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Large Deviations and Applications

29. 11. bis 5. 12. 1992

Zu dieser Tagung unter der gemeinsamen Leitung von E. Bolthausen
(Zürich), J. Gärtner (Berlin) und S. R. S. Varadhan (New York) trafen
sich Mathematiker und mathematische Physiker aus den verschieden-
sten Ländern mit einem breiten Spektrum von Interessen.

Die Theorie vom asymptotischen Verhalten der Wahrscheinlichkeiten
großer Abweichungen ist einer der Schwerpunkte der jüngeren wahr-
scheinlichkeitstheoretischen Forschung. Es handelt sich um eine Prä-
zisierung von Gesetzen großer Zahlen. Gegenstand der Untersuchun-
gen sind sowohl die Skala als auch die Rate des exponentiellen Abfalls
der kleinen Wahrscheinlichkeiten, mit denen ein untypisches Verhal-
ten eines stochastischen Prozesses auftritt. Die Untersuchung dieser
kleinen Wahrscheinlichkeiten ist für viele Fragestellungen interessant.

Wichtige Themen der Tagung waren:

– Anwendungen großer Abweichungen in der Statistik
– Verschiedene Zugänge zur Theorie großer Abweichungen
– Stochastische Prozesse in zufälligen Medien
– Wechselwirkende Teilchensysteme und ihre Dynamik
– Statistische Mechanik, Thermodynamik
– Hydrodynamischer Grenzübergang
– Verhalten von Grenzflächen, monomolekulare Schichten
– Dynamische Systeme und zufällige Störungen
– Langreichweitige Wechselwirkung, Polymere
– Stochastische Netzwerke

Die Tagung hatte 47 Teilnehmer, es wurden 42 Vorträge gehalten.
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Abstracts

G. Ben Arous (joint work with A. Guionnet)

Langevin dynamics for spin glasses

We study the dynamics for the Sherrington-Kirkpatrick model of spin
glasses. More precisely, we take a soft spin model suggested by Som-
polinski and Zippelius. Thus we consider diffusions interacting with a
Gaussian random potential of S-K-type.

(1) We give an “annealed” large deviation principle for the empirical
measure at the process level. We deduce from this an annealed law
of large numbers and a central limit theorem. The limit process is
a new object, a nonlinear and non-Markovian process.

(2) We then show how for certain initial measures this can give the
“quenched” law of large numbers and we see again that the disor-
der in the interaction produces non-Markovianity of the limit.

All this is valid only above a critical temperature on a given interval
of time or before a critical time at a given temperature.

Anton Bovier (joint work with V. Gayrard and P. Picco)

Thermodynamics of the Hopfield model

We study the Hopfield model of a neural network in the spirit of disor-
dered mean field models of spin systems. The disorder here resides in
the coupling matrix Jij = (1/N)

∑m
µ=1 x

µ
i x

µ
j , where {xµi } is a family of

i. i. d. random variables taking the values +1 and −1 with equal prob-
ability. Properties of this model depend crucially on the parameter m.
We present the following results:

(1) In the cases where m/N ↘ 0, as N ↗ ∞, we prove that the
free energy of this model converges to that of the standard Curie-
Weiss model, almost surely. Moreover, we show that to each of
the vectors xµ there corresponds, for T < 1, Gibbs measures in
the infinite volume limit that are concentrated on configurations
having overlap a(T ) with the vector xµ, and overlap zero with all
other vectors xν , ν 6= µ.

(2) In the case where m/N = α, with α sufficiently small, we show
that the structure of the Gibbs measures remains the same as
before, for T ≤ T (α) < 1, where T (α)→ 1 as α↘ 0.
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Francis Comets
Erdös-Rényi laws and Gibbs measures

Erdös-Rényi type of laws state that in a given sample of size n, one
will observe in subsamples of size (1/t) logn all deviations with rate of
decay less or equal to t (t > 0), with probability 1 as n→∞.
(1) We give general formulations of this result, for the empirical field

or process under the condition of uniform large deviation estimates
(or hypermixing processes).

(2) We give applications to Gibbs measures, and we study in this
case the limit t ↘ 0. The result then yields positive answers to
questions like: Can we detect phase transition from a single (but
large) sample? Can we learn some information on the other Gibbs
measures?

Ted Cox (joint work with Andreas Greven and Tokuzo Shiga)
Finite and infinite systems of interacting diffusions

The subject of this talk is a theorem relating the asymptotic behavior
of large finite systems of interacting diffusions and the corresponding
infinite system. The infinite system x(t) = {xi(t), i ∈ Zd } is the
Markov process determined by

dxi(t) =
[∑
j∈Zd

a(i, j)xj(t)− xi(t)
]
dt+

√
g(xi(t)) dWi(t) (∗)

where a(i, j) is an irreducible random walk kernel on Zd, g : [0, 1]→ R+

is Lipschitz, g(0) = g(1) = 0, g > 0 on (0, 1), and {Wi(t)} is a family
of independent Brownian motions. There is a family { νθ, θ ∈ [0, 1] }
of invariant measures for x(t) with Eνθxi = θ. The finite systems
xN (t) = {xNi (t), i ∈ (−N,N ]d } are defined by an equation like (∗)
treating (−N,N ]d as a torus. The main result is that under some
conditions, for tN ↑ ∞ with N , tN/(2N)d → s ∈ [0, 1],

L(xN (tN ))⇒
∫

[0,1]

Q(%, dθ) νθ

where Q(%, · ) is the transition of a certain diffusion on [0, 1]. In par-
ticular, we see that if tN = o(Nd) as N →∞ then L(xN (tN ))⇒ ν%, so
that the invariant measures of the infinite system describe the behavior
of the finite systems for times up to a certain order.
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P. Dai Pra
Large deviations for interacting particle systems

We study the large deviation of the space-time empirical averages of
a d-dimensional stochastic spin system whose Markov semigroup is
generated by the operator

Lf(σ) =
∑
i∈Zd

c(ϑiσ)[f(σi)− f(σ)]

where ϑi is the shift on {−1, 1}Zd and σi(j) = (−1)δijσ(j). We prove
a nd+1-large deviation principle for the empirical process

Rn,ω =
1

nd+1

∑
i∈{0,1,...,n−1}d

∫ n

0

δϑt,iω dt,

where ω ∈ Ω = D(R, {−1, 1}Zd) and ϑt,i are the space-time shift maps
on Ω, and we identify the rate function. Moreover, we prove that
the zeros of the rate function correspond to the invariant measures
for the system. We also give results on some related problems, as the
“contraction” to deviations of lower level and critical large deviations
for non-ergodic systems.

Donald A. Dawson
Some comments on the hierarchical mean-field limit

We begin with a system of a large number of components where in-
teractions are organized in a hierarchical manner. The kth level of
the hierarchy is comprised of N objects of the (k − 1)st level and the
strength of the interaction decreases as a function of the hierarchical
distance (and also as a function of N). The single level hierarchy in the
limit N →∞ is known as the mean-field limit. The case in which N is
fixed and k →∞ corresponds to the thermodynamic limit. The hierar-
chical mean-field limit corresponds to the finite or infinite hierarchy in
the N →∞ limit. The effect of taking the limit N →∞ is to separate
the natural time scales or spatial scales relevant to the different levels
of the hierarchy. To illustrate this we consider two examples. The first
is the continuous spin ferromagnetic model. In joint work with Jürgen
Gärtner this hierarchical mean-field limit of this ferromagnetic model
is analysed using multilevel large deviation theory as N → ∞. This
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analysis leads to a notion of discrete symmetry breaking in the mean-
field limit. The second model considered is the stepping stone model
arising in population genetics. This model has been analysed in joint
work with Andreas Greven using multiple time scale analysis. This
work shows that the criteria for continuous symmetry breaking in this
model in the hierarchical mean-field and in the thermodynamic limit
sense are in fact equivalent for a large family of interaction strengths.

Frank den Hollander (joint work with A. Greven)
Large deviations for a random walk in random environment

Let ω = (px)x∈Z be an i. i. d. collection of (0, 1)-valued random vari-
ables. Given ω, let (Xn)n≥0 be the Markov chain on Z defined by
X0 = 0 and Xn+1 = Xn ± 1 with probability pXn resp. 1 − pXn . It is
shown that Xn/n satisfies a large deviation principle, i. e.,

lim
n→∞

1
n

logPω(Xn = bθnnc) = −I(θ) ω-a. s. for any θn → θ ∈ [−1, 1].

First we derive a representation of the rate function I in terms of a
variational problem. Second we solve the latter explicitly in terms of
random continued fractions. This leads to a classification and qualita-
tive description of the shape of I. In the recurrent case I is non-analytic
at θ = 0. In the transient case I is non-analytic at θ = −θc, 0, θc for
some θc ≥ 0, with linear pieces in between.

J.-D. Deuschel (joint work with A. Pisztora and C. Newman)
Critical large deviations

Let P0 be a product measure on Ω = EZ
d

and denote by RN (ω) =
(1/|VN |)

∑
k∈VN δθkω the empirical field of the box VN = [1, N ]d. For

a given interaction potential %, define the approximate microcanonical
distribution µN,δ( · ) = P0( · | |UN − ν| ≤ δ), where UN is the average
energy of VN . Large deviations show that the law of the empirical
field RN converges at a volume exponential rate on the set of Gibbs
distributions at an appropriate inverse temperature β = β(u). In case
of phase transition, we expect that RN concentrates on the extremal
Gibbs states. We show that a surface exponential rate occurs for the
Ising model. The central estimate is a surface-order large deviations for
the empirical magnetization of the free boundary Gibbs distribution.
The method uses F-K-percolation at sufficiently small temperature and
the isoperimetric estimate.
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Hermann Dinges
Second order large deviations

We start with a family of distributions {L(Xε) : ε→ 0 } = { pε(x) dx :
ε→ 0 } on U ⊂ Rd of the form (uniformly on compacts)

pε(x) dx = (2πε)−d/2

× exp
(
−1
ε
K(x)−K0(x)− εK1(x) + o(ε)

)
dx1 . . . dxd.

K( · ) is not necessarily the Legendre-transform of a cumulant gen-
erating function. Just K( · ) smooth and K(x∗) = 0 for some x∗,
K(x) > 0 for x 6= x∗, K ′′( · ) positive definite (K0( · ) and K1( · ) are
required to satisfy certain smoothness conditions as well.) For nice sets
A = {x : F (x) ≤ const } we find an asymptotic expansion

Λ(Pr(Xε ∈ A)) =
1
ε
K(x̂) + (H0(x̂)) + δ(x̂)) +O(ε),

where Λ(p) = [Φ−1(p)]2/2, K(x̂) = inf{K(x) : x ∈ ∂A }, δ(x̂) vanishes
when A is a halfspace, and

H0(x̂) =
1
2

ln
[
K ′(K ′′)−1K ′

2K
(x̂)
]

+K0(x̂) +
1
2

ln |detK ′′(x̂)|.

In the second part of the lecture such an asymptotic expansion was
given explicitly in a particular case; we studied an approximation of
the so called non-central t-distribution

T (n) :=
Y√

1
n−1

∑n
i=1(YiY )2

in the general case and in the special Gaussian case

T̃ (n) =
ϑ+ (1/

√
n)Z0√

(1/n)
∑n
i=1 Z

2
i

with Z0, Z1, . . . , Zn independent standard normal. Then

Prϑ

(
T̃ (n) ≤ ϑ+ a√

1− a(a+ ϑ)

)

≈ Φ
(
±
√

2

√
nK(ϑ, a)− 1

2
ln
[

2K(ϑ, a)
a2(1 + (1/2)ϑ(a+ ϑ))

]
+ rest

)
where 2K(ϑ, a) = a2 − a(a+ ϑ)− ln[1− a(a+ ϑ)] for a ∈ (−∞,+∞).
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Richard S. Ellis (joint work with Paul Dupuis)

A stochastic optimal control approach to the theory of large deviations

We present a new and widely applicable approach to the theory of large
deviations which is based on stochastic optimal control theory. In our
opinion, this approach reduces many aspects of the theory of large
deviations to the theory of weak convergence of probability measures.
We demonstrate the versatility of the approach by applying it to three
diverse large deviation problems:

(1) small random perturbations of dynamical systems with continuous
statistics,

(2) small random perturbations of dynamical systems with discontin-
uous statistics,

(3) the empirical measures of Markov chains with continuous statistics
and with discontinuous statistics.

While our main goal is to exhibit a general methodology, the technique
allows, in the examples considered, a weakening of the assumptions that
have previously been used in proving the large deviation principle. We
also obtain a number of new results.

Klaus Fleischmann (joint work with Ingemar Haj)

Large deviation probabilities for some rescaled superprocesses

Large deviations are discussed for the continuous super-Brownian mo-
tion in Rd in the case of an asymptotically small branching rate. Based
on a complete blow-up property for the related cumulant equation some
L2-formula for the rate functional is derived. This formula might have
some applications, as well as might give some hints concerning on even-
tual general theory for large deviations for measure-valued diffusions
behind this particular example of a super-Brownian motion.

Mark Freidlin

Random perturbations of dynamical systems with conservation laws

The evolution of first integrals along the trajectories of the perturbed
system is considered. After proper rescaling of time the first integral
converges to a diffusion process on a graph corresponding to the conser-
vation Law. Under certain assumptions concerning the non-perturbed
system on the level set of the first integral the limiting process turns
out to be Markovian. The limiting process is defined by a family of
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second order differential operators and by a collection of gluing con-
ditions in the vertices. The operators are the result of averaging over
the connected components of the level sets. The gluing conditions are
calculated on the vertices of the graph corresponding to the saddle
points of the first integral (if it is defined by a smooth function). The
extremal points of the first integral correspond to those vertices which
are inaccessible for the limiting process, and no boundary conditions
should be given at these points.

Tadahisa Funaki
Hydrodynamic limit for one-dimensional exclusion processes

We consider a particle system on the one-dimensional periodic lattice
with hard core exclusion. The jump rate is spatially homogeneous, non-
degenerate and satisfies the detailed balance condition with respect to
a trivial Hamiltonian H ≡ 0. The Bernoulli measures are therefore
reversible for the dynamics. For this model, the non-equilibrium fluc-
tuation problem (in the gradient case by using the method of Chang-
Yau) and the hydrodynamic limit (in the general non-gradient case by
applying the method of Varadhan; this part is due to Uchiyama) are
discussed. The basic tools are the logarithmic Sobolev inequality and
the spectral gap for the exclusion process.

Hans-Otto Georgii (joint work (in part) with H. Zessin)
Large deviations for Gibbsian point random fields

We present a large deviation principle for the stationary empirical fields
for systems of marked point particles in boxes Λn ↑ Rd. The particle
distributions are Gibbsian relative to one of the following types of in-
teraction:

(1) interactions of possibly infinite range with hard-core repulsion,
(2) superstable pair interactions of finite range,
(3) interactions of mean-field type depending on the particle marks,
(4) nearest-particle interactions for d = 1.

In the cases (2) and (4) we impose periodic boundary conditions. Since
the underlying topology is chosen fine enough, the contraction principle
then gives us a large deviation principle for the “individual empirical
fields” defined by averaging over the particle positions. We also present
a maximum entropy principle implying a general version of the equiv-
alence of ensembles.
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Andreas Greven (joint work with Frank den Hollander)
A variational characterization of the speed of a one-dimensional self-
repellent random walk

Let Qαn denote the probability measure of an n-step random walk
(0, S1, . . . , Sn) on Z obtained by weighting the simple random walk
with the factor (1 − α) for every self-intersection. This is a model for
a one-dimensional polymer. We prove that for every α ∈ (0, 1) there
exists θ∗(α) ∈ (0, 1) such that

lim
n→∞

Qαn

( |Sn|
n
∈ [θ∗(α)− ε, θ∗(α) + ε]

)
= 1 for every ε > 0.

We give a characterization of θ∗(α) in terms of the largest eigenvalue
of a one-parameter family of N×N matrices, which allows us to prove
that θ∗ is an analytic function, θ∗(0) = 0, θ∗(1) = 1, and θ∗(x) ∈ (0, 1)
for x ∈ (0, 1). Besides for the speed we prove a limit law for the local
times of the walk. The techniques used enable us to treat more general
forms of self-repellence involving multiple intersections.

C. Kipnis and S. Olla (joint work with C. Landim)

Hydrodynamics for the generalized exclusion process

The generalized exclusion process with at most two particles per site
is one of the simplest infinite particle systems which is non-gradient
with product-form invariant measures and for which one can prove
hydrodynamical limits. The limiting equation is, as expected, of the
form ∂t% = ∂x(â(%)∂x%) where â is given by a variational formula.

A. I. Kometch (joint work with E. Kopylova and N. Ratanov)

The stabilization of statistics in wave equations with mixing

There exist many statistical equilibrium phenomena in physics related
to Hamiltonian infinite-dimensional systems of mathematical physics,
for example Gibbs measures in statistical mechanics and the black-
body emission law in electrodynamics. The phenomena lead us to a
problem of “statistical stabilization”. This means that these statistics
appear as t → ∞ for the solutions of equations considered when the
initial statistics at t = 0 is “almost arbitrary”. We prove such sta-
bilization for the linear wave equation and also for the Klein-Gordon
equation with constant or variable coefficients in Rn, where n ≥ 2.
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We assume that the initial statistics fit the Rosenblatt-Ibragimov mix-
ing condition and that they are homogeneous in x ∈ Rn. In the case
of constant coefficients we use the explicit formula for the solution and
apply the extention of the “rooms-corridors” method of S. N. Bern-
stein, M. Rosenblatt, and Ibragimov-Linnik. In the case of variable
coefficients there is no of explicit formula. We reduce the case to the
constant coefficients case by the scattering theory. But the total energy
of solutions considered is infinity almost surely because of the homo-
geneity of the initial data (and the solutions). Then we must construct
the scattering theory for solutions of infinite energy.
The result is: the statistics of solutions at time t converge to some
Gaussian measure as t→∞. This is the analogue of the central limit
theorem for the Hamiltonian systems considered. Note that the Gibbs
measures for our linear equations “must” be Gaussian, because their
Hamilton functions are quadratic forms. This means for the large devi-
ations of the solutions, considered in each bounded region of space Rn:
We can almost surely tame the initial data to be very small bounded
functions in Rn. But, as t → ∞, the solution at the considered point
(or the energy in the considered region) may be arbitrary large.

A. P. Korostelëv
Action functional for dynamical systems with discontinuities

A well-known “continuous mapping” method is applied to a piecewise
smooth dynamical system having a surface of “stable discontinuity”.
For such a system disturbed by a standard white Gaussian noise of a
small intensity ε, i. e. for the solution of the stochastic equation

Ẋε(t) = b(Xε(t)) + εẆ (t), 0 ≤ t ≤ T, ε→ 0, Xε(0) = 0,

the action functional (i. e. the rate function governing the large devi-
ations) is obtained. The basic idea is that there exists a continuous
mapping F : C0,T → C0,T , which is Lipschitz in the space of con-
tinuous functions C0,T and satisfies Xε = F (εW ). Moreover, there
exists another mapping G : C0,T → C0,T such that G(εW ) = πε where
πε(t) =

∫ t
0
I(Xε

1(s) > 0) ds, i. e. πε(t) is the staying-time of Xε(t) in
the positive half-space (we assume without loss of generality that the
surface of discontinuity is described by x1 = 0). If ϕ ∈ C0,T , and
ψ = F (ϕ), µ = G(ϕ), then the inverse mapping has an explicit expres-
sion: ϕ = ψ −

∫
b+(ψ) dµ −

∫
b−(ψ) d(t − µ) where b± are one-sided
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limits of b on the surface of discontinuity. Thus, appling the large devia-
tion principle for the Wiener process one gets without any cumbersome
calculation the action functional for the joint process (Xε, πε):

I(ψ, µ) =
1
2

∫ T

0

‖ψ̇ − b+µ̇− b−(1− µ̇)‖2.

The extensions to jumping processes are discussed. It is known that
if one of the three staying-times (in the positive or the negative half-
space, or that on the surface of discontinuity) is vanishing, then the
approach applies. In particular, the large deviations for the solution
of Ẋε = −c sgn(Xε) + ξ̇ε, where ξε is the rescaled Poisson process, are
governed by the action functional

I(ψ, µ) =
∫ T

0

L0(ψ̇ + cµ̇) where L0(u) = 1 + u log(u/e).

But the same equation noised by the two-sided Poisson process (jumps
±1 with probability 1/2) leads to a problem that has no simple solution.

C. Landim
An application of large deviation principles for the empirical measures
of interacting particle systems

We consider the symmetric simple exclusion process for which a large
deviation principle for the empirical measure was proved by Kipnis,
Olla and Varadhan in finite volume and extended to infinite volume by
Landim. We obtain a large deviation principle for the occupation time
of a site in this model as a consequence of the previous result in one
dimension.

Tzong-Yow Lee
Large deviations for branching diffusions

For a branching Brownian motion starting from the origin with mul-
tiplication rate ε−1C and diffusivity εD, write P ε the for probability
measure and Eε for the expectation. We ask:

P ε
{

sample tree has at least one 1-branch in
a tiny “neighborhood” of ϕ(s), 0 ≤ s ≤ 1

}
³ ? ,(1)

P ε
{

sample tree has at least one 2-branch
in a tiny “neighborhood” of (ϕ1, ϕ2)

}
³ ? ,(2)

P ε
{
R1 ∼ b1, R2 ∼ b2

}
³ ? ,(3)
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where ³ means logarithmic equivalence as ε ↘ 0 and Rt denotes the
position of the rightmost particle at time t. Problems (1) and (2) are
answered, for problem (3) a partial solution is given.

J. T. Lewis
Thermodynamical aspects of large deviations

The use in risk theory of intensive parameters analogous to the thermo-
dynamic temperature (Martin-Löf 1986) prompts the question: Under
what conditions does the machinery of equilibrium thermodynamics
apply in the theory of large deviations? In joint work with Ch. Pfi-
ster (Lausanne), we examine the thermodynamic formalism of Ruelle
(1965) and Lanford (1973) in the setting of probability measures on
Banach spaces. We define a Lanford entropy function and a grand
canonical pressure and give conditions for the equivalence of ensem-
bles. Motivated by Gibbs’ axiomatization of thermodynamics (Gross
1982), we define a Gibbs entropy function. We give conditions for the
Lanford entropy function to exist and be a Gibbs entropy function; we
examine the connection with the large deviation principle (cf. O’Brien
and Vervaat 1990).
[1] Martin-Löf, A.: Entropy: a useful tool in risk theory. Scand.

Actuarial J. 1986, 223–235.
[2] Ruelle, D.: J. Math. Phys. 6, 201–209 (1965).
[3] Lanford, O. E.: 1971 Battelle Lectures, LNP 20 (1973).
[4] Gross, L.: Saint Flour X–1980, LNM 929 (1982).
[5] O’Brien, G., Vervaat, W.: Capacities, Large Deviations and Log-

Log Laws, York Univ. Report 90/19 (1990).

Matthias Löwe
Large deviations for U -statistics

Let (Xi)i∈N be a sequence of i. i. d. random variables taking values in
some Polish probability space X with common law π. It is well-known
that

Un :=
1(
n
m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim)

and

Vn :=
1
nm

∑
1≤i1,...,im≤n

h(Xi1 , . . . , Xim)
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are “good” estimators for Eπm(h), where h : Xm → Rd is some in-
tegrable function. Under the condition that the moment generating
function of h and every “diagonal” of h exist, we derive a large devia-
tion principle for the distributions of Un and Vn. In both of the cases
the rate function is given by

I(y) = inf
{
H(% |π)

∣∣∣ % ∈M1(X),
∫
h d%m = y

}
where H( · |π) denotes the usual entropy with respect to π. Our
key tools are the contraction principle, Sanov’s theorem and a graph-
theoretic result about the factorization of complete hypergraphs due
to Baranyai.

Peter Major
Phase transition in random external magnetic field – a conjecture

We discussed a one-dimensional long-range interaction model with a
random external magnetic field. Our conjecture is that there is a phase
transition in this model at low temperatures. This conjecture follows
from a large deviation result about the distribution of the average spin
in this model. We claim that the rate function appearing in this result
is not convex in a certain region. Thus convexity is the cause of the
phase transition, and its appearance is closely related to the long-range
interaction of the model.

M. B. Maljutow
Large deviations in search for significant variables of a function

A function f(x1, . . . , xt) of a vast number of variables may be ex-
pressed in the form g(xλ1 , . . . , xλs) where λ1, . . . , λs is a sequence of
unknown indices and s is small compared to t. Choosing the se-
quence X(i) = (x1(i), . . . , xt(i)), i = 1, . . . , N , arbitrarily, we observe
the values of a random variable Zi which are related to the sequence
of Yi = f(X(i)) via transition probabilities T (Zi|Yi). Measurements
are independent given the sequence X(1), . . . ,X(N). The main quan-
tity of interest is the minimal sample size Nl which guarantees the
correct decision on λ = λ1, . . . , λs with probability of error not ex-
ceeding ε. The cases of static and sequential designs are investigated.
In both cases the upper estimate is Nl ≤ const × ln t when t → ∞
and s is constant. Of special interest is the additive smooth model
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g(x1, . . . , xs) =
∑s
α=1 gα(xα), disturbed by an additive noise. Under

the condition of subgaussian tales of errors A. Korostelev proved the
large deviation estimate for the rather unexpected statistic-inconsistent
estimate of S2

α =
∫ 1

−1
g2
α(x) dx, assuming that all functions gα and their

derivatives are bounded and S2
α ≥ ∆ > 0. This estimate is the base for

obtaining the estimate for Nl mentioned above. For sequential design
the simple lemma on large deviations for supermartingales allows us to
obtain the same asymptotics in a more simple way. Some lower bounds
for Nl are reviewed and cases, where estimates for Nl are precise, are
mentioned.

A. A. Mogulskii (joint work with A. A. Borovkov)
Large deviation theorems for likelihood estimators

Let a1(θ), a2(θ), . . . be i. i. d. random fields in (C(Θ), B), where C(Θ)
is a linear space of continous functions f(θ), θ ∈ Θ, and Θ is a closed
bounded subset of Rk. We call a vector θ+

n ∈ Θ at which An(θ) =
a1(θ) + · · ·+ an(θ) attains its maximum a maximum point of An(θ):

An(θ+
n ) = max

θ∈Θ
An(θ).

The vector θ+
n is not uniquely defined. Therefore, we define “upper”

and “lower” distributions of θ+
n by the formulae

P+(θ+
n ∈ B) ≡ P

(
max
θ∈B

An(θ) ≥ max
θ∈Θ\B

An(θ)
)

and
P−(θ+

n ∈ B) ≡ P
(
max
θ∈B

An(θ) > max
θ∈Θ\B

An(θ)
)
.

In this talk we study the “fine” asymptotics of the sequence

P±(θ+
n ∈ B).

Peter E. Ney
Large deviations in Rd

Let X1, X2, . . . be i. i. d. random variables taking values in Rd, Sn =∑n
1 Xi, Λ(α) = E e〈α,X1〉 for α ∈ Rd, and D(Λ) = {α : Λ(α) < ∞}.

If D(Λ) does not contain a neighborhood of the origin, then the level
sets of Λ∗(x) = supα[〈α, x〉 − Λ(α)], x ∈ Rd, will not be compact, and
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the large deviation principle upper bound may fail. However, if the
level sets of Λ∗ can be suitably approximated by half-spaces, then an
upper bound can be proved. Necessary and sufficient conditions are
given for such an approximation to be possible. They boil down to
the property that the gererating functions of certain marginal random
variables should not be degenerate (i. e. 6≡ ∞ away from 0). The
above results are extended to approximation and separation theorems
for the conjugate f∗ of an essentially arbitrary convex function f . The
hypotheses are expressed in terms of the domain D(f). This leads
to a classification of the sections of f∗ into “elliptic”, “parabolic” and
“hyperbolic” classes, which are natural extensions of the conic sections.

Esa Nummelin
A matrix representation for the one-dimensional transfer operator

We consider the transfer operator L defined by

Lf(i0−∞) =
∑
i1

l(i1−∞)f(i1−∞)

where i0−∞ ∈ A×N− , A is a finite alphabet, l and f are lower semicon-
tinuous non-negative functions on A×N− . We construct a non-negative
matrix Q with index set S equal to the collection of finite sequences of
A-symbols, and such that

LIj∗ =
∑
i∗

Q(i∗, j∗)Ii∗ ,

where Ii∗ is the indicator of a cylinder i∗ ∈ S. Under the usual variation
conditions we establish positive and geometric recurrence properties
of Q. These are related to the eigenvalue problem for the transfer
operator L (Ruelle’s Perron-Frobenius theorem).

E. A. Pechersky
The large deviations for a simple information network

We consider a tandem system as on this picture

−→ 1 −→ 2 −→

defined by i. i. d. vectors (τi, ξ1
i , ξ

2
i ). These τi are intervals between

messages and the ξji are the times for transmitting messages through
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the j-th node. We assume that P (τi > x) = e−λx, Eξji = µj , and
ϕj(θ) = Eeθξ

j
1 . Then (1/x) logP (ω > x) → −min{β1, β2}, where ω

is the total waiting time of a message in the tandem, and the βj are
defined by the equation βj = λ[ϕj(βj)−1].

Ch. Pfister
Large deviations and the isoperimetric problem in Ising model

The rate function of the empirical magnetization is computed explicit-
ly in the case of coexistence of phases. The rate function is given by
the minimum of a variant of the classical isoperimetric problem. The
computation is done in two dimensions. If τ(n) is the surface tension
in the direction n ∈ R2, ‖n‖ = 1, then for −m∗ < x < m∗

lim
L→∞

− 1
L

ln Prµ+
ΛL

(
1
|ΛL|

∑
t∈ΛL

σ(t) ∼ x
)

= min
{∫

γ

τ(n) : γ closed simple curve such that γ ⊂ ΛL

and the interior of γ has volume m∗−x
2m∗

}
where µ+

ΛL
is the Gibbs measure in a square box ΛL of volume L2, with

(+)-boundary condition and m∗ = limL→∞ Eµ+
ΛL

(σ(t)).

A. A. Puhalskii
Weak convergence theory approach to large deviations

We use ideas and methods of weak convergence theory to establish
large deviation results analogous to those for weak convergence. The
main result is an analogue of Prohorov’s theorem. Say that a sequence
(Pn)n∈N of probability measures on the Borel σ-field of a topological
space is large deviation relatively compact if any subsequence contains
a further subsequence obeying the large deviation principle with some
rate function. Then the theorem states that for a Tychonov space
exponential tightness of (Pn)n∈N implies large deviation relative com-
pactness. For a Polish space the converse is also true. The theorem
is applied to study large deviations of semimartingales. To this end,
we introduce for large deviations analogues of the methods of finite
dimensional convergence and of martingale problems in weak conver-
gence. This allows us to obtain new results on large deviations of
semimartingales with paths in the Skorohod space.
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Jeremy Quastel
Large deviations from a hydrodynamic scaling limit for a non-gradient
system

We consider the symmetric simple exclusion process with coloured, but
mechanically identical particles as a simple, but physically motivated,
example of a non-gradient system. Coulour density profiles are shown
to have a hydrodynamic scaling limit which appears as a law of large
numbers for an appropriate sequence of measures. The limiting equa-
tion has the form

∂~%

∂t
=

1
2
∇A(~%)χ(~%)∇~%, ~%(0) = ~% 0,

where A is a matrix involving the self-diffusion constant, Ds(p) is
the limiting covariance of a test particle in density %, and χ denotes
the compressibility. Large deviations are calculated from this scaling
limit with a rate function which is approximately the H−1 norm with
“weights” A−1(%).

Uwe Schmock
Maximun entropy principle for uniformly ergodic Markov chains

Results of Bolthausen and myself (1989) about the maximum entropy
principle for the empirical process of uniformly ergodic discrete-time
Markov chains are extended to more general empirical processes by
putting more restrictive assumptions on the functional H of the empiri-
cal process {Ln}n∈N. Using a special construction, multivariate em-
pirical processes and certain continuous-time Markov processes with
continuous paths can be treated. The weak accumulation points of the
sequence {Pn}n∈N of transformed path measures, defined by

P̂n(A) =
E[1A exp(nH(Ln))]
E[exp(nH(Ln))]

, A ⊂ Ω measurable,

are mixtures of Markov chains minimizing a certain free energy. The
proof relies on large deviation results in the τ -topology for Markov
process, which are due to Bolthausen (1987).

S. B. Shlosman
Droplet condensation: Large and moderate deviations at the phase
transition

Deviations are studied for the sum SN = σ1 + · · ·+ σN of the random
variables σi = ±1, which are distributed according to the Ising model
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random field with inverse temperature β À βcrit, on the ν-dimensional
lattice. The magnetic field is zero, and (+)-phase is considered. It
is shown that for deviations b such that b − E(SN ) ≥ −cNα with
α < ν/(ν + 1), for some c > 0, one has

Pr{SN = b} =
2√

2πDN,b

exp{−IN (b)}(1 + oN (1)),

where DN,b is the “tilted” variance, and IN ( · ) is the rate function. In
the complementary region b − E(SN ) ≤ −cNγ , γ > ν/(ν + 1), c > 0,
one has

ln Pr{SN = b}
(E(SN )− b)(ν−1)/ν

= ON (1).

So the region of deviations around E(SN )−Nν/(ν+1) contains a thresh-
old where the condensation of microscopic (∼ lnN) droplets to macro-
scopic droplet (∼ Nκ with κ ≥ 1/(ν + 1)) takes place.

Herbert Spohn
Large scale dynamics in stochastic models for interfaces

The statistical mechanics of surfaces is modelled conveniently in terms
of effective interface models. They are given by a real valued field, φ,
over the lattice Zd. The surface is the graph of this function. The field
has the energy

H =
∑
〈x,y〉

V (φ(x)− φ(y)),

where 〈x, y〉 is a pair of nearest neighbors and V is convex and bounded
as V (φ) ≥ c|φ|1+δ, δ > 0. Clearly H is invariant under the global
shift φ(x)→ φ(x) + a, which is needed to have the interpretation of a
surface energy. To H there corresponds a d-parameter family of Gibbs
measures. They should be thought of being defined on the difference
variables φ(y) − φ(x), |x − y| = 1. They are defined by taking the
infinite volume limit at fixed tilt, φ(x) = u · x for x ∈ ∂Λ. We consider
pure relaxational dynamics

dφt(x) =
∂H

∂φ(x)
(φt) dt+ dWt(x)

with independent Brownian motions of each site. The goal is to prove
a law of large numbers in the form

lim
ε→0

εd
∑
x

f(εx)εφε−2t(x) =
∫
ddr f(r)h(r, t). (∗)
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The macroscopic height profile should satisfy

∂

∂t
ht = µ

d∑
α=1

∂

∂rα
σα(∇ht)

with µ the mobility and σ the surface tension, σα(u) = ∂
∂uα

σ(u). Ele-
ments of the proof of (∗) are discussed.

Josef Steinebach
Exponential large deviations of the mean under special spherical dis-
tributions

Consider an n-dimensional sample X = (X1, . . . , Xn) under a spherical
distribution, i. e. X = µ+e, µ ∈ Rn, where the distribution of the error
vector e has a λn-density

f(x; g) = c(n; g)g(‖x‖2), x ∈ Rn, (1)

generated by a nonnegative measurable function g with positive nor-
malization c(n; g). We are interested in convergence rates of the least
squares estimate of a possible common mean of X1, . . . , Xn, that is, we
want to investigate the large deviations of

P (An) = P (|Xn − µ·| > ε) = 2P
( n∑
i=1

(Xi − µi) > ε

)
,

where ε > 0, Xn = (1/n)
∑n
i=1Xi and µ· = (1/n)

∑n
i=1 µi. For a class

of spherical distributions generated by a function g of type

g(r2) = a rbe−cr
d

, r > 0, (2)

(a, b, c, d positive constants), the following large deviation results can
be established:

Theorem. Under spherical distribution of X according to (1) with g
as in (2), we have as n→∞,
(i) if d ≥ 2, then logP (An) ∼ −c(nε2)d/2,
(ii) if 1 < d ≤ 2, then logP (An) ∼ −1

2 (cd)2/dn2(1−1/d)ε2,
(iii) if 0 < d ≤ 1, then P (An)/ exp(−αnβ) → +∞ for all α, β > 0

(“no exponential rate”).
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Alain-Sol Sznitman
Brownian motion in a Poissonian potential

I describe in this talk certain large deviation principles which govern the
behavior of Brownian motion moving in a typical Poissonian potential.
These large deviation principles involve the construction, via a shape
theorem, very much in the spirit of first passage percolation, of certain
constants which generalize the Lyapounov exponents in one dimension.
These large deviation results then enable us to study Brownian motion
with a constant drift h moving in the same potential and to describe
the transition of regime which occurs between small h and large h.

Srinivasa R. S. Varadhan (joint work with S. Olla and H.-T. Yau)
Hydrodynamic limit for Hamiltonian systems with noise

We consider a Hamiltonian system of N particles in the phase space
(T3 × R3)N evolving under a short range pair potential of the form
V ((x − y)/ε) where ε is a scale parameter related to N by Nε3 = 1.
We aim to establish a relationship between the Hamiltonian dynamics
and the corresponding Euler equation derived by the thermodynamic
formalism. In order to achieve this some small noise is added to the
velocity components in such a way as not to destroy the conservation
of momenta and energy. The classical Hamiltonian is replaced by one
with bounded velocities. Then in a regime where the Euler equation
has a smooth solution, we show that a suitably prepared local Gibbs
family of densities on the phase space constructed from the solutions
of Euler equation is close to the corresponding time solution of the
Hamiltonian system with noise.

Kongming Wang (joint work with J.-D. Deuschel)
Large deviations for the occupation time functional of a Poisson system
of independent Brownian particles

Let {Ns}s≥0 be the evolution system starting from N0, a Poisson point
process with intensity dx, where each particles independently follows
the law of a d-dimensional Brownian motion. Take ϕ ∈ L1(Rd) with
compact support, and let Ns(ϕ) =

∑
x∈supp(N0) ϕ(Bxs ) and LT (ϕ)(t) =∫ t

0
NTs(ϕ) ds. We study the large deviations and central limit theorems

for LT (ϕ)(t), t ∈ [0, 1]. In the lower (recurrent) dimensions d = 1, 2
we have critical orders T 1/2 and T/ log T , whereas in higher (transient)
dimensions we have the usual order T . We give explicit expressions for
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the corresponding rate functions and covariance functionals and derive
some asymptotic microcanonical distributions.

W. A. Woyczyński (joint work with J. Szulga and J. A. Mann)
Large deviation techniques in analysis of monomolecular layers

The partition function of a statistical mechanical system of hard oval
shaped molecules moving on real line and with rotational degree of
freedom, is replaced by its Poissonized version, which, in turn, can be
analyzed via large deviation techniques when considered in the thermo-
dynamic limit.

H.-T. Yau (joint work with Shenglin Lu)
Spectral gap and logarithmic Sobolev inequality for the Glauber and
Kawasaki dynamics

We prove that there is a spectral gap uniformly with respect to the vol-
ume and boundary condition for the Glauber dynamics. If the Glauber
dynamics is replaced by the Kawasaki dynamics then the spectral gap
is proved to shrink by 1/L2. We assume some mixing conditions for
the Gibbs state to hold. Furthermore, we prove a similar result for the
logarithmic Sobolev inequality except for the Kawasaki dynamics for
dimension d > 1.

Sandy L. Zabell (joint work with I. H. Dinwoodie)
Large deviations for sequences of mixtures

Say that a family {Pnθ : θ ∈ Θ, n ≥ 1 } is exponentially continuous if
when θn → θ, one has that {Pnθn} satisfies a large deviation principle
with rate function λ(θ, v) for each θ ∈ Θ. In this case, if µ is a measure
on Θ, then Pn :=

∫
Θ
Pnθ dµ satisfies a large deviation principle with

rate function inf{λ(θ, v) : θ ∈ supp(µ) } provided Θ is compact and
given weak regularity conditions; see Dinwoodie and Zabell, Annals of
Probability, 1992. In this talk I discuss to what extent the conditions of
this theorem can be weakened; a necessary and sufficient condition for
exponential continuity is given; and a relationship with epiconvergence
is discussed.

Berichterstatter: Gerda Schacher und Uwe Schmock

21



E-Mail Addresses

A. Ben Arous BenArous@dmi.ens.fr
A. Bovier Bovier@IAAS-Berlin.dbp.de
E. Bolthausen K563720@czhrzu1a.bitnet
J. T. Cox JTCox@mailbox.syr.edu
D. A. Dawson DADawson@carleton.ca
F. den Hollander denHolla@math.ruu.nl
J.-D. Deuschel Deuschel@math.ethz.ch
R. S. Ellis RSEllis@math.umass.edu
K. Fleischmann Fleischmann@IAAS-Berlin.dbp.de
M. Freidlin MIF@athena.umd.edu
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