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Research areas for stochastic dependence (1)

Modelling and estimation of dependent credit rating
transitions
→ Ph. D. thesis of Verena Goldammer (2010)
Market and credit risk aggregation: a bottom-up approach
→ Ph. D. thesis of Robert Schöftner (2010)
Adapted dependence
→ Ph. D. project of Karin Hirhager

Relaxing the independence of biometric and financial
market risks when estimating the risk of unit-linked life
insurance contracts
Modelling consumer behaviour dependent on financial
market development (related to American option)
→ Variable annuities
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Research areas for stochastic dependence (2)

Generalization of Panjer’s recursion for dependent claim
numbers (collective model, CreditRisk+)
→ Ph. D. project of Cordelia Rudolph
Joint term-structure models for credit spreads and risk-free
interest rates
→ Ph. D. project of Sühan Altay
We aim for

Non-negative interest rates and credit spreads,
Negative covariation between them,
Zero-coupon bond prices easy to calculate.

Asymptotic variance of estimators of dependence
(linear correlation, Kendall’s tau)
→ mainly the Ph. D. thesis of Barbara Dengler (2010)
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Linear correlation coefficient

Definition
The linear correlation coefficient for a random vector (X ,Y )
with non-zero finite variances is defined as

% =
Cov [ X ,Y ]√

Var [ X ]
√
Var [ Y ]

.

Estimator
The standard estimator for a sample (X1,Y1), . . . , (Xn,Yn) is

%̂n =

∑n
i=1(Xi − Xn)(Yi − Yn)√∑n

i=1(Xi − Xn)2
√∑n

i=1(Yi − Yn)2

where Xn = 1
n
∑n

i=1 Xi and Yn = 1
n
∑n

i=1 Yi .
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Asymptotic behaviour of the standard estimator

Theorem (Asymptotic normality, e.g. Witting/Müller-Funk ’95, p. 108)

For an i. i. d. sequence of non-degenerate real-valued random
variables (Xj ,Yj), j ∈ N, with E[X 4] <∞ and E[Y 4] <∞, the
standard estimators %̂n, normalized with

√
n, are asymptotically

normal, √
n
(
%̂n − %

) d→ N
(
0, σ2

%

)
, n→∞ .

The asymptotic variance is

σ2
% =

(
1 +

%2

2

) σ22

σ20σ02
+
%2

4

(σ40

σ2
20

+
σ04

σ2
02
− 4σ31

σ11σ20
− 4σ13

σ11σ02

)
,

where σkl := E[(X − µX )k (Y − µY )l ], µX := E[X ], µY := E[Y ].
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Kendall’s tau

Definition
Kendall’s tau for a random vector (X ,Y ) is defined as

τ = P[ (X − X̃ )(Y − Ỹ ) > 0︸ ︷︷ ︸
concordance

]− P[ (X − X̃ )(Y − Ỹ ) < 0︸ ︷︷ ︸
discordance

]

= E[ sgn(X − X̃ ) sgn(Y − Ỹ ) ] ,

where (X̃ , Ỹ ) is an independent copy of (X ,Y ).

Estimator (Representation as U-statistic)

The tau-estimator for a sample (X1,Y1), . . . , (Xn,Yn) is

τ̂n =

(
n
2

)−1 ∑
1≤i<j≤n

sgn(Xi − Xj) sgn(Yi − Yj) .
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U-statistics

Definition
Fix m ∈ N. For n ≥ m let Z1, . . . ,Zn be random variables taking
values in the measurable space (Z,Z) and let κ : Zm → R be a
symmetric measurable function. The U-statistic Ûn(κ)
belonging to the kernel κ of degree m is defined as

Ûn(κ) :=

(
n
m

)−1 ∑
1≤i1<···<im≤n

κ(Zi1 , . . . ,Zim ) .

The tau-estimator is a U-statistic with kernel κτ of degree 2:

κτ : R2 × R2 → R ,
κτ
(
(x , y), (x ′, y ′)

)
= sgn(x − x ′) sgn(y − y ′) .
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Properties of the tau-estimator

If the observations are i. i. d., then τ̂n is an unbiased estimate of τ .

Theorem (Asymptotic normality, e.g. Borovskikh ’96)

For an i. i. d. sequence of R2-valued random vectors, the
tau-estimators τ̂n, normalized with

√
n, are asymptotically

normal, √
n
(
τ̂n − τ

) d→ N
(
0, σ2

τ

)
, n→∞ .

The asymptotic variance is

σ2
τ = 4Var

[
E[sgn(X − X̃ ) sgn(Y − Ỹ ) |X ,Y ]

]
,

where (X̃ , Ỹ ) is an independent copy of (X ,Y ).
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Applications of asymptotic variance

Asymptotic normality leads to asymptotic confidence
intervals of the form[

τ̂n −
στ√

n
u 1+α

2
, τ̂n +

στ√
n

u 1+α
2

]
for given confidence level α ∈ (0,1), where u 1+α

2
is the

corresponding quantile of the standard normal distribution.

This allows in particular to test for dependence.

Estimators can be evaluated by their asymptotic variance
and different ways of estimation can be compared, e.g. for
elliptical distributions.
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Definition of a copula and Sklar’s theorem

Definition

A two-dimensional copula C is a distribution function on [0,1]2

with uniform marginal distributions.

Let (X ,Y ) be an R2-valued random vector with marginal
distribution functions F and G. Then, by Sklar’s theorem, there
exists a copula C such that

P[ X ≤ x , Y ≤ y ] = C
(
F (x),G(y)

)
, x , y ∈ R .

If the marginal distribution functions F and G are continuous,
then Sklar’s theorem also gives uniqueness of the copula C.
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Kendall’s tau and asymptotic variance for copulas

Assume that X and Y have continuous distribution functions.
Then

U := F (X ) and V := G(Y )

are uniformly distributed on [0,1] and Kendall’s tau becomes

τ = 4E[C(U,V )]− 1 .

Theorem (Dengler/Schmock)

The asymptotic variance for the tau-estimators is

σ2
τ = 16Var[2C(U,V )− U − V ] .

Note: Both quantities depend only on the copula C.
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Examples of copulas for calculating
the asymptotic variance for the tau-estimators

Archimedean copulas

Product (independence) copula

Clayton copula

Ali–Mikhail–Haq copula

Non-Archimedean copulas

Farlie–Gumbel–Morgenstern copula

Marshall–Olkin copula

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Archimedean copulas

An Archimedean copula is defined by a generator, i.e., by a
continuous, strictly decreasing and convex function
ϕ : [0,1]→ [0,∞] with ϕ(1) = 0.

The pseudo-inverse ϕ[−1] of ϕ is given by

ϕ[−1](t) =

{
ϕ−1(t) for t ∈ [0, ϕ(0)] ,

0 for t ∈ (ϕ(0),∞] .

The copula is defined as

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)
)
, u, v ∈ [0,1] .

If ϕ(0) =∞, then the generator ϕ and its copula C are
called strict.

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Product copula

C⊥ : [0,1]2 → [0,1]

C⊥(u, v) = u v

Copula for two independent random variables, τ⊥ = 0.

The product copula is a strict Archimedean copula with
generator ϕ(t) = − log t for t ∈ [0,1].

Asymptotic variance of the tau-estimator:

(
σ⊥τ
)2

=
4
9

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Clayton copula with parameter θ ∈ (0,∞)

CCl,θ(u, v) =

{(
u−θ + v−θ − 1

)−1/θ for u, v ∈ (0,1] ,

0 otherwise

The Clayton copula is a strict Archimedean copula with
generator ϕ(t) = 1

θ (t−θ − 1) for t ∈ [0,1].

Kendall’s tau is τCl,θ = θ
θ+2 ∈ (0,1).

Asymptotic variance of the tau-estimator for θ ∈ {1,2}:

(
σCl,1
τ

)2
=

16
9
(
6π2 − 59

)
≈ 0.387

(
σCl,2
τ

)2
=

337
15
− 32 log(2) ≈ 0.286
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Clayton copula, density and results

τ =
2
9
, θ =

2τ
1− τ

=
4
7
,
(
σCl,θ
τ

)2 ≈ 0.430

Note: An estimate for τ gives an estimate for the parameter θ.
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Ali–Mikhail–Haq copula with parameter θ ∈ [−1,1)

CAMH,θ(u, v) =
u v

1− θ (1− u) (1− v)
, u, v ∈ [0,1]

The AMH copula is a strict Archimedean copula with
generator ϕ(t) = log

(1−θ (1−t)
t

)
for t ∈ [0,1].

Product copula corresponds to θ = 0.
Results for θ 6= 0 (with Li2 denoting the dilogarithm):

τAMH,θ =
3θ − 2

3θ
− 2

(1− θ)2

3θ2 log(1− θ)(
σAMH,θ
τ

)2
= − 100

9
− 8

4− (θ2 + 9θ + 2) τAMH,θ

θ(1− θ)

+ 4
(
τAMH,θ)2

+ 32
θ + 1
θ2 Li2(θ)
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Ali–Mikhail–Haq copula, density and results

τ =
2
9
, θ ≈ 0.77152 ,

(
σAMH,θ
τ

)2 ≈ 0.399
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Farlie–Gumbel–Morgenstern copula with θ ∈ [−1,1]

CFGM,θ(u, v) = u v + θ u v (1− u) (1− v) , u, v ∈ [0,1]

Kendall’s tau is τFGM,θ = 2θ
9 ∈ [−2

9 ,
2
9 ].

Asymptotic variance of the tau-estimator:

(
σFGM,θ
τ

)2
=

4
9
− 46

25
(
τFGM,θ)2

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence



Definitions of dependence measures and basic properties
Asymptotic variance of the tau-estimators for copulas

Asymptotic variance for elliptical distributions

Definitions and general formula
Examples

Farlie–Gumbel–Morgenstern copula, density and
results

τ =
2
9
, θ =

9
2
τ = 1 ,

(
σFGM,θ
τ

)2
=

716
2025

≈ 0.354
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Marshall–Olkin copula with parameters α, β ∈ (0,1)

CMO
α,β (u, v) = min{u1−α v ,u v1−β} , u, v ∈ [0,1]

Kendall’s tau is τMO
α,β = αβ

α+β−αβ ∈ (0,1).

Asymptotic variance of the tau-estimator:

(
σMO,α,β
τ

)2
=

64 (α + β + αβ)

9 (α + β − αβ)
− 32 (2α + 3β + αβ)

3 (2α + 3β − 2αβ)

− 32 (3α + 2β + αβ)

3 (3α + 2β − 2αβ)
+

16 (α + β)

(2α + 2β − αβ)

+
8αβ

α + β − αβ
− 4α2β2

(α + β − αβ)2 +
20
3

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Marshall–Olkin copula, density and results (1)

τ =
2
9
, α = β =

4
11

,
(
σMO,α,β
τ

)2 ≈ 0.538
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Definitions and general formula
Examples

Marshall–Olkin copula, density and results (2)

τ =
2
9
, α =

6
11

, β =
α

2
=

3
11

,
(
σMO,α,β
τ

)2 ≈ 0.505
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Marshall–Olkin copula, density and results (3)

τ =
2
9
, α =

10
11

, β =
α

4
=

5
22

,
(
σMO,α,β
τ

)2 ≈ 0.429
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Spherical distributions

Definition

X = (X1, . . . ,Xd )> is spherically distributed if it has the
stochastic representation

X d
= RS ,

where
1 S is uniformly distributed on the (d − 1)-dimensional unit

sphere Sd−1 =
{

s ∈ Rd : s>s = 1
}

, and
2 R ≥ 0 is a radial random variable, independent of S.

Note: A spherical distribution is invariant under orthogonal
transformations.

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Elliptical distributions

Definition

X = (X1, . . . ,Xd )> is elliptically distributed with location
vector µ and dispersion matrix Σ, if there exist k ∈ N, a matrix
A ∈ Rd×k with AA> = Σ, and random variables R, S satisfying

X d
= µ+ RAS ,

where
1 S is uniformly distributed on the unit sphere
Sk−1 =

{
s ∈ Rk : s>s = 1

}
, and

2 R ≥ 0 is a radial random variable, independent of S.

Note: An elliptical distribution is an affine transformation of a
spherical distribution.

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Linear correlation and standard estimator
for non-degenerate elliptical distributions

The (generalized) linear correlation coefficient is defined by

% =
Σ12√

Σ11 Σ22
.

Theorem (Dengler/Schmock)

For elliptical distributions the asymptotic variance of the
standard estimator simplifies to

σ2
% =

E[R4]

2E[R2]2
(
%2 − 1

)2
,

provided the radial variable R satisfies 0 < E[R4] <∞.

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Connection between the linear correlation coefficient
and Kendall’s tau for elliptical distributions

Theorem (Lindskog/McNeil/Schmock, 2003)

Let (X ,Y )> be elliptically distributed with non-degenerate
components. Define

aX =
∑
x∈R

(
P[ X = x ]

)2
,

where the sum extends over all atoms of the distribution of X .
Then

τ =
2(1− aX )

π
arcsin % .

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Transformation of Kendall’s tau into an alternative
linear correlation estimator

Define the transformed tau-estimator by

%̂τ,n = sin
( π

2(1− aX )
τ̂n

)
.

If the random variables are non-degenerate, then %̂τ,n is an
estimator for the (generalized) linear correlation %.

The asymptotic distribution remains normal,
√

n
(
%̂τ,n − %

) d→ N
(
0, σ2

%(τ)

)
, n→∞,

with

σ2
%(τ) =

π2

4(1− aX )2 σ
2
τ (1− %2) .

(e.g. Lehmann/Casella ’98, p. 58)

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Asymptotic variance for spherical distributions

Formula for the asymptotic variance of the tau-estimator:

σ2
τ = 4Var

[
E[sgn(X − X̃ ) sgn(Y − Ỹ ) |X ,Y ]

]
,

where (X̃ , Ỹ ) is an independent copy of (X ,Y ).

For two random variables (X ,Y ) with joint spherical
density f , this formula can be simplified to (τ = 0)

σ2
τ = 4

∫
R2

(
4
∫ |y |

0

∫ |x |
0

f (u, v) du dv
)2

f (x , y) d(x , y) .

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Formula for the asymptotic variance for spherical
distributions (idea of proof)

σ2
τ = 4E

[
E[ sgn(X − X̃ ) sgn(Y − Ỹ ) |X ,Y ]2

]

σ2
τ = 4

∫
R2

(
4
∫ |y |

0

∫ |x |
0

f (u, v) du dv
)2

f (x , y) d(x , y)

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Normal variance mixture distributions

Definition

X = (X1, . . . ,Xd )> has a normal variance mixture distribution
with location vector µ and dispersion matrix Σ, if there exist
k ∈ N, a matrix A ∈ Rd×k with AA> = Σ, and random variables
W , Z satisfying

X d
= µ+

√
WAZ ,

with
1 Z a k -dimensional standard normally distributed random

vector, and
2 W ≥ 0, a radial random variable, independent of Z .

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Asymptotic variance of the tau-estimator for standard
normal variance mixture distributions

Theorem (Dengler/Schmock)

For a two-dimensional standard normal variance mixture
distribution with mixing distribution function G satisfying
G(0) = 0, the asymptotic variance of the tau-estimator
simplifies to

σ2
τ =

16
π2

∫∫∫
(0,∞)3

arctan2
( √

υξ√
ζ
√
υ + ξ + ζ

)
dG(υ) dG(ξ) dG(ζ) .

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence
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Standard normal distribution

The asymptotic variance of the standard estimator is slightly
better than the asymptotic variance of the transformed
tau-estimator:

σ2
% = 1 versus σ2

%(τ) =
π2

4
σ2
τ =

π2

9
≈ 1.097 ,

because (σ⊥τ )2 = 4/9 for the product copula and also

σ2
τ =

16
π2 arctan2 1√

3
=

4
9

by the previous theorem applied to G = 1[1,∞).
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Student’s t-distribution

Definition
A d-dim. t-distribution with location µ, dispersion matrix Σ, and
ν > 0 degrees of freedom is defined as the corresponding
normal variance mixture distribution, where the mixing random
variable W has the inverse Gamma distribution Ig(ν2 ,

ν
2 ).

For the 2-dim. case with non-degenerate marginal distributions:

Asymptotic variance of the standard estimator (ν > 4):

σ2
% =

(
1 +

2
ν − 4

) (
1− %2)2

.

Asymptotic variance of the tau-estimator if % = 0 (ν > 0):

σ2
τ =

32 Γ(3ν
2 )

π2 Γ3(ν2 )

∫ ∞
0

uν−1 arctan2 u
∫ 1

0
tν−1 (1− t)ν−1

(u2 + t)ν
dt du .
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Asymptotic variance for the uncorrelated t-distribution

Theorem (Dengler/Schmock)

For a two-dimensional uncorrelated t-distribution with ν ∈ N degrees of freedom,
the asymptotic variance of the tau-estimator has the following representation:

(i) If ν is odd, then

σ2
τ =

16
π2 log2(2) +

32 Γ(3ν
2 )

π Γ3(ν2 )

ν−1∑
k=0

(−1)
ν−1

2 +k

ν + 2k

(
ν − 1

k

)(
ν + k − 1

k

)

×

ν−1
2 +k∑
h=1

1
h

(
log(2) +

2h∑
l=1

(−1)l

l

)
;

(ii) If ν is even, then

σ2
τ =

32 Γ(3ν
2 )

π2 Γ3(ν2 )

ν−1∑
k=0

(−1)
ν
2 +k−1

ν + 2k

(
ν − 1

k

)(
ν + k − 1

k

)

×
ν/2+k−1∑

l=ν/2

(
π2

4(l + 1)
− 1

2l + 1

(
π2

3
+

l∑
n=1

1
n2

))
.
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Asymptotic variance of the transformed tau-estimators
for the uncorrelated t-distribution with even ν

ν σ2
%(τ) = π2σ2

τ/4

2
8
3
− 1

9
π2

4 −1 000
27

+
35
9
π2

6
401 312

675
− 541

9
π2

8 −42 307 408
3675

+
10 499

9
π2

10
71 980 077 752

297 675
− 220 501

9
π2
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Asymptotic variance of the transformed tau-estimators
for the uncorrelated t-distribution with odd ν

ν σ2
%(τ) = π2σ2

τ/4

1 4 log2(2)

3 30− 44 log(2) + 4 log2(2)

5 −20 221
54

+
1 618

3
log(2) + 4 log2(2)

7
342 071

50
− 148 066

15
log(2) + 4 log2(2)

9 −1 358 296 703
9 800

+
20 995 691

105
log(2) + 4 log2(2)
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Bounds and limits for the asymptotic variance σ2
τ

of the tau-estimators

Theorem (Dengler/Schmock)

1 General upper bound: σ2
τ ≤ 4(1− τ2) .

2 For axially symmetric distributions: σ2
τ ≤ 4/3 .

3 For uncorrelated t-distributions:

lim
ν→∞

σ2
τ =

4
9

and lim
ν↘0

σ2
τ =

4
3
,

hence

σ2
%(τ) =

π2

4
σ2
τ →

π2

3
≈ 3.290 as ν ↘ 0.

The upper bound in (2) is attained by (RU,RV ) with independent,
symmetric {−1,+1}-valued U and V , and R ≥ 0 with density.
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Comparison of the estimators for uncorrelated
t-distributions with different degrees ν of freedom

ν ν ↓ 0 1 2 3 4 5 6 7 8 9

σ2
% n. a. n. a. n. a. n. a. n. a. 3 2 1.667 1.500 1.400

σ2
%(τ) 3.290 1.922 1.570 1.423 1.345 1.296 1.263 1.240 1.222 1.208

ν 10 11 12 13 14 15 16 17 . . . ∞

σ2
% 1.333 1.286 1.250 1.222 1.200 1.182 1.167 1.154 . . . 1

σ2
%(τ) 1.197 1.188 1.180 1.174 1.168 1.164 1.159 1.156 . . . 1.097
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Results for the uncorrelated t-distribution

For heavy-tailed t-distributions (ν ≤ 4), the transformed
estimator is asymptotically normal with finite asymptotic
variance whereas the standard estimator can not be
asymptotically normal with finite variances.

For ν ∈ {5,6, . . . ,16} the transformed estimator has a
smaller asymptotic variance than the standard estimator
and is in this sense better. Especially for small ν the
difference is remarkable.

The two estimating methods are approximately equivalent
for ν ≈ 17, where the corresponding t-distribution is
already quite similar to the normal distribution.
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Asymptotic variance for the t-distribution (1)

Main steps to solve the integrals for even ν:
Reduce uν−1 to u by writing

uν−1 = u (t + u2 − t)
ν
2−1 = u

ν
2−1∑
j=0

(ν
2 − 1

j

)
(t + u2)j (−t)

ν
2−j−1

and dividing by (t + u2)ν as far as possible.
Reduce the remaining (t + u2)ν−j to (t + u2)2 by ν − j − 2
integrations by parts:∫ 1

0

t
3ν
2 −j−2 (1− t)ν−1

(t + u2)ν−j dt

=
ν−1∑
k=0

(−1)k

ν
2 + k

(
ν − 1

k

)(3ν
2 − j + k − 2
ν − j − 1

)∫ 1

0

t
ν
2 +k

(t + u2)2 dt
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Asymptotic variance for the t-distribution (2)

Reduce the arctan2 by∫ ∞
0

u arctan2 u
(t + u2)2 du =

∫ ∞
0

arctan u
(1 + u2) (t + u2)

du

To solve the remaining integrals use

tk − 1
(1 + u2) (t + u2)

=
( 1

1 + u2 −
1

t + u2

) k−1∑
l=0

t l
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Asymptotic variance for the t-distribution (3)

Main steps to solve the integrals for odd ν ≥ 3:
First steps are similar to the case of even ν.
With l ∈ N, reduce the arctan2 by∫ 1

0
t l
∫ ∞

0

u2 arctan2 u
(t + u2)2 du dt

=
π3

24 (2l + 1)
+

2l
2l + 1

∫ 1

0
t l
∫ ∞

0

u arctan u
(1 + u2) (t + u2)

du dt .

Show that∫ ∞
0

u arctan u
1 + u2 log

(
1 +

1
u2

)
du =

π

2

(π2

12
− log2(2)

)
. (1)

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence



Definitions of dependence measures and basic properties
Asymptotic variance of the tau-estimators for copulas

Asymptotic variance for elliptical distributions

Elliptical distributions and measures of dependence
Asymptotic variance for spherical distributions
Asymptotic variance for uncorrelated t-distributions

Some literature

B. Dengler (2010): On the Asymptotic Variance of the
Estimator of Kendall’s Tau, Ph. D. thesis, TU Vienna.

V. S. Koroljuk, Yu. V. Borovskich (1994):
Theory of U-statistics, Kluwer Academic Publishers.

Yu. V. Borovskikh (1996):
U-statistics in Banach spaces, VSP, Utrecht.

E. L. Lehmann, G. Casella (1998):
Theory of Point Estimation, 2nd ed., Springer, New York.

F. Lindskog, A. McNeil, U. Schmock (2003):
Kendall’s tau for elliptical distributions.

H. Witting, U. Müller-Funk (1995):
Mathematische Statistik II, B. G. Teubner, Stuttgart.

Uwe Schmock (TU Vienna) Modelling and Estimation of Stochastic Dependence

http://www.ub.tuwien.ac.at/diss/AC07806793.pdf
http://www.ub.tuwien.ac.at/diss/AC07806793.pdf
http://en.wikipedia.org/wiki/Special:BookSources/978-0-7923-2608-3
http://en.wikipedia.org/wiki/Special:BookSources/90-6764-200-2
http://en.wikipedia.org/wiki/Special:BookSources/0-387-98502-6
http://www.risklab.ch/Papers.html#KendallsTau
http://en.wikipedia.org/wiki/Special:BookSources/3-519-02095-5

	Definitions of dependence measures and basic properties
	Linear correlation coefficient
	Kendall's tau
	Applications of asymptotic variance

	Asymptotic variance of the tau-estimators for different copulas
	Definitions and general formula
	Examples

	Asymptotic variance of the dependence measure for elliptical distributions
	Elliptical distributions and measures of dependence
	Asymptotic variance for spherical distributions
	Asymptotic variance for uncorrelated t-distributions


