The difficulties concerning the factorial Mathieu-type series stem from the
fact that the Mellin transform of S!

α,β,μ(·) has a natural boundary in the form
of a vertical line, whereas that of Sα,β,γ,δ,μ(·) is more regular, featuring an
analytic continuation with a single branch cut. See Section 2 and Appendix A
for details. We therefore prove Theorem 1.3 by a direct estimate; see Section 3.
It will be clear from the proof that the error term in (1.8) can be refined, if
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desired. Also, d1 and 1 − d2 may depend on r , as long as they tend to zero
sufficiently slowly.

2. Power-logarithmic sequences

Since (1.2) is a series with positive terms, the discrete Laplace method seems
to be a natural asymptotic tool; see [22] for a good introduction and further
references. However, while the summands of (1.2) do have a peak around
n ≈ r2/β , the local expansion of the summand does not fully capture the
asymptotics, and the central part of the sum yields an incorrect constant factor.
A similar phenomenon has been observed in [6], [14] for integrals that are
not amenable to the Laplace method. As in [15], [23], [24], [25], we instead
use a Mellin transform approach. Since the Mellin transform seems not to be
explicitly available in our case, we invoke results from [16] on the analytic
continuation of a certain Dirichlet series. Before beginning with the Mellin
transform analysis, we show that Theorem 1.2 follows from Theorem 1.1.
This is the content of the following lemma.

Lemma 2.1. Let a and b be as in Theorem 1.2. Then

Sa,b,μ(r) = Sα,β,γ,δ,μ(r)
(
1 + o(1)

) +O
(
r−2(μ+1)(log r)2α+1

)
, r ↑ ∞.

Proof. First consider the summation range 0 ≤ n ≤ �log r for the series
defining Sa,b,μ(r), where �· is the floor function. We have the estimate

bn + r2 = O
(
nβ(log n)δ

) + r2

= r2
(
1 +O(log r)2β/r2

)
= r2

(
1 + o(1)

)
, r ↑ ∞,

and thus

(bn + r2)−(μ+1) = r−2(μ+1)
(
1 + o(1)

)
, 0 ≤ n ≤ �log r.

We obtain �log r∑
n=0

an

(bn + r2)μ+1
<∼

�log r∑
n=0

n2α

(bn + r2)μ+1

∼ r−2(μ+1)
�log r∑
n=0

n2α

= O
(
r−2(μ+1)(log r)2α+1

)
.

(2.1)
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Now consider the range �log r < n < ∞, which yields the main contribution.
As for the denominator, we have

bn + r2 = nβ(log n)δ + o(nβ(log n)δ)+ r2

= (
nβ(log n)δ + r2

)(
1 + o(nβ(log n)δ)

nβ(log n)δ + r2

)

= (
nβ(log n)δ + r2

)(
1 + o(1)

)
.

(2.2)

Note that the first two o(·) are meant for n ↑ ∞, but then the term o(nβ(log n)δ)
nβ (log n)δ+r2

is also uniformly o(1) as r ↑ ∞, because r ↑ ∞ implies n ↑ ∞ in the range
�log r < n < ∞. Similarly, we have

an = nα(log n)γ
(
1 + o(1)

)
, r ↑ ∞. (2.3)

Therefore,

∑
n>�log r

an

(bn + r2)μ+1
∼

∑
n>�log r

nα(log n)γ

(nβ(log n)δ + r2)μ+1

= Sα,β,γ,δ,μ(r)+O
(
r−2(μ+1)(log r)2α+1

)
.

(2.4)

Here, the asymptotic equivalence follows from (2.2) and (2.3), and the equality
follows from (2.1). The lemma now follows by combining (2.1) and (2.4).

We now begin the proof of Theorem 1.1. As in [16], define the Dirichlet
series

ζη,θ (s) :=
∞∑
n=2

(log n)η

(n(log n)θ )s
, Re(s) > 1, (2.5)

with real parameters η, θ . We will see below that the Mellin transform of (1.2)
can be expressed using ζη,θ (s). The first two statements of the following lemma
are taken from [16].

Lemma 2.2. The Dirichlet series ζη,θ has an analytic continuation to the
whole complex plane except (−∞, 1]. As s → 1 in this domain, we have the
asymptotics

ζη,θ (s) ∼

⎧⎪⎨
⎪⎩
(−1)m−1

(m− 1)!
(s − 1)m−1 log

1

s − 1
if m = θ − η ∈ N,

�(η − θ + 1)(s − 1)θ−η−1 otherwise.

The analytic continuation grows at most polynomially as | Im(s)| ↑ ∞ while
Re(s) is bounded and positive.
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Proof. The statements about analytic continuation and asymptotics are
proved in [16]. We revisit this proof in order to prove the polynomial estim-
ate, which is needed later to apply Mellin inversion. By the Euler-Maclaurin
summation formula, we have

ζη,θ (s) =
∫ ∞

2
f (x) dx + f (2)

2
− B2

2
f ′(2)−

∫ ∞

2

B2(x − �x)
2

f ′′(x) dx,

(2.6)
where

f (x) := (log x)η

(x(log x)θ )s

and theBs are Bernoulli numbers resp. polynomials. The last integral in (2.6) is
a holomorphic function of s for Re(s) > −1, and applying the Euler-Maclaurin
formula of arbitrary order yields the full analytic continuation, after analyzing
the first integral in (2.6). To prove our lemma, it remains to estimate the growth
of the terms in (2.6). The dominating factor of f ′′(x) satisfies∣∣∣∣ ∂

2

∂x2
x−s

∣∣∣∣ = |s(s + 1)|x− Re(s)−2,

from which it is very easy to see that the last integral in (2.6) grows at most
polynomially under the stated conditions on s. In the first integral in (2.6), we
substitute

x = exp
(
z/(s − 1)

)
(2.7)

(as in [16]) and obtain∫ ∞

2
f (x) dx = (s − 1)θs−η−1

∫ ∞

(s−1) log 2
zη−θse−z dz

= (s − 1)θs−η−1

(
�(η − θs + 1)−

∫ (s−1) log 2

0
zη−θse−z dz

)
.

(2.8)
From Stirling’s formula (see [3, p. 224]), we have

�(t) = O
(
e−π | Im(t)|/2|t |Re(t)−1/2

)
, |t | ↑ ∞,

uniformly w.r.t. Re(t), as long as Re(t) stays bounded. Using this and

|(s − 1)−θs | = exp
(−θ Re(s) log |s − 1| + θ Im(s) arg(s − 1)

)
,

we see that |(s−1)θs−η−1�(η−θs+1)| can be bounded by a polynomial in s.
Finally, we have

∫ (s−1) log 2

0
zη−θse−z dz = (

(s − 1) log 2
)η−θs+1

∫ 1

0
uη−θse(1−s)u log 2 du,
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from which it is immediate that the term

(s − 1)θs−η−1
∫ (s−1) log 2

0
zη−θse−z dz

in (2.8) admits a polynomial estimate. This completes the proof of Lemma 2.2.

For any sufficiently regular function f , we denote the Mellin transform
by f ∗,

f ∗(s) :=
∫ ∞

0
f (r)rs−1 dr. (2.9)

We now compute the Mellin transform of the function Sα,β,γ,δ,μ(r), writing
an = nα(log n)γ and bn = nβ(log n)δ .

S∗
α,β,γ,δ,μ(s) =

∫ ∞

0
Sα,β,γ,δ,μ(r)r

s−1 dr

=
∞∑
n=2

an

∫ ∞

0

rs−1

(bn + r2)μ+1
dr

= 1

2

∞∑
n=2

anb
s/2−(μ+1)
n

∫ ∞

0

us/2−1

(1 + u)μ+1
du

= D(s)�(μ+ 1 − s/2)�(s/2)

2�(μ+ 1)
,

(2.10)

where we substituted u = r2/bn, and

D(s) :=
∞∑
n=2

nα(log n)γ
(
nβ(log n)δ

)s/2−(μ+1)

=
∞∑
n=2

(log n)δs/2+γ−δ(μ+1)nβs/2+α−β(μ+1).

The Dirichlet series D can be expressed in terms of ζη,θ from (2.5):

D(s) = ζη,θ
(
1 + 1

2β(ŝ − s)
)∣∣
η=γ−αδ/β, θ=δ/β (2.11)

with
ŝ := −2(α + 1)/β + 2(μ+ 1) < 2μ+ 2. (2.12)

Formula (2.10) is valid for Re(s) ∈ (0, ŝ). The function �(μ + 1 − s/2) has
poles at 2μ+ 2, 2μ+ 4, . . ., and those of �(s/2) are 0,−2,−4, . . .All those
poles are outside the strip {s ∈ C : Re(s) ∈ (0, ŝ)}. The singular expansion
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of (2.10) at the dominating singularity ŝ can be translated, via the Mellin inver-
sion formula, into the asymptotic behavior of Sα,β,γ,δ,μ(r). See [10] for a stand-
ard introduction to this method; in fact, our generalized Mathieu series (1.1)
is a harmonic sum in the terminology of [10]. By Mellin inversion, we have

Sα,β,γ,δ,μ(r) = 1

2πi

∫ κ+i∞

κ−i∞
r−sS∗

α,β,γ,δ,μ(s) ds

= 1

2�(μ+ 1)

1

2πi

∫ κ+i∞

κ−i∞
r−sD(s)�(μ+ 1 − s/2)�(s/2) ds,

(2.13)
where κ ∈ (0, ŝ). Note that integrability of S∗

α,β,γ,δ,μ(s) follows from the
polynomial estimate in Lemma 2.2 and Stirling’s formula, as the latter implies

�(t) = O
(
exp

(−(
1
2π − ε

)| Im(t)|)) (2.14)

for bounded Re(t). Suppose first that

θ − η = δ(α + 1)/β − γ /∈ N.
Then, from Lemma 2.2 and (2.11), we have

D(s) ∼ �
(
δ(α + 1)/β − γ + 1

)(
1
2β(ŝ − s)

)δ(α+1)/β−γ−1

= c1(ŝ − s)−c2 , s → ŝ,
(2.15)

with
c1 := �

(
δ(α + 1)/β − γ + 1

)(
1
2β

)δ(α+1)/β−γ−1
,

c2 := −δ(α + 1)/β + γ + 1.
(2.16)

Combining (2.10) and (2.15) yields

S∗
α,β,γ,δ,μ(s) ∼ c3(ŝ − s)−c2 , s → ŝ, (2.17)

where
c3 := c1�(μ+ 1 − ŝ/2)�(ŝ/2)

2�(μ+ 1)
. (2.18)

By a standard procedure, we can now extract asymptotics of the Mathieu-type
series Sα,β,γ,δ,μ(r) from (2.13). The integration contour in (2.13) is pushed to
the right, which is allowed by Lemma 2.2. The real part of the new contour is

κr := ŝ + log log r

log r
,
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where the singularity at s = ŝ is avoided by a small C-shaped notch. In (2.19)
below, this notch is the integration contour. The contour is then transformed
to a Hankel contour H by the substitution s = ŝ − w/ log r . The contour H

starts at −∞, circles the origin counterclockwise and continues back to −∞.
Using (2.17), we thus obtain

Sα,β,γ,δ,μ(r) = 1

2πi

∫ κr+i∞

κr−i∞
r−sS∗

α,β,γ,δ(s) ds

∼ c3

2πi

∫
r−s(ŝ − s)−c2 ds

∼ c3r
−ŝ (log r)c2−1 1

2πi

∫
H

eww−c2 dw

= c3

�(c2)
r−ŝ (log r)c2−1.

(2.19)

See [10], [11], [14], [16] for details of this asymptotic transfer. This completes
the proof of (1.7) in the case δ(α + 1)/β − γ /∈ N. Recall the definitions of
the constants ŝ, c2, c3 in (2.12), (2.16), and (2.18).

Now suppose that

m := θ − η = δ(α + 1)/β − γ ∈ N. (2.20)

We need to show that (1.7) still holds, but with the constant factor now given
by (1.6). By Lemma 2.2 and (2.11), we have

D(s) ∼ (−1)m−1

(m− 1)!

(
1
2β

)m−1
(ŝ − s)m−1 log

1

ŝ − s

= c4(ŝ − s)m−1 log
1

ŝ − s
, s → ŝ,

(2.21)

where

c4 := (−1)m−1

(m− 1)!

(
1
2β

)m−1
.

Define
c5 := c4�(μ+ 1 − ŝ/2)�(ŝ/2)

2�(μ+ 1)
. (2.22)

Then, using (2.10) and (2.21),

S∗
α,β,γ,δ,μ(s) ∼ c5(ŝ − s)m−1 log

1

ŝ − s
, s → ŝ.
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We proceed similarly as above (see again [10], [11], [16]) and find

Sα,β,γ,δ,μ(r) ∼ c5r
−ŝ (log r)−m

1

2πi

∫
H

ewwm−1

(
log

er

w

)
dw

∼ c5r
−ŝ (log r)−m

1

2πi

∫
H

ewwm−1(− logw) dw

= c5

(
1

�

)′
(1 −m)× r−ŝ (log r)−m.

(2.23)

As for the second ∼, note that

1

2πi

∫
H

ewwm−1 dw = 1

�(1 −m)
= 0.

From the well-known residues of � and ψ at the non-positive integers (see,
e.g., [32, p. 241]), we obtain

(
1

�

)′
(1 −m) = −

(
ψ

�

)
(1 −m) = (−1)m−1(m− 1)!, m ∈ N.

Formula (1.7) is established, and Theorem 1.1 is proved. As for the constants
in (2.23), recall the definitions in (2.12), (2.20), and (2.22). As mentioned
above, Theorem 1.2 follows from Theorem 1.1 and Lemma 2.1.

3. Factorial sequences

This section contains the proofs of Theorems 1.3 and 1.4. Our estimates can
be viewed as a somewhat degenerate instance of the Laplace method, where
the central part of the sum consists of just two summands. We denote by An
the summands of (1.3):

S!
α,β,μ(r) =

∞∑
n=0

An, An := (n!)α(
(n!)β + r2

)μ+1 .

Define n0 = n0(r) by n0(r) := ��−1(r2/β) − 1, i.e.,

(n0!)β ≤ r2 < (n0 + 1)!β. (3.1)

We first show that S!
α,β,μ(r) is dominated by An0 and An0+1. For brevity, we

omit writing the dependence of An and n0 on r .

Lemma 3.1. Let α, β > 0, μ ≥ 0, with α − β(μ+ 1) < 0. Then

S!
α,β,μ(r) ∼ An0 + An0+1, r ↑ ∞. (3.2)
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Proof. For k ≥ 2, we estimate, using (3.1),

An0+k/An0+1 = (
(n0 + 2) . . . (n0 + k)

)α( (n0 + 1)!β + r2

(n0 + k)!β + r2

)μ+1

≤ (
(n0 + 2) . . . (n0 + k)

)α(2(n0 + 1)!β

(n0 + k)!β

)μ+1

= 2μ+1
(
(n0 + 2) . . . (n0 + k)

)α−β(μ+1)
.

Therefore,

A−1
n0+1

∞∑
k=2

An0+k ≤ 2μ+1
∞∑
k=2

(
(n0 + 2) . . . (n0 + k)

)α−β(μ+1)

≤ 2μ+1
∞∑
k=2

n
(k−1)(α−β(μ+1))
0

∼ 2μ+1n
α−β(μ+1)
0 = o(1).

This shows that ∞∑
k=2

An0+k 
 An0+1.

For the initial segment
∑n0−1

k=1 An0−k of the series, we use the following estimate
for k ≥ 1:

An0−k/An0 = (
n0(n0 − 1) . . . (n0 − k + 1)

)−α
(

(n0!)β + r2

(n0 − k)!β + r2

)μ+1

≤ (
n0(n0 − 1) . . . (n0 − k + 1)

)−α
(

2r2

r2

)μ+1

= 2μ+1
(
n0(n0 − 1) . . . (n0 − k + 1)

)−α =: 2μ+1Bk.

Pick an integer q with q > 1/α. Then

n0∑
k=1

Bk =
q∑
k=1

Bk +
n0∑

k=q+1

Bk. (3.3)

Now
∑q

k=1 Bk has a fixed number of summands, all o(1), and is thus o(1)
as r ↑ ∞. In the second sum, we pull out the factor n−α

0 , estimate q of the
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remaining factors by n0 − k + 1, and the other factors by 1:

n0∑
k=q+1

Bk ≤ n−α
0

n0∑
k=q+1

(n0 − k + 1)−αq ≤ n−α
0

n0∑
k=1

k−αq = O(n−α
0 ).

The last equality follows from q > 1/α. We conclude that (3.3) is o(1), and
thus

n0−1∑
k=1

An0−k 
 An0 , (3.4)

which finishes the proof.

We now evaluate An0 and An0+1 asymptotically. For this, we employ an
asymptotic expansion for the functional inverse of the gamma function, which
is established in Appendix B. We use the following notation:

x := r2/β, v = x/
√

2π,

g := �−1(x),

n0 = �g − 1 = g − {g} − 1,

w = W
(
(log v)/e

)
,

u = (log v)/w.

(3.5)

Recall that {·} denotes the fractional part, and note that, according to (B.5),
we have

u log u− u = log v. (3.6)

Proof of Theorem 1.3. By Stirling’s formula and (3.5), we have

log n0! = n0 log n0 − n0 + 1
2 log n0 +O(1)

= (g − {g} − 1)
(
log g +O(1/g)

) − g + 1
2 log g +O(1)

= g log g − g − (
1
2 + {g}) log g +O(1).

(3.7)

From Lemma B.1, we have the expansion

�−1(x) = u+ 1

2
+O

(
1

uw

)
(3.8)

of the inverse gamma function. From (3.7) and (3.8), we obtain

log n0! = u log u− u+ 1
2 log u− (

1
2 + {g}) log u+O(1)

= u log u− u− {g} log u+O(1).
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Together with (3.6), this yields

n0! = v exp
(−{g} log u+O(1)

) = r2/β exp
(−{g} log u+O(1)

)
. (3.9)

Equation (3.9) is crucial for determining the asymptotics of the right hand side
of (3.2). Since

exp
(−β{g} log u+O(1)

) + 1 = eO(1),

we can use (3.9) to evaluate the summand An0 as

An0 = (n0!)α(
(n0!)β + r2

)μ+1

= r2α/β−2(μ+1) exp
(−α{g} log u+O(1)

)
= r2α/β−2(μ+1) exp

(−α{g} log log r +O(log log log r)
)
,

(3.10)

where the last line follows from (B.2). By definition, we have

n0 = g +O(1) = u+O(1),

and thus
n0 ∼ log x

log log x
∼ 2 log r

β log log r
, r ↑ ∞.

As for the summand An0+1, we thus have (writing log3 = log log log)

An0+1 = (n0 + 1)!α(
(n0 + 1)!β + r2

)μ+1

= (log r)αeO(log3 r)(n0!)α(
(log r/ log log r)βeO(1)(n0!)β + r2

)μ+1

= (log r)αr2α/β exp
(−α{g} log u+O(log3 r)

)

×
((

log r

log log r

)β
r2 exp

(−β{g} log u+O(1)
) + r2

)−(μ+1)

= r2α/β−2(μ+1) exp
(
α(1 − {g}) log log r +O(log3 r)

)

×
((

log r

log log r

)β
exp

(−β{g} log u+O(1)
) + 1

)−(μ+1)

.

(3.11)
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This holds as r → ∞, without any constraints on r . If {g} ≤ d2 < 1, as
assumed in Theorem 1.3, then the term inside the big parentheses in (3.11)
tends to infinity; note that log u ∼ log log r by (B.2). We then have

An0+1 = r2α/β−2(μ+1) exp
(
(α − β(μ+ 1))(1 − {g}) log log r

+O(log log log r)
)
, {g} ≤ d2 < 1. (3.12)

Define
R0 := {

r ∈ R : −α{g} ≥ (α − β(μ+ 1))(1 − {g})}

and
R1 := R \ R0.

Then, by Lemma 3.1, (3.10), and (3.12), we obtain

S!
α,β,μ(r) ∼ An0 , r ∈ R0, (3.13)

S!
α,β,μ(r) ∼ An0+1, r ∈ R1. (3.14)

Theorem 1.3 now follows from this, (3.10), and (3.12). Note that the as-
sumption 0 < d1 ≤ {g} ≤ d2 < 1 of Theorem 1.3 ensures that the term
(. . .) log log r in (3.10) and (3.12) asymptotically dominates the error term.
Moreover, the asymptotic equivalence in (3.13) and (3.14) can be replaced by
an equality, because the error factor 1 + o(1) is absorbed into theO(log3 r) in
the exponent.

Proof of Theorem 1.4. By (3.10), we have

An0 ≤ r2α/β−2(μ+1) exp
(
O(log log log r)

)
,

and so, by Lemma 3.1, it suffices to estimate An0+1. Fix an arbitrary ε > 0.
Recall the notation introduced around (3.5). If r is such that α(1 − {g}) ≤ ε,
then we simply estimate the term in big parentheses in (3.11) by 1, and obtain

An0+1 ≤ r2α/β−2(μ+1) exp
(
ε log log r +O(log log log r)

)
.

If, on the other hand, {g} < 1 − ε/α, then (3.12) holds, which implies

An0+1 ≤ r2α/β−2(μ+1) exp
(
O(log log log r)

)
,

because the quantity in front of log log r in (3.12) is negative. We have thus
shown that, for any ε > 0,

S!
α,β,μ(r) ≤ r−2(μ+1−α/β) exp

(
ε log log r +O(log log log r)

)
. (3.15)
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From this, Theorem 1.4 easily follows. Indeed, were it not true, then there
would be ε′ > 0 and a sequence rn ↑ ∞ such that

log
(
r2(μ+1−α/β)
n S!

α,β,μ(rn)
) ≥ 2ε′ log log rn,

contradicting (3.15).

4. Power sequences: full expansion in a special case

In [28], an integral representation of the generalized Mathieu series

Sμ(r) :=
∞∑
n=1

2n

(n2 + r2)μ+1
, μ > 3

2 , r > 0,

was derived. In our notation (1.2), this series is

Sμ(r) = 2S1,2,0,0,μ(r)+ 2

(1 + r2)μ+1
.

We use said integral representation and Watson’s lemma to find a full expansion
of Sμ(r) as r → ∞. This expansion is not new (see Theorem 1 in [23]), and
so we do not give full details. Still, our approach provides an independent
check for (a special case of) Theorem 1 in [23], and it might be useful for
other Mathieu-type series admitting a representation as a Laplace transform.
The integral representation in Theorem 4 of [28] is

Sμ(r) = cμ

∫ ∞

0
e−rt tμ+1/2gμ(t) dt, (4.1)

where
cμ :=

√
π

2μ−1/2�(μ+ 1)
,

and gμ is the Schlömilch series

gμ(t) :=
∞∑
n=1

n1/2−μJμ+1/2(nt).

For Re(s) > 3
2 − μ, the Mellin transform of gμ is

g∗
μ(s) =

∞∑
n=1

n1/2−μ−s2s−1�(μ/2 + 1/4 + s/2)

�(μ/2 + 5/4 − s/2)

= 2s−1ζ(s + μ− 1/2)�(μ/2 + 1/4 + s/2)

�(μ/2 + 5/4 − s/2)
.
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The factor ζ(s+μ−1/2) has a pole at š := 3
2 −μ, and�(μ/2+1/4+s/2) has

poles at sk := −2k−μ− 1
2 , k ∈ N0. By using Mellin inversion and collecting

residues, we find that the expansion of gμ(t) as t ↓ 0 is

gμ(t)

∼ 2š−1�(μ/2 + 1/4 + š/2)

�(μ/2 + 5/4 − š/2)
t−š +

∞∑
k=0

(−1)k2sk ζ(sk + μ− 1/2)

k!�(μ/2 + 5/4 − š/2)
t−sk

= 21/2−μ

�(μ+ 1/2)
tμ−3/2 +

∞∑
k=0

(−1)k2−2k−μ−1/2ζ(−2k − 1)

k!�(k + μ+ 3/2)
t2k+μ+1/2.

Now we multiply this expansion by tμ+1/2 and use Watson’s lemma [20, p. 71]
in (4.1). In the notation of [20, p. 71] the parameters μ and λ are 1

2 and our μ,
respectively. Simplifying the resulting expansion using Legendre’s duplication
formula,

�(2k + 2μ+ 2) = π−1/222k+2μ+1�(k + μ+ 1)�(k + μ+ 3/2),

yields the expansion

Sμ(r) ∼ 1

μ
r−2μ +

∞∑
k=0

2(−1)kζ(−2k − 1)�(k + μ+ 1)

�(μ+ 1)k!
r−2k−2μ−2 (4.2)

as r → ∞. Recall that the values of the zeta function at negative odd integers
can be represented by Bernoulli numbers:

ζ(−2k − 1) = − B2k+2

2k + 2
, k ∈ N0.

The expansion (4.2) indeed agrees with Theorem 1 in [23], and the first term
agrees with our Theorem 1.1 (with α = 1, β = 2, γ = δ = 0). The divergent
series in (4.2) looks very similar to formula (3.2) in [27], but there the argument
of ζ(·) in the summation is eventually positive instead of negative.

Finally, we give an amusing non-rigorous derivation of the asymptotic series
on the right-hand side of (4.2), by using the binomial theorem, the “formula”
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ζ(−2k − 1) = ∑∞
n=1 n

2k+1, and interchanging summation:

Sμ(r) = 2r−2(μ+1)
∞∑
n=1

n

(
1 + n2

r2

)−(μ+1)

= 2r−2(μ+1)
∞∑
n=1

n

∞∑
k=0

(−1)k
(
k + μ

k

)(
n

r

)2k

“=” 2r−2(μ+1)
∞∑
k=0

(−1)k
(
k + μ

k

)
r−2kζ(−2k − 1)

=
∞∑
k=0

2(−1)kζ(−2k − 1)�(k + μ+ 1)

�(μ+ 1)k!
r−2k−2μ−2.

Note that the dominating term, of order r−2μ, is not found by this heuristic.

5. Miscellaneous

We now apply Theorem 1.2 (on power-logarithmic sequences) to an example
taken from [30]. There, integral representations for some Mathieu-type series
were deduced, and we state asymptotics for one of them.

Corollary 5.1. Let α, β > 0, μ ≥ 0, with α − β(μ+ 1) < −1. Then

∞∑
n=2

(log n!)α(
(log n!)β + r2

)μ+1 ∼ C r2(α+1)/β−2(μ+1)/ log r, r ↑ ∞,

with

C = �
(− α+1

β
+ μ+ 1

)
�

(
α+1
β

)
2�(μ+ 1)

.

Proof. By Stirling’s formula, we have (log n!)α ∼ (n log n)α . The state-
ment thus follows from Theorem 1.2, with γ = α, δ = β, and m = δ(α +
1)/β − γ = 1 ∈ N.

A natural generalization of our main results on power-logarithmic sequences
(Theorems 1.1 and 1.2) would be to replace log by arbitrary slowly varying
functions: an = nα�1(n), bn = nβ�2(n). Then the Dirichlet series (2.11)
becomes

D(s) =
∞∑
n=2

anb
s/2−(μ+1)
n =

∞∑
n=2

nβs/2+α−β(μ+1)�1(n)�2(n)
s/2−(μ+1).



442 S. GERHOLD, F. HUBALEK AND Ž. TOMOVSKI

The dominating singularity is still ŝ defined in (2.12), as follows from [1,
Proposition 1.3.6], but it seems not easy to determine the singular behavior
of D at ŝ for generic �1, �2. Still, for specific examples such as (log log n)γ

or exp(
√

log n), this should be doable. Note that our second step, i.e. the
asymptotic transfer from the Mellin transform to the original function, works
for slowly varying functions under mild conditions; see [11].

Finally, we note that including a geometrically decaying factor xn in the
series (1.1) leads to a Mathieu-type power series. According to the following
proposition, its asymptotics can be found in an elementary way, for rather
general sequences a,b. We refer to [31] for integral representations and further
references on certain Mathieu-type power series.

Proposition 5.2. Let x ∈ C with |x| < 1, an ∈ C, bn ≥ 0, and μ ≥ 0. If∑∞
n=0 anx

n is absolutely convergent and bn ↑ ∞, then

∞∑
n=0

an

(bn + r2)μ+1
xn = r−2(μ+1)

∞∑
n=0

anx
n + o(r−2(μ+1)), r ↑ ∞.

Proof. We have∣∣∣∣
∑
n: bn>r

an

(bn + r2)μ+1
xn

∣∣∣∣ ≤
∑
n: bn>r

|an|
(bn + r2)μ+1

|x|n ≤
∑
n: bn>r

|an|
r2(μ+1)

|x|n.

As
∑

n: bn>r |an||x|n tends to zero, this is o(r−2(μ+1)). For the dominating part
of the series, we find

∑
n: bn≤r

an

(bn + r2)μ+1
xn = r−2(μ+1)

∑
n: bn≤r

an

(bn/r2 + 1)μ+1
xn

= r−2(μ+1)

( ∑
n: bn≤r

anx
n +O(1/r)

)

= r−2(μ+1)

( ∞∑
n=0

anx
n + o(1)

)
.

In the last equality, we used that
∑

n: bn>r anx
n = o(1), because bn ↑ ∞.

The next example immediately follows from this proposition.

Example 5.3. In the spirit of (1.2), we can consider the Mathieu-type power
series

∞∑
n=2

nα(log n)γ xn(
nβ(log n)δ + r2

)μ+1 ∼ r−2(μ+1)
∞∑
n=2

nα(log n)γ xn, r ↑ ∞,
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where |x| < 1, μ ≥ 0, and α, β, γ, δ ∈ R. The power series on the right hand
side is a generalized polylogarithm [8].

In Proposition 5.2, we assumed |x| < 1. Our main results (Theorems 1.1–
1.3) are concerned with the case x = 1, for some special sequences a,b.
An alternating factor (−1)n, on the other hand, induces cancellations that
are difficult to handle, and may require the availability of an explicit Mellin
transform, as in [23]. The special case an = n, bn = n2, |x| ≤ 1 was recently
settled in [15], where a full expansion was obtained. First order asymptotics
for this example follow from Proposition 5.2.

Example 5.4. Let |x| < 1 and μ ≥ 0. Then

∞∑
n=1

2nxn

(n2 + r2)μ+1
∼ r−2(μ+1) 2x

(1 − x)2
, r ↑ ∞.

In [31], several integral representations for this Mathieu-type power series
were established.
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Appendix A. Factorial sequences: the associated Dirichlet series

In the Mellin transform of (1.3), the following Dirichlet series occurs:

τ(s) :=
∞∑
n=0

(n!)−s , Re(s) > 0. (A.1)

As we will see in Lemma A.1, this function does not have an analytic con-
tinuation beyond the right half-plane. It is well known that the presence of a
natural boundary is a severe obstacle when doing asymptotic transfers; see [9]
and the references cited there. Therefore, our proof of Theorem 1.3 in Sec-
tion 3 did not use Mellin transform asymptotics. Still, some analytic properties
of (A.1) seem to be interesting in their own right, and will be discussed in the
present appendix. We note that the arguments at the beginning of the proof of
Lemma A.1 (analyticity, natural boundary) suffice to identify the location of
the singularity of the Mellin transform of S!

α,β,μ(·) (see (A.6) below), and thus
yield the logarithmic asymptotics in (1.11) with the weaker error term o(log r).
Moreover, in this appendix we will prove Theorem 1.5; see (A.11) below.
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Lemma A.1. The function τ is analytic in the right half-plane, and the
imaginary axis iR is a natural boundary. At the origin, we have the asymptotics

τ(s) ∼ 1

s log(1/s)
, s ↓ 0, s ∈ R. (A.2)

Proof. Analyticity follows from a standard result on Dirichlet series, see
e.g. [17, p. 5]. As n/log n! = o(1), the lacunary series

∑∞
n=0 z

log n! has the unit
circle as a natural boundary. We refer to the introduction of [5] for details. This
implies that iR is the natural boundary of

τ(s) =
∞∑
n=0

zlog n!

∣∣∣∣
z=e−s

.

It remains to prove (A.2). We begin by showing that the Dirichlet series

∞∑
n=2

(log n!)−s , Re(s) > 1, (A.3)

has an analytic continuation to Re(s) > 0, with branch cut (0, 1]. The main
idea is that replacing log n! by n log n leads to the series from Lemma 2.2, and
the properties of (A.3) that we need are the same as those stated there. We just
do not care about continuation further left than Re(s) > 0, because we do not
require it. The continuation of (A.3) is based on writing

∞∑
n=3

(log n!)−s =
∞∑
n=3

(
(log n!)−s−(n log n−n)−s)+

∞∑
n=3

(n log n−n)−s . (A.4)

By Stirling’s formula, we have

(log n!)−s = (n log n− n)−s
(
1 +O(1/n)

)−s

= (n log n− n)−s
(
1 +O(1/n)

)
,

locally uniformly w.r.t. s in the right half-plane. From this it follows that

∞∑
n=3

(
(log n!)−s − (n log n− n)−s

)

defines an analytic function of s for Re(s) > 0. Moreover, the last series
in (A.4) has an analytic continuation to a slit plane. This is proved by the
same argument as in Lemma 2.2, using the Euler-Maclaurin formula and (2.7).
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Moreover, the polynomial estimate from that lemma easily extends to the
continuation of (A.3) for Re(s) > 0, s /∈ (0, 1]. After these preparations we
can prove (A.2) by Mellin transform asymptotics. Recall the definition of the
Mellin transform in (2.9). We compute, using the definition of ζη,θ in (2.5) and
its asymptotics from Lemma 2.2,

(
s

∞∑
n=2

(n!)−s
)∗
(t) =

∞∑
n=2

∫ ∞

0
(n!)−sst ds

= �(t + 1)
∞∑
n=2

(log n!)−t−1

∼ �(t + 1)
∞∑
n=2

(n log n)−t−1

= �(t + 1) ζ0,1(t + 1)

∼ log
1

t
, t → 0.

(A.5)

We have shown above that the Dirichlet series in (A.5) has an integrable analytic
continuation to Re(t) > −1, t /∈ (−1, 0], and so Lemma 2 in [16] is applicable
(asymptotic transfer, with a = 0, b = 1 in the notation of [16]). We conclude

s

∞∑
n=2

(n!)−s ∼
(

log
1

s

)−1

, s ↓ 0, s ∈ R,

and hence
τ(s) ∼ 1

s log(1/s)
, s ↓ 0, s ∈ R.

The lemma is proved.

Analogously to (2.10), we find the Mellin transform of (1.3):

S! ∗
α,β,μ(s) =

∫ ∞

0
S!
α,β,μ(r)r

s−1 dr

= �(μ+ 1 − s/2)�(s/2)

2�(μ+ 1)

∞∑
n=0

(n!)α(n!)β(s/2−(μ+1))

= �(μ+ 1 − s/2)�(s/2)

2�(μ+ 1)
τ
(

1
2β(s̃ − s)

)
,

(A.6)

where
s̃ := 2(μ+ 1 − α/β) > 0.
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By the Mellin inversion formula, we have

S!
α,β,μ(r) = 1

2πi

∫ σ+i∞

σ−i∞
r−sS! ∗

α,β,μ(s) ds, 0 < σ < s̃. (A.7)

Note that integrability of the Mellin transform S! ∗
α,β,μ follows from (2.14) and

the obvious estimate

|τ(s)| ≤ τ
(
Re(s)

)
, Re(s) > 0. (A.8)

By (A.6) and Lemma A.1, the integrand in (A.7) has a singularity at s = s̃,
with singular expansion

log
(
r−sS! ∗

α,β,μ(s)
) = −s log r + log

1

s̃ − s
− log log

1

s̃ − s
+O(1). (A.9)

It is well known that this kind of singularity (polynomial growth of the trans-
form) is not amenable to the saddle point method, as regards precise asymp-
totics. Still, a saddle point bound can be readily found. For an introduction to
saddle point bounds and the saddle point method, we recommend Chapter VIII
in [12]. Retaining only the first two terms on the right-hand side of (A.9) and
taking the derivative w.r.t. s yields the saddle point equation

log r = 1

s̃ − s
,

with solution
σr := s̃ − 1

log r
. (A.10)

We take this as real part of the integration path in (A.7) and obtain, using (A.8),

|S!
α,β,μ(r)| ≤ r−σr τ

(
1
2β(s̃ − σr)

) 1

2π

∫ ∞

−∞
|�(μ+ 1 − s/2)�(s/2)|

2�(μ+ 1)

∣∣∣∣
s=σr+iy

dy

= O
(
r−σr τ

(
1
2β(s̃ − σr)

))
.

The fact that the integral isO(1) as r ↑ ∞ follows from (2.14). From (A.10),
we have

r−σr = er−s̃ .

Lemma A.1 implies

τ
(

1
2β(s̃ − σr)

) = τ

(
β

2 log r

)
∼ 2 log r

β log log r
,
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which results in the saddle point bound

S!
α,β,μ(r) = O

(
r−2(μ+1−α/β) log r

log log r

)
, r ↑ ∞, (A.11)

which proves Theorem 1.5. Note that this bound is weaker than (1.12), but
also holds for α = 0. This case is excluded in Theorems 1.3 and 1.4, because
our proof of (3.4) requires α > 0.

Appendix B. Asymptotic inversion of the gamma function

The proofs of Theorems 1.3 and 1.4 rely on an expansion of �−1 at infinity.
We use the following notation, in line with p. 417f. of [2], where the required
expansion is stated without proof. We writeW(·) for the LambertW function,
which satisfies W(z) exp(W(z)) = z. The goal is to approximately solve the
equation �(y) = x for y = y(x) as x ↑ ∞. Put

v := x/
√

2π, w := W
(
(log v)/e

)
, u := (log v)/w. (B.1)

It is well known (see [19, (4.13.10)], [21], or [4]) that

W(z) = log z+O(log log z), z ↑ ∞,

and so
w = log log x +O(log log log x)

and
u ∼ log x

log log x
. (B.2)

By Stirling’s formula, we have

log�(z) = z log z− z− 1

2
log z+ log

√
2π

+ 1

12z
− 1

360z3
+ 1

1260z5
+O

(
1

z7

)
, z ↑ ∞. (B.3)

For fixed A, define yA = yA(x) by

yA = u+ 1

2
+ 1

24u log u
− 7

2880u3 log u

− 1

576u3(log u)2
− 1

1152u3(log u)3
+ A

u5 log u
. (B.4)
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Now compose (B.3) and (B.4) – preferably using a computer algebra system
– to obtain

log�(yA) = u log u− u+ log
√

2π +
(
A− 31

40320

)
1

u5
+O

(
1

u5 log u

)
.

It is easy to check, using the defining property of Lambert W , that

u log u− u+ log
√

2π = log x. (B.5)

In fact, this is equation (63) in [2]. Therefore,

�(yA(x)) = x exp

((
A− 31

40320

)
1

u5
+O

(
1

u5 log u

))
. (B.6)

Fix two numbers A1, A2 satisfying

A1 <
31

40320
< A2.

By (B.6), we have

yA1(x) ≤ y(x) ≤ yA2(x), x large,

which proves the following result:

Lemma B.1. As x ↑ ∞, the functional inverse of the gamma function has
the expansion

�−1(x) = u+ 1

2
+ 1

24u log u
− 7

2880u3 log u

− 1

576u3(log u)2
− 1

1152u3(log u)3
+O

(
1

u5 log u

)
,

where u = u(x) is defined in (B.1).

This agrees with equation (70) in [2]; note that log u = 1 + w.
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