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Purpose of Risk Measures

• Concentrate the “relevant” information about the
future worth of a risky position into a single number.

• Determine the amount of cash (or units of a refer-
ence instrument) needed to make a risky position
acceptable for the period.

Remarks

• Connection to premium calculation principles

• Risk measures should have economically meaningful
properties, in particular w.r.t. aggregation of risks.

• Focus on the loss part (one-sided measures); variance
and standard deviation punish free lottery tickets.
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Quantiles and Value-at-Risk

X : Ω → R random discounted one-period profit & loss

• Upper α-quantile of X with α ∈ (0, 1)

qα(X) = inf{x ∈ R | P(X ≤ x) > α}
• Lower α-quantile of X

qα(X) = inf{x ∈ R | P(X ≤ x) ≥ α}
qα(X) = qα(X) ⇐⇒ P(X ≤ x) = α for at most one x

Value-at-Risk of X at level α

VaRα(X) = −qα(X) = q1−α(−X)

Smallest value when added to X avoids negative
results with probability at least 1 − α.
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Advantages and Deficiencies of Value-at-Risk

• Robust quantity like the median,
doesn’t depend of the far-out tails.

• “Easy” to calculate and to backtest.
• Applicable for all real-valued random variables.

Deficiencies:

• VaR ignores severity of unfavourable events.
• VaR can punish diversification! Example:

(a) 100 Euro loan with default probability p = 0.8%
=⇒ VaR1%(X) = 0

(b) Two independent 50 Euro loans with p = 0.8%
=⇒ P(at least one default) = 2p − p2 ≥ 1.59%
Therefore VaR1%(X) = 50
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Definition of a Coherent Risk Measure (ADEH 1999)

A map � : L∞(Ω,F , P) → R, defined on the set of
(P-equivalence classes of) P-almost surely bounded
random variables on (Ω,F), is called coherent risk
measure if it satisfies

(a) Monotonicity: X ≥ 0 =⇒ �(X) ≤ 0,

(b) Positive homogeneity: �(λX) = λ�(X) for all λ ≥ 0,

(c) Translation invariance:
�(X + c) = �(X) − c for all c ∈ R,

(d) Subadditivity: �(X + Y ) ≤ �(X) + �(Y ).

VaR satisfies conditions (a)–(c), but not (d).
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Examples of Coherent Risk Measures

Let P be a set of probability measures Q on (Ω,F),
absolutely continuous w.r.t. P (think of scenarios).
Then a coherent risk measure �P : L∞ → R is given by

�P(X) = sup
Q∈P

EQ[−X ], X ∈ L∞.

• If P = {P}, then �P(X) = EP[−X ] (too tolerant).

• If P = {Q | Q � P}, then �P(X) = ess supP(−X)
(too restrictive).

• For α ∈ (0, 1) define Pα =
{

Q
∣
∣ Q � P, dQ

dP
≤ 1

α

}
.
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Tail Mean and Expected Shortfall

For measurable X : Ω → R with E[X−] < ∞ define the
tail mean of X at level α ∈ (0, 1) by

TMα(X) =
1

α
E

[
X1{X<qα(X)}

]

+ qα(X)
α − P(X < qα(X))

α
.

If P(X ≤ qα(X)) = α, then

TMα(X) = E[X |X ≤ qα(X)].

Define the expected shortfall of X at level α ∈ (0, 1) by

ESα(X) = −TMα(X) ≥ −qα(X) = VaRα(X).

Theorem: �Pα
(X) = ESα(X)
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Characterization of Coherent Risk Measures

Definition: A coherent risk measure � is said to satisfy
the Fatou property, if for every X and every sequence
{Xn}n∈N in L∞ with ‖Xn‖∞ ≤ 1

Xn
P→ X =⇒ �(X) ≤ lim inf

n→∞
�(Xn).

Theorem: A coherent risk measure � : L∞ → R

satisfies the Fatou property is and only if there exists
an L1(P)-closed, convex set of probability measures P
with Q � P for all Q ∈ P such that

�(X) = �P(X) = sup
Q∈P

EQ[−X ], X ∈ L∞.
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Extension of a Coherent Risk Measure

Let �P : L∞ → R be a coherent risk measure as in the
previous theorem. Suppose the exists δ > 0 such that

A ∈ F satisfies P(A) ≤ δ

=⇒ there exists Q ∈ P with Q(A) = 0.

Then
�(X) = lim

n→∞
sup
Q∈P

EQ[−(X ∧ n)]

defines an extension � : L0 → R ∪ {∞} of �P to the
space L0(Ω,F , P) of all random variables preserving
monotonicity, positive homogeneity, translation invari-
ance and subadditivity.
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Convex Risk Measures (Föllmer/Schied 2000)

Risk for large positions might increase more than linear
(due to additional liquidity risk, for example), hence
positive homogeneity might need to be relaxed.

Definition: A map � : L∞ → R is called convex risk
measure if it satisfies

(a) Monotonicity: X ≥ Y =⇒ �(X) ≤ �(Y ),

(b) Convexity: For all λ ∈ [0, 1]

�
(
λX + (1 − λ)Y

)
≤ λ�(X) + (1 − λ)�(Y ),

(c) Translation invariance: For all c ∈ R

�(X + c) = �(X) − c.
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Convex Risk Measure Defined by a Loss Function

• Loss funct. l : R → R increasing, convex, non-constant
• Threshold x0 in the range of l

Then a convex risk measure �l : L∞ → R is defined by

�l(X) = inf
{

c ∈ R
∣
∣ E[l(−(X + c))] ≤ x0

}
.

Examples:

• l(x) = exp(λx) with λ > 0 and x0 = 1
=⇒ �l(X) = 1

λ log E[exp(−λX)]

• l(x) = max{x, 0} and x0 ≥ 0
=⇒ �l(X) is minimal retention level such that

the expected excess of loss is bounded by x0.

• l(x) = 1
p (max{x, 0})p with p ≥ 1
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Characterization of Convex Risk Measures

Definition: A convex risk measure � is said to satisfy
the Fatou property, if for every X and every sequence
{Xn}n∈N in L∞ with ‖Xn‖∞ ≤ 1

Xn
P→ X =⇒ �(X) ≤ lim inf

n→∞
�(Xn)

Theorem: A convex risk measure � : L∞(Ω,F , P) → R

satisfies the Fatou property if and only if there exists a
“penalty function” α : P → R ∪ {∞} such that

�(X) = sup
Q∈P

(
EQ[−X ] − α(Q)

)
, X ∈ L∞,

where P is the set of all probability measures Q on
(Ω,F) which are absolutely continuous w.r.t. P.
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The Allocation Problem for Risk Capital

Given risk bearing capital C > 0 for a financial institu-
tion, how to allocate it to business units for

• Fair distribution of the diversification benefit,

• Consideration of dependencies (ALM),

• Measurement of risk contributions (risk management),

• Performance measurement (for steering the company),

• Determination of bonuses for the management?

Applications on the Portfolio Level

• Security loadings for individual insurance contracts

• Credit spreads for loans and defaultable bonds
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A Wish List for the Allocation of Risk Capital

• Coherent risk measure � : L∞ → R

• Profit & losses X1, . . . , Xm of m business units,
adding up to the company result X = X1 + · · ·+Xm

• Total risk capital C, capital Ci assigned to unit i

Useful Properties (cf. game theory)

1. Risk sensitivity: C = �(X)

2. Additivity: C = C1 + · · · + Cm

3. No subgroup of units is better off on its own:∑
i∈I Ci ≤ �(

∑
i∈I Xi) for all I ⊂ {1, . . . , m}.

4. If business units can be divided into parts:∑m
i=1 αiCi ≤ �(

∑m
i=1 αiXi) for all αi ∈ [0, 1].
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Axiomatic Approach to Risk Capital Allocation

Let V ⊂ L0 be a linear subspace, e. g. V = L∞.

Def.: Λ : V × V → R is called a risk capital allocation
principle w.r.t. the coherent risk measure � : V → R,
if it satisfies for all X, Y, Z ∈ V and α, β ∈ R

(a) Risk sensitivity: Λ(X, X) = �(X),

(b) Linearity: Λ(αX + βY, Z) = αΛ(X, Z) + βΛ(Y, Z),

(c) Diversification: Λ(X, Y ) ≤ Λ(X, X).

Exercise: Such a Λ has the four useful properties.

Λ is called continuous at Y ∈ V, if for all X ∈ V

lim
ε→0

Λ(X, Y + εX) = Λ(X, Y ).
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Results About Risk Capital Allocations

Existence: For every Y ∈ V there exists hY ∈ V ∗

with hY (Y ) = �(Y ) and hY ≤ � on V. Furthermore,

Λ(X, Y ) = hY (X), X, Y ∈ V,

defines a risk capital allocation principle w.r.t. the
coherent risk measure �.

Uniqueness: If the capital allocation principle Λ is
continuous at Y ∈ V, then for all X ∈ V

Λ(X, Y ) = lim
ε→0

�(Y + εX) − �(Y )

ε

(directional derivative of the underlying risk measure).
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Capital Allocation by Expected Shortfall (Schmock 1998)

Consider α ∈ (0, 1) and X, Y ∈ L1(Ω,F , P).
A capital allocation principle for �Pα

= ESα is

ΛES
α (X, Y ) = − 1

α
E[X1{Y <qα(Y )}]

− α − P(Y < qα(Y ))

α
E[X |Y = qα(Y )].

If P(Y ≤ qα(Y )) = α, then

ΛES
α (X, Y ) = −E[X |Y ≤ qα(Y )].

If P(Y = qα(Y )) = 0, then ΛES
α is continuous at Y.
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Further Topics

• Risk measures and acceptance sets

• Risk measures and utility functions

• Value of information and risk measures

• Convex risk measures and convex trading constraints

• Allocation of risk capital and game theory

• Multi-period risk measurement
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