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We consider a generalized Mathieu series where the summands of the classical 
Mathieu series are multiplied by powers of a complex number. The Mellin transform 
of this series can be expressed by the polylogarithm or the Hurwitz zeta function. 
From this we derive a full asymptotic expansion, generalizing known expansions for 
alternating Mathieu series. Another asymptotic regime for trigonometric Mathieu 
series is also considered, to first order, by applying known results on the asymptotic 
behavior of trigonometric series.
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1. Mathieu power series and the polylogarithm function

In [28], integral representations for the series

Fμ(r, z) :=
∞∑

n=1

2nzn

(n2 + r2)μ+1 , (1.1)

where r > 0, μ > 0, and z ∈ C with |z| < 1, have been established, in terms of the Bessel function of the 
first kind. The asymptotic behavior of (1.1) as r ↑ ∞ has not been investigated so far, except for special 
values of z. For z = 1, this series becomes the generalized Mathieu series studied in [12,17], with positive 
summands and growth order r−2μ as r ↑ ∞. (Those papers also contain many further references on Mathieu 
series and their significance.) For any other number z on the complex unit circle, the oscillating character of 
the summands causes cancellations that make the sum decay faster, of order r−2μ−2. So far, this was only 
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known for z = −1 (alternating Mathieu series); see [20] for μ = 1 and [17,32] for general μ. For |z| < 1, the 
leading term is of order r−2μ−2, too. As in [12,17,18,32], we use a Mellin transform approach to expand (1.1)
for r ↑ ∞. The Mellin transform of Fμ(r, z) can be expressed by the polylogarithm function

Liα(z) =
∞∑

n=1

zn

nα
, |z| < 1, α ∈ C. (1.2)

It is well known that the polylogarithm has an analytic continuation, e.g. by the Lindelöf integral1

Liα(z) = − 1
2πi

1/2+i∞∫
1/2−i∞

(−z)u

uα

π

sin πu
du. (1.3)

From this representation and the definition (1.2), it is easy to see that Liα(z) is an entire function of α for 
any z ∈ C \ [1, ∞). See [7,10] and p. 409 in [8] for details. In our main result, we need an estimate for Liα(z)
for fixed z and large Im(α). This will be established in Section 3, using the well-known representation of 
Liα(z) by the Hurwitz zeta function. Moreover, we will require the following complex extension of Abel’s 
convergence theorem (Stolz 1875); see p. 406 in [15].

Theorem 1.1. Let 
∑∞

n=0 anz
n be a complex power series with radius of convergence 1. If this series converges 

at a point z0 of the unit circle, then

lim
z→z0
z∈Δ

∞∑
n=0

anz
n =

∞∑
n=0

anz
n
0 ,

where Δ is any triangle in the unit disk with z0 as one of its vertices.

This theorem implies consistency of (1.2) with the analytic continuation of the polylogarithm, i.e. that ∑∞
n=1 n

−αeinx = Liα(eix) for Re(α) > 1 and x ∈ (0, 2π), which will be used below. (This actually holds for 
Re(α) > 0, see p. 401 in [15] for convergence of 

∑
n−αeinx, but we do not need this fact.)

2. Main result

Theorem 2.1. Let μ > 0 and 1 �= z ∈ C with |z| ≤ 1. As r ↑ ∞, we have the asymptotic expansion

Fμ(r, z) ∼
∞∑
k=0

r−2k−2μ−2 2(−1)k Γ(k + μ + 1)
k! Γ(μ + 1) Li−2k−1(z) (2.1)

= 2
∞∑
k=0

r−2k−2μ−2(−1)k
(
k + μ

k

)
Li−2k−1(z), (2.2)

where Li−2k−1(z) is defined by (1.2) or (1.3).

Proof. The Mellin transform of Fμ(r, z) with respect to r is (cf. [12,17])

(MFμ)(u) =
∞∫
0

ru−1Fμ(r, z)dr

1 The name Li does not originate from Lindelöf integral, but rather from logarithmic integral (see [8]).
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=
∞∑

n=1
2nzn

∞∫
0

ru−1

(n2 + r2)μ+1 dr

= Γ(μ + 1 − u/2)Γ(u/2)
Γ(μ + 1)

∞∑
n=1

nu−2μ−1zn

= Γ(μ + 1 − u/2)Γ(u/2)
2Γ(μ + 1) Li2μ+1−u(z), 0 < Re(u) < 2μ. (2.3)

For |z| < 1, the last equality is clear from (1.2). For z �= 1 with |z| = 1, we have

Li2μ+1−u(z) = lim
w→z
w∈Δ

∞∑
n=1

nu−2μ−1wn =
∞∑

n=1
nu−2μ−1zn

for 0 < Re(u) < 2μ, where the first equality is clear from analytic continuation and the second one from 
Theorem 1.1, with Δ as in that theorem.

As mentioned above, Li2μ+1−u(z) is an entire function of u. Thus, MFμ is a meromorphic function. For 
the desired asymptotic expansion (r ↑ ∞), the poles in the right half-plane are the relevant ones. They are 
those of the factor Γ(μ +1 −u/2), located at 2k+2μ +2 for k ∈ N0. We can now use the standard procedure 
of expanding a function whose Mellin transform is meromorphic (see, e.g., [9] or Section 4.1.1 in [19]). To 
justify Mellin inversion, we have to argue that (MFμ)(σ+ it) is an integrable function of t for fixed σ, where

u = σ + it, σ, t ∈ R.

By Stirling’s formula (see p. 224 in [5]), we have

|Γ(w)| ∼
√

2π |Im(w)|Re(w)−1/2 exp(−1
2π|Im(w)|) (2.4)

for Re(w) bounded and |Im(w)| ↑ ∞. This implies

Γ(μ + 1 − u/2)Γ(u/2) = O
(

exp
(
− 1

2π|t|
)
|t|μ

)

for σ bounded and |t| ↑ ∞. Using this and Proposition 3.1 below, we see from (2.3) that (MFμ)(u) decays 
exponentially along vertical lines,

(MFμ)(u) = O
(
exp(−ε|t|)

)
,

and is thus integrable for σ = Re(u) > 0, as long as the vertical contour avoids the poles of Γ(μ + 1 − u/2). 
The Mellin inversion formula then says that

Fμ(r, z) = 1
2πi

u0+i∞∫
u0−i∞

r−u(MFμ)(u)du, 0 < u0 < 2μ + 2.

The above locally uniform estimate for MFμ allows to push the contour to the right, and the residue 
theorem yields the expansion

Fμ(r, z) ∼ −
∞∑

resu=2k+2μ+2 r−u(MFμ)(u)

k=0



S. Gerhold, Ž. Tomovski / J. Math. Anal. Appl. 479 (2019) 1882–1892 1885
= −
∞∑
k=0

r−2k−2μ−2 resu=2k+2μ+2 (MFμ)(u)

= −
∞∑
k=0

r−2k−2μ−2 Γ(k + μ + 1)
Γ(μ + 1) Li−2k−1(z) resu=2k+2μ+2 Γ(μ + 1 − u/2).

It easily follows from ress=−k Γ(s) = (−1)k/k!, k ∈ N0, that

resu=2k+2μ+2 Γ(μ + 1 − u/2) = 2(−1)k+1

k! , k ∈ N0.

This implies the result. �
In Section 4 we will comment on the relation between Theorem 2.1 and some results from the literature 

on Mathieu series.

3. Estimates for the polylogarithm and the Hurwitz zeta function

The Hurwitz zeta function is defined by

ζ(s, q) =
∞∑

n=0

1
(q + n)s , Re(s) > 1,Re(q) > 0, (3.1)

and can be extended to s ∈ C\{1} by analytic continuation. It is related to the polylogarithm by Jonquière’s 
formula [14]

Liα(z) = Γ(1 − α)
(2π)1−α

(
i1−αζ

(
1 − α,

1
2 + log(−z)

2πi

)
+ iα−1ζ

(
1 − α,

1
2 − log(−z)

2πi

))
, (3.2)

valid for z ∈ C \ [0, ∞) and α ∈ C \ N0. To ensure integrability of the Mellin transform in the proof of 
Theorem 2.1, we need a growth estimate for Liα(z), or equivalently for ζ(s, q), for large Im(α) resp. Im(s). 
A related estimate for the polylogarithm occurs in Lemma 2 of [6].

Proposition 3.1. Let Re(q) > 0 and θ1, θ2 > 0. Then there is an ε > 0 such that

ζ(s, q) = O
(

exp
(
(1
2π − ε)|Im(s)|

))
(3.3)

as |Im(s)| ↑ ∞, uniformly with respect to −θ1 ≤ Re(s) ≤ θ2. Similarly, for z ∈ C \ [1, ∞) and θ1, θ2 > 0
there is ε > 0 such that

Liα(z) = O
(

exp
(
(1
2π − ε)|Im(α)|

))
(3.4)

for −θ1 ≤ Re(α) ≤ θ2.

The proposition will be proved at the end of this section. For q ∈ (0, 1], (3.3) can be strengthened to a 
polynomial bound by §13.5 in [31], used in the Mathieu series context in [32]. This easily yields a polynomial 
bound instead of (3.4) under the additional assumption that |z| = 1 (see the proof of Proposition 3.1 below). 
We also mention that, for q ∈ (0, 1] and Re(s) ∈ [ 12 , 1], rather tight polynomial bounds for ζ(s, q) have been 
obtained [11,16,22,30]. However, for non-real q, it is not obvious how to adapt §13.5 in [31], which uses 
Hurwitz’ Fourier series for ζ(s, q). We thus use a different approach to prove (3.3), similar to p. 271 in [21].
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Lemma 3.2. Let Re(q) > 0 and θ1, θ2 > 0. Then

ζ(s, q) =
�|Im(s)|�∑

n=0
(n + q)−s + O

(
|Im(s)|θ1+1) (3.5)

as |Im(s)| ↑ ∞, uniformly with respect to −θ1 ≤ Re(s) ≤ θ2.

Proof. Define k := 	θ1/2
 + 1 and f(x) := (x + q)−s. By the Euler–Maclaurin formula, we have

b∑
n=a

(n + q)−s =
b∫

a

f(x)dx + 1
2
(
f(a) + f(b)

)

+
k∑

j=1

B2j

(2j)!
(
f (2j−1)(b) − f (2j−1)(a)

)
+

b∫
a

B2k+1(x− 	x
)
(2k + 1)! f (2k+1)(x)dx

for Re(s) > 1, where a ≤ b ∈ N0. As usual, the Bk denote Bernoulli numbers resp. polynomials. Since

f (m)(x) = (−1)m(s)m(x + q)−s−m, m ≥ 0,

where (s)m = s(s + 1) · · · (s + m − 1) is the Pochhammer symbol, we obtain

ζ(s, q) =
a−1∑
n=0

(n + q)−s + (a + q)1−s

s− 1 + 1
2(a + q)−s

+
k∑

j=1

B2j

(2j)! (s)2j−1(a + q)−s−2j+1

− (s)2k+1

(2k + 1)!

∞∫
a

B2k+1(x− 	x
)
(x + q)s+2k+1 dx (3.6)

for Re(s) > 1. By analytic continuation, this equality extends to s �= 1 with Re(s) > −2k. We now put

a := 	|Im(s)|


and consider a ↑ ∞ with the specified restriction −θ1 ≤ Re(s) ≤ θ2. Note that, by definition of k,

−2k = −2	θ1/2
 − 2 < −2(θ1/2 − 1) − 2 = −θ1,

and so (3.6) holds in a sufficiently large half-plane. Since

arg(a + q) = arctan Im(q)
a + Re(q) = O(1/a),

we have for any m ∈ {−2k − 1, . . . , 0, 1}

|(a + q)−s+m| = |a + q|m−Re(s)eIm(s) arg(a+q) = O(am−Re(s)). (3.7)

As Re(s) is bounded, we have (s)m = O(am). We use this, (3.7), and the boundedness of B2k+1(x − 	x
)
in (3.6) to get
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ζ(s, q) =
a−1∑
n=0

(n + q)−s + O(a1−Re(s))

=
a−1∑
n=0

(n + q)−s + O(aθ1+1). �

We now prove Proposition 3.1, using a crude estimate for the sum in (3.5), which suffices for our purposes.

Proof of Proposition 3.1. The sum in (3.5) can be estimated by
∑

0≤n≤|Im(s)|
|(n + q)−s| =

∑
0≤n≤|Im(s)|

|n + q|−Re(s)eIm(s) arg(n+q).

The factor

|n + q|−Re(s) ≤ max
{
(|Im(s)| + |q|)−Re(s), |q|−Re(s)

}
is of at most polynomial growth. Note that any polynomial factor does not affect the validity of (3.3), by 
possibly shrinking ε. Since Re(q) > 0, we have

| arg(n + q)| ≤ | arg(q)| < 1
2π, n ≥ 0.

This proves (3.3). It remains to prove (3.4). For z ∈ [0, 1), we obviously have |Liα(z)| ≤ ζ(α). The Riemann 
zeta function ζ(·) = ζ(·, 1) is of at most polynomial growth in any right half-plane (see p. 95 in [26]), and 
so we may from now on assume z ∈ C \ [0, ∞) and apply (3.2), with

Re(q±) = Re
(1

2 ± log(−z)
2πi

)
> 0.

The factor (2π)α−1 in (3.2) is clearly O(1), and

|i±(1−α)| = exp
(
± 1

2πIm(α)
)
.

By Stirling’s formula (see (2.4)), we have

Γ(1 − α) = O
(
|Im(α)|1/2−Re(α) exp(−1

2π|Im(α)|
))

.

Therefore, the exponential estimates contributed by Γ(1 − α) and i1−α in (3.2) cancel, and using (3.3)
in (3.2) proves (3.4). �
4. Trigonometric Mathieu series

When z = eix lies on the unit circle, then the real resp. imaginary part of (1.1) become Mathieu cosine 
resp. sine series. These, and their partial sums, were considered in [23]. In particular, several inequalities for 
trigonometric Mathieu series were proved there. For asymptotics in the large r regime, the following result 
immediately follows from Theorem 2.1, by putting z = eix.

Corollary 4.1. Let μ > 0 and x ∈ (0, 2π). As r ↑ ∞, we have the asymptotic expansions

∞∑ 2n cos(nx)
(n2 + r2)μ+1 ∼

∞∑
r−2k−2μ−2 2(−1)k Γ(k + μ + 1)

k! Γ(μ + 1) Re
(
Li−2k−1(eix)

)
(4.1)
n=1 k=0
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and
∞∑

n=1

2n sin(nx)
(n2 + r2)μ+1 ∼

∞∑
k=0

r−2k−2μ−2 2(−1)k Γ(k + μ + 1)
k! Γ(μ + 1)

Im
(
Li−2k−1(eix)

)
. (4.2)

In particular, setting x = π in (4.1) yields the alternating Mathieu series treated in [17] and [32]. It can 
be easily checked that this special case of (4.1) is consistent with (2.7) in [17]. To see this, note that

Li−2k−1(−1) = (22k+2 − 1)ζ(−2k − 1),

which follows from the basic relation

η(s) = (1 − 21−s)ζ(s)

between the Riemann zeta function and the Dirichlet eta function η(s) =
∑∞

n=1(−1)n+1n−s. Moreover, the 
parameter μ from [17] is our μ +1, and there is a typo in (2.7) of [17]: the summation should start at k = 0. 
(Besides, the last sum at the bottom of p. 6213 in [17] should be multiplied by −1.)

More generally, if x in (4.1) is a rational multiple of π, we can split the trigonometric Mathieu series into 
finitely many segments to which the following result from [32] can be applied.

Theorem 4.2. For a > 0, γ ∈ R, α > 0, μ > max{(γ + 1)/α, 0}, and −(γ + 1)/α /∈ N0, we have

∞∑
ν=0

(ν + a)γ

(y(ν + a)α + 1)μ ∼
Γ
(
γ+1
α

)
Γ
(
μ− γ+1

α

)
αΓ(μ) y−

γ+1
α

+
∞∑
k=0

(−1)k

k!
Γ(μ + k)

Γ(μ) ζ(−αk − γ, a) yk, y ↓ 0.

To see that Theorem 4.2 gives an alternative proof of (4.1) for x a rational multiple of π, let x = pπ/q

with p/q ∈ Q ∩ (0, 2). Then, putting y := (2q/r)2, we can write the left hand side of (4.1) as

∞∑
n=1

2n cos(nx)
(n2 + r2)μ+1 =

2q−1∑
m=0

∞∑
ν=0

2(2νq + m)(
(2νq + m)2 + r2

)μ+1 cos
(
2νpπ + mpπ

q

)

= 4qr−2μ−2
( ∞∑

ν=0

ν + 1(
y(ν + 1)2 + 1

)μ+1 +

2q−1∑
m=1

cos
(mpπ

q

) ∞∑
ν=0

ν + m/2q(
y(ν + m/2q)2 + 1

)μ+1

)

∼ 4qr−2μ−2

(
Γ(μ)

2Γ(μ + 1)y
−1 +

∞∑
k=0

(−1)k

k!
Γ(k + μ + 1)

Γ(μ + 1) ζ(−2k − 1)yk+

2q−1∑
m=1

cos
(mpπ

q

)( Γ(μ)
2Γ(μ + 1)y

−1 +
∞∑
k=0

(−1)k

k!
Γ(k + μ + 1)

Γ(μ + 1) ζ(−2k − 1, m
2q )yk

))

= 22k+2q2k+1
∞∑
k=0

r−2k−2μ−2 (−1)k

k!
Γ(k + μ + 1)

Γ(μ + 1)

(
ζ(−2k − 1)+

2q−1∑
m=1

cos
(mpπ

q

)
ζ(−2k − 1, m

2q )
)
, (4.3)
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where the asymptotic expansion follows from Theorem 4.2, with μ replaced by μ + 1, γ = 1, α = 2, and 
a = 1 resp. a = 2m/q, and

2q−1∑
m=0

cos
(mpπ

q

)
= 0

was used in the last equality. Now (4.1) for x = pπ/q easily follows from (4.3). Note that

Liα(eipπ/q) = (2q)−αζ(α) + (2q)−α

2q−1∑
m=1

eimpπ/qζ(α,m/2q), α �= 1,

which we apply with α = −2k − 1. The latter (well-known) identity easily follows from (1.2) and (3.1) by 
analytic continuation. Clearly, the sine series (4.2) can be treated analogously.

We now comment on a different asymptotic regime for trigonometric Mathieu series, namely x ↓ 0 for 
r > 0 fixed. For the series in (4.1) and (4.2), such an expansion can be obtained using again the Mellin 
transform approach. However, this would require an analysis of the singularity structure of the Dirichlet 
series 

∑∞
k=1 k

−s(k2 + r2)−(μ+1), which is doable, but deferred to future work. First order asymptotics, 
however, follow from known results, even for the more general Mathieu-type sine series

S̃γ,δ
α,β,μ(r, x) :=

∞∑
n=2

nα(logn)γ sin(nx)(
nβ(logn)δ + r2

)μ+1 . (4.4)

The corresponding series without the factor sin(nx) was introduced in [12]. The coefficients of the series (4.4)
behave roughly like nα−β(μ+1), and the asymptotic behavior is markedly different for α − β(μ + 1) < −2
and α− β(μ + 1) > −2.

Proposition 4.3. Let μ, r ≥ 0 and α, β, γ, δ ∈ R such that

0 ≤ θ := β(μ + 1) − α < 2.

If θ = 0, then we assume that γ − δ(μ + 1) < 0. For x ↓ 0, we have

S̃γ,δ
α,β,μ(r, x) ∼

⎧⎪⎪⎨
⎪⎪⎩

π

2Γ(θ) sin(πθ/2)x
θ−1

(
log 1

x

)γ−δ(μ+1)
0 < θ < 2,

1
x

(
log 1

x

)γ−δ(μ+1)
θ = 0.

Proof. As the coefficient sequence

an = nα(logn)γ(
nβ(logn)δ + r2

)μ+1 (4.5)

eventually decreases, the series is convergent for x ∈ (0, π) (see p. 3 in [33]). First assume θ = 0. Since 
powers of logarithms are slowly varying, and asymptotic equivalence preserves slow variation, the sequence

an ∼ (logn)γ−δ(μ+1), n → ∞,

is slowly varying. See [2,3] for more information on slow variation. Moreover, it is easy to see that the second 
derivative of (4.5) does not change sign for n sufficiently large, and so an is eventually convex or eventually 
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concave. We can thus apply the corollary on p. 48 of Telyakovskĭı [25] (with an replaced by −an in case of 
concavity) to conclude that

S̃γ,δ
α,β,μ(r, x) ∼ am/x, x ↓ 0, x ∈

( π

m + 1 ,
π

m

]
,

where we note that in [25] asymptotic equivalence is denoted by ≈ and not by ∼. Since m = �π/x� =
π/x + O(1), the statement easily follows.

For θ > 0, the sequence

an ∼ n−θ(logn)γ−δ(μ+1), n → ∞,

is regularly varying with index −θ. Recall that this means that limn→∞ a�λn�/an = λ−θ for λ > 0 (see [2,3]). 
Thus, our assertion is an immediate consequence of Theorem 1 in [1]. Note that it is easy to see that nθan is 
eventually decreasing, as assumed in that theorem. However, the required implication is true even without 
this condition; see [4] for this, and for further references. �

If θ = β(μ +1) −α is larger than 2, we can use a result of Hartman and Wintner [13]. Unlike Proposition 4.3, 
the parameter r now appears in the first asymptotic term, and there is no logx term. Essentially, the series 
now converges fast enough to justify exchanging summation and the asymptotic equivalence sin(nx) ∼ nx.

Proposition 4.4. Let μ, r ≥ 0 and α, β, γ, δ ∈ R such that θ = β(μ + 1) − α > 2. Then we have

S̃γ,δ
α,β,μ(r, x) ∼ x

∞∑
n=2

nα+1(logn)γ(
nβ(logn)δ + r2

)μ+1 , x ↓ 0.

Proof. According to [13], for a decreasing sequence an ↓ 0 with 
∑

nan < ∞, we have

∞∑
n=1

an sin(nx) ∼ x
∞∑

n=1
nan, x ↓ 0.

The sequence (4.5) decreases for large n, say for n ≥ n0. By considering the sequence ãn = an01n≤n0 +
an1n>n0 , it is very easy to see that “decreasing” can be replaced by “eventually decreasing” in the above 
statement. This implies the assertion. �

The series

∞∑
n=2

(logn!)α(
(logn!)β + r2

)μ+1

was considered in Corollary 7.1 of [12]. The corresponding sine series can be analyzed analogously to the 
preceding propositions. By Stirling’s formula,

(logn!)α(
(logn!)β + r2

)μ+1 ∼ (n log n)−θ, n → ∞,

and so the coefficients are regularly varying. In particular, for θ = β(μ + 1) − α > 2, we can proceed as in 
Proposition 4.4 to obtain

∞∑ (logn!)α sin(nx)(
β 2

)μ+1 ∼ x
∞∑ n(logn!)α)(

β 2
)μ+1 , x ↓ 0.
n=2 (logn!) + r n=2 (logn!) + r
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The paper [24] contains several estimates that can be applied to Mathieu sine series. For instance, it was 
proved there (Corollary 2) that

π∫
0

∣∣∣ n∑
k=1

ak sin(kx)
∣∣∣dx =

n∑
k=1

ak
k

+ O(a1)

for coefficient sequences an ↓ 0. This result can be readily applied to our Mathieu sine series, with obvious 
constraints on the parameters to ensure monotonicity of the coefficient sequence. Moreover, Ul’yanov [29]
studied convergence in the Lp-quasinorm for p ∈ (0, 1), for both sine and cosine series, which yields the 
following result.

Proposition 4.5. Let μ, r ≥ 0 and α, β, γ, δ ∈ R such that θ = β(μ + 1) − α ≥ 0. If θ = 0, then we assume 
that γ − δ(μ + 1) < 0. We write S̃γ,δ

α,β,μ(r, x; n) for the n-th partial sum of the series (4.4). Then

lim
n→∞

π∫
−π

∣∣S̃γ,δ
α,β,μ(r, x) − S̃γ,δ

α,β,μ(r, x;n)
∣∣pdx = 0, p ∈ (0, 1).

The same result holds for the corresponding cosine series.

Proof. The coefficient sequence (4.5) eventually decreases. Therefore, it is of bounded variation, which by 
definition means that 

∑
|Δan| < ∞. Thus, both assertions are immediate from [29]. �

Finally, we mention that L1-convergence of the Mathieu-type cosine series

Sγ,δ
α,β,μ(r, x) :=

∞∑
n=2

nα(logn)γ cos(nx)(
nβ(logn)δ + r2

)μ+1 , (4.6)

follows from a result in [27].

Proposition 4.6. Let μ, r ≥ 0 and α, β, γ, δ ∈ R such that either

α− β(μ + 1) < 0

or

α = β = 0 and γ − δ(μ + 1) < −1.

Then the series (4.6) converges in L1(0, π).

Proof. As noted above, the coefficient sequence (4.5) of the series Sγ,δ
α,β,μ(r, x) is regularly varying. According 

to [27], it then suffices to verify that an logn → 0. But this easily follows from our assumption on the 
parameters. �

As for the asymptotic behavior of the cosine series Sγ,δ
α,β,μ(r, x) for x ↓ 0, we can use Theorem 2.1 of [4]

(going back to Zygmund) in the case 0 < θ = β(μ + 1) − α < 1. For θ outside of this interval, the other 
results for sine series we used in Propositions 4.3 and 4.4 seem not to be available for cosine series so far.
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