Approximation and Aggregation of Risks by Variants of Panjer’s Recursion

Uwe Schmock
Vienna University of Technology, Austria

Version of Slides: Feb. 8, 2013

Presentation based on joint work with Stefan Gerhold and Richard Warnung and work in progress with Cordelia Rudolph

Financial support: OeNB, Bank Austria, OeKB, CDG, WWTF, ...
Outline

1. Collective risk model and variants of Panjer’s recursion
 - Review of Panjer’s recursion and numerical stability
 - Panjer’s recursion complemented by weighted convolution
 - Application to several Poisson mixtures

2. Poisson mixtures with generalized gamma convolutions
 - Generalized gamma convolutions
 - Error bounds and approximation
 - Examples

3. Several dependent collective risk models
 - Claim numbers and random scenarios of linear dependence
 - Equivalent stochastic representation of claim numbers
 - Application to recursive algorithms
The collective model of risk theory

Task: Calculate (fast and in a numerically stable way if possible) the distribution of the random sum

\[S = \sum_{n=1}^{N} X_n \]

where

- \(\{X_n\}_{n \in \mathbb{N}} \) is a sequence of \(\mathbb{N}_0 \)-valued i.i.d. random variables,
- \(N \) is an \(\mathbb{N}_0 \)-valued random variable independent of \(\{X_n\}_{n \in \mathbb{N}} \).

Applications:

- \(N \) insurance claims with sizes \(X_1, X_2, \ldots \)
- \(N \) credit losses, \(X_n \) equals the loss given default minus recovery
- \(N \) operational losses with sizes \(X_1, X_2, \ldots \)
The simple-minded solution

Start with $S_1 := X_1$ and calculate the distribution of

$$S_k := X_1 + \cdots + X_k = S_{k-1} + X_k \quad \text{for } k \geq 2$$

recursively by convolution (due to independence of S_{k-1} and X_k)

$$P(S_k = n) = \sum_{j=0}^{n} P(S_{k-1} = n-j) P(X_k = j), \quad n \in \mathbb{N}_0.$$

For the distribution of $S = \sum_{k=1}^{N} X_k = S_N$, due to independence of N and $\{S_k\}_{k \in \mathbb{N}}$, just sum up

$$P(S = n) = \sum_{k=0}^{\infty} P(N = k) P(S_k = n), \quad n \in \mathbb{N}_0.$$

This is numerically stable but very time consuming.
More sophisticated approaches

- **Approximations** based on clever use of limit theorems (cf. textbooks on risk theory).

- **Fast Fourier Transform (FFT):** Can be problematic for heavy-tailed distributions (see later).

- **FFT with exponential tilting:** Critical choice of tilting parameter, numerical instabilities are possible (see later).

I will concentrate on:

- **Recursive methods**, in particular variants and extensions involving Panjer’s recursion.
 → Requires restrictions on the distribution of claim number N.
Panjer class distributions (for claim number N)

Definition

A probability distribution $\{q_n\}_{n \in \mathbb{N}_0}$ is in the Panjer(a, b, k) class with $a, b \in \mathbb{R}$ and $k \in \mathbb{N}_0$ if $q_0 = q_1 = \cdots = q_{k-1} = 0$ and

$$q_n = \left(a + \frac{b}{n}\right)q_{n-1} \quad \text{for all } n \in \mathbb{N} \text{ with } n \geq k + 1.$$

Note: Same distribution on both sides, see later ...

Determination of all distributions:

- $k = 0$: Sundt and Jewell (1981)
- $k = 1$: Willmot (1988)
- General $k \in \mathbb{N}_0$: Hess, Liewald and Schmidt (2002)
Basic Panjer class distributions

- \(\text{Bin}(m, p) \in \text{Panjer}(p, -\frac{m+1}{q}p, 0) \) with \(m \in \mathbb{N} \) and \(p \in [0, 1) \)

- \(\text{Poisson}(\lambda) \in \text{Panjer}(0, \lambda, 0) \) with \(\lambda \geq 0 \)

- \(\text{NegBin}(\alpha, p) \in \text{Panjer}(q, (\alpha - 1)q, 0) \) with \(\alpha > 0 \) and \(p \in (0, 1) \)

- \(\text{Log}(q) \in \text{Panjer}(q, -q, 1) \) with \(q \in (0, 1) \) and \(q_n = -\frac{q^n}{n \log(1-q)} \) for all \(n \in \mathbb{N} \)

- Extended logarithmic distribution: Given \(k \in \mathbb{N} \setminus \{1\} \) and \(q \in (0, 1] \), define \(q_0 = \cdots = q_{k-1} = 0 \) and

\[
q_n = \frac{(n)_k^{-1} q^n}{\sum_{l=k}^{\infty} (l)_k^{-1} q^l} \quad \text{for } n \geq k.
\]

\(\text{ExtLog}(k, q) \) is in \(\text{Panjer}(q, -kq, k) \), has heavy tails for \(q = 1 \). Closed-form expression for the series is available in our paper.
Basic Panjer class distributions (cont.)

- **Extended Negative Binomial Distribution**: For \(k \in \mathbb{N} \), \(\alpha \in (-k, -k + 1) \) and \(p \in [0, 1) \) define \(q = 1 - p \), \(q_0 = \cdots = q_{k-1} = 0 \) and
 \[
 q_n = \frac{(\alpha + n - 1) q^n}{p^{-\alpha} - \sum_{j=0}^{k-1} \binom{\alpha+j-1}{j} q^j} \quad \text{for } n \geq k.
 \]

 \(\text{ExtNegBin}(\alpha, k, p) \) is in \(\text{Panjer}(q, (\alpha - 1)q, k) \). It has heavy tails for \(q = 1 \), which is good for reinsurance companies.

Theorem (Hess, Liewald and Schmidt, 2002)

Let \(Q = \{q_n\}_{n \in \mathbb{N}_0} \) be non-degenerate. Then are equivalent:

- \(Q \) is in \(\text{Panjer}(a, b, k) \).
- \(Q \) is the \(k \)-truncation of a basic \(\text{Panjer}(a, b, k') \) distribution \(Q' = \{q'_n\}_{n \in \mathbb{N}_0} \) with \(k' \leq k \) and \(c := \sum_{n=k}^{\infty} q'_n > 0 \), i.e., \(q_n = 0 \) for \(n \in \{0, 1, \ldots, k-1\} \) and \(q_n = q'_n / c \) for all \(n \geq k \).

Assume that the probability distribution \{q_n\}_{n \in \mathbb{N}_0} of \(N \) belongs to the Panjer\((a, b, k)\) class and \(\mathbb{P}(X_1 = 0) \neq 1 \). Then the distribution \{p_n\}_{n \in \mathbb{N}_0} of \(S = X_1 + \cdots + X_N \) can be calculated by

\[
p_0 = \varphi_N(\mathbb{P}(X_1 = 0)) = \begin{cases}
q_0 & \text{if } \mathbb{P}(X_1 = 0) = 0, \\
\mathbb{E}[((\mathbb{P}(X_1 = 0))^N] & \text{otherwise},
\end{cases}
\]

where \(\varphi_N(s) = \sum_{n \in \mathbb{N}_0} q_n s^n \) is the probability generating function of \(N \), and the recursion formula

\[
p_n = \frac{1}{1 - a \mathbb{P}(X_1 = 0)} \left(\mathbb{P}(S_k = n) q_k + \sum_{j=1}^n \left(a + \frac{bj}{n} \right) \mathbb{P}(X_1 = j) p_{n-j} \right)
\]

for all \(n \in \mathbb{N} \), where \(S_k := X_1 + \cdots + X_k \).
Historical comment on Panjer’s recursion

For $\alpha \in \mathbb{R}$ and a power series $f(s) = \sum_{k=0}^{\infty} a_k s^k$ with $a_0 \neq 0$, the coefficients $\{b_n\}_{n \in \mathbb{N}_0}$ of the power series $f^{-\alpha}(s)$ satisfy the recursion

$$b_n = \frac{1}{na_0} \sum_{k=1}^{n} ((1 - \alpha)k - n) a_k b_{n-k}, \quad n \in \mathbb{N}.$$

Gould (1974) has traced this remarkable, often rediscovered recurrence back to Euler (1748). Using the probability generating functions of the binomial, negative binomial, and extended negative binomial claim number distributions and $\varphi S = \varphi N \circ \varphi X_1$, the above formula applied to $f(s) = 1 - q \varphi X_1(s)$ gives the corresponding Panjer recursions.

Panjer (1981) introduced the recursion to actuarial science.
Numerical stability of Panjer’s recursion

Panjer’s recursion is certainly numerically stable when

\[a + \frac{bj}{n} \geq 0 \text{ for all } j \in \{1, \ldots, n\}. \]

This is the case when \(a \geq 0 \) and \(b \geq -a \), hence for

- Poisson distribution,
- Negative binomial distribution,
- Logarithmic distribution,
- Truncations of the above.

It is potentially unstable for

- Binomial distribution,
- Extended negative binomial distribution,
- Extended logarithmic distribution.
Take $N \sim \text{ExtNegBin}(\alpha, k, p)$ with $k \in \mathbb{N}$, $\varepsilon, p \in (0, 1)$ and $\alpha = -k + \varepsilon$. Consider the loss distribution $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = l) = 1/2$ with $l \geq 3$. Then

$$p_{k+l} = q \frac{k(l - 1) + \varepsilon k}{k + l} \left(\frac{q_k}{2^{k+1}} + \frac{q_{k+l-1}}{k 2^{k+l}} \right)$$

$$- q \frac{k(l - 1) - \varepsilon l}{k + l} \frac{q_k}{2^{k+1}}.$$

With $\varepsilon = 1/10000$, $k = 1$, $l = 5$, $p = 1/10$:

$$p_6 = 0.1499926 - 0.1499701 = 0.0000225.$$

Panjer’s recursion with five significant digits gives

$$p_6 = 0.0000400 \ldots$$
Collective risk model and variants of Panjer’s recursion
Poisson mixtures with generalized gamma convolutions
Several dependent collective risk models

Panjer’s recursion complemented by weighted convolution

Theorem (Gerhold, S., Warnung, 2010)

Fix \(l \in \mathbb{N} \), consider \(N \sim \{q_n\}_{n \in \mathbb{N}_0} \) and \(\tilde{N}_i \sim \{\tilde{q}_{i,n}\}_{n \in \mathbb{N}_0} \) such that
\[\tilde{q}_{i,0} = \cdots = \tilde{q}_{i,k+l-i-1} = 0 \]
for all \(i \in \{1, \ldots, l\} \) and one \(k \in \mathbb{N}_0 \).
Assume that there exist \(a_1, \ldots, a_l, b_1, \ldots, b_l \in \mathbb{R} \) such that
\[
q_n = \sum_{i=1}^{l} \left(a_i + \frac{b_i}{n} \right) \tilde{q}_{i,n-i} \quad \text{for } n \geq k + l.
\]

Define \(S = X_1 + \cdots + X_N \sim \{p_n\}_{n \in \mathbb{N}_0} \) and
\(\tilde{S}_{(i)} = X_1 + \cdots + X_{\tilde{N}_i} \sim \{\tilde{p}_{i,n}\}_{n \in \mathbb{N}_0} \) for \(i \in \{1, \ldots, l\} \).
Then \(p_0 = \varphi_N(\mathbb{P}(X_1 = 0)) \) and, for \(n \in \mathbb{N} \),
\[
p_n = \sum_{j=1}^{k+l-1} \mathbb{P}(S_j = n) q_j + \sum_{i=1}^{l} \sum_{j=0}^{n} \left(a_i + \frac{b_i j}{i n} \right) \mathbb{P}(S_i = j) \tilde{p}_{i,n-j}.
\]
Lemma (Gerhold, S., Warnung, 2010)

Fix $k \in \mathbb{N}_0$, $l \in \mathbb{N}$. For all $i \in \{1, \ldots, l\}$ assume that $\alpha_i \geq 0$, $\beta_i \geq -i \alpha_i$ (at least one \neq) and that the \mathbb{N}_0-valued \tilde{N}_i satisfies $\mathbb{P}(\tilde{N}_i < k + l - i) = 0$. Consider $q_0, \ldots, q_{k+l-1} \geq 0$ with $q_0 + \cdots + q_{k+l-1} \leq 1$. Define

$$q_n = c \sum_{i=1}^{l} \left(\alpha_i + \frac{\beta_i}{n} \right) \mathbb{P}(\tilde{N}_i = n - i) \quad \text{for } n \geq k + l,$$

$$c = \left(1 - \sum_{n=0}^{k+l-1} q_n \right) \Big/ \sum_{i=1}^{l} \left(\alpha_i + \beta_i \mathbb{E} \left[\frac{1}{i + \tilde{N}_i} \right] \right).$$

Then $\{q_n\}_{n \in \mathbb{N}_0}$ is a probability distribution satisfying the recursion condition of the theorem with $a_i = c \alpha_i$ and $b_i = c \beta_i$ and the calculation of $\{p_n\}_{n \in \mathbb{N}_0}$ is numerically stable.
Corollary

Let $k \in \mathbb{N}$ and $q \in (0, 1)$. Let $N \sim \text{ExtLog}(k + 1, q)$ and $\tilde{N} \sim \text{ExtLog}(k, q)$, where $\text{ExtLog}(1, q)$ means $\text{Log}(q)$.

Define $S = X_1 + \cdots + X_N$ and $\tilde{S} = X_1 + \cdots + X_{\tilde{N}}$.

Then, with an explicit $b_1 > 0$,

$$
\mathbb{P}(S = n) = \frac{b_1}{n} \sum_{j=1}^{n} j \mathbb{P}(X_1 = j) \mathbb{P}(\tilde{S} = n - j), \quad n \in \mathbb{N}.
$$

Algorithm (for $\text{ExtLog}(k, q)$, numerically stable, $q \neq 1$)

- Panjer’s recursion for $N \sim \text{Log}(q)$
- $k - 1$ weighted convolutions: $\text{Log}(q) \rightarrow \text{ExtLog}(2, q) \rightarrow \cdots \rightarrow \text{ExtLog}(k - 1, q) \rightarrow \text{ExtLog}(k, q)$
Numerically stable algorithm for ExtLog(2, q) with q = 1

Lemma (Gerhold, S., Warnung, 2010)

Let $N \sim \text{ExtLog}(2, 1)$. For $S = X_1 + \cdots + X_N$ we have

$$
\mathbb{P}(S = 0) = \mathbb{P}(X_1 = 0) + \mathbb{P}(X_1 \geq 1) \log \mathbb{P}(X_1 \geq 1)
$$

with $0 \log 0 := 0$ and, in the case $\mathbb{P}(X_1 \geq 1) > 0$,

$$
\mathbb{P}(S = n) = \frac{1}{n} \sum_{j=1}^{n} j \mathbb{P}(X_1 = j) r_{n-j}, \quad n \in \mathbb{N},
$$

where $r_0 = - \log \mathbb{P}(X_1 \geq 1)$ and, recursively for $n \in \mathbb{N}$,

$$
r_n = \frac{1}{\mathbb{P}(X_1 \geq 1)} \left(\mathbb{P}(X_1 = n) + \frac{1}{n} \sum_{j=1}^{n-1} j \mathbb{P}(X_1 = n-j) r_j \right).
$$
Weighted convolution for extended negative binomial dist.

Corollary

Let $k \in \mathbb{N}_0$, $\alpha \in (-k, -k + 1)$ and $p \in (0, 1)$. Let $N \sim \text{ExtNegBin}(\alpha - 1, k + 1, p)$ and $\tilde{N} \sim \text{ExtNegBin}(\alpha, k, p)$, where $\text{ExtNegBin}(\alpha, 0, p) := \text{NegBin}(\alpha, p)$. Let $S = X_1 + \cdots + X_N$ and $\tilde{S} = X_1 + \cdots + X_{\tilde{N}}$. Then, with an explicit $b_1 > 0$,

\[
\mathbb{P}(S = n) = \frac{b_1}{n} \sum_{j=1}^{n} j \mathbb{P}(X_1 = j) \mathbb{P}(\tilde{S} = n - j), \quad n \in \mathbb{N}.
\]

Algorithm (for $\text{ExtNegBin}(\alpha, k, p)$, numerically stable, $p \neq 0$)

- Panjer recursion for $N \sim \text{NegBin}(\alpha + k, p)$

- k weighted convolutions:
 NegBin($\alpha + k, p$) \rightarrow ExtNegBin($\alpha + k - 1, 1, p$) \rightarrow \cdots \rightarrow ExtNegBin($\alpha + 1, k - 1, p$) \rightarrow ExtNegBin(α, k, p)
Lemma (Gerhold, S., Warnung, 2010)

Let $N \sim \text{ExtNegBin}(\alpha - 1, 1, 0)$ with $\alpha \in (0, 1)$. For $S = X_1 + \cdots + X_N$ we have

$$
\mathbb{P}(S = 0) = 1 - \left(\mathbb{P}(X_1 \geq 1)\right)^{1-\alpha}
$$

and in the non-trivial case $\mathbb{P}(X_1 \geq 1) > 0$

$$
\mathbb{P}(S = n) = \frac{1 - \alpha}{n} \sum_{j=1}^{n} j \mathbb{P}(X_1 = j) r_{n-j}, \quad n \in \mathbb{N},
$$

where $r_0 = \left(\mathbb{P}(X_1 \geq 1)\right)^{-\alpha}$ and, recursively for $n \in \mathbb{N}$,

$$
\frac{n}{r_n} = \frac{\sum_{j=1}^{n} \frac{n - j + \alpha j}{n} \mathbb{P}(X_1 = j) r_{n-j}}{\mathbb{P}(X_1 \geq 1)}
$$

Application: Poisson–tempered-α-stable mixtures

Definition (τ-tempered α-stable distribution $F_{\alpha,\sigma,\tau}$)

For index $\alpha \in (0, 1)$, scale $\sigma > 0$ and tempering $\tau \geq 0$ define

$$F_{\alpha,\sigma,\tau}(y) := \frac{\mathbb{E}[e^{-\tau Y} 1\{Y \leq y\}]}{\mathbb{E}[e^{-\tau Y}]}, \quad y \in \mathbb{R}.$$

where Y is α-stable on $[0, \infty)$ with Laplace transform

$$\mathbb{E}[\exp(-sY)] = \exp(-\gamma_{\alpha,\sigma}s^\alpha)$$

for $s \geq 0$, where

$$\gamma_{\alpha,\sigma} = \frac{\sigma^\alpha}{\cos(\alpha\pi/2)}.$$

Theorem (Gerhold, S., Warnung, 2010)

Let $\Lambda \sim F_{\alpha,\sigma,\tau}$ and $L(N|\Lambda)$ a.s. Poisson$(\lambda \Lambda)$ with $\lambda > 0$. Then

$$N \overset{d}{=} N_1 + \cdots + N_M$$

with independent $M \sim \text{Poisson}(\gamma_{\alpha,\sigma}((\lambda + \tau)^\alpha - \tau^\alpha))$ and $N_m \sim \text{ExtNegBin}(-\alpha, 1, \frac{\tau}{\lambda + \tau})$ for $m \in \mathbb{N}$.
Let $\Lambda \sim F_{\alpha, \sigma, \tau}$ and $\mathcal{L}(N|\Lambda) \overset{a.s.}{=} \text{Poisson}(\lambda \Lambda)$ with $\lambda > 0$. Then the stochastic representation $N \overset{d}{=} N_1 + \cdots + N_M$ leads to

$$S = \sum_{j=1}^{N} X_j \overset{d}{=} \sum_{i=1}^{M} \sum_{j=N_1+\cdots+N_{i-1}+1}^{N_i} X_j = \sum_{i=1}^{M} \sum_{j=1}^{N_i} X_{i,j},$$

where $\{X_{i,j}\}_{i,j \in \mathbb{N}}$ are i.i.d. with $X_{i,j} \overset{d}{=} X_1$.

Algorithm (numerically stable, $\tau \neq 0$)

- **Panjer recursion for $\tilde{N} \sim \text{NegBin}(1 - \alpha, \frac{\tau}{\lambda + \tau})$**
- **Weighted convolution**: $N_1 \sim \text{ExtNegBin}(-\alpha, 1, \frac{\tau}{\lambda + \tau})$
- **Panjer recursion for $M \sim \text{Poisson}(\gamma_{\alpha, \sigma}((\lambda + \tau)^\alpha - \tau^\alpha))$**

If $\tau = 0$, use the special algorithm for $N_1 \sim \text{ExtNegBin}(-\alpha, 1, 0)$.
Examples for τ-tempered $\frac{1}{2}$-stable distributions

Definition (Lévy distribution with scale parameter $\sigma > 0$)

A density of $F_{1/2,\sigma,0}$ is

$$f_{\text{Lévy},\sigma}(x) = \left(\frac{\sigma}{2\pi x^3}\right)^{1/2} \exp\left(-\frac{\sigma}{2x}\right), \quad x > 0.$$

Definition (inverse Gaussian distribution, parameters $\mu, \tilde{\sigma} > 0$)

Define $\sigma = \mu^2 / \tilde{\sigma}^2$ and $\tau = 1/(2\tilde{\sigma}^2)$. A density of $F_{1/2,\sigma,\tau}$ is

$$f_{\text{IG},\mu,\tilde{\sigma}}(x) = \frac{\mu}{\sqrt{2\pi \tilde{\sigma}^2 x^3}} \exp\left(-\frac{(x - \mu)^2}{2\tilde{\sigma}^2 x}\right), \quad x > 0.$$
Additional examples of probability distributions for the Poisson mixture we can handle

- Generalized \(\tau \)-tempered \(\alpha \)-stable distributions
 (one additional parameter \(m \in \mathbb{N}_0 \))

- Inverse gamma distribution
 (with half-integer shape parameter)

- Generalized inverse Gaussian distribution
 (with additional half-integer parameter \(m + \frac{1}{2} \))

With an additional convolution:

- Reciprocal generalized inverse Gaussian distribution
 (with additional half-integer parameter \(m + \frac{1}{2} \))
1 Collective risk model and variants of Panjer’s recursion
- Review of Panjer’s recursion and numerical stability
- Panjer’s recursion complemented by weighted convolution
- Application to several Poisson mixtures

2 Poisson mixtures with generalized gamma convolutions
- Generalized gamma convolutions
- Error bounds and approximation
- Examples

3 Several dependent collective risk models
- Claim numbers and random scenarios of linear dependence
- Equivalent stochastic representation of claim numbers
- Application to recursive algorithms
Definition of a generalized gamma convolution

These distributions arise as the weak limit of sums of independent gamma distributed random variables.

An \((a, U)\)-generalized gamma convolution \((g.g.c.)\) is a probability distribution \(F\) on \(\mathbb{R}_+ = [0, \infty)\) with moment generating function

\[
M(s) = \int_0^\infty e^{sx} F(dx) = \exp \left(as + \int_{(0,\infty)} \ln \left(\frac{t}{t - s} \right) U(dt) \right),
\]

for \(s \leq 0\), where \(a \geq 0\) and \(U\) is a locally finite non-negative measure on \((0, \infty)\) satisfying

\[
\int_{(0,1]} |\ln t| U(dt) < \infty, \quad \int_{(1,\infty)} \frac{1}{t} U(dt) < \infty.
\]
Consider a finite sum $Y = a + \sum_{j=1}^{n} Y_j$ with $a \geq 0$ of independent random variables with $Y_j \sim \text{Gamma}(\alpha_j, \beta_j), j \in \{1, \ldots, n\}$. Then

$$\mathbb{E}[e^{sY}] = e^{as} \prod_{j=1}^{n} \left(\frac{\beta_j}{\beta_j - s} \right)^{\alpha_j} = \exp \left(as + \sum_{j=1}^{n} \alpha_j \ln \left(\frac{\beta_j}{\beta_j - s} \right) \right)$$

for $s < \min\{\beta_1, \ldots, \beta_n\}$, hence $U = \sum_{j=1}^{n} \alpha_j \delta_{\beta_j}$.

- Pareto distribution, τ-tempered α-stable distribution, lognormal distribution, inverse Gaussian distribution, etc.
A closure theorem

This theorem is useful for the construction of an approximation.

Let \(\{F_n\}_{n \in \mathbb{N}} \) be a sequence of \((a_n, U_n)\)-generalized gamma convolutions and \(F \) a probability distribution. Then \(\{F_n\}_{n \in \mathbb{N}} \) converges weakly to \(F \) as \(n \to \infty \) and \(F \) is an \((a, U)\)-generalized gamma convolution if and only if

1. \(U_n \to U \) vaguely on \((0, \infty)\) as \(n \to \infty \),
2. \(a = \lim_{A \to \infty} \lim_{n \to \infty} \left(a_n + \int_{(A, \infty)} \frac{1}{t} U_n(dt) \right) \),
3. \(\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} \int_{(0, \varepsilon)} |\ln t| U_n(dt) = 0 \).
Approximation by finite gamma convolutions

Proposition

For every \((a, U)\)-generalized gamma convolution \(F\) with \(\Lambda \sim F\) there exists a weakly convergent sequence \(\{\Lambda_n\}_{n \in \mathbb{N}} \sim \{F_n\}_{n \in \mathbb{N}}\) of \((a, U_n)\)-generalized gamma convolutions with

\[
U_n = \sum_{i=1}^{n} \alpha_i^{(n)} \delta_{\beta_i^{(n)}},
\]

which converges vaguely to \(U\) as \(n \to \infty\). Then

\[
F_n = \delta_a \ast \text{Gamma}(\alpha_1^{(n)}, \beta_1^{(n)}) \ast \cdots \ast \text{Gamma}(\alpha_n^{(n)}, \beta_n^{(n)}).
\]
Lemma (Rudolph & S.)

Fix $\lambda > 0$. Let Λ and Λ_n as in the Proposition. For each $n \in \mathbb{N}$ let N_n be a random variable such that $\mathcal{L}(N_n | \Lambda_n) \overset{a.s.}{=} \text{Poisson}(\lambda \Lambda_n)$ and

$$M_n := P + \sum_{j=1}^{n} R_j^{(n)},$$

where $P \sim \text{Poisson}(a)$ and

$$R_j^{(n)} \sim \text{NegBin}\left(\alpha_j^{(n)}, \frac{1}{1+\lambda/\beta_j^{(n)}}\right), \quad j \in \{1, \ldots, n\},$$

are independent. Then $M_n \overset{d}{=} N_n$ for all $n \in \mathbb{N}$ and $\{N_n\}_{n \in \mathbb{N}}$ converges weakly to some random variable N satisfying

$$\mathcal{L}(N | \Lambda) \overset{a.s.}{=} \text{Poisson}(\lambda \Lambda).$$
Total variation distance for Poisson–g.g.c. mixtures (I)

Assumption

1. \(\lambda > 0 \) and \(\Lambda \) denotes an \((a, U)\)-g.g.c. and \(\Psi \) a \((b, V)\)-g.g.c.,

2. \(\int_{(0,T]} \frac{U(dt)}{t+\lambda} \geq \int_{(0,T]} \frac{V(dt)}{t+\lambda} \) for all \(T > 0 \),

3. the random variables \(N \) and \(M \) satisfy

\[\mathcal{L}(N|\Lambda) \overset{a.s.}{=} \text{Poisson}(\lambda \Lambda) \quad \text{and} \quad \mathcal{L}(M|\Psi) \overset{a.s.}{=} \text{Poisson}(\lambda \Psi), \]

4. \(\{X_i\}_{i \in \mathbb{N}} \) is a sequence of i.i.d. non-negative random variables independent of \(N \) and \(M \),

5. \(S := \sum_{i=1}^{N} X_i \) and \(T := \sum_{i=1}^{M} X_i \).

Remark

Assumption 2 is satisfied if \(U((0, T]) \geq V((0, T]) \) for all \(T > 0 \).
Total variation distance for Poisson–g.g.c. mixtures (II)

Theorem (Rudolph & S.)

Let the assumption be satisfied. Then the total variation distance is

\[
d_{TV}(\mathcal{L}(S), \mathcal{L}(T)) \leq \frac{3}{2} |\mu' - \nu'| + \frac{\mu - \nu}{2} + \frac{\lambda |a\nu' - b\mu'|}{2\nu'} ,
\]

where

\[
\mu = \int_{(0,\infty)} \ln \left(\frac{t + \lambda}{t} \right) U(dt) , \quad \nu = \int_{(0,\infty)} \ln \left(\frac{t + \lambda}{t} \right) V(dt) ,
\]

\[
\mu' = \mu + a\lambda \quad \text{and} \quad \nu' = \nu + b\lambda.
\]

Remark

If \(a = b = 0 \), then \(d_{TV}(\mathcal{L}(S), \mathcal{L}(T)) \leq 2(\mu - \nu) \).
Sketch of the proof

- \(d_{TV}(\mathcal{L}(S), \mathcal{L}(T)) \leq d_{TV}(\mathcal{L}(M), \mathcal{L}(N)) \), see Lemma 3.1 in Chaudhuri and Vellaisamy (1996).

- Representation as compound Poisson distributions:
 Let \(M \sim \text{CPoi}(\nu', H) \) and \(N \sim \text{CPoi}(\mu', F) \).

- Applying Corollary 3.2 in Chaudhuri and Vellaisamy (1996) gives

\[
\begin{align*}
d_{TV}(\mathcal{L}(M), \mathcal{L}(N)) & \leq \min\{|\sqrt{\mu'} - \sqrt{\nu'}|, |\mu' - \nu'|\} \\
& + \min\{\mu', \nu'\}d_{TV}(F, H).
\end{align*}
\]

- Determine the distributions \(F \) and \(H \) using the moment generating function of \(\Lambda \) and \(\Psi \), respectively.
Lemma (Rudolph & S.)

- For $\lambda > 0$, $n \in \mathbb{N}$ and U denotes the measure of a g.g.c.
- $0 = \beta_0 < \beta_1 < \cdots < \beta_n$ with atoms $U(\{\beta_1\}), \ldots, U(\{\beta_n\})$
- $\alpha_i = \int_{(\beta_{i-1}, \beta_i)} \frac{\beta_i + \lambda}{t + \lambda} U(dt)$ for $i \in \{1, \ldots, n\}$
- $V := \sum_{i=1}^{n} (\alpha_i + U(\{\beta_i\})) \delta_{\beta_i}$
- $\nu := \int_{0}^{\infty} \ln \left(\frac{t + \lambda}{t} \right) V(dt)$,

the previous theorem is applicable and

$$0 \leq \mu - \nu = \sum_{i=1}^{n} \left(\int_{(\beta_{i-1}, \beta_i)} \ln \left(\frac{t + \lambda}{t} \right) U(dt) - \ln \left(\frac{\beta_i + \lambda}{\beta_i} \right) \alpha_i \right)$$

$$+ \int_{(\beta_n, \infty)} \ln \left(\frac{t + \lambda}{t} \right) U(dt).$$
Algorithm for computing the approximation (I)

For $\varepsilon > 0$ choose β_1, \ldots, β_n such that $\mu - \nu \leq \varepsilon$ and use the algorithm given in Gerhold, S. and Warnung (2010):

1. $M_n = P + \sum_{i=1}^{n} R_i$, where $R_i \sim \text{NegBin}(\alpha_i, \frac{1}{1+\lambda/\beta_i})$
2. $R_i = \sum_{j=1}^{P_i} L_{i,j}$ where $P_i \sim \text{Poisson}(\alpha_i \ln(1 + \lambda/\beta_i))$ and
 $L_{i,j} \sim \log\left(\frac{\lambda/\beta_i}{1+\lambda/\beta_i}\right)$ are Panjer class distributions.
3. $S_n = \sum_{i=1}^{M_n} X_i \overset{d}{=} \sum_{i=1}^{P} X_i + \sum_{i=1}^{n} \sum_{k=1}^{R_i} X_{i,k}$, and $X_i \overset{d}{=} X_{i,k}$.
4. Let $S_{i,j} = \sum_{k=L_{i,1}+\cdots+L_{i,j-1}+1}^{L_{i,1}+\cdots+L_{i,j}} X_{i,k} \overset{d}{=} \sum_{k=1}^{L_{i,1}} X_{i,k}$.
5. Compute $\mathcal{L}(S_{i,1})$ for $i \in \{1, \ldots, n\}$ by numerically stable Panjer recursions.
Algorithm for computing the approximation (II)

The probability generating function of

$$S_n = \sum_{i=1}^{P} X_i + \sum_{i=1}^{n} \sum_{j=1}^{P_i} S_{i,j}$$

is

$$G_{S_n}(z) = \exp\left(a(G_{X_1}(z) - 1) \right) \prod_{i=1}^{n} \exp\left(\alpha_i \ln(1 + \lambda/\beta_i) \left(G_{S_{i,1}}(z) - 1 \right) \right)$$

$$= \exp\left((a + \nu)(G(z) - 1) \right), \quad |z| \leq 1,$$

with \(\nu = \sum_{i=1}^{n} \alpha_i \ln(1 + \lambda/\beta_i) \) and convex combination

$$G(z) := \frac{a}{a + \nu} G_{X_1}(z) + \sum_{i=1}^{n} \frac{\alpha_i \ln(1 + \lambda/\beta_i)}{a + \nu} G_{S_{i,1}}(z).$$

\(G_{S_{i,1}} \) for \(i \in \{1, \ldots, n\} \) were computed previously. Conductor another numerically stable Panjer recursion for \(\text{CPoi}(a + \nu, F_G) \).
Comparison of distributions obtained by FFT with exponential tilting and iterated Panjer recursion

Figure: Approximations of $S = X_1 + \cdots + X_N$, where $X_1 \sim \text{Poisson}(30)$ and $\mathcal{L}(N|\Lambda) \overset{a.s.}{=} \text{Poisson}(20\Lambda)$ with $\Lambda \sim \text{Pareto}(0.5, 2.5)$ and $\varepsilon = 0.01$.
Figure: Approximations of the distribution of $S = X_1 + \cdots + X_N$, where $X_1 \sim \text{Poisson}(10)$ and $\mathcal{L}(N|\Lambda) \overset{a.s.}{=} \text{Poisson}(30\Lambda)$ with $\Lambda \sim F_{0.4,50,2}$ and $\varepsilon = 0.1$. Here $F_{\alpha,\sigma,\tau}$ denotes a τ-tempered α-stable distribution.
Collective risk model and variants of Panjer’s recursion

1. Review of Panjer’s recursion and numerical stability
 - Panjer’s recursion complemented by weighted convolution
 - Application to several Poisson mixtures

2. Poisson mixtures with generalized gamma convolutions
 - Generalized gamma convolutions
 - Error bounds and approximation
 - Examples

3. Several dependent collective risk models
 - Claim numbers and random scenarios of linear dependence
 - Equivalent stochastic representation of claim numbers
 - Application to recursive algorithms
Several dependent collective risk models

New task: Calculate (in a fast and numerically stable way if possible) the distribution of the sum of random sums

\[S = \sum_{j=1}^{N_1} X_{1,j} + \cdots + \sum_{j=1}^{N_m} X_{m,j} \]

where

- the losses \(\{X_{i,j}\}_{j \in \mathbb{N}} \) with \(i \in \{1, \ldots, m\} \) are independent sequences of \(\mathbb{N}_0 \)-valued i.i.d. random variables,
- \((N_1, \ldots, N_m)\) is an \(\mathbb{N}_0^m \)-valued random vector, independent of all individual losses but with possibly dependent components.

Remark: Independence is lost, no convolutions of random sums.

Question: Which multivariate distributions for the claim numbers \((N_1, \ldots, N_m)\) can we handle with recursive methods?
Random scenarios of linear dependence

- Let $A_1, \ldots, A_k \in [0, \infty)^{m \times n}$ be matrices with non-negative entries describing dependence scenarios.
- Let J be a random variable selecting one of the k scenarios.
- Let R_1, \ldots, R_n be independent and non-negative random variables (risk factors), independent of J.
- Define random Poisson intensities by
 \[
 (\Lambda_1, \ldots, \Lambda_m) = A_J(R_1, \ldots, R_n)^T.
 \]
- Let $N = (N_1, \ldots, N_m)$ be a random vector with conditionally independent components given $\Lambda_1, \ldots, \Lambda_m$ such that
 \[
 \mathcal{L}(N_i|\Lambda_1, \ldots, \Lambda_m) \overset{\text{a.s.}}{=} \mathcal{L}(N_i|\Lambda_i) \overset{\text{a.s.}}{=} \text{Poisson}(\lambda_i; \Lambda_i),
 \]
 where $\lambda_i \geq 0$ for each $i \in \{1, \ldots, m\}$.
Equivalent stochastic representation of claim numbers

Theorem (Rudolph & S.)

Let \(\{ E_{h,l}^j \}_{h \in \mathbb{N}} \) for each scenario \(j \in \{1, \ldots, k\} \) and risk \(l \in \{1, \ldots, n\} \) be independent sequences of i.i.d. random vectors, independent of all other random variables, where \(E_{1,l}^j \sim \text{Multinomial}(1; \lambda_i a_{i,l}^j/\lambda_j,l, i = 1, \ldots, m) \) with \(\lambda_j,l := \sum_{d=1}^{m} \lambda_d a_{d,l}^j > 0 \). Define the \(\mathbb{N}_0^m \)-valued random vector

\[
M = \sum_{j=1}^{k} 1\{J=j\} \sum_{l=1}^{n} \sum_{h=1}^{M_{j,l}} E_{h,l}^j,
\]

where \(\mathcal{L}(M_{j,l} | J, R_1, \ldots, R_n) \overset{a.s.}{=} \mathcal{L}(M_{j,l} | R_l) \overset{a.s.}{=} \text{Poisson}(\lambda_j,lR_l) \) for \(j \in \{1, \ldots, k\} \) and \(l \in \{1, \ldots, n\} \) are conditionally independent given \(J, R_1, \ldots, R_n \). Then \(M \) and \(N \) have the same distribution.
Rewrite the random sum using the equivalent representation to restore independence via scenarios and risk factors:

\[S = \sum_{i=1}^{m} \sum_{j=1}^{N_i} X_{i,j} \overset{d}{=} \sum_{j=1}^{k} 1\{J=j\} \sum_{l=1}^{n} \sum_{h=1}^{\bar{M}_{j,l}} X_{h,j,l}, \]

where \(\{X_{h,j,l}\}_{h \in \mathbb{N}} \) are independent sequences of i.i.d. random variables such that \(X_{1,j,l} \overset{d}{=} \sum_{i=1}^{m} \sum_{j=1}^{E_{1,l}} X_{i,1} \).

- For the random sums, if \(\mathcal{L}(\bar{M}_{j,l}) \) permits, recursive methods are applicable,\(^1\) see the previous sections.
- If every \(\mathcal{L}(\bar{M}_{j,l}) \) is a compound Poisson distribution, then the \(n-1 \) convolutions might be replaced by a convex combination and one Panjer recursion.

\(^1\)FFT and FFT with tilting can also be applied.

