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1 Introduction

Credit risk models can be roughly divided into three classes:

• Actuarial models,

• Structural or asset value models,

• Reduced form or intensity-based models.

These lecture notes concentrate on actuarial models, starting from Bernoulli mod-
els and – justified by the Poisson approximation – progressing to Poisson models
for credit risks. Considerable effort is made to discuss extensions of CreditRisk+,
which are also extensions of the collective model used in actuarial science. The
presented algorithm for the calculation of the portfolio loss distribution, based
on variations of Panjer’s recursion, offers a flexible tool to aggregate risks and to
determine popular values to quantify risk, like value-at-risk or expected shortfall.
The algorithm is recursive and numerically stable, avoiding Monte Carlo methods
completely.

2 Bernoulli Models for Credit Defaults

Parts of Sections 2 and 3 are inspired by the corresponding presentation in Bluhm,
Overbeck and Wagner [9].

2.1 Notation and Basic Bernoulli Model

First of all we have to introduce some notation: Let m be the number of
individual obligors/counterparties/credit risks and (N1, . . . , Nm) be a random
vector of Bernoulli1 default indicators, i.e. binary values

Ni =

{
1 if obligor i defaults (within one period),

0 otherwise,

giving the number of defaults. Furthermore, let

pi := P[Ni = 1] ∈ [0, 1] (2.1)

denote the probability of default2 of obligor i ∈ {1, . . . ,m} within a specified
time frame, typically one year, and

N :=

m∑
i=1

Ni (2.2)

1 Named after Jacob Bernoulli (also known as James or Jacques, 1655–1705 according to the
Gregorian calendar). His main work, the Ars conjectandi , was published in 1713, eight years
after his death, by his nephew, Nicolaus Bernoulli.

2 Determining reliable values for p1, . . . , pm in practice can be a challenging task.
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be the random variable representing the total number of defaults. Obviously

E[Ni] = pi (2.3)

and, using N2
i = Ni,

Var(Ni) = E
[
N2

i

]
− (E[Ni])

2 (2.3)
= pi(1− pi). (2.4)

The expected number of defaults (within one period) is given by

E[N ] =
m∑
i=1

E[Ni]
(2.3)
=

m∑
i=1

pi. (2.5)

If N1, . . . , Nm are uncorrelated, meaning that

Cov(Ni, Nj) = E
[
(Ni − E[Ni])(Nj − E[Nj ])

]
= 0

for all i, j ∈ {1, . . . ,m} with i ̸= j, then the variance of N is

Var(N) =

m∑
i=1

Var(Ni)
(2.4)
=

m∑
i=1

pi(1− pi); (2.6)

see (2.19) and Exercise 2.4 for a more general formula.
The probability of exactly n ∈ {0, . . . ,m} defaults is the sum over the prob-

abilities of all possible subsets of n obligors defaulting during the period, i.e.

P[N = n] =
∑

I⊆{1,...,m}
|I|=n

P[Ni = 1 for i ∈ I, Ni = 0 for i ∈ {1, . . . ,m} \ I ] . (2.7)

Moreover, if the N1, . . . , Nm are independent (which is a strong assumption), then

P[N = n] =
∑

I⊆{1,...,m}
|I|=n

(∏
i∈I

pi

) ∏
i∈{1,...,m}\I

(1− pi). (2.8)

For n = 100 defaults in a portfolio of m = 1000 obligors, assuming pairwise
different p1, . . . , pm, this gives in general(

1000

100

)
≈ 6.4× 10139

terms, which is impossible to calculate explicitly using a computer. This illus-
trates the need for simplifying assumptions, suitable approximations,3 and more
sophisticated algorithms.4

In the special case of equal default probabilities for all obligors, i.e.

p1 = · · · = pm =: p,

3 See e.g. Theorem 3.23 below.
4 See e.g. Exercise 5.4, Theorem 5.16.
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the distribution in (2.8) simplifies to

P[N = n] =

(
m

n

)
pn(1− p)m−n, n ∈ {0, . . . ,m}, (2.9)

which is the binomial distribution5 Bin(m, p) for m ∈ N0 independent trials
with success probability p ∈ [0, 1]. In Section 2.3 and in the context of uniform
portfolios, we will encounter the case of equal default probabilities again.

In practice, N1, . . . , Nm are typically dependent on each other!

Exercise 2.1 (Factorial moments of the binomial distributions). Show for N ∼
Bin(m, p) with m ∈ N and p ∈ [0, 1] (and the convention 00 := 1) that

E
[ l−1∏
k=0

(N − k)

]
= pl

l−1∏
k=0

(m− k), l ∈ N0. (2.10)

2.2 General Bernoulli Mixture Model

In the introduction above, all the default probabilities were constant numbers.
Taking the step to the general Bernoulli mixture model, we will introduce random
probabilities of default. This generalization is natural, as the default probabilities
affecting the obligors in the coming period are not precisely known today. The
uncertainty is expressed by introducing a distribution for them as follows.

Let P1, . . . , Pm be [0, 1]-valued random variables with a joint distribution
function F on [0, 1]m. We will denote this fact by writing (P1, . . . , Pm) ∼ F .

2.2.1 Assumptions on the Random Default Probabilities

At this point no specific distribution is assumed for F . Only some general
assumptions are made. The first, and a quite natural one, is that Pi completely
describes the conditional default probability of obligor i ∈ {1, . . . ,m}, i.e.

P[Ni = 1|P1, . . . , Pm]
a.s.
= P[Ni = 1|Pi]

a.s.
= Pi. (2.11)

The second assumption states that the random default numbers N1, . . . , Nm

are conditionally independent given (P1, . . . , Pm). In other words: If the default
probabilities are known, then the individual defaults are independent. Formally,
for all n1, . . . , nm ∈ {0, 1}, the joint conditional probabilities satisfy

P[N1 = n1, . . . , Nm = nm |P1, . . . , Pm]
a.s.
=

m∏
i=1

P[Ni = ni |P1, . . . , Pm]

a.s.
=

m∏
i=1

Pni
i (1− Pi)

1−ni ,

(2.12)

5 The name refers to the binomial theorem, which can be used to show that the terms in (2.9)
add up to one.
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where we used (2.11), the convention 00 := 1 and

Pni
i (1− Pi)

1−ni =

{
Pi, if ni = 1,

1− Pi, if ni = 0,

for the last equation in (2.12). Note that, for every i ∈ {1, . . . ,m},∑
ni∈{0,1}

Pni
i (1− Pi)

1−ni = 1. (2.13)

In the unconditional case, the joint distribution is obtained by integration
of (2.12) over all possible values of (P1, . . . , Pm) with respect to the distribution
function F , or formally

P[N1 = n1, . . . , Nm = nm] = E
[ m∏
i=1

Pni
i (1− Pi)

1−ni

]

=

∫
[0,1]m

m∏
i=1

pni
i (1− pi)

1−ni F (dp1, . . . ,dpm).

(2.14)

If I ⊆ {1, . . . ,m} is any subset of obligors, then iterative summation over all
ni ∈ {0, 1} with i ∈ {1, . . . ,m} \ I using (2.13) implies that

P[Ni = ni for all i ∈ I ] = E
[∏

i∈I
Pni
i (1− Pi)

1−ni

]
. (2.15)

Exercise 2.2 (Conditional expectation involving independent random variables).
Let (Ω,A,P) be a probability space, B ⊆ A a sub-σ-algebra, (S1,S1) and (S2,S2)
measurable spaces, X: Ω → S1 and Y : Ω → S2 random variables, and F : S1 ×
S2 → R an S1 ⊗ S2-measurable function, which is bounded or non-negative.
Suppose that X is B-measurable and Y is independent of B. Prove that

E[F (X,Y ) |B] a.s.= H(X), (2.16)

where H(x) := E[F (x, Y )] for all x ∈ S1.

Hint: Show that the set

F := {F : S1×S2 → R | F is bounded and S1⊗S2-measurable satisfying (2.16) }

contains all F of the form F (x, y) = 1A(x)1B(y) with A ∈ S1 and B ∈ S2. Show
that the monotone class theorem is applicable.

Remark: In the case B = σ(X), this exercise can be used to illustrate the
Doob–Dynkin lemma, because H is explicitly determined here.

Exercise 2.3 (Explicit construction of the general Bernoulli mixture model).
Consider a [0, 1]m-valued random vector (P1, . . . , Pm) and let U1, . . . , Um be
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independent random variables, uniformly distributed on [0, 1], and independent
of (P1, . . . , Pm). Define, for every obligor i ∈ {1, . . . ,m},

Ni = 1[0,Pi](Ui) =

{
1 if Ui ≤ Pi,

0 if Ui > Pi.

Use Exercise 2.2 to show that N1, . . . , Nm satisfy (2.11) and (2.12).

Hint: For (2.12) with n := (n1, . . . , nm) apply Exercise 2.2 with

Hn(p1, . . . , pm) = P
[
1[0,pi](Ui) = ni for i ∈ {1, . . . ,m}

]
.

2.2.2 Number of Default Events, Expected Value and Variance

With the assumptions (2.11) and (2.12) above, it is possible to deduce the
expectation and the variance of the total number of default events from the
respective properties of the individual random default probabilities. For every
obligor i ∈ {1, . . . ,m},

E[Ni] = P[Ni = 1] = E
[
P[Ni = 1|P1, . . . , Pm]

] (2.11)
= E[Pi] , (2.17)

where we also used a defining property of conditional expectation, or more directly
by (2.15) with I = {i} and ni = 1. Using (2.2), we obtain for the expected
number of defaults, cf. (2.5),

E[N ] =

m∑
i=1

E[Ni]
(2.17)
=

m∑
i=1

E[Pi]. (2.18)

For the variance, first note that by the general formula for sums of square-
integrable random variables (see Exercise 2.4 below),

Var(N) =
m∑
i=1

Var(Ni) +
m∑

i,j=1
i̸=j

Cov(Ni, Nj) . (2.19)

Using N2
i = Ni for {0, 1}-valued random variables, we obtain in a similar way as

in (2.4) for the variance

Var(Ni) = E
[
N2

i

]
− (E[Ni])

2 = E[Ni]− (E[Ni])
2 (2.17)

= E[Pi] (1− E[Pi]) (2.20)

for every i ∈ {1, . . . ,m}. Next we compute the covariance. From (2.15) we get
for i ̸= j in {1, . . . ,m}

E[NiNj ] = P[Ni = 1, Nj = 1] = E[PiPj ], (2.21)

hence with (2.17)

Cov(Ni, Nj) = E[NiNj ]− E[Ni]E[Nj ]

= E[PiPj ]− E[Pi]E[Pj ]

= Cov(Pi, Pj) .

(2.22)
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Equations (2.19), (2.20) and (2.22) together yield the variance

Var(N) =
m∑
i=1

E[Pi](1− E[Pi]) +
m∑

i,j=1
i̸=j

Cov(Pi, Pj) . (2.23)

Exercise 2.4. Prove (2.19) for real-valued square-integrable random variables
N1, . . . , Nm. You may use the first equality in (2.22) as definition.

2.3 Uniform Bernoulli Mixture Model

A uniform Bernoulli mixture model is defined as a special case of the general
Bernoulli mixture model, where the default probabilities of all obligors are equal
(but possibly random), i.e.

P1 = P2 = · · · = Pm =: P,

where P is a [0, 1]-valued random variable, whose distribution function we denote
by F . The mixing random variable P can be viewed as a macroeconomic variable
driving the default probabilities.

Then, for n1, . . . , nm ∈ {0, 1} and n := n1 + · · · + nm denoting the total
number of defaults, it follows from (2.14) that

P[N1 = n1, . . . , Nm = nm] =

∫ 1

0
pn(1− p)m−n F (dp). (2.24)

Given that the identity of the defaulting obligors is unknown (as in the case
above), the probability for n ∈ {0, . . . ,m} defaults is given by

P[N = n] = E
[
P[N = n |P ]

]
= E

[(
m

n

)
Pn(1− P )m−n︸ ︷︷ ︸

binomial distribution

]

=

(
m

n

)∫ 1

0
pn(1− p)m−n F (dp),

(2.25)

where
(
m
n

)
is the usual binomial coefficient describing the number of m-tuples

(n1, . . . , nm) ∈ {0, 1}m with sum n, see (2.9).
In the case of such a uniform portfolio, the expectation in (2.18) reduces to

E[N ] = mE[P ] (2.26)

and the variance of the total number of defaults can be computed using (2.23).
For i ̸= j in {1, . . . ,m} we have Cov(Pi, Pj) = Var(P ) ≥ 0 and therefore

Var(N) = mE[P ](1− E[P ]) +m(m− 1)Var(P ). (2.27)

Hence, the variance of N is composed of the binomial componentmE[P ](1−E[P ])
with success probability E[P ] and a non-negative additional variance term arising

10



from the uncertainty of P . In essence, using the uniform Bernoulli mixture model
can only increase the variance of the total number of defaults.

More generally, the factorial moments can be calculated using (2.10) from
Exercise 2.1, because for every l ∈ N0 by conditioning

E
[ l−1∏
k=0

(N − k)

]
= E

[
E
[ l−1∏
k=0

(N − k)

∣∣∣∣P]] (2.10)
= E[P l]

l−1∏
k=0

(m− k). (2.28)

A special case of the uniform Bernoulli mixture model is given by the extreme
assumption that P is itself a Bernoulli random variable. Then, either no or all
obligors default.

2.3.1 Beta-Binomial Mixture Model

Let us consider a more interesting class of distributions on the unit interval [0, 1].
Recall that the gamma function is defined6 by

Γ(α) =

∫ ∞

0
xα−1 e−x dx, α > 0. (2.29)

By partial integration,

αΓ(α) = Γ(α+ 1), α > 0, (2.30)

which is the functional equation of the gamma function. Iterated application of
(2.30) yields

Γ(α+ n) = Γ(α)
n−1∏
i=0

(α+ i), α > 0, n ∈ N0. (2.31)

Since Γ(1) = 1 by (2.29), the case α = 1 shows that Γ(n+ 1) = n! for all n ∈ N0.

Exercise 2.5 (Multivariate beta function). For integer dimension d ≥ 2 define
the open standard orthogonal (d − 1)-dimensional simplex (also called lower
simplex in the open unit cube) by

∆d−1 = {(x1, . . . , xd−1) ∈ (0, 1)d−1 | x1 + · · ·+ xd−1 < 1}. (2.32)

Show by direct calculation for the multivariate beta function7 that

B(α1, . . . , αd) :=

∫
∆d−1

( d−1∏
i=1

xαi−1
i

)
(1− x1 − · · · − xd−1)

αd−1 d(x1, . . . , xd−1)

=

∏d
i=1 Γ(αi)

Γ(α1 + · · ·+ αd)
, α1, . . . , αd > 0,

(2.33)

6 The gamma function is actually a meromorphic function on the complex plane C with poles
at 0 and the negative integers, but this will not be used in the following.

7 The proof of Lemma 4.35 below contains a probabilistic argument for the case d = 2.
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which in the case d = 2 simplifies to

B(α, β) :=

∫ 1

0
xα−1(1− x)β−1 dx =

Γ(α) Γ(β)

Γ(α+ β)
, α, β > 0. (2.34)

Using a particular choice of α1, . . . , αd, conclude that the (d − 1)-dimensional
volume of ∆d−1 is 1/(d− 1)!.

Hint: Write down
∏d

i=1 Γ(αi) and use a d-dimensional integral substitution with
(x1, . . . , xd−1, 1− x1 − · · · − xd−1)z where (x1, . . . , xd−1) ∈ ∆d−1 and z ∈ (0,∞).

Definition 2.6 (Beta distribution8). A density of the beta distribution with real
shape parameters α, β > 0 is given by

fα,β(p) =

{
pα−1(1−p)β−1

B(α,β) for p ∈ (0, 1),

0 for p ∈ R \ (0, 1),
(2.35)

where B denotes the beta function, see (2.34). For a random variable P with a
beta distribution, we use the notation P ∼ Beta(α, β).

When the mixing random variable P in the uniform Bernoulli mixture model
(as presented in Section 2.3) follows a beta distribution, we can derive a more
explicit distribution for the number of defaults. From (2.25) we get that

P[N = n] =

(
m

n

)∫ 1

0
pn(1− p)m−n p

α−1(1− p)β−1

B(α, β)
dp

=

(
m

n

)
1

B(α, β)

∫ 1

0
pα+n−1(1− p)β+m−n−1 dp︸ ︷︷ ︸
=B(α+n,β+m−n) by (2.34)

=

(
m

n

)
B(α+ n, β +m− n)

B(α, β)
, n ∈ {0, 1, . . . ,m},

(2.36)

which is called the beta-binomial distribution with shape parameters α, β > 0
and m ∈ N0 trials. We will use the notation BetaBin(α, β,m).

Exercise 2.7 (Moments of the beta distribution). Let P ∼ Beta(α, β) with
α, β > 0. Show that

E
[
P γ(1− P )δ

]
=
B(α+ γ, β + δ)

B(α, β)
, γ > −α, δ > −β, (2.37)

and, using the relation (2.34) for the beta function and the functional equation
(2.31) of the gamma function, conclude that

E[P l] =
l−1∏
k=0

α+ k

α+ β + k
, l ∈ N0, (2.38)

in particular

E[P ] =
α

α+ β
and Var(P ) =

αβ

(α+ β)2(α+ β + 1)
. (2.39)

8 For the multivariate generalization, see Definition 4.26 below.
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Exercise 2.8 (Computation of the beta-binomial distribution). Using the relation
(2.34) for the beta function and the functional equation (2.30) of the gamma
function, show that the beta-binomial distribution (2.36) can be computed in an
elementary way by

P[N = n] =

( n−1∏
i=0

α+ i

i+ 1

)(m−n−1∏
i=0

β + i

i+ 1

)m−1∏
i=0

i+ 1

α+ β + i

for every n ∈ {0, . . . ,m}, and conclude that it can also be calculated recursively
from the initial value

P[N = 0] =
m−1∏
i=0

β + i

α+ β + i

and the recursion formula

P[N = n] =
(α+ n− 1)(m− n+ 1)

n(β +m− n)
P[N = n− 1] , n ∈ {1, . . . ,m},

in a numerically stable way, because only differences of integers are calculated.

Exercise 2.9 (Factorial moments of the beta-binomial distribution). Let N have
a beta-binomial distribution with shape parameters α, β > 0 and m ∈ N trials.
Show that, for every l ∈ N0, the l-th factorial moment is given by

E
[ l−1∏
k=0

(N − k)

]
=

l−1∏
k=0

(α+ k)(m− k)

α+ β + k
, (2.40)

and conclude from (2.40) using N2 = N +N(N − 1) that

E[N ] =
αm

α+ β
and Var(N) =

αβm(α+ β +m)

(α+ β)2(α+ β + 1)
.

Hint: Combine (2.28) and (2.38).

Exercise 2.10 (Calculating moments from factorial moments). Using the con-
vention x0 = 1, show that in the polynomial ring R[x] over a commutative ring
R (with 1),

xn =

n∑
l=0

{
n

l

} l−1∏
k=0

(x− k), n ∈ N0, (2.41)

where
{
n
l

}
denotes the Stirling number of the second kind,9 defined recursively

by {
n+ 1

l

}
=

{
n

l − 1

}
+ l

{
n

l

}
, l ∈ N and n ∈ N0, (2.42)

9 The Stirling number of the second kind
{
n
l

}
gives the number of ways to partition a set

of n ∈ N elements into l ∈ {1, . . . , n} non-empty subsets: Obviously
{
1
1

}
= 1. To explain the

recursion formula (2.42) by induction, you can add {n+ 1} as a new subset to the partition of
{1, . . . , n} into l− 1 subsets, or you can put n+ 1 into one of the l existing sets of the partition.
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with initial conditions
{
0
0

}
:= 1,

{
n
0

}
:= 0 and

{
0
l

}
:= 0 for l, n ∈ N. Conclude

that, for every N0-valued random variable N , the moments can be calculated
from the factorial moments by the formula

E[Nn] =
n∑

l=0

{
n

l

}
E
[ l−1∏
k=0

(N − k)

]
, n ∈ N0. (2.43)

Show that (2.43) is also true for C-valued random variables, provided the absolute
factorial moments for the right-hand side of (2.43) are finite or the absolute nth
moment for the left-hand side is finite. Explain how (2.43) can be applied to
random Cd×d-matrices and see Exercise 4.14 for the multivariate extension.

Hint: Show for all l, n ∈ N that
{
n
l

}
= 0 if l > n and

{
n
l

}
= 1 if l = n. Use

x = (x− l) + l to prove (2.41).

2.3.2 Biased Measure and the Beta Distribution

Definition 2.11 (Biased probability measure). Let Λ be a [0,∞)-valued random
variable on a probability space (Ω,F ,P) such that 0 < E[Λ] < ∞. Then the
Λ-biased probability measure PΛ on (Ω,F) is defined by

PΛ[A] =
E[Λ1A]

E[Λ]
, A ∈ F . (2.44)

Some distributions just change their distributional parameters under suitable
biasing, an example is the beta distribution.

Lemma 2.12 (Biased beta distribution10). Assume that P ∼ Beta(α, β) with pa-
rameters α, β > 0 and that γ ∈ (−α,∞) and δ ∈ (−β,∞). Then PP γ(1−P )δP

−1 =

Beta(α+ γ, β + δ), that means the distribution of P under the P γ(1−P )δ-biased
probability measure PP γ(1−P )δ given by Definition 2.11 is the Beta(α+ γ, β + δ)
distribution.

Proof. By (2.37) and (2.44), a density of the P γ(1 − P )δ-biased probability
measure PP γ(1−P )δ w.r.t. P is given by

dPP γ(1−P )δ

dP
=

B(α, β)

B(α+ γ, β + δ)
P γ(1− P )δ.

Let µ denote the Lebesgue–Borel measure on R. Using the density fα,β from
(2.35) shows that, for µ-almost all p ∈ (0, 1),

d(PP γ(1−P )δP
−1)

dµ
(p) =

d(PP γ(1−P )δP
−1)

d(PP−1)
(p) · d(PP

−1)

dµ
(p)

=
B(α, β)

B(α+ γ, β + δ)
pγ(1− p)δ · fα,β(p)

=
pα+γ−1(1− p)β+δ−1

B(α+ γ, β + δ)
,

which by (2.35) gives a density of the Beta(α+ γ, β + δ) distribution.
10 See Lemma 4.29 below for the generalization to the Dirichlet distribution.

14



2.4 One-Factor Bernoulli Mixture Model

We now introduce a version of the Bernoulli mixture model, which is more
restrictive than the general one from Subsection 2.2 in the sense that there
is only one (macroeconomic) random variable driving the default probabilities.
However, it’s more general than the uniform Bernoulli mixture model of Subsection
2.3, because the individual obligors have susceptibilities p1, . . . , pm w.r.t. the
macroeconomic random variable, which don’t need to be equal.

Definition 2.13 (One-factor Bernoulli mixture model). Consider Bernoulli
random variables N1, . . . , Nm. Let Λ be a [0,∞)-valued random variable such
that 0 < E[Λ] <∞. If there exist p1, . . . , pm ∈ [0,∞) such that

P[Ni = 1|Λ] a.s.= piΛ, i ∈ {1, . . . ,m}, (2.45)

and if N1, . . . , Nm are conditionally independent given Λ, i.e.,

P[N1 = n1, . . . , Nm = nm |Λ] a.s.=

m∏
i=1

P[Ni = ni |Λ] (2.46)

for all n1, . . . , nm ∈ {0, 1}, then we call (N1, . . . , Nm,Λ) a one-factor Bernoulli
mixture model with susceptibilities p1, . . . , pm. If p1 = · · · = pm, then we call the
model homogeneous.

Condition (2.45) implies that max{p1, . . . , pm}Λ ≤ 1 P-almost surely. Fur-
thermore, P[Ni = 1] = E[P[Ni = 1|Λ]] = pi E[Λ]. Hence in the case E[Λ] = 1, the
susceptibilities p1, . . . , pm are the individual default probabilities within the next
period as introduced in (2.1).

Remark 2.14 (Discussion of expectation and variance). Let (N1, . . . , Nm,Λ)
be a one-factor Bernoulli mixture model with susceptibilities p1, . . . , pm, let
N = N1 + · · ·+Nm denote the number of defaults, and define λ = p1 + · · ·+ pm.
Then (2.45) implies that

E[N |Λ] a.s.= (p1 + · · ·+ pm)Λ = λΛ,

hence E[N ] = λE[Λ]. For the variance we see from (2.23) that

Var(N) =

m∑
i=1

pi E[Λ] (1− pi E[Λ]) +
m∑

i,j=1
i̸=j

Cov(piΛ, pjΛ)︸ ︷︷ ︸
= pipj Var(Λ)

.
(2.47)

Using the abbreviation λ2 := p21 + · · ·+ p2m and noting that the double sum over
pipj in (2.47) has all terms of λ2 except p21, . . . , p

2
m, it follows that

Var(N) = λE[Λ]− λ2(E[Λ])2 + (λ2 − λ2)Var(Λ) , (2.48)

which can be smaller or larger than E[N ] = λE[Λ] depending on (λ2−λ2)Var(Λ).
If λ2 = λ2, then at most one of p1, . . . , pm is non-zero, and we exclude this
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uninteresting case of a single Bernoulli random variable in the remaining discussion.
Hence pb := (λ2 − λ2)/λ

2 defines a strictly positive probability. If, for a given
mean µ > 0, the susceptibilities satisfy pi ≤ pb/µ for every i ∈ {1, . . . ,m}, then
there exists a random variable Λ with E[Λ] = µ and piΛ ≤ 1 for all i ∈ {1, . . . ,m}
satisfying

Var(Λ) =
λ2

λ2 − λ2
(E[Λ])2; (2.49)

a simple (but extreme) example is a random variable Λ with P[Λ = 0] = 1− pb
and P[Λ = µ/pb] = pb, because E[Λ] = µ and E[Λ2] = µ2/pb, hence

Var(Λ) = E[Λ2]− (E[Λ])2 =
( 1

pb
− 1

)
µ2 =

λ2
λ2 − λ2

µ2.

In the case (2.49), the expectation and the variance of N agree,11 see (2.48).

3 Poisson Models for Credit Defaults

For the application of Poisson models to describe defaults in credit portfolios, it
is necessary to look at some of the basic properties of the Poisson distribution.

3.1 Elementary Properties of the Poisson Distribution

Definition 3.1 (Poisson distribution). An N0-valued random variable N has a
Poisson distribution12 with parameter λ ≥ 0 if

P[N = n] =
λn

n!
e−λ, n ∈ N0, (3.1)

where we use the convention 00 := 1. We will use the notation N ∼ Poisson(λ).

In a credit risk context, if N describes the number of defaults of an obligor
within one period, then mainly the events N = 0 and N = 1 are of practical
interest. The event N = 2 would correspond to a default of the obligor after
recapitalization, and in principle recapitalization and subsequent default could
happen several times within one period.

First we consider moments. Suppose N ∼ Poisson(λ) and l ∈ N0. Then, by
the power series of the exponential function, the l-th factorial moment of the
Poisson distribution is given by

E
[ l−1∏
k=0

(N − k)

]
(3.1)
=

∞∑
n=l

( l−1∏
k=0

(n− k)︸ ︷︷ ︸
=0 for n∈{0,...,l−1}

)
λn

n!
e−λ = λl e−λ

∞∑
n=l

λn−l

(n− l)!︸ ︷︷ ︸
=eλ

= λl. (3.2)

11 The property E[N ] = Var(N) is shared with the Poisson distribution, see Definition 3.1 as
well as (3.3) and (3.4) below.

12 Named after the French mathematician Siméon Denis Poisson (1781–1840).
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For l = 1 this gives the expected value

E[N ] = λ. (3.3)

Using N2 = N +N(N − 1) and (3.2) for l = 2, the variance can be calculated
according to

Var(N) = E[N2]− (E[N ])2

= E[N ] + E[N(N − 1)]− (E[N ])2 = λ+ λ2 − λ2 = λ.
(3.4)

To calculate higher moments of N , use (2.43) from Exercise 2.10.
Another very important feature of Poisson distributed random variables is

their summation property: The sum of independent Poisson distributed random
variables is again a Poisson distributed random variable with parameter given by
the sum of the respective parameters.

Lemma 3.2 (Summation property of the Poisson distribution). If N1, . . . , Nk

are independent with Ni ∼ Poisson(λi) for all i ∈ {1, . . . , k}, then

N :=
k∑

i=1

Ni ∼ Poisson(λ1 + · · ·+ λk) . (3.5)

We give a direct proof below; for a short one using probability-generating
functions, see (4.32). For the multivariate generalization, see Lemma 3.43.

Proof of Lemma 3.2. For the proof, we first consider the case k = 2, i.e., the sum
of two independent Poisson distributed random variables.

Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be independent and let n ∈ N0.
Then, by considering all possibilities to get the sum n,

P[X + Y = n] =
n∑

l=0

P[X = n− l, Y = l ]︸ ︷︷ ︸
=P[X=n−l]P[Y=l] by independence

=

n∑
l=0

e−λ λn−l

(n− l)!
e−µ µ

l

l!
= e−(λ+µ) 1

n!

n∑
l=0

(
n

l

)
λn−lµl︸ ︷︷ ︸

=(λ+µ)n

,
(3.6)

where we used the factorial definition of the binomial coefficient and the binomial
theorem at the end. Hence X+Y ∼ Poisson(λ+ µ). The rest of the proof follows
by mathematical induction on the number k of random variables.

Remark 3.3 (Infinite divisibility of the Poisson distribution). Lemma 3.2 implies
that, for every λ ≥ 0, the Poisson distribution Poisson(λ) is infinitely divisible,
because for every k ∈ N the distribution of N1 + · · · +Nk is Poisson(λ), when
N1, . . . , Nk are independent with Ni ∼ Poisson(λ/k) for every i ∈ {1, . . . , k}.
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Remark 3.4 (Raikov’s theorem). The summation property in Lemma 3.2 charac-
terizes the Poisson distribution in the following sense: Given k ∈ N independent,
real-valued random variables N1, . . . , Nk such that N1 + · · ·+Nk ∼ Poisson(λ),
then there exist a1, . . . , ak ∈ R and λ1, . . . , λk ∈ [0, λ] with a1 + · · ·+ ak = 0 and
λ1+· · ·+λk = λ such that N ′

i := Ni+ai ∼ Poisson(λi) for every i ∈ {1, . . . , k}. If,
in addition, N1, . . . , Nk are assumed to be non-negative, then a1 = · · · = ak = 0
and Ni ∼ Poisson(λi) for every i ∈ {1, . . . , k}. This general case of Raikov’s
theorem follows from the case k = 2 by induction. The proof for k = 2 uses the
Hadamard factorization theorem from complex analysis, hence we omit the more
involved part of the proof here.

3.2 Calibration of the Poisson Distribution

There are at least five calibration options available. The Poisson parameter
λ ≥ 0 of a random variable N ∼ Poisson(λ) can be determined as follows when a
Bernoulli distribution with success probability p ∈ [0, 1] is provided:

(a) Given p ∈ [0, 1), choose λ ∈ [0,∞) so that the probability of no default
coincides with the one in the Bernoulli model, i.e.

e−λ = P[N = 0] = 1− p, (3.7)

or equivalently, using the Taylor expansion,13

λ = − log(1− p) =

∞∑
n=1

pn

n
= p+

1

2
p2 +

1

3
p3 + · · · . (3.8)

However, when the probability p of one default is sufficiently close to
1, it might be better to approximate p by P[N = 1] = λ e−λ as best as
possible. By considering the derivative of [0,∞) ∋ λ 7→ λ e−λ, which is
λ 7→ (1−λ) e−λ, it follows that P[N = 1] attains its maximum 1/e for λ = 1.
Hence at least for p ≥ 1− 1/e, the calibration λ = 1 instead of the larger
value arising from (3.8) should be chosen, see also (d) and (e) below.

(b) Given p ∈ [0, 1], choose λ ∈ [0, 1] so that the expected number of defaults
fits with the one in the Bernoulli model, i.e.

λ = E[N ] = p, (3.9)

where (2.3) for the expectation of a Bernoulli random variable and (3.3) for
the expectation of N are used.

(c) Given p ∈ [0, 1], choose λ ∈ [0, 1/4] so that the variance of the number of
defaults equals the corresponding variance in the Bernoulli model, i.e.

λ = Var(N) = p(1− p), (3.10)

where (2.4) for the variance of a Bernoulli random variable and (3.4) for
the variance of N are used.

13 Note that the terms on the right-hand side of (3.8) are (up to normalization) those of the
logarithmic distribution Log(p), see Definition 4.4 below.
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Note that, using the expansion (3.8), the results of the three calibration methods
(3.7), (3.9) and (3.10) are ordered in the sense that − log(1−p) ≥ p ≥ p(1−p) for
p ∈ [0, 1) with equality only for p = 0. For small p the expansion (3.8) justifies
the approximations

− log(1− p) ≈ p ≈ p(1− p),

hence the three methods above give very similar results for small p. For p close
to 1, the three methods give quite different results, and the “good” one depends
on the purpose; in most cases the calibration (3.9) will be the appropriate one.

There are two additional calibration methods discussed in Subsection 3.4.1
below and mentioned here for completeness, both are variants of (3.8):

(d) For p ∈ [0, 1] take λ = − log(1−min{p, 1/2}) ∈ [0, log 2], which minimizes
the Wasserstein distance between Poisson(λ) and the Bernoulli distribution
Bin(1, p), see Definition 3.14 and Remark 3.28 below.

(e) For p ∈ [0, 1] take λ = − log(1−min{p, 1−1/ e}) ∈ [0, 1], which minimizes
the total variation distance between Poisson(λ) and Bin(1, p), see Definition
3.7 and Exercise 3.33 below.

3.3 Metrics for Spaces of Probability Measures

To quantify the quality of the Poisson approximation in the next section, we need
a way to measure the distance between probability measures. To this end, let
(S,S) denote a measurable space14, M1(S,S) the set of all probability measures
on (S,S), and F a non-empty set of real-valued, measurable functions on (S,S).
When it is clear from the context, we will suppress the σ-algebra S in the notation.
Define the set

MF
1 (S) =

{
µ ∈ M1(S)

∣∣∣ ∫
S
|f |dµ <∞ for all f ∈ F

}
(3.11)

of all probability measures µ such that F ⊆ L1(µ). Then

dF (µ, ν) = sup
f∈F

∣∣∣∫
S
f dµ−

∫
S
f dν

∣∣∣, µ, ν ∈ MF
1 (S), (3.12)

defines an R+-valued pseudometric on MF
1 (S), meaning that dF is non-negative,

symmetric, and satisfies the triangle inequality. However, dF (µ, ν) = 0 does not
need to imply µ = ν. To ensure that dF(µ, ν) = 0 actually implies that µ = ν,
it suffices that F separates the probability measures in MF

1 (S), meaning that
for every choice of µ, ν ∈ MF

1 (S) with µ ≠ ν there exists an f ∈ F such that∫
S f dµ ̸=

∫
S f dν.

Remark 3.5. Note that the supremum in (3.12) can result in dF(µ, ν) = ∞,
which is normally not an allowed value for a metric or a pseudometric. This

14 We will mainly need S = N0 and S = R with S denoting the set P(N0) of all subsets of N0

or the Borel σ-algebra BR on R, respectively.
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already happens with S = {0, 1} and F the set for bounded functions on S,
just take µ = δ0, ν = δ1 and fn(x) = nx for n ∈ N and x ∈ S. This problem
can be rectified by choosing a real number r > 0 and considering the bounded
(pseudo-)metric d′F (µ, ν) := min{r, dF (µ, ν)}. However, in the first two examples
we consider, the functions in F are bounded by 1, and in the third example of
the Wasserstein metric for probability measures on a metric space (S, d) (see
Definition 3.14 below), this problem does not occur, see Remark 3.15.

Remark 3.6. If, for every f ∈ F , there exists a constant cf ∈ R such that cf − f
is also in F , then∫

S
(cf − f) dµ−

∫
S
(cf − f) dν =

∫
S
f dν −

∫
S
f dµ, f ∈ F ,

because µ and ν are probability measures, hence we can omit the absolute value
in the definition (3.12) of dF .

We will consider three different choices for F , giving rise to three different
metrics.15 The first one arises from the set FTV := {1A | A ∈ S } of all indicator
functions, which has the property discussed in Remark 3.6 with cf = 1, and
which by definition separates the probability measures in M1(S).

Definition 3.7 (Total variation metric). The total variation metric dTV on the
set M1(S) of all probability measures on the measurable space (S,S) is defined
by

dTV(µ, ν) = sup
A∈S

(µ(A)− ν(A)), µ, ν ∈ M1(S).

Remark 3.8. Note that dTV(µ, ν) ≤ 1 for all µ, ν ∈ M1(S). If µ and ν are
mutually singular, then dTV(µ, ν) = 1. The reverse direction is also true and
follows from Exercise 3.19(c) below.

For many applications, in particular when proving convergence of the distri-
butions of Rd-valued random variables, the total variation metric is too strong.
Therefore, in the case S = Rd with Borel σ-algebra BRd , we consider the collection

FKS := {1(−∞,a1]×···×(−∞,ad] | (a1, . . . , ad) ∈ Rd }.

Since the distribution function Fµ of a probability measure µ on Rd, defined by
Fµ(a1, . . . , ad) = µ

(
(−∞, a1]× · · · × (−∞, ad]

)
for all (a1, . . . , ad) ∈ Rd, uniquely

determines16 µ, the collection FKS separates the probability measures on Rd.

15 There are other notions of “distances” for probability measures like the Hellinger metric,
the pth Wasserstein metric for p > 1, the Lev́y–Prokhorov metric metricizing the so-called
weak topology, the Kullback–Leibler divergence (which is not a metric), and so on, cf. [24]. For
connections to optimal transport, see the textbooks by C. Villani [55, 56].

16 For a proof, show that E := {(−∞, a1]× · · · × (−∞, ad] | (a1, . . . , ad) ∈ Rd} is intersection-
stable and generates BRd . Then consider for µ and µ̃ with Fµ = Fµ̃ the set D := {A ∈ BRd |
µ(A) = µ̃(A)} and apply Dynkin’s lemma to conclude that µ = µ̃.
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Definition 3.9 (Kolmogorov–Smirnov metric). The Kolmogorov–Smirnov met-
ric17 dKS – sometimes just called Kolmogorov metric – on the set M1(Rd) of all
probability measures on Rd is defined by

dKS(µ, ν) = sup
a∈Rd

|Fµ(a)− Fν(a)| = ∥Fµ − Fν∥∞, µ, ν ∈ M1(Rd), (3.13)

where Fµ and Fν denote the distribution functions of µ and ν, respectively.

Remark 3.10. For probability measures µ and ν on Rd, it follows from FKS ⊆
FTV that

dKS(µ, ν) ≤ dTV(µ, ν). (3.14)

The Kolmogorov–Smirnov metric is useful to obtain estimates for quantiles
and value-at-risk, see Lemma 8.7 below. Remark 3.10 implies that dTV generates
a (not necessarily strictly) finer topology on M1(Rd) and that convergence with
respect to dTV implies convergence with respect to dKS. The following example
shows that the converse is not true in general, hence the metrics dTV and dKS

generate different topologies on M1(Rd).

Example 3.11. Let µ denote the uniform distribution on [0, 1] and define
µn = (1/n)

∑n
i=1 δi/n. Then µ({1/n, . . . , n/n}) = 0 and µn({1/n, . . . , n/n}) = 1,

hence dTV(µ, µn) = 1 by Remark 3.8, while dKS(µ, µn) = 1/n for all n ∈ N.

The next example shows that weak convergence does not imply convergence
in the Kolmogorov–Smirnov metric.

Example 3.12. Consider the probability measures µ = δ0 and µn = δ1/n on R.
Then µ((−∞, 0]) = 1 and µn((−∞, 0]) = 0, hence dKS(µ, µn) = 1 for every n ∈ N.
On the other hand,

∫
R f dµn = f(1/n) → f(0) =

∫
S f dµ as n → ∞ for every

bounded and continuous function f : R → R, which means weak convergence of
(µn)n∈N to µ.

For the last one of the three metrics, consider a metric space (S, d) with Borel
σ-algebra S and let FW denote the set of all functions f : S → R, which are
Lipschitz continuous with constant at most 1, i.e.,

|f(x)− f(y)| ≤ d(x, y), x, y ∈ S.

Note that FW has the property discussed in Remark 3.6 with cf = 0. Define

MFW
1 (S) according to (3.11).

Exercise 3.13 (Separating functions for M1(S)). Let (S, d) be a metric space.
Show that already the bounded functions in FW separate the probability measures
in M1(S).

Hint: Consider fA,n(x) = (1− n dist(A, x))+ for closed A ⊆ S and n ∈ N. Use a
corollary of Dynkin’s lemma, see e.g. [49, Corollary 15.69].

17 Named after Andrey Kolmogorov (1903–1987) and Nikolai Smirnov (1900–1966), because
the metric appears in the test statistic in their Kolmogorov–Smirnov test.
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Definition 3.14 (Wasserstein metric). Let (S, d) be metric space with Borel
σ-algebra S. The Wasserstein metric18 dW induced by d is defined by

dW(µ, ν) = sup
f∈FW

(∫
S
f dµ−

∫
S
f dν

)
, µ, ν ∈ MFW

1 (S). (3.15)

Remark 3.15 (The Wasserstein metric is well defined on MFW
1 (S)). Consider

a point x0 ∈ S and two probability measures µ, ν ∈ MFW
1 (S). Then, for every

function f : S → R having Lipschitz constant

Lip(f) := sup
x,y∈S
x̸=y

|f(x)− f(y)|
d(x, y)

<∞, (3.16)

the expectations
∫
S f dµ and

∫
S f dν are well defined, because |f(x)| ≤ |f(x0)|+

Lip(f)d(x, x0) for all x ∈ S, and the function S ∋ x 7→ d(x, x0) ∈ R is in FW by
the reverse triangle inequality: |d(x, x0)− d(y, x0)| ≤ d(x, y) for all x, x0, y ∈ S.
Furthermore,∣∣∣∣∫

S
f dµ−

∫
S
f dν

∣∣∣∣ = ∣∣∣∣∫
S
(f(x)− f(x0))µ(dx)−

∫
S
(f(x)− f(x0)) ν(dx)

∣∣∣∣
≤ Lip(f)

(∫
S
d(x, x0)µ(dx) +

∫
S
d(x, x0) ν(dx)

)
,

which in particular implies that dW(µ, ν) in (3.15) is finite, cf. Remark 3.5.

Remark 3.16 (Bounds for the Wasserstein metric). Consider two probability
measures µ, ν ∈ MFW

1 (S). Let (X,Y ) be an (S × S)-valued random variable,
defined on a probability space (Ω,A,P), such that L(X) = µ and L(Y ) = ν.
Suppose the function f : S → R has Lipschitz constant Lip(f) <∞. If Lip(f) = 0,
then f is constant. If Lip(f) > 0, then the function f/Lip(f) has Lipschitz
constant 1. Hence Definition 3.14 implies the lower bound∣∣E[f(X)]− E[f(Y )]

∣∣ ≤ Lip(f) dW(µ, ν), (3.17)

which will be used in Lemma 8.25 below to estimate differences of expected
shortfalls. If the metric d: S×S → [0,∞) is S ⊗S-measurable (which is certainly
the case when the metric space (S, d) is separable and equipped with the Borel σ-
algebra S as before, see [49, Corollary 15.55]), then d(X,Y ) is a random variable.
Then by (3.16), for every function f : S → R with Lipschitz constant Lip(f) <∞,∣∣E[f(X)]− E[f(Y )]

∣∣ ≤ E[|f(X)− f(Y )|] ≤ Lip(f)E[d(X,Y )] , (3.18)

and taking the supremum in (3.18) over all functions f with Lip(f) ≤ 1,

dW(µ, ν)
(3.15)
= sup

f∈FW

(
E[f(X)]− E[f(Y )]

)
≤ E[d(X,Y )] . (3.19)

To obtain a good upper bound, we can optimize the right-hand side of (3.19)
with respect to the dependence of X and Y .

18 Named after the Russian-American mathematician Leonid Nisonovich Vaserstein, most
English-language publications use the German spelling Wasserstein. The metric is also known
as Dudley, Fortet–Mourier, and Kantorovich D1,1 metric.
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The next example shows that weak convergence in general does not imply
convergence in the Wasserstein metric, because there are unbounded functions in
FW. See Exercise 3.22 below for a proper characterization in case of a normed
vector space.

Example 3.17. Define the probability measures µ = δ0 and µn = (1− 1/n)δ0 +
(1/n)δn on R. Using the function R ∋ x 7→ |x|, it follows from Definition 3.14
that dW(µ, µn) ≥ 1 for all n ∈ N. On the other hand,

∣∣∫
S f dµ −

∫
S f dµn

∣∣ =
|f(0)− f(n)|/n ≤ 2∥f∥∞/n → 0 as n → ∞, for every bounded and continuous
function f : R → R, which verifies weak convergence.

Lemma 3.18 (Total variation and Wasserstein metric on M1(N0)). Let S ̸= ∅
be a finite or countable infinite set. Then, for all µ, ν ∈ M1(S,P(S)):

(a) A set A ⊆ S satisfies dTV(µ, ν) = µ(A)− ν(A) if and only if A ⊆ {n ∈ S |
µ({n}) ≥ ν({n})} and Ac ⊆ {n ∈ S | µ({n}) ≤ ν({n})}.

(b) dTV(µ, ν) =
1
2

∑
n∈S |µ({n})− ν({n})|.

(c) Let S ⊆ Z with the usual distance. If µ and ν have finite expectation, i.e.∑
n∈S

|n|µ({n}) <∞ and
∑
n∈S

|n|ν({n}) <∞, (3.20)

then dTV(µ, ν) ≤ dW(µ, ν).

For S ⊆ Z the Wasserstein distance dW(µ, ν) between the probability measures
µ and ν takes into account not only the amounts by which their individual
probabilities differ, as in the total variation distance dTV(µ, ν), but also how far
apart the differences occur, which explains the inequality in part (c) above.

Proof of Lemma 3.18. (a), (b) Let en := µ({n})− ν({n}) denote the approxima-
tion error for n ∈ S. Then, for every A ⊆ S,

1

2

∑
n∈S

|en| ≥
1

2

∑
n∈A

en − 1

2

∑
n∈S\A

en =
∑
n∈A

en − 1

2

∑
n∈S

en︸ ︷︷ ︸
=0

= µ(A)− ν(A),

where the inequality is an equality if and only if |en| = en for every n ∈ A and
|en| = −en for every n ∈ S \A.

(c) Due to (3.20), it follows as in Remark 3.15 that the Wasserstein distance
dW(µ, ν) is well defined. Given a set A ⊆ S, the indicator function 1A: S → R is
Lipschitz continuous on S ⊆ Z with constant at most 1, hence (c) follows from
the Definitions 3.7 and 3.14.

Exercise 3.19 (Representation of the total variation metric with densities).
Let (S,S) be a measurable space and consider µ, ν ∈ M1(S,S). Let λ be a
non-negative σ-finite measure on (S,S) such that µ ≪ λ and ν ≪ λ (such a
measure always exists, take λ = µ + ν, for example, or the counting measure
when S is countable). By the Radon–Nikodým theorem there exist corresponding
probability densities f = dµ/dλ and g = dν/dλ.
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(a) Generalize Lemma 3.18(a) by proving that a set A ∈ S satisfies dTV(µ, ν) =
µ(A) − ν(A) if and only if there exists a set N ∈ S with λ(N) = 0 such
that A \N ⊆ {x ∈ S | f(x) ≥ g(x)} and Ac \N ⊆ {x ∈ S | f(x) ≤ g(x)}.

(b) Generalize Lemma 3.18(b) by proving that dTV(µ, ν) =
1
2∥f − g∥L1(λ).

(c) Derive from part (b) that dTV(µ, ν) = 1− ∥min{f, g}∥L1(λ) and compare
with Remark 3.8.

Hint: (c) Verify and use that 1
2 |a− b| = 1

2(a+ b)−min{a, b} for all a, b ∈ R.

Exercise 3.20 (Total variation norm for signed and C-valued measures). Let
(S,S) be a measurable space and consider the set M(S,S) of all R-valued (or
C-valued) measures on (S,S). Let D be a measure-determining subset of S,
meaning that µ(A) = 0 for all A ∈ D is only possible if µ ∈ M(S,S) is the zero
measure, i.e. µ(A) = 0 for all A ∈ S. Prove:

(a) ∥µ∥D := supA∈D |µ(A)| for µ ∈ M(S,S) defines a norm.

Hint: Measures on σ-algebras with values in R or C are always bounded,
see e.g. [44, Theorem 6.4].

For D = S this is the total variation norm ∥ · ∥TV. In particular, (M(S,S), ∥ · ∥D)
is a normed vector space. Prove in addition:

(b) (M(S,S), ∥ · ∥TV) is a Banach space.

Hint: When showing completeness, σ-additivity of the limiting candidate
µ has to be shown. For this purpose, given a sequence (Ak)k∈N in S
of disjoint sets and ε > 0, show that there exists mε ∈ N such that∣∣µ(⋃k∈NAk)−

∑m
k=1 µ(Ak)

∣∣ ≤ ε for all m ≥ mε.

(c) If D ⊆ D′ ⊆ S, then ∥µ∥D ≤ ∥µ∥D′ for all µ ∈ M(S,S).

(d) D = {N} ∪ {{k} : k ∈ N} is measure-determining for P(N), but the normed
space (M(N,P(N)), ∥ · ∥D) is not complete.

Hint: For n ∈ N consider the discrete uniform probability distribution µn
on {1, . . . , n}.

(e) Explain where the proof of σ-additivity for a limiting candidate µ in item
(b) goes wrong when the sequence (Ak)k∈N with Ak = {k} in the setting of
(d) is considered.19

Exercise 3.21 (Scaling property of the Wasserstein metric). Let (S, ∥·∥) denote
a normed vector space over K = R or K = C. Let X and Y be S-valued random
vectors with E[∥X∥] <∞ and E[∥Y ∥] <∞. Prove that, for every c ∈ K \ {0},

dW(L(cX),L(cY )) = |c| dW(L(X),L(Y )).

Hint: For f : S → R with Lip(f) ≤ 1 consider fc(x) :=
1
|c|f(cx) for x ∈ S.

19 To learn how to use Zorn’s lemma to produce non-trivial {0, 1}-valued additive set functions
on (N,P(N)), which are not σ-additive, see [35, Chapter V, Section 10, Problems 34–41].
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Exercise 3.22 (Characterization of convergence in the Wasserstein metric). Let
(S, ∥·∥) be a normed real or complex vector space, (Xn)n∈N a sequence of S-valued
random vectors with E[∥Xn∥] <∞ for every n ∈ N, and µ ∈ M1(S).

(a) Prove that (i) implies (ii):

(i)
∫
S ∥x∥µ(dx) <∞ and dW(L(Xn), µ) → 0 as n→ ∞.

(ii) The set {Xn}n∈N is uniformly integrable, i.e.

lim
c→∞

sup
n∈N

E
[
∥Xn∥1{∥Xn∥>c}

]
= 0,

and converges weakly to µ.

Due to the claimed uniformity in f ∈ FW, the reverse implication is more involved
than just (c) and (d) and outlined here with stronger assumptions on (S, ∥·∥),
see (f) below. The proof is divided into several steps.

(b) For C ⊆ S with C ≠ ∅ let f : C → R denote a function with Lip(f) ≤ 1.
Show that g(x) := infz∈C(f(z)+∥z−x∥) for all x ∈ S is in FW and extends f .

Always assume (ii) for the following steps.

(c) Prove that
∫
S ∥x∥µ(dx) <∞.

(d) Prove for each f ∈ FW that limn→∞ E[f(Xn)] =
∫
S f dµ.

It remains to show that the convergence in (d) is uniform in f ∈ FW.

(e) For each b > 0 define FW,b := {f ∈ FW | ∥f∥∞ ≤ b} and assume that

dW,b(L(Xn), µ) := sup
f∈FW,b

(
E[f(Xn)]−

∫
S
f dµ

)
→ 0 as n→ ∞.

Prove that dW(L(Xn), µ) → 0 as n→ ∞.

(f) When (S, ∥·∥) is a separable Banach space, prove that the assumption in
(e) is satisfied.

Hints: (a) You may use that weak convergence of probability measures on metric
spaces is determined by all integrals over bounded Lipschitz continuous functions,
see [17, Chapter 3, Theorem 3.1, proof of (c) implies (d)]. For c > 0 the Lipschitz
continuous function hc, defined by hc(x) = max{0, ∥x∥ − max{0, c(c − ∥x∥)}}
satisfies ∥x∥1{∥x∥>c} ≤ hc(x) ≤ ∥x∥ for all x ∈ S and hc ↘ 0 as c → ∞. (c)
Uniform integrability implies boundedness in L1(P), i.e. supn∈N E[∥Xn∥] < ∞.
Define fn(x) = min{∥x∥, n} for all x ∈ S, use the monotone convergence theorem.
(d) Restrict to f ∈ F 0

W := {f ∈ FW | f(0) = 0}, then use |f(x)| ≤ ∥x∥ for
x ∈ S, part (c) and uniform integrability of {Xn}n∈N. (e) Similar to (d). (f)
For a proof by contradiction, assume that there are b, ε > 0 such that, after
passing to a subsequence if necessary, dW,b(L(Xn), µ) ≥ 8ε for every n ∈ N. Then
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there exists a sequence (fn)n∈N in FW,b such that E[fn(Xn)] −
∫
S fn dµ ≥ 7ε

for each n ∈ N. By Prokhorov’s theorem (see e.g. [17, Chapter 3, Theorem
2.2 in combination with Theorem 3.1]), there exists a compact subset C of S
such that µ(C) ≥ 1 − ε/b and P[Xn ∈ C] ≥ 1 − ε/b for every n ∈ N. By the
Arzelà–Ascoli theorem, there exists a subsequence (fnk

)k∈N converging uniformly
to a function f : C → R. Show that ∥f∥∞ ≤ b and Lip(f) ≤ 1. Apply (b), define
h(x) = min{b,max{−b, g(x)}} for x ∈ S, verify that h(x) = f(x) for all x ∈ C,
and h ∈ FW,b as well as ∥fn−h∥∞ ≤ 2b. Take kε so large that |fnk

(x)−h(x)| ≤ ε
for all x ∈ C and k ≥ kε. Then

E[fnk
(Xnk

)]−
∫
S
fnk

dµ ≤ 6ε+ E[h(Xnk
)]−

∫
S
h dµ, k ≥ kε,

and the assumption of weak convergence can be applied to h.

3.4 Poisson Approximation

In this section we show that the distribution of a sum of independent Bernoulli
random variables can be well approximated by a Poisson distribution. The quality
of the approximation is measured by the total variation metric dTV of probability
distributions as well as the Wasserstein metric dW, see Definitions 3.7 and 3.14,
respectively.

Theorem 3.23 (Unbiased Poisson approximation). Let X1, . . . , Xm be indepen-
dent Bernoulli random variables. Then W := X1+· · ·+Xm is the random variable
counting the number of ones. Define pi = P[Xi = 1] and λ = E[W ] = p1+· · ·+pm.
Then

dTV

(
Poisson(λ) ,L(W )

)
≤ 1− e−λ

λ

m∑
i=1

p2i , (3.21)

see Barbour and Hall [4], with the understanding that the fraction on the right-
hand side is one for λ = 0 (apply L’Hôpital’s rule for λ↘ 0). In addition,

dW
(
Poisson(λ) ,L(W )

)
≤ min

{
1,

4

3

√
2

eλ

} m∑
i=1

p2i . (3.22)

Remark 3.24. Since e−λ > 0 and 1− e−λ ≤ λ, we have the upper bound

1− e−λ

λ
≤ min

{
1,

1

λ

}
, λ > 0, (3.23)

which is illustrated in Figure 3.1.

Remark 3.25. In the Theorem 3.23, the Poisson parameter λ is chosen such
that the expectations of W and N ∼ Poisson(λ) agree, which corresponds to the
calibration method (3.9). If p1, . . . , pm are small, then the estimate (3.21) can
be improved by using the calibration method of (3.7) to obtain the bound (3.37)
from Exercise 3.33, see also Remark 3.34 and Table 3.2.
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Figure 3.1: The factor [0,∞) ∋ λ 7→ (1 − e−λ)/λ in (3.21) and its upper bound λ 7→
min{1, 1/λ} from (3.23). The upper line is the factor from (3.22) with a kink at λ ≈ 1.144.

3.4.1 Results Using an Elementary Coupling Method

In this subsection we want to prove a weaker version of the unbiased approximation
bound (3.22), namely the estimate

dW(Poisson(λ) ,L(W )
)
≤

m∑
i=1

p2i , (3.24)

which actually agrees with (3.22) for λ ≤ 32
9 e ≈ 1.3080, and which by Lemma

3.18(c) also implies

dTV(Poisson(λ) ,L(W )
)
≤

m∑
i=1

p2i , (3.25)

which is (3.21) without the factor (1− e−λ)/λ, see Le Cam [36]. This can be done
using the so-called coupling method (see Lindvall [38] for a textbook presentation).
The proof below will be slightly more general, so that we can also treat some
biased Poisson approximations.

Example 3.26 (Comparison of Poisson approximation bounds). To see that the
difference between the estimates (3.21) and (3.25) can be substantial, consider
the case p1 = · · · = pm = 1/

√
m. Then the right-hand side of (3.25) is 1 and

therefore useless (see Remark 3.8), while the right-hand side of (3.21) is smaller
than 1/

√
m, which is small for large m ∈ N, think of m = 106, and see Table 3.1

for some specific values.
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m K.–S. dist. total var. Bound (3.21) Percentage Bound (3.37)

1 0.367879 0.632121 0.632121 100.00% 0.63212
2 0.169948 0.327278 0.535197 61.15% 0.67845
3 0.101422 0.199464 0.475205 41.97% 0.64008
4 0.093506 0.173882 0.432332 40.22% 0.61371
5 0.085456 0.144796 0.399416 36.25% 0.59765
6 0.077148 0.134432 0.373001 36.04% 0.58665
8 0.062349 0.108886 0.332656 32.73% 0.57225
10 0.050520 0.091307 0.302842 30.15% 0.56305
20 0.034107 0.060421 0.221053 27.33% 0.54209
50 0.020212 0.036644 0.141301 25.93% 0.52539

100 0.014170 0.025829 0.099996 25.83% 0.51755
200 0.009583 0.017777 0.070711 25.14% 0.51222
500 0.005915 0.011105 0.044721 24.83% 0.50762
1000 0.004131 0.007805 0.031623 24.68% 0.50536
2000 0.002880 0.005481 0.022361 24.51% 0.50377
5000 0.001792 0.003450 0.014142 24.40% 0.50237
104 0.001258 0.002435 0.010000 24.35% 0.50168

Table 3.1: Quality of Poisson approximation. For various m ∈ N the second column
gives the Kolmogorov–Smirnov distance, see Definition 3.9, of the binomial distribution
Bin(m, 1/

√
m) and the Poisson distribution Poisson(

√
m), while the third column gives

the total variation distance. The fourth column gives the upper bound (3.21) from Theorem
3.23, which is proved by the Stein–Chen method and results in (1 − exp(−

√
m))/

√
m

in this example. The fifth column gives the total variation distance as a percentage of
the upper bound in the fourth column. The elementary coupling bound (3.25) always
gives 1 in this example and is not shown; instead the last column shows the slightly
improved bound from (3.37) when Poisson(−m log(1−min{1/

√
m, 1− 1/ e})) is used for

the approximation (where the minimum is 1/
√
m for m ≥ 3). It converges to 1/2.

Proof of (3.24) using the coupling method. Since the estimate (3.24) concerns
only the distribution of W , we may define this random variable in a suitable way
as long as it satisfies the distributional assumption. For every i ∈ {1, . . . ,m}
define the sample space Ωi = {−1} ∪ N0 and the probability measure

Pi({n}) =


1− pi for n = 0,

λni e
−λi /n! for n ∈ N,

e−λi −(1− pi) for n = −1,

(3.26)

where λi ∈ [0,∞) satisfies

λi ≤ − log(1− pi) if pi < 1, (3.27)

see (3.8), so that Pi({−1}) ≥ 0. Define the product space Ω = Ω1 × · · · × Ωm

together with the product measure P = P1 ⊗ · · · ⊗ Pm. In addition, for all
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m K.–S. dist. total var. Bound (3.21) Percentage Bound (3.37)

1 0.367879 0.632121 0.632121 100.00% 0.632121
2 0.117879 0.198181 0.316060 62.70% 0.306853
3 0.071583 0.114848 0.210707 54.51% 0.189070
4 0.051473 0.080993 0.158030 51.25% 0.136954
5 0.040199 0.062581 0.126424 49.50% 0.107426
6 0.032982 0.050997 0.105353 48.41% 0.088392
7 0.027963 0.043035 0.090303 47.66% 0.075096
8 0.024271 0.037225 0.079015 47.11% 0.065280
9 0.021440 0.032797 0.070236 46.70% 0.057736
10 0.019201 0.029312 0.063212 46.37% 0.051755
20 0.009394 0.014211 0.031606 44.96% 0.025427
50 0.003710 0.005583 0.012642 44.16% 0.010067

100 0.001847 0.002775 0.006321 43.90% 0.005017
200 0.000922 0.001384 0.003161 43.78% 0.002504
500 0.000368 0.000552 0.001264 43.70% 0.001001
1000 0.000184 0.000276 0.000632 43.67% 0.000500
2000 0.000092 0.000138 0.000316 43.66% 0.000250
5000 0.000037 0.000055 0.000126 43.65% 0.000100
104 0.000018 0.000028 0.000063 43.65% 0.000050

Table 3.2: Quality of Poisson approximation as in Table 3.1, but here the binomial
distribution Bin(m, 1/m) is approximated by the Poisson distribution Poisson(1). In this
example, the elementary coupling bound (3.25) always gives 1/m and is greater than
(3.21) by the factor 1/(1− e−1) ≈ 1.58198; it is not shown here. The last column shows
the improved bound from (3.37), when Poisson(−m log(1− 1/m)) for m ≥ 2 is used for
the approximation. It gives a better upper bound for the corresponding approximation
than (3.21), but the expectations of the two distributions do not agree.

i ∈ {1, . . . ,m} and ω = (ω1, . . . , ωm) ∈ Ω, define

Ni(ω) =

{
0 if ωi ∈ {−1, 0},
ωi if ωi ≥ 1.

and

Xi(ω) =

{
0 if ωi = 0,

1 otherwise.

With these definitions, N1, . . . , Nm are independent and so are X1, . . . , Xm.
Furthermore, P[Xi = 1] = pi and Ni ∼ Poisson(λi). However, note that Ni and
Xi are coupled and strongly dependent, in particular Xi = 0 implies Ni = 0 and
Ni ≥ 1 implies Xi = 1. As shown in Lemma 3.2, the sum of independent Poisson
distributed random variables is again Poisson distributed. Therefore

N := N1 + · · ·+Nm ∼ Poisson(λ) with λ := λ1 + · · ·+ λm.
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All together we now have the means to derive the upper estimate (3.24). Using
the upper bound (3.19) and the triangle inequality,

dW(L(N),L(W )
)
≤ E[|N −W |] ≤

m∑
i=1

E[|Ni −Xi|] . (3.28)

By considering the cases Xi = 0 and Xi = 1,

|Ni −Xi| = Ni −Xi + 2 · 1{Ni=0,Xi=1}.

Since E[Ni]
(3.3)
= λi and E[Xi]

(2.3)
= pi as well as P[Ni = 0, Xi = 1] = Pi({−1}) (3.26)=

e−λi + pi − 1, it follows that

E[|Ni −Xi|] = λi − pi + 2(e−λi +pi − 1), i ∈ {1, . . . ,m}. (3.29)

Note that by (3.8), the condition (3.27) allows the choice λi := pi for all i ∈
{1, . . . ,m}, which corresponds to the unbiased calibration from (3.9). Since the
function f : [0,∞) → R with f(x) := 2(e−x + x − 1) satisfies f(0) = f ′(0) = 0,
hence by applying the fundamental theorem of calculus twice,

f(x) =

∫ x

0
f ′(y) dy =

∫ x

0

∫ y

0
f ′′(z)︸ ︷︷ ︸
≤ 2

dz dy ≤
∫ x

0
2y dy = x2 (3.30)

for all x ∈ [0,∞). Combining (3.28), (3.29) and applying (3.30) gives (3.24).

Remark 3.27. By omitting the application of (3.30) in the above proof, we
obtain a slightly better estimate for the unbiased Poisson approximation with
λ = E[W ], namely

dW(Poisson(λ) ,L(W )
)
≤ 2

m∑
i=1

(e−pi +pi − 1), (3.31)

see Figure 3.2. By Lemma 3.18(c), the result (3.31) implies the same upper
bound for dTV(Poisson(λ) ,L(W )

)
.

Remark 3.28 (Biased Poisson approximation in the Wasserstein metric). When
we willing to accept a biased Poisson approximation, i.e. λ ≠ E[W ], then we can
improve the upper bound in (3.31) by optimizing in (3.29). The partial derivative
of the right-hand side of (3.29) w.r.t. λi is given by [0,∞) ∋ λi 7→ 1 − 2 e−λi ,
which changes sign at λi = log 2. Hence the right-hand side of (3.29) is decreasing
for λi ∈ [0, log 2] and increasing afterwards. Taking the constraint (3.27) into
account, we minimize the right-hand side of (3.29) by taking

λi := − log(1−min{pi, 12}) i ∈ {1, . . . ,m}. (3.32)

Substitution into (3.28) leads to an improved version of (3.31) for the adjusted
λ := λ1 + · · ·+ λm, namely

dW(Poisson(λ) ,L(W )
)
≤ 2

m∑
i=1

(
e−λi +

λi + pi
2

− 1
)

(3.33)

see Figure 3.2.
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Figure 3.2: Comparison of the individual terms of the Poisson approximation bounds as
functions of the Bernoulli success probability p ∈ [0, 1]. Namely the general bound p 7→ p2

from (3.24) and (3.25) (upper black curve) as well as the improved unbiased Poisson
approximations with p 7→ 2(e−p + p − 1) from (3.31) (Wasserstein metric, red curve)
and p 7→ p(1− e−p) from (3.34) (total variation metric, blue curve). The estimates for
the quality of the biased Poisson approximations are illustrated by the dashed curves of
corresponding colour, namely p 7→ 2 e−λ +λ + p − 2 with λ := − log(1 − min{p, 1/2})
from (3.33) for the Wasserstein metric (dashed red curve, linear for p ≥ 1/2) and
p 7→ p − λ e−λ with λ := − log(1 −min{p, 1 − 1/e}) from (3.37) for the total variation
metric (dashed blue curve, linear for p ≥ 1− 1/e ≈ 0.6321). See also Figure 3.3.

Remark 3.29 (Unbiased Poisson approximation in the total variation metric).
An additional slight improvement, see Figure 3.2, in the unbiased case λ = E[W ],
namely

dTV(Poisson(λ) ,L(W )
)
≤

m∑
i=1

pi(1− e−pi), (3.34)

is derived below by estimating the total variation distance directly. Note that for
m = 1, estimate (3.34) agrees with (3.21).

To derive (3.34), define A = {n ∈ N0 | P[N = n] > P[W = n]}. By Lemma
3.18(a),

dTV(L(N),L(W )
)

= P[N ∈ A]− P[W ∈ A]

= P[N ∈ A︸ ︷︷ ︸
omit

, N ̸=W ] + P[N ∈ A,N =W︸ ︷︷ ︸
⊆{W∈A}

]− P[W ∈ A]

≤ P[N ̸=W ] ≤
m∑
i=1

P[Ni ̸= Xi] ,

(3.35)
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Figure 3.3: Comparison of the bounds from Figure 3.2 relative to the upper bound
[0, 1] ∋ p 7→ p2,

where we used in the last estimate that N1 + · · ·+Nm ≠ X1 + · · ·+Xm is only
possible if Ni ̸= Xi for at least one i ∈ {1, . . . ,m}. Furthermore, using (3.26),

P[Ni ̸= Xi] = 1− P[Ni = Xi] = 1− Pi({0, 1})
= 1− (1− pi + λi e

−λi) = pi − λi e
−λi .

(3.36)

In the unbiased case λi := pi for all i ∈ {1, . . . ,m}, see (3.9), the combination of
(3.35) and (3.36) yields the estimate (3.34).

Exercise 3.30 (Comparison of Poisson approximation bounds). Prove directly
that the right-hand side of (3.34) is indeed smaller than the right-hand side of
(3.31). Hint: Use the method from (3.30).

Exercise 3.31 (Upper bound for the total variation metric). Let (S, d) be a
metric space with (S ⊗S)-measurable metric d, and let X and Y be two S-valued
random variables, defined on the same probability space (Ω,A,P). Prove that
dTV(L(X),L(Y )) ≤ P[X ̸= Y ]. Hint: See Exercise 3.19(a) and (3.35). Remark:
Without the measurability of d, the outer P-measure of {X ̸= Y } can be used.

Remark 3.32 (Cancellation of individual Poisson approximation errors). Since
P[Ni = 0] > P[Xi = 0] for every i ∈ {1, . . . ,m} with pi > 0 in the above coupling
proofs, see (3.26), there is a trade-off for the large values Ni ≥ 2, for example
on {N1 = 2, N2 = 0, X1 = X2 = 1} we have N1 + N2 = X1 + X2. The last
estimates in (3.28) and (3.35) do not take this cancellation effect of individual
approximation errors into account, hence there is room for improvement. The
Stein–Chen method introduced below does this in an ingenious way, see Example
3.26 for a comparison.
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Exercise 3.33 (Biased Poisson approximation for the total variation metric).
Let X1, . . . , Xm be independent Bernoulli random variables with pi := P[Xi = 1]
for all i ∈ {1, . . . ,m}. Define W = X1 + · · ·+Xm and λ = λ1 + · · ·+ λm, where
λi := − log(1− p̃i) with p̃i := min{pi, 1− 1/e}. Use the coupling method to prove
(see Figure 3.2)

dTV

(
Poisson(λ) ,L(W )

)
≤

m∑
i=1

(
pi − λi e

−λi
)

(3.37)

Hint: Optimize in (3.36) taking (3.27) into account.

Remark 3.34 (Comparison of biased and unbiased Poisson approximation). If
p1, . . . , pm and their sum p1 + · · ·+ pm are small, then the approximation used
in Exercise 3.33 gives the (without much work obtainable) upper bound (3.37)
for the approximation error, which can be as small as about half the size of the
bound (3.21) in Theorem 3.23 relying on the Stein–Chen method. To be specific,
consider the example pi := 1− e−1/m2

for all i ∈ {1, . . . ,m}, hence pi and p̃i in
Exercise 3.33 agree and λi = 1/m2. As preparation, note that

ex−1− x =
∞∑
n=2

xn

n!
=
x2

2

∞∑
n=2

2

n(n− 1)︸ ︷︷ ︸
≤ 1

xn−2

(n− 2)!
≤ x2

2
ex, x ≥ 0.

Then the right-hand side of (3.37) simplifies to

m
(
1− e−1/m2 − 1

m2
e−1/m2

)
= m e−1/m2

(
e1/m

2 −1− 1

m2︸ ︷︷ ︸
≤ 1

2m4 e1/m
2

)
≤ 1

2m3
.

On the other hand, with λ := p1 + · · ·+ pm = m(1− e−1/m2
), the right-hand side

of (3.21) yields, for large m ∈ N,

1− e−λ

λ
m(1− e−1/m2

)2 = (1− e−λ)(1− e−1/m2
) =

1

m3
− 1

2m4
+O

( 1

m5

)
by using the Taylor approximation of R ∋ x 7→

(
1− exp

(
−1−e−x2

x

))
(1− e−x2

) at
x0 = 0, evaluated for x = 1/m. For another illustration, see Table 3.2.

Exercise 3.35 (Unbiased normal approximation). Using a computer and suitable
software of your choice, compute similarly to Table 3.1 the Kolmogorov–Smirnov
distance, see Definition 3.9, between the binomial distribution Bin(m, 1/

√
m)

and the normal distribution N (
√
m,

√
m− 1) with expecation

√
m and variance√

m− 1 for various values of m ∈ N. Compare with the upper bound given by
the Berry–Esseen theorem. Why is the total variation distance not useful in this
context?
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3.4.2 Proof by the Stein–Chen Method for the Total Variation

Let N ∼ Poisson(λ) with λ ≥ 0. Then, using (3.1),

λP[N = n− 1] =
λn

(n− 1)!
e−λ = nP[N = n] , n ∈ N, (3.38)

and this recursion relation20 uniquely determines the Poisson distribution with
parameter λ: If N is N0-valued, then (3.38) implies by induction that

P[N = n] =
λn

n!
P[N = 0] , n ∈ N0,

and P[N = 0] = e−λ gives the correct starting probability to obtain a probability
distribution. The recursion (3.38) implies that, for every function g: N0 → R
which is bounded below,

λE[g(N + 1)] =
∞∑
n=1

λg(n)P[N = n− 1]

=
∞∑
n=1

ng(n)P[N = n] = E[Ng(N)] .

(3.39)

Relation (3.39) applied to the functions gn = 1{n} for n ∈ N reduces to (3.38),
hence (3.39) for all indicator functions 1{n}: N0 → {0, 1} also uniquely determines
the Poisson distribution with parameter λ ≥ 0. Therefore, if L(N) ̸= Poisson(λ)
for an N0-valued random variable N , then equality in (3.39) is violated for at
least one bounded g: N0 → R.

Exercise 3.36 (Characterization of the Poisson distribution). Let Z be a [0,∞)-
valued random variable satisfying λE[g(Z + 1)] = E[Zg(Z)] for all indicator
functions g of Borel subsets of [0,∞). Prove that L(Z) = Poisson(λ). Hint:
Consider 1(n,n+1) for n ∈ N0.

The idea of the Stein–Chen method21 is to measure the distance of a dis-
tribution on N0, in our case L(W ) with W as in Theorem 3.23, to the Poisson
distribution with parameter λ ≥ 0 by the amount

λE[g(W + 1)]− E[Wg(W )] (3.40)

of inequality in (3.39), for a specific function g or a suitable collection of them.
If λ = 0, then p1 = · · · = pm = 0, and N =W ≡ 0 almost surely, hence (3.21)

and (3.22) hold and we may assume λ > 0 in the following.
According to Lemma 3.18(a) the set A := {n ∈ N0 | P[W = n] > P[N = n]}

satisfies
dTV(L(W ),L(N)) = P[W ∈ A]− P[N ∈ A] . (3.41)

20 The recursion relation (3.38) also shows that the Poisson distribution with parameter λ ≥ 0
agrees with the Panjer(0, λ, 0) distribution, see Example 5.21 below.

21 Named after Charles M. Stein (1920–2016) and his former Ph.D. student Louis H.Y. Chen,
Emeritus Professor at the National University of Singapore.
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Since P[W = n] = 0 for all n > m, it follows that A ⊆ {0, 1, . . . ,m} is finite.
Define f : N0 → [−1, 1] by

f = 1A − P[N ∈ A] . (3.42)

Note that
E[f(W )] = P[W ∈ A]− P[N ∈ A] (3.43)

is the right-hand side of (3.41), for which we want to obtain an upper estimate.
The next aim is to find a function g to express E[f(W )] from (3.43) by (3.40).
We do this more general, not just for the function f from (3.42), because we also
want to use the result for the Wasserstein metric in Subsection 3.4.3 below.

Lemma 3.37 (Solution of the Stein equation). Let f : N0 → R be a function
and λ > 0. Then the function g: N0 → R given by g(0) = 0 (or any other value)
and22

g(l + 1) =
l!

λl+1

l∑
n=0

λn

n!
f(n), l ∈ N0, (3.44)

solves the so-called Stein equation for the Poisson distribution with parameter λ,
i.e.

f(l) = λg(l + 1)− lg(l), l ∈ N0. (3.45)

Proof. By direct inspection of (3.44) for l = 0, we get that λg(1) = f(0), which
is (3.45) for l = 0. For every l ∈ N,

λg(l + 1)− lg(l) =
l!

λl

l∑
n=0

λn

n!
f(n)− l(l − 1)!

λl

l−1∑
n=0

λn

n!
f(n) = f(l).

Exercise 3.38. In the setting of Lemma 3.37, let N ∼ Poisson(λ) and show that

g(l + 1) =
E[f(N)1{N≤l}]

λP[N = l]
, l ∈ N0. (3.46)

In addition, if f has a finite Lipschitz constant and E[f(N)] = 0, prove that g is
bounded.

SinceW takes values in the finite set {0, . . . ,m}, the expectations E[g(W + 1)],
E[Wg(W )] and E[f(W )] are well defined and the Stein equation (3.45) implies
that

E[f(W )] = λE[g(W + 1)]− E[Wg(W )] . (3.47)

We are now prepared for the main probabilistic argument of the proof, which is
valid not just for the function g arising from the specific f given by (3.42).

22 The representation (3.44) can be derived from the Stein equation (3.45) by recursion, hence
there is no need to memorize it.

35



Lemma 3.39. For every function g: N0 → R,

λE[g(W + 1)]− E[Wg(W )] ≤ max
l∈{1,...,m}

∆g(l)
m∑
i=1

p2i (3.48)

with forward difference ∆g(l) := g(l + 1)− g(l) for all l ∈ N.

Proof. Using that λ = p1 + · · ·+ pm and W = X1 + · · ·+Xm, we obtain for the
left-hand side of (3.48) that

λE[g(W + 1)]− E[Wg(W )] =
m∑
i=1

(
pi E[g(W + 1)]− E[Xig(W )]

)
.

Define Wi =W −Xi for every i ∈ {0, . . . ,m}. By splitting E[Xig(W )] into the
two cases Xi = 1 and Xi = 0, noting that Xig(W ) = 0 for Xi = 0, and using the
independence of Wi and Xi, we obtain that

E[Xig(W )] =
∑

j∈{0,1}

E
[
Xig(Wi +Xi)1{Xi=j}

]
= E[g(Wi + 1)] pi.

Repeating this reasoning and noting that Wi takes values in {0, . . . ,m− 1},

λE[g(W + 1)]− E[Wg(W )] =
m∑
i=1

pi E
[
g(Wi +Xi + 1)− g(Wi + 1)

]︸ ︷︷ ︸
=E[(g(Wi+Xi+1)−g(Wi+1))1{Xi=1}]

=E[g(Wi+2)−g(Wi+1)] pi by indep. of Wi and Xi

=E[∆g(Wi+1)] pi

≤ max
l∈{1,...,m}

∆g(l)
m∑
i=1

p2i .

Combining (3.41), (3.43), (3.47) and (3.48), we just need the result of the
next lemma to obtain (3.21).

Lemma 3.40. For the function f = 1A−P[N ∈ A] defined in (3.42), the solution
g of the Stein equation (3.45) given by Lemma 3.37 satisfies ∆g(l) ≤ (1− e−λ)/λ
for all l ∈ N (with equality for A = {1} and l = 1).

Proof. For every n ∈ N0 define the function

fn(l) = 1{n}(l)− P[N = n] , l ∈ N0. (3.49)

Due to Lemma 3.37 and (3.46), a corresponding solution gn: N0 → R of the Stein
equation (3.45) is given by gn(0) = 0 and, for every l ∈ N,

gn(l + 1) =
E[fn(N)1{N≤l}]

λP[N = l]
=
1{n,n+1,...}(l)− P[N ≤ l]

λP[N = l]
P[N = n] , (3.50)
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Figure 3.4: The function N0 ∋ l 7→ gn(l) from (3.50) for λ = 5 and n = 4. The
increments of this Stein solution are estimated by (3.51).

because E[1{n}(N)1{N≤l}] = 1{n,n+1,...}(l)P[N = n]. Since A ⊆ {0, . . . ,m} is
finite, f =

∑
n∈A fn. Since the Stein equation (3.45) is linear with respect to

the functions, it follows that g :=
∑

n∈A gn is a corresponding solution for f and
∆g =

∑
n∈A∆gn with forward difference ∆gn(l) := gn(l+1)− gn(l) for all l ∈ N0.

Hence it suffices to show that, see Figure 3.4,

∆gn(l) ≤

{
(1− e−λ)/λ for l = n ∈ N,
0 for l ∈ N and n ∈ N0 with l ̸= n.

(3.51)

Using (3.50) and the recursion formula

λP[N = l − 1] =
λl

(l − 1)!
e−λ = l P[N = l] , l ∈ N, (3.52)

see (3.38), we see that for l = n ∈ N,

gn(n+ 1)− gn(n) =
1− P[N ≤ n]

λ
+

P[N ≤ n− 1]

λP[N = n− 1]
P[N = n] by (3.50)

=
P[N ≥ n+ 1]

λ
+

P[N ≤ n− 1]

n

=
P[N ≥ n+ 1]

λ
+

1

λ

n∑
k=1

1

n︸︷︷︸
≤ 1/k

λP[N = k − 1]︸ ︷︷ ︸
= k P[N=k] by (3.52)

≤ P[N ≥ 1]

λ
=

1− e−λ

λ

with equality for l = n = 1. For l ∈ N and n ∈ N0 with l < n we get

gn(l + 1)− gn(l)
(3.50)
=

(
−P[N ≤ l]

P[N = l]
+

P[N ≤ l − 1]

P[N = l − 1]

)
P[N = n]

λ
.
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The term in parentheses is negative, because by the recursion formula (3.52)

P[N ≤ l − 1]

P[N = l − 1]
=

l∑
k=1

λP[N = k − 1]

λP[N = l − 1]
=

l∑
k=1

k

l︸︷︷︸
≤1

P[N = k]

P[N = l]
<

P[N ≤ l]

P[N = l]
.

For l ∈ N and n ∈ N0 with l > n we get from (3.50)

gn(l + 1)− gn(l) =

(
P[N ≥ l + 1]

P[N = l]
− P[N ≥ l]

P[N = l − 1]

)
P[N = n]

λ
.

Again, the term in parentheses is negative, because, using (3.52),

P[N ≥ l]

P[N = l − 1]
=

∞∑
k=l+1

λP[N = k − 1]

λP[N = l − 1]
=

∞∑
k=l+1

k

l︸︷︷︸
>1

P[N = k]

P[N = l]
>

P[N ≥ l + 1]

P[N = l]
.

Therefore, the estimate (3.51) for ∆gn is proved.

3.4.3 Proof by the Stein–Chen Method for the Wasserstein Metric

To prove the Poisson approximation for W in the Wasserstein metric, i.e. (3.22),
we can follow the strategy used in the previous subsection. Let N ∼ Poisson(λ)
and let f : N0 → R have Lipschitz constant at most 1. By subtracting the constant
E[f(N)] from f if necessary, we may assume that E[f(N)] = 0. By Lemma 3.37,
the corresponding solution g of the Stein equation is given by (3.44), and Lemma
3.39 applies to g. In view of the definition of the Wasserstein metric in (3.15), all
we need for (3.22) is the following lemma.

Lemma 3.41. Let f : N0 → R have Lipschitz constant at most 1 and satisfy
E[f(N)] = 0. Then the corresponding solution g of the Stein equation for the
Poisson distribution with parameter λ > 0 satisfies

∆g ≤ min

{
1,

4

3

√
2

eλ

}
.

Proof. See [5, Remark 1.1.6] or, for a more explicit presentation, [6, Eq. (1.4) in
Theorem 1.1]. Note that, according to Exercise 3.38, the solution g is bounded.

For more details and further applications of the Stein–Chen method, see e.g.
the textbook by Barbour, Holst and Janson [5] or the lecture notes by Eichels-
bacher [15]. For the application of Stein’s method for the normal approximation,
see e.g. the textbook by Chen, Goldstein and Shao [10].

3.5 Multivariate Poisson Distribution

The multivariate generalization of the Poisson distribution is motivated by com-
mon Poisson shock models [37]; with different notation it is also given in [53,
Chapter 20.1]. It will easily allow us to model joint defaults of obligors.

38



Definition 3.42 (Multivariate Poisson distribution). Let m ∈ N, consider a
collection G ⊆ P({1, . . . ,m}) of subsets of {1, . . . ,m} with ∅ /∈ G, and Poisson
parameters23 λ = (λg)g∈G ∈ [0,∞)G. Let (Ng)g∈G be independent random
variables with Ng ∼ Poisson(λg) for every g ∈ G. Then the distribution of the
Nm
0 -valued random vector

N =
∑
g∈G

cgNg, (3.53)

where the vector24 cg = (cg,1, . . . , cg,m)T ∈ {0, 1}m is given by

cg,i = 1g(i) =

{
1 if i ∈ g,

0 if i /∈ g,
(3.54)

is called m-variate Poisson distribution MPoisson(G,λ,m) on Nm
0 .

In the credit risk interpretation, the obligors in the group g ⊆ {1, . . . ,m}
default together with Poisson intensity λg, independent of the other groups in
G. An empty group of obligors cannot cause any default, for this reason we
excluded ∅ from G. For practical applications we should assume that {1, . . . ,
m} ⊆

⋃
g∈G g, because otherwise there would exist obligors who can never default.

If G = ∅, then (3.53) is an empty sum and MPoisson(G,λ,m) is interpreted as
the degenerate distribution concentrated at the origin 0 ∈ Nm

0 . If m = 1 and
G = {g} with g = {1}, then MPoisson(G,λ,m) coincides with Poisson(λg). It
might be tempting to choose G = P({1, . . . ,m})\{∅} for greatest generality, but
then there are 2m − 1 Poisson parameters (λg)g∈G, which already for m = 1000
obligors are far too many to yield a practically useful model.

The next result is the multivariate generalization of Lemma 3.2.

Lemma 3.43 (Summation property of the multivariate Poisson distribution). If
N1, . . . , Nk are independent with Ni ∼ MPoisson(Gi, λi,m) for all i ∈ {1, . . . , k}
with λi = (λi,g)g∈Gi according to Definition 3.42, then

N :=
k∑

i=1

Ni ∼ MPoisson(G,λ,m) ,

where G :=
⋃k

i=1Gi and λ = (λg)g∈G is given by

λg =

k∑
i=1
Gi∋g

λi,g, g ∈ G.

23 We consider [0,∞)G as the set of all functions λ: G → [0,∞), where the image of g ∈ G is
denoted by λg, hence λ can be represented by the “tuple” (λg)g∈G. With this interpretation,
the d-fold Cartesian products Rd and Nd

0 are short-hand versions of R{1,...,d} and N{1,...,d}
0 .

24 The vector cg points to a corner of the m-dimensional hypercube.
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Exercise 3.44 (Proof of Lemma 3.43 under extra independence). Write Ni =∑
g∈Gi

cgNi,g with Ni,g ∼ Poisson(λi,g) for each i ∈ {1, . . . , k} and g ∈ Gi accord-
ing to Definition 3.42, where (Ni,g)g∈Gi are independent for each i ∈ {1, . . . , k}.
Under the additional assumption that the collection (Ni,g)i∈{1,...,k},g∈Gi

is inde-
pendent, use Lemma 3.2 to prove Lemma 3.43. (Without the extra independence,
the proof is given as Exercise 4.33 below.)

Remark 3.45 (Infinite divisibility of the multivariate Poisson distribution).
Lemma 3.43 implies that the multivariate Poisson distribution MPoisson(G,λ,m)
with λ = (λg)g∈G is infinitely divisible, because for every k ∈ N the distribution
of N1 + · · · +Nk is MPoisson(G,λ,m), when N1, . . . , Nk are independent with
Ni ∼ MPoisson

(
G,λ(k),m

)
for every i ∈ {1, . . . , k}, where λ(k) = (λg/k)g∈G.

Lemma 3.46 (Moments of the multivariate Poisson distribution). Assume
that N = (N1, . . . , Nm)T ∼ MPoisson(G,λ,m). Then, with the notation from
Definition 3.42, for all i, j ∈ {1, . . . ,m},

E[Ni] =
∑
g∈G
g∋i

λg (3.55)

and for the components of the covariance matrix of N ,

Cov(Ni, Nj) =
∑
g∈G
g∋i,j

λg. (3.56)

Proof. Equation (3.55) follows from (3.53), (3.54) and (3.3). Similarly, using the
bi-linearity of the covariance and the independence of (Ng)g∈G,

Cov(Ni, Nj) =
∑
g∈G
g∋i

∑
g′∈G
g′∋j

Cov
(
Ng, Ng′

)︸ ︷︷ ︸
=0 if g ̸=g′

=
∑
g∈G
g∋i,j

Var(Ng) .

Using (3.4), the result (3.56) follows.

Remark 3.47. Note that by (3.56) the components of a multivariate Poisson
distribution can only have a non-negative covariance.

Lemma 3.48 (Multivariate Poisson distribution with independent components).
Consider N = (N1, . . . , Nm)T ∼ MPoisson(G,λ,m) and m ≥ 2. Then, with the
notation from Definition 3.42, the following properties are equivalent:

(a) The components N1, . . . , Nm are independent.

(b) Cov(Ni, Nj) = 0 for all i, j ∈ {1, . . . ,m} with i ̸= j.

(c) λg = 0 for all g ∈ G with |g| ≥ 2.
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Proof. Note that (a) implies (b), which in turn implies (c) via (3.56). If (c) holds,
then Ng

a.s.
= 0 for all g ∈ G with |g| ≥ 2, henceN1

...
Nm

 a.s.
=

m∑
i=1

{i}∈G

c{i}N{i}

by (3.53), henceNi
a.s.
= N{i} if {i} ∈ G, andNi

a.s.
= 0 otherwise. Since (Ng)g∈G, |g|=1

are independent by Definition 3.42, part (a) follows.

3.6 General Multivariate Poisson Mixture Model

Following the mixture approach outlined in Section 2.2 for Bernoulli default
indicators, this section generalizes the multivariate Poisson distribution discussed
in the previous section by introducing random Poisson intensities (Λg)g∈G for all
the groups of obligors defaulting together.

Formally, (Λg)g∈G is a collection of [0,∞)-valued random variables, which
may even be dependent. Similar assumptions as in Section 2.2.1 are made for
the intensities, namely

P[Ng = ng |(Λh)h∈G]
a.s.
= P[Ng = ng |Λg ]

a.s.
= e−Λg

Λ
ng
g

ng!
(3.57)

for every g ∈ G and ng ∈ N0, cf. (2.11), and the conditional independence of
(Ng)g∈G given (Λg)g∈G, i.e., for all ng ∈ N0 for g ∈ G,

P[Ng = ng for all g ∈ G|(Λh)h∈G]
a.s.
=

∏
g∈G

P[Ng = ng |(Λh)h∈G]

a.s.
=

∏
g∈G

Λ
ng
g

ng!
e−Λg by (3.57),

(3.58)

cf. (2.12). The unconditional joint distribution of (Ng)g∈G can be obtained by
integrating over the random intensities, i.e.

P[Ng = ng for all g ∈ G] = E
[ ∏
g∈G

Λ
ng
g

ng!
e−Λg

]
. (3.59)

Exercise 3.49 (Explicit construction of the general multivariate Poisson mixture
model). Consider a [0,∞)G-valued random vector Λ′ = (Λ′

g)g∈G on a probability

space (Ω′,A′,P′). Define Ω = Ω′ × NG
0 and A = A′ ⊗ P(NG

0 ).

(a) Show that K: [0,∞)G × P(NG
0 ) → [0, 1] with

K(λ,B) :=
∑

(ng)g∈G∈B

∏
g∈G

λ
ng
g

ng!
e−λg (3.60)

for all λ = (λg)g∈G ∈ [0,∞)G and B ⊆ NG
0 is a well-defined stochastic tran-

sition kernel. Hint: (3.60) can be expressed as K(λ, ·) =
⊗

g∈G Poisson(λg).
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(b) Show that a well-defined probability measure P on the product space (Ω,A)
is uniquely determined by

P[A×B] = EP′ [1AK(Λ′, B)], A ∈ A′, B ⊆ NG
0 . (3.61)

Hint: Consider P′ ⊗ ν on (Ω,A), where ν is the counting measure on NG
0 ,

and consider the product in (3.60) as probability density. Alternatively,
apply [33, Corollary 14.23].

(c) For every g ∈ G define Λg(ω) = Λ′
g(ω

′) and Ng(ω) = ng for all ω =
(ω′, (nh)h∈G) ∈ Ω. Prove that (3.57) and (3.58) are satisfied. Hint: Use
(3.61) and the hint for (a).

3.6.1 Expected Values, Variances, and Individual Covariances

Again, the expected number of defaults can be deduced from the properties of the
underlying random intensities (Λg)g∈G. From (3.3), (3.4) and (3.57) we obtain

that E[Ng |Λg ]
a.s.
= Λg and Var(Ng |Λg)

a.s.
= Λg for every g ∈ G. For the numbers

N1, . . . , Nm of default events of the individual obligors 1, . . . ,m, we have the
representation N1

...
Nm

 =
∑
g∈G

cgNg (3.62)

from (3.53), henceE[N1]
...

E[Nm]

 =
∑
g∈G

cg E
[
E[Ng |Λg ]︸ ︷︷ ︸

a.s.
= Λg

]
=

∑
g∈G

cg E[Λg] ,

or, written out componentwise,

E[Ni] =
∑
g∈G
g∋i

E[Λg] , i ∈ {1, . . . ,m}, (3.63)

cf. (3.55). Note that the sum of all ones in the vector cg gives the number |g| of
obligors defaulting together when the group g defaults. Hence, using (3.62),

N := N1 + · · ·+Nm =
m∑
i=1

∑
g∈G

cg,iNg =
∑
g∈G

|g|Ng (3.64)

is the random variable representing the overall number of defaults in the credit
portfolio. Similarly, using (3.63),

E[N ] =

m∑
i=1

E[Ni] =
∑
g∈G

|g|E[Λg].
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To calculate the variances and covariances of N1, . . . , Nm, we start with a
general formula, which is helpful in particular for mixture models. We will apply
(3.66) below with X := Ng and the sub-σ-algebra B := σ(Λg) containing all the
information about Λg.

Lemma 3.50 (Law of total covariance). Let X and Y be square-integrable Rc-
and Rd-valued random vectors, respectively, on a probability space (Ω,A,P) and
B ⊆ A a sub-σ-algebra. Then the covariance matrix of size c× d satisfies

Cov(X,Y ) = E
[
Cov(X,Y |B)

]
+Cov

(
E[X |B],E[Y |B]

)
, (3.65)

where expectations are taken componentwise. If c = d = 1 and X = Y , then
(3.65) reduces to the law of total variance

Var(X) = E
[
Var(X |B)

]
+Var

(
E[X |B]

)
. (3.66)

Remark 3.51 (Vanishing conditional covariance). In the setting of Lemma 3.50,
when X and Y are conditionally independent given B, then Cov(X,Y |B) a.s.

= 0
by [49, Exercise 9.11(b)]. This observation can be useful when applying (3.65).

Proof of Lemma 3.50. The formula for the variance follows from the one for the
covariance matrix. It therefore suffices to prove (3.65). We view X and Y as
column vectors. Using the definition of the covariance matrix, subtracting and
adding conditional expectations, we get that

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])T

]
= E

[(
(X − E[X |B]) + (E[X |B]− E[X])

)
×
(
(Y − E[Y |B]) + (E[Y |B]− E[Y ])

)
T
]
.

Expanding the product, inserting conditional expectations given B in the first
three terms and using properties of conditional expectation,

Cov(X,Y ) = E
[
E[(X − E[X |B])(Y − E[Y |B])T |B]︸ ︷︷ ︸

=:Cov(X,Y |B )

]
+ E

[(
E[X |B]− E[X]︸ ︷︷ ︸

B-measurable

)
E
[
Y − E[Y |B]

∣∣B]T︸ ︷︷ ︸
a.s.
= 0

]
+ E

[
E
[
X − E[X |B]

∣∣B]︸ ︷︷ ︸
a.s.
= 0

(
E[Y |B]− E[Y ]︸ ︷︷ ︸

B-measurable

)
T
]

+ E
[(
E[X |B]− E[X]

)(
E[Y |B]− E[Y ]

)
T
]︸ ︷︷ ︸

=Cov(E[X|B ],E[Y |B ])

.

Corollary 3.52. Let A, B be random matrices and X, Y random vectors of
compatible sizes such that AX and BY are well defined. Assume that AX, BY ,
X and Y are square-integrable. If (A,B) and (X,Y ) are independent, then

Cov(AX,BY ) = E
[
ACov(X,Y )BT

]
+Cov

(
AE[X] , B E[Y ]

)
.
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Proof. We apply (3.65) from Lemma 3.50 with B = σ(A,B). Since A and B are
B-measurable, E[AX |B] a.s.= AE[X |B] and E[BY |B] a.s.= B E[Y |B] as well as

Cov(AX,BY |B) a.s.
= E

[
(AX − E[AX |B])(BY − E[BY |B])T

∣∣B]
a.s.
= AE

[
(X − E[X |B])(Y − E[Y |B])T

∣∣B]BT

a.s.
= ACov(X,Y |B)BT.

Due to the assumed independence, it follows that E[X |B] a.s.= E[X] and E[Y |B] a.s.=
E[Y ] as well as Cov(X,Y |B) a.s.

= Cov(X,Y ).

Now we are in a position to calculate the variances and covariances of N1, . . . ,
Nm given by (3.62) as well as the variance of N = N1 + · · ·+Nm, provided that
these default numbers have a finite expectation. Using (3.66) from Lemma 3.50
and (3.57),

Var(Ng) = E
[
Var(Ng |Λg)︸ ︷︷ ︸
a.s.
= Λg by (3.4)

]
+Var

(
E[Ng |Λg ]︸ ︷︷ ︸
a.s.
= Λg by (3.3)

)
= E[Λg] + Var(Λg) (3.67)

for every g ∈ G. By the conditional independence of Ng and Nh, see (3.58), and
(3.57),

E[NgNh] = E
[
E[NgNh |(Λg′)g′∈G]

]
= E

[
E[Ng |Λg ]︸ ︷︷ ︸

a.s.
= Λg

E[Nh |Λh]︸ ︷︷ ︸
a.s.
= Λh

]
= E[ΛgΛh]

for all g, h ∈ G with g ̸= h, hence

Cov(Ng, Nh) = E[NgNh]− E[Ng]E[Nh]

= E[ΛgΛh]− E[Λg]E[Λh]

= Cov(Λg,Λh) ,

(3.68)

cf. (2.22). Using the representation (3.62), in particular Ni =
∑

g∈G, g∋iNg and
Nj =

∑
h∈G, h∋j Nh, it follows with the linearity of covariance in both arguments

that

Cov(Ni, Nj) =
∑

g,h∈G
g∋i,h∋j

Cov(Ng, Nh)

=
∑
g∈G
g∋i,j

Var(Ng) +
∑

g,h∈G, g ̸=h
g∋i,h∋j

Cov(Ng, Nh)

for all obligors i, j ∈ {1, . . . ,m}. By inserting (3.67) and (3.68),

Cov(Ni, Nj) =
∑
g∈G
g∋i,j

(
E[Λg] + Var(Λg)

)
+

∑
g,h∈G, g ̸=h
g∋i,h∋j

Cov(Λg,Λh) .
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For the case i = j, we obtain that

Var(Ni) =
∑
g∈G
g∋i

(
E[Λg] + Var(Λg) +

∑
h∈G\{g}

h∋i

Cov(Λg,Λh)

)
, i ∈ {1, . . . ,m}.

Using the representation (3.64) and formula (2.19), it follows for the total
number of defaults in the portfolio that

Var(N) =
∑
g∈G

|g|2Var(Ng) +
∑

g,h∈G
g ̸=h

|g| |h|Cov(Ng, Nh) ;

rearranging and inserting (3.67) and (3.68), it follows that

Var(N) =
∑
g∈G

|g|
(
|g|

(
E[Λg] + Var(Λg)

)
+

∑
h∈G\{g}

|h|Cov(Λg,Λh)

)
.

Exercise 3.53. Rederive (2.22) using (3.65) and the conditional independence
formulated in (2.12).

3.6.2 One-Factor Poisson Mixture Model

As a special case of the general multivariate Poisson mixture model, assume that
G = {{1}, . . . , {m}}, that there exists a single [0,∞)-valued random variable
Λ, let F denote its distribution function, and assume that there are parameters
µ1, . . . , µm ≥ 0 such that Λ{i} = µiΛ for all i ∈ {1, . . . ,m}. Then Ni = N{i} by
(3.62) for all i ∈ {1, . . . ,m} and (3.59) simplifies, i.e., for all n1, . . . , nm ∈ N0,

P[N1 = n1, . . . , Nm = nm] =

( m∏
i=1

µni
i

ni!

)
E
[
Λn1+···+nm e−µΛ

]
=

( m∏
i=1

µni
i

ni!

)∫ ∞

0
λn1+···+nm e−µλ F (dλ)

(3.69)

with µ := µ1 + · · ·+ µm.
Since N1, . . . , Nm are conditionally independent given Λ, the summation

property of the Poisson distribution, see Lemma 3.2, implies that the conditional
distribution of the sum N = N1 + · · ·+Nm given Λ is almost surely Poisson(µΛ).
Hence, for all n ∈ N0,

P[N = n] =

∫ ∞

0
P[N = n |Λ = λ]F (dλ) =

∫ ∞

0

(µλ)n

n!
e−µλ F (dλ) . (3.70)

3.6.3 Uniform Poisson Mixture Model

To model a uniform portfolio, we may consider the one-factor Poisson mixture
model of Subsection 3.6.2 with µ1 = · · · = µm = 1, hence µ = m. Then (3.69)
simplifies, i.e., for all n1, . . . , nm ∈ N0,

P[N1 = n1, . . . , Nm = nm] =

∫ ∞

0

λn1+···+nm

n1! . . . nm!
e−mλ F (dλ),

and (3.70) holds with µ = m.
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4 Generating Functions,
Mixed and Compound Distributions

4.1 Probability-Generating Functions

Probability-generating functions are a powerful tool when working with N0-valued
or, more generally, Nd

0-valued random variables. Especially, as will be shown, a
probability-generating function uniquely determines a probability distribution on
Nd
0 and vice versa.
Usually, the distribution of the sum of two independent random variables

is expressed as convolution of their distributions. In the context of probability-
generating functions, it is simply the distribution uniquely determined as the
product of the two probability-generating functions, see (4.31) below. In the
following we will use some multi-index notation, which we will introduce when
convenient.

4.1.1 Definition and Basic Examples

Definition 4.1. For a random vector X = (X1, . . . , Xd): Ω → Nd
0 define the

probability-generating function25 of its distribution by26

φX(s) := E
[ d∏
i=1

sXi
i︸ ︷︷ ︸

=: sX

]
=

∑
n=(n1,...,nd)∈Nd

0

( d∏
i=1

sni
i︸ ︷︷ ︸

=: sn

)
P[X = n] , (4.1)

where the series is absolutely convergent at least for all s = (s1, . . . , sd) ∈ Cd with
∥s∥∞ := max{|s1|, . . . , |sd|} ≤ 1, so the generating function is defined at least on
the closed and centred unit polydisk of Cd, meaning the d-fold Cartesian product
of the closed unit disk of C. The probability-generating function actually belongs
to the probability distribution L(X) and not to the random vector X itself, but
we will avoid the more clumsy notation φL(X).

Example 4.2 (Bernoulli distribution). Let the random variable B take values
in {0, 1}, where p := P[B = 1]. Then B is said to have a Bernoulli distribution
with success probability p ∈ [0, 1]. Considering this distribution as a special case
of the binomial distribution, we write B ∼ Bin(1, p). Its probability-generating
function is given by

φB(s)
(4.1)
= P[B = 0]+P[B = 1] s = (1− p)+ ps = 1+ p(s− 1), s ∈ C. (4.2)

25 The factorial moment generating function s 7→ E[sX ], defined at least for all s = (s1, . . . ,
sd) ∈ Cd with |si| = 1 for all i ∈ {1, . . . , d}, extends the notion of the probability-generating
function to Rd-valued random vectors, but we will not need this extension. However, we will
use the moment-generating property of the probability-generating function, see (4.25) below.

26 Recall that z0 := 1 for all z ∈ C, because it is a special case of the empty product.
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Example 4.3 (Poisson distribution). For a random variable N ∼ Poisson(λ)
with parameter λ ≥ 0, the probability-generating function is given by

φN (s)
(4.1)
= E

[
sN

] (3.1)
=

∑
n∈N0

sn
λn

n!
e−λ = eλs e−λ = eλ(s−1), s ∈ C. (4.3)

Example 4.4 (Univariate logarithmic distribution). Consider an N-valued ran-
dom variable N with univariate logarithmic distribution Log(p) with parameter
p ∈ [0, 1), i.e.,

P[N = n] =
pn−1

c(p)n
, n ∈ N, (4.4)

with normalising factor27

c(p) :=
∑
n∈N

pn−1

n
=

{
− log(1−p)

p if p ∈ (0, 1),

1 if p = 0,
(4.5)

see the Taylor series (3.8). Using this Taylor series again, we see that

φN (s)
(4.1)
=

s

c(p)

∑
n∈N

(ps)n−1

n
= s

c(ps)

c(p)
=

{
log(1−ps)
log(1−p) if p ∈ (0, 1),

s if p = 0,
(4.6)

defined for all s ∈ C with p|s| < 1, is the probability-generating function of N . If
p is small, then the calculation of log(1−p) leads to the cancellation of significant
digits. Therefore, if for example p ≤ 0.1 and an l-digit precision is desired,
then it is numerically more stable to add the first l terms of the power series in
(4.5) defining c(p) than to use the formula of the right-hand side of (4.5). The
same advice applies to (4.6) when p|s| is small. For more information about
the univariate logarithmic distribution see [31, Chapter 7], for the multivariate
version see Definition 4.49 below.

Example 4.5 (Multivariate Bernoulli distribution). For d ∈ N consider a ran-
dom vector B = (B1, . . . , Bd)

T with a multivariate Bernoulli distribution with
parameter vector p = (p1, . . . , pd)

T ∈ [0, 1]d satisfying p1 + · · ·+ pd = 1, i.e.

P[B = ei] = pi, i ∈ {1, . . . , d}, (4.7)

where ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ {0, 1}d denotes the ith unit vector with the
digit 1 at position i. It is also called categorical distribution on the finite set
{e1, . . . , ed}. In analogy to Example 4.2, we will consider this distribution as a
special case of the multinomial distribution, see Example 4.19 below, and write
B ∼ Multinomial(1, p1, . . . , pd). It can be used, for example, to model the time
of default in a model with d periods, see Remark 7.1 below. Its probability-
generating function is given by

φB(s)
(4.1)
=

d∑
i=1

si P[B = ei]
(4.7)
=

d∑
i=1

pisi, s = (s1, . . . , sd) ∈ Cd. (4.8)

27 The function c is the hypergeometric function 2F1(1, 1; 2; ·) and also the derivative of the
dilogarithm Li2.
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Note that Bi is {0, 1}-valued and P[Bi = 1] = pi, hence Bi ∼ Bin(1, pi) for every
component i ∈ {1, . . . , d} of B = (B1, . . . , Bd)

T, in particular E[B] = p and
Var(Bi) = pi(1− pi). Since ∥ei∥1 = 1 for every i ∈ {1, . . . , d}, it follows that

∥B∥1 = B1 + · · ·+Bd ≡ 1. (4.9)

The multivariate Bernoulli distribution has the aggregation property

(B1, . . . , Bi, Bi+1+ · · ·+Bd)
T ∼ Multinomial(1, p1, . . . , pi, pi+1+ · · ·+pd) (4.10)

for every i ∈ {1, . . . , d− 1}, and the permutation property

(Bσ(1), . . . , Bσ(d))
T ∼ Multinomial(1, pσ(1), . . . , pσ(d)) (4.11)

for every permutation σ of {1, . . . , d}. Properties (4.9), (4.10) and (4.11) will
imply corresponding properties for compound distributions involving the multi-
variate Bernoulli distribution, see Exercises 4.20, 4.50 and 4.55 below. If d ≥ 2,
then exactly one of the components of B attains the value 1, all others are zero,
hence for all i, j ∈ {1, . . . , d} with i ̸= j,

Cov(Bi, Bj) = E[BiBj︸ ︷︷ ︸
=0

]− E[Bi]E[Bj ] = −pipj , (4.12)

which implies dependence unless pi = 0 or pj = 0. Together with the variance of
the components of B calculated above,

Cov(B) = diag(p)− ppT, (4.13)

where diag(p) denotes the diagonal matrix with the entries of p on the diago-
nal. For the generalizations of the properties (4.9), (4.10), (4.11) and (4.13) to
the general multinomial distribution, see Exercise 4.20 below. For the general
multivariate Bernoulli mixture model, see Example 4.24 below.

4.1.2 Basic Properties and Calculation of Moments

Some of the basic properties of probability-generating functions of the distributions
of Nd

0-valued random vectors X = (X1, . . . , Xd) following directly from (4.1) are

φX(0, . . . , 0) = P[X = 0] , (4.14)

φX(1, . . . , 1) =
∑
n∈Nd

0

P[X = n] = 1 (4.15)

and

φ
(n)
X (0, . . . , 0) = n1! . . . nd!P[X = n] , n = (n1, . . . , nd) ∈ Nd

0, (4.16)

where φ
(n)
X = φ

(n1,...,nd)
X means ni partial derivatives with respect to the ith vari-

able iteratively for all28 i ∈ {1, . . . , d}. Because of (4.1) and (4.16), φX uniquely

28 We only differentiate probability generating functions in the interior of the set where the
defining power series (4.1) converges absolutely. There, by Schwarz’s theorem, the order in
which the partial derivatives are computed, does not matter.
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determines the distribution of X and vice versa. It follows from the power series
representation in (4.1) that [0, 1]d ∋ (s1, . . . , sd) 7→ φX(s1, . . . , sd) is monotoni-
cally increasing, meaning that for all s, t ∈ [0, 1]d with s ≤ t componentwise,29

it follows that φX(s) ≤ φX(t). In particular, φX is monotonically increasing
separately in every argument.

The probability-generating function φX contains the information about all
distributions arising from X by an affine transformation with coefficients in N0.

Lemma 4.6. Let X = (X1, . . . , Xd)
T be an Nd

0-valued random vector with
probability-generating function φX , let A = (ai,j)i∈{1,...,c},j∈{1,...,d} ∈ Nc×d

0 be

a matrix and b = (b1, . . . , bc)
T ∈ Nc

0. Then the probability-generating function of
the distribution of the Nc

0-valued random vector AX + b satisfies

φAX+b(s) = sbφX(t1, . . . , td) with tj :=
c∏

i=1

s
ai,j
i , j ∈ {1, . . . , d}, (4.17)

at least for every s = (s1, . . . , sc) ∈ Cc with ∥s∥∞ ≤ 1.

Proof. Using the definitions in (4.1) and (4.17),

φAX+b(s1, . . . , sc) = E
[ c∏
i=1

s
∑d

j=1 ai,jXj+bi
i

]
= sb E

[ d∏
j=1

( c∏
i=1

s
ai,j
i

)Xj
]

= sbφX(t1, . . . , td).

Example 4.7. Let us rewrite (4.17) for several special cases with b = 0.

(a) For the first c-dimensional marginal distribution with c ∈ {1, . . . , d},

φ(X1,...,Xc)(s1, . . . , sc) = φX(s1, . . . , sc, 1, . . . , 1), (4.18)

because ai,j = δi,j for i ∈ {1, . . . , c} and j ∈ {1, . . . , d}, i.e.

A =


1 0 · · · 0 0 · · · 0

0 1
. . .

...
...

...
...

. . .
. . . 0 0 · · · 0

0 · · · 0 1 0 · · · 0

 .

This result generalizes to all other c-dimensional marginal distributions by
writing the ones in (4.18) as well as the zero column vectors of A at the
positions not used for the marginal distribution.

(b) For the sum of all the d components of X,

φX1+···+Xd
(s1) = φX(s1, . . . , s1),

because A = (1, . . . , 1) ∈ N1×d
0 is actually a row vector.

29 Hence ([0, 1]d,≤) is a partially ordered set, which is directed upwards as well as downwards
(take the componentwise maximum and minimum, respectively).
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(c) Addition of the last d− c+ 1 components of X, for every c ∈ {2, . . . , d},

φ(X1,...,Xc−1,Xc+···+Xd)(s1, . . . , sc) = φX(s1, . . . , sc−1, sc, . . . , sc), (4.19)

because

A =


1 0 · · · 0 · · · 0

0 1
. . .

...
...

...
. . .

. . . 0 · · · 0
0 · · · 0 1 · · · 1

 .

This observation can be used to prove the aggregation property for several
multi-dimensional distributions discussed below.

(d) For every permutation σ of {1, . . . , d}, with σ−1 denoting the inverse per-
mutation,

φ(Xσ(1),...,Xσ(d))(s1, . . . , sd) = φX(sσ−1(1), . . . , sσ−1(d)), (4.20)

because ai,j = δσ(i),j = δi,σ−1(j) for all i, j ∈ {1, . . . , d}.

Example 4.8 (Multivariate Bernoulli distribution revisited). Assume that the
random vector B = (B1, . . . , Bd) with d ≥ 2 has a multivariate Bernoulli dis-
tribution, i.e. B ∼ Multinomial(1, p1, . . . , pd) as in Example 4.5. Using the
probability-generating function from (4.2) and (4.8)

φBi(si) = pisi + (1− pi) = pisi +

d∑
j=1
j ̸=i

pj = φB(1, . . . , 1, si, 1, . . . , 1), si ∈ C,

for every i ∈ {1, . . . , d}, which illustrates (4.18). See Remark 4.56 below for
higher-dimensional marginal distributions of Multinomial(1, p1, . . . , pd).

Example 4.9 (Finite convex combination of probability measures). Fix k ∈ N.
For each i ∈ {1, . . . , k} let Qi = (qi,n)n∈Nd

0
denote a probability distribution on

Nd
0 with probability-generating function φQi . Furthermore, let p = (p1, . . . , pk) ∈

[0, 1]k with p1 + · · · + pk = 1 be a probability vector. Then the probability
distribution Q = (qn)n∈Nd

0
, defined as convex combination of Q1, . . . , Qk with

weights p1, . . . , pk, is given by

qn =
k∑

i=1

piqi,n, n ∈ Nd
0. (4.21)

We use the notation Convex((pi, Qi)i∈{1,...,k}). The probability-generating func-
tion of Q is given by

φQ(s)
(4.1)
=

∑
n∈Nd

0

qns
n (4.21)

=
k∑

i=1

pi
∑
n∈Nd

0

qi,ns
n (4.1)

=
k∑

i=1

piφQi(s), (4.22)
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for all s ∈ Cd for which the power series defining φQ1(s), . . . , φQk
(s) converge,

hence at least for all s ∈ Cd with ∥s∥∞ ≤ 1. For these s the equality in
the centre of (4.22) is justified. For a stochastic representation of Q, consider
B = (B1, . . . , Bk) ∼ Multinomial(1, p1, . . . , pk) as in Example 4.5. For each
i ∈ {1, . . . , k} let Xi be an Nd

0-valued random vector with Xi ∼ Qi which is
independent of Bi. Then Y :=

∑k
i=1BiXi satisfies

P[Y = n] =
k∑

i=1

P[B = ei, Y = n︸ ︷︷ ︸
= {Bi=1,Xi=n}

] =
k∑

i=1

P[Bi = 1]P[Xi = n] =
k∑

i=1

piqi,n
(4.21)
= qn

for each n ∈ Nd
0, hence Y ∼ Q. Note that no independence assumption between

X1, . . . , Xk is necessary.

Remark 4.10 (Calculation of multivariate factorial moments). Information about
the multivariate factorial moments of the Nd

0-valued X can also be obtained in a
simple manner. Let us first consider component i ∈ {1, . . . , d}. At least for all
s = (s1, . . . , sd) ∈ Cd with ∥s∥∞ ≤ 1 and |si| < 1,

∂

∂si
φX(s) = E

[
sX1
1 . . . s

Xi−1

i−1 Xis
Xi−1
i s

Xi+1

i+1 . . . sXd
d

]
and

∂2

∂s2i
φX(s) = E

[
sX1
1 . . . s

Xi−1

i−1 Xi(Xi − 1)sXi−2
i s

Xi+1

i+1 . . . sXd
d

]
.

More generally, taking partial differentiation with respect all d variables into
account, at least for all s = (s1, . . . , sd) ∈ Cd with ∥s∥∞ < 1,

φ
(n)
X (s) = E

[ d∏
i=1

(
sXi−ni
i

ni−1∏
li=0

(Xi − li)

)]
, n = (n1, . . . , nd) ∈ Nd

0.

It follows from (4.1) that φX and its derivatives are monotonically increasing on
[0, 1)d. By monotone convergence for the left-sided limit at the ith position, for
every i ∈ {1, . . . , d},

∂

∂si
φX(1, . . . , 1, si, 1, . . . , 1)

∣∣∣
si=1−

= E[Xi] (4.23)

and
∂2

∂s2i
φX(1, . . . , 1, si, 1, . . . , 1)

∣∣∣
si=1−

= E[Xi(Xi − 1)], (4.24)

and generally for the multivariate factorial moments,

φ
(n)
X (1−, . . . , 1−) = E

[ d∏
i=1

ni−1∏
li=0

(Xi − li)

]
, n = (n1, . . . , nd) ∈ Nd

0, (4.25)

where the precaution with the left-sided limit is unnecessary for those i ∈ {1, . . . ,
d} which satisfy ni = 0. The precaution is also unnecessary when there exists
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a radius r > 1 such that the power series in (4.1) converges for all s ∈ Cd

with ∥s∥∞ < r. It follows from a proposition on doubly monotone arrays [59,
Section A5.1] or an iterated application of the monotone convergence theorem

that φ
(n)
X (1−, . . . , 1−) does not depend on the order in which the left-sided limits

are taken. As the next example shows, these left-sided limits can be infinite,
which is also the reason for calculating partial derivatives of φX only in the
interior of the domain of definition.

Example 4.11 (A distribution on N with infinite expectation). Consider an
N-valued random variable X with

P[X = n] =
1

n(n+ 1)
=

1

n
− 1

n+ 1
, n ∈ N.

Since P[X ∈ {1, . . . , k}] = 1 − 1
k+1 ↗ 1 as k → ∞, this is indeed a probability

distribution. Its probability-generating function φX satisfies

φ′
X(s) =

( ∞∑
n=1

sn

n(n+ 1)

)′
=

∞∑
n=1

sn−1

n+ 1
, |s| < 1.

Comparison with the harmonic series and application of the monotone convergence
theorem (or Abel’s theorem for power series) shows that E[X] = φ′

X(1−) = ∞.

Remark 4.12 (Variances and Covariances). Consider an Nd
0-valued random

vector X. For every component i ∈ {1, . . . , d} with E[Xi] <∞, we can use

Var(Xi) = E[X2
i ]− (E[Xi])

2 = E[Xi(Xi − 1)]− E[Xi]
(
E[Xi]− 1

)
(4.26)

as well as (4.23) and (4.24) to calculate the variance. For i, j ∈ {1, . . . , d} with
i ̸= j, a special case of (4.25) is

∂2φX

∂si ∂sj
(1, . . . , 1, 1−, 1, . . . , 1, 1−, 1, . . . , 1) = E[XiXj ], (4.27)

where the left-sided limits are considered for the ith and jth argument. Therefore,
if E[Xi] <∞ and E[Xj ] <∞, then we can use

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] (4.28)

together with (4.23) and (4.27) to calculate the covariance of Xi and Xj , which
is allowed to be infinite here.

Exercise 4.13 (Factorial moments and variance of the univariate logarithmic
distribution). Suppose that N ∼ Log(p) with p ∈ [0, 1), see Example 4.4. Show
that

E
[ n−1∏

l=0

(N − l)

]
=

(n− 1)! pn−1

c(p)(1− p)n
, n ∈ N, (4.29)

and

Var(N) =
c(p)− 1

c2(p)(1− p)2
(4.30)

with c(p) given by (4.5). For the multivariate case, see Exercise 4.50.
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Exercise 4.14 (Calculating mixed moments from multivariate factorial moments).
Extending Exercise 2.10 to the multivariate case, show that in the polynomial
ring R[x1, . . . , xd] of d variables over a commutative ring R (with 1),

xn =
∑
l∈Nd

0
l≤n

d∏
i=1

{
ni
li

} li−1∏
ki=0

(xi − ki), n = (n1, . . . , nd) ∈ Nd
0,

where x = (x1, . . . , xd) and the inequality l ≤ n is understood componentwise.
Conclude that, for every Nd

0-valued random vector N = (N1, . . . , Nd), the mixed
moments can be calculated from the multivariate factorial moments given in
(4.25) by the formula

E[Nn] =
∑
l∈Nd

0
l≤n

( d∏
i=1

{
ni
li

})
E
[ d∏
i=1

li−1∏
ki=0

(Ni − ki)

]
, n = (n1, . . . , nd) ∈ Nd

0,

and that the formula is also true for Cd-valued random vectors, provided the
absolute multivariate factorial moments for the right-hand side are finite.

Lemma 4.15 (Characterization of independence using probability-generating
functions). Let X: Ω → Nc

0 and Y : Ω → Nd
0 be two random vectors. Then X

and Y are independent if and only if φ(X,Y )(s, t) = φX(s)φY (t) at least for all

s ∈ Cc and t ∈ Cd satisfying ∥s∥∞ ≤ 1 and ∥t∥∞ ≤ 1.

Proof. Note that (s, t)(X,Y ) =
(∏c

i=1 s
Xi
i

)∏d
j=1 t

Yj

j = sXtY in multi-index nota-
tion. If X and Y are independent, then

φ(X,Y )(s, t) = E
[
sXtY

]
= E

[
sX

]
E
[
tY

]
= φX(s)φY (t)

for all s and t mentioned in the lemma. The reverse direction follows because
φ(X,Y ) uniquely determines the distribution of (X,Y ), see (4.16).

Now the multiplication theorem of probability-generating functions mentioned
above. Its proof is so simple that we include it in the statement of the theorem.

Theorem 4.16. Suppose that X,Y : Ω → Nd
0 are independent. Then, using

multi-index notation,

φX+Y (s) = E
[
sX+Y

]
= E

[
sX

]
E
[
sY

]
= φX(s)φY (s) (4.31)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1.

Note that Theorem 4.16 also follows from Lemma 4.15 with c = d and an
application of Lemma 4.6 to the N2d

0 -valued random variable (X,Y ) and the
matrix A := (Id, Id), cf. Example 4.7(b) for N0-valued X and Y .

An application of formula (4.31) provides a very short proof of the Poisson
summation theorem given in Lemma 3.2.
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Alternative proof of Lemma 3.2. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be
independent. Then

φX+Y (s)
(4.31)
= φX(s)φY (s)

(4.3)
= eλ(s−1) eµ(s−1) = e(λ+µ)(s−1), s ∈ C. (4.32)

Hence X + Y ∼ Poisson(λ+ µ), because φX+Y uniquely determines the distribu-
tion of X + Y , see (4.16).

Example 4.17 (Binomial distribution). Let the random variable N ∼ Bin(m, p)
describe the number of successes in m ∈ N independent Bernoulli trials with
success probability p ∈ [0, 1], meaning that N = B1 + · · ·+Bm with independent
Bernoulli random variables B1, . . . , Bm. By (4.2), for every i ∈ {1, . . . ,m},

φBi(s) = 1 + p(s− 1), s ∈ C,

hence the multiplication theorem of probability-generating functions, see (4.31),
implies that

φN (s) =
m∏
i=1

φBi(s) = (1 + p(s− 1))m, s ∈ C. (4.33)

Remark 4.18 (Motivation of the Poisson approximation). The following obser-
vation uses generating functions to make the Poisson approximation of Theorem
3.23 plausible. Let φBi denote the probability-generating function of the Bernoulli
random variable Bi of obligor i ∈ {1, . . . ,m}, indicating a default with probability
pi. As in (4.2),

φBi(s) = 1 + pi(s− 1), s ∈ C.

We denote the number of defaults in the whole portfolio by W = B1 + · · ·+Bm

and the corresponding generating function by φW . If we assume the defaults
of the obligors to be independent, then φW (s) =

∏m
i=1 φBi(s). Using the linear

approximation 1 + x ≈ ex for |x| small, we get

φW (s) =
m∏
i=1

(1 + pi(s− 1)) ≈
m∏
i=1

epi(s−1) = eλ(s−1), s ∈ C,

with λ := p1 + · · ·+ pm, which according to (4.3) is the probability-generating
function of N ∼ Poisson(λ).

4.2 Application to the General Multinomial Mixture Model

4.2.1 Multinomial Distribution

We start by introducing and discussing the multinomial distribution.

Example 4.19 (Multinomial distribution). Given a dimension d ∈ N, let B1, . . . ,
Bm be m ∈ N independent d-dimensional random vectors, each one having a
multivariate Bernoulli distribution with probability vector p = (p1, . . . , pd) ∈
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[0, 1]d satisfying p1+ · · ·+pd = 1, see Example 4.5, i.e. Bi ∼ Multinomial(1, p) for
each i ∈ {1, . . . ,m}. We can interpret Bi as describing the result of the ith trial,
which can have d different outcomes. Then the jth component Nj of N := B1 +
· · ·+Bm describes the number of outcomes of type j in a sequence ofm independent
trials, for every j ∈ {1, . . . , d}. By definition, N has a multinomial distribution,30

which we denote by Multinomial(m, p1, . . . , pd) or Multinomial(m, p) for short.
We can add the case m = 0 with the understanding that N ≡ 0 ∈ Nd

0 (empty
sum convention). By (4.8), the probability-generating function of Bi is given by

φBi(s) =

d∑
j=1

pjsj , s = (s1, . . . , sd) ∈ Cd,

for every i ∈ {1, . . . ,m}, hence by the multiplication theorem of probability-
generating functions, see (4.31),

φN (s) =

m∏
i=1

φBi(s) =

( d∑
j=1

pjsj

)m

, s = (s1, . . . , sd) ∈ Cd. (4.34)

Either by using (4.16) to derive the probability mass function from φN , or by
using the multinomial theorem to expand φN (s) = (p1s1+ · · ·+ pdsd)m, it follows
that

P[N = n] = m!

d∏
i=1

pni
i

ni!
=

(
m

n

)
pn (4.35)

in multi-index notation for all n = (n1, . . . , nd) ∈ Nd
0 with n1 + · · · + nd = m.

Note that (
m

n

)
:=

(
m

n1, . . . , nd

)
:=

m!

n1! . . . nd!

is the multinomial coefficient, which can be defined more generally for z ∈ C by(
z

n

)
:=

(
z

n1, . . . , nd

)
:=

1

n1! . . . nd!

n1+···+nd−1∏
i=0

(z − i). (4.36)

Exercise 4.20 (Some properties of the multinomial distribution). Let N =
(N1, . . . , Nd) ∼ Multinomial(m, p1, . . . , pd) with m ∈ N trials and probability
vector p = (p1, . . . , pd) ∈ [0, 1]d satisfying p1 + · · ·+ pd = 1. Show the following:

(a) N1 + · · ·+Nd ≡ m.

(b) One-dimensional marginal distributions: Ni ∼ Bin(m, pi), hence E[N ] = mp
and Var(Ni) = mpi(1−pi) for every i ∈ {1, . . . , d}. (See Remark 4.56 below
for higher-dimensional marginal distributions.)

30 For the generalization to the case p1 + · · · + pd ∈ [0, 1], see the multivariate binomial
distribution in Subsection 4.7.3 below.
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(c) Aggregation property: For every i ∈ {1, . . . , d− 1},

(N1, . . . , Ni, Ni+1 + · · ·+Nd) ∼ Multinomial(m, p1, . . . , pi, pi+1 + · · ·+ pd).

(d) Permutation property: For every permutation σ of {1, . . . , d},

(Nσ(1), . . . , Nσ(d)) ∼ Multinomial(m, pσ(1), . . . , pσ(d)).

(e) Covariances: Cov(Ni, Nj) = −mpipj for all i, j ∈ {1, . . . , d} with i ̸= j.

Lemma 4.21 (Summation property of the multinomial distribution). Let d, k ∈
N, m1, . . . ,mk ∈ N0 and p1, . . . , pd ∈ [0, 1] with p1 + · · ·+ pd = 1. If N1, . . . , Nk

are independent with Ni ∼ Multinomial(mi, p1, . . . , pd) for every i ∈ {1, . . . , k},
then

N :=
k∑

i=1

Ni ∼ Multinomial(m1 + · · ·+mk, p1, . . . , pd).

Exercise 4.22. Prove Lemma 4.21 using (4.34).

Remark 4.23 (Summation property of the binomial distribution). Using Lemma
4.21 for d = 2 and looking at the one-dimensional marginal distribution (see
Exercise 4.20(b)), we obtain the summation property of the binomial distribution.
Of course, this also follows directly using (4.33).

4.2.2 General Multinomial Mixture Model

As usual for mixture models, we now want to replace the probability vector
p = (p1, . . . , pd) ∈ [0, 1]d satisfying p1 + · · · + pd = 1 by a random probability
vector. Therefore, for the remaining part of this subsection, let P = (P1, . . . , Pd)

T

denote a random vector with values in [0, 1]d satisfying P1+· · ·+Pd = 1. Note that
P1, . . . , Pd in general are stochastically dependent, because for each j ∈ {1, . . . , d}
the component Pj can be expressed using all the other components.

Example 4.24 (General multivariate Bernoulli mixture model). For d ∈ N
consider a random vector B = (B1, . . . , Bd)

T, taking values in the set {e1, . . . , ed}
of unit vectors of Rd. We generalize (4.7) from Example 4.5 by requiring

P[B = ei |P ]
a.s.
= Pi, i ∈ {1, . . . , d}, (4.37)

which is equivalent to the vector equation

E[B |P ]
a.s.
= P. (4.38)

Furthermore ∥B1∥1 = B1+ · · ·+Bd ≡ 1 corresponding to (4.9). Since L(B|P )
a.s.
=

Multinomial(1, P ), the calculation (4.8) implies for the probability-generating
function of the conditional distribution L(B|P ) that

E[sB |P ] a.s.= φB|P (s)
a.s.
=

d∑
i=1

Pisi, s = (s1, . . . , sd) ∈ Cd.
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Hence by taking expectations,

φB(s) = E
[
E[sB |P ]

]
=

d∑
i=1

E[Pi] si, s = (s1, . . . , sd) ∈ Cd.

Since the probability-generating function determines the distribution uniquely,
we see by comparison with (4.8) that B ∼ Multinomial(1,E[P ]). It follows from
(4.38) that

E[B] = E[P ] (4.39)

and from (4.13) combined with L(B|P ) a.s.
= Multinomial(1, P ) that

Cov(B |P) a.s.
= diag(P )− PPT, (4.40)

and combined with B ∼ Multinomial(1,E[P ]) that

Cov(B) = diag(E[P ])− E[P ]E[P ]T .

Combining (3.65) from Lemma 3.50 with (4.40) and (4.38) gives the same re-
sult. The aggregation property (4.10) and the permutation property (4.11) are
transferred accordingly.

Example 4.25 (General multinomial mixture model). By combining Examples
4.19 and 4.24, given m ∈ N, we consider general multivariate Bernoulli random
vectors B1, . . . , Bm with L(Bi|P )

a.s.
= Multinomial(1, P ) for each i ∈ {1, . . . ,m},

which are conditionally independent given P = (P1, . . . , Pd)
T, meaning that for

all x1, . . . , xm ∈ {e1, . . . , ed},

P[B1 = x1, . . . , Bm = xm |P ]
a.s.
=

m∏
i=1

P[Bi = xi |P ] . (4.41)

Writing n = (n1, . . . , nd) := x1 + · · ·+ xm, which satisfies n1 + · · ·+ nd = m, the
equations (4.37) and (4.41) imply that

P[B1 = x1, . . . , Bm = xm |P ]
a.s.
= Pn1

1 · · ·Pnd
d = Pn. (4.42)

Define N = B1 + · · · + Bm and take expectations in (4.42). Since for each
n = (n1, . . . , nd) ∈ Nd

0 with n1+ · · ·+nd = m there are
(
m
n

)
possibilities to choose

x1, . . . , xm ∈ {e1, . . . , ed} with x1 + · · ·+ xm = n, it follows that

P[N = n] =

(
m

n

)
E[Pn] (4.43)

in multi-index notation, hence (4.35) is generalized. By linearity and (4.38),

E[N |P ]
a.s.
=

m∑
i=1

E[Bi |P ]
a.s.
= mP, hence E[N ] = mE[P ] . (4.44)
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Using (3.65) from Lemma 3.50 and (4.44) afterwards,

Cov(N) = E
[
Cov(N |P)

]
+Cov(E[N |P ]) =

m∑
i,j=1

E
[
Cov(Bi, Bj |P)

]
+Cov(mP ) .

Due to the conditional independence of B1, . . . , Bm, see (4.41), and Remark 3.51,
Cov(Bi, Bj |P)

a.s.
= 0 for all i, j ∈ {1, . . . ,m} with i ̸= j. Using (4.40) for the

remaining terms,

Cov(N) = m
(
mCov(P ) + diag(E[P ])− E[PPT]

)
= m

(
(m− 1)Cov(P ) + diag(E[P ])− E[P ]E[P ]T

)
,

(4.45)

because Cov(P ) = E[PPT] − E[P ]E[P ]T. Since L(N |P ) a.s.
= Multinomial(m,P )

by Example 4.19, (4.34) implies that

φN |P (s)
a.s.
=

( d∑
j=1

Pjsj

)m

=
∑
n∈Nd

0
∥n∥1=m

(
m

n

)
Pnsn, s = (s1, . . . , sd) ∈ Cd,

where we used the multinomial theorem to expand the power and multi-index
notation as in (4.43). Taking expectations shows that

φN (s) =
∑
n∈Nd

0
∥n∥1=m

(
m

n

)
E[Pn] sn, s = (s1, . . . , sd) ∈ Cd,

which also follows directly from (4.1) and (4.43).

4.2.3 Dirichlet and Dirichlet-Multinomial Distribution

To proceed, we now introduce a popular distribution for the random probability
vector P = (P1, . . . , Pd), which is the multi-dimensional analogue of the beta
distribution, see Remark 4.27 below. We can think of (P1, . . . , Pd) as the random
lengths of intervals created by cutting the unit interval [0, 1] at the points
P1 + · · ·+ Pi for i ∈ {1, . . . , d− 1}.

Definition 4.26 (Dirichlet distribution31). Let d ≥ 2 be an integer. A density of
the Dirichlet distribution with shape parameter vector α = (α1, . . . , αd) ∈ (0,∞)d

on the open standard orthogonal (d− 1)-dimensional simplex ∆d−1 defined in
(2.32) is given by

fα(x) =

{
1

B(α)

∏d
i=1 x

αi−1
i for x = (x1, . . . , xd−1) ∈ ∆d−1,

0 for x ∈ Rd−1 \∆d−1,
(4.46)

where xd := 1− (x1 + · · ·+ xd−1) > 0 for notational reasons, and B denotes the
multivariate beta function, see (2.33). We denote an Rd-valued random probability
vector P = (P1, . . . , Pd) with a Dirichlet distribution by P ∼ Dirichlet(α).

31 Named after the German mathematician Peter Gustav Lejeune Dirichlet (1805–1859).
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Remark 4.27 (Beta distribution). Suppose that d = 2 and P = (P1, P2) ∼
Dirichlet(α, β) with real shape parameters α, β > 0. Then (4.46) simplifies to
(2.35), hence P1 has the beta distribution Beta(α, β), see Definition 2.6 (compared
to the Dirichlet distribution, the component P2 = 1− P1 is usually omitted).

Exercise 4.28 (Mixed moments and covariance matrix of the Dirichlet distri-
bution). Let P = (P1, . . . , Pd)

T ∼ Dirichlet(α) with α = (α1, . . . , αd)
T ∈ (0,∞)d.

Show for all γ = (γ1, . . . , γd)
T ∈ Rd with γ > −α componentwise that

E
[
P γ

]
:= E

[
P γ1
1 · · ·P γd

d

]
=
B(α+ γ)

B(α)
, (4.47)

define the probability vector α̃ = α/∥α∥1 and, using the relation (2.33) for the
multivariate beta function and the functional equation (2.30) of the gamma
function, conclude that

E[P ] = α̃ and Cov(P ) =
diag(α̃)− α̃α̃T

1 + ∥α∥1
, (4.48)

where diag(α̃) denotes the diagonal matrix with the entries of α̃ on the diagonal.

Remark: Note that α̃ marks the intersection in Rd of the one-dimensional span of
α with the (d− 1)-dimensional simplex {(x1, . . . , xd) ∈ (0, 1)d | x1+ · · ·+xd = 1},
in which P = (P1, . . . , Pd) takes its values, and which is also the graph of
∆d−1 ∋ (x1, . . . , xd−1) 7→ 1− (x1 + · · ·+ xd−1) with ∆d−1 given by (2.32). The
structure of Cov(P ) is determined by α̃, its scale by ∥α∥1. Higher values of ∥α∥1
lead to a stronger concentration of L(P ) around α̃. Also note that Pi and Pj

have negative covariance for i ≠ j in {1, . . . , d}, as expected by the interpretation
of random lengths of subintervals created by cutting the unit interval [0, 1] at
the points P1 + · · ·+ Pi for i ∈ {1, . . . , d− 1}.

Here is the generalization of Lemma 2.12:

Lemma 4.29 (Biased Dirichlet distribution). Consider d ∈ N with d ≥ 2.
Assume that P ∼ Dirichlet(α) with shape parameter vector α ∈ (0,∞)d and take
γ ∈ Rd with γ > −α componentwise. Then PP γP−1 = Dirichlet(α+ γ), that
means the distribution of P under the P γ-biased probability measure PP γ given
by Definition 2.11 is the Dirichlet(α+ γ) distribution.

Proof. By (2.44) and (4.47), a density of the P γ-biased probability measure PP γ

is given by
dPP γ

dP
=

B(α)

B(α+ γ)
P γ .

Let µ denote the Lebesgue–Borel measure on Rd−1. Using the density fα from
(4.46) shows that, for µ-almost all p = (p1, . . . , pd−1) in the open simplex ∆d−1

defined in (2.32), writing p̃ = (p1, . . . , pd−1, 1− (p1 + · · ·+ pd−1)),

d(PP γP−1)

dµ
(p) =

d(PP γP−1)

d(PP−1)
(p) · d(PP

−1)

dµ
(p)

=
B(α)

B(α+ γ)
p̃γ · fα(p)

(4.46)
=

p̃α+γ−1

B(α+ γ)
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with 1 = (1, . . . , 1) ∈ Nd, which by (4.46) is a density of the Dirichlet(α+ γ)
distribution.

Definition 4.30 (Dirichlet-multinomial distribution32). Consider d,m ∈ N
with d ≥ 2 and α ∈ (0,∞)d. Let P = (P1, . . . , Pd) ∼ Dirichlet(α) as in Def-
inition 4.26. Combining (4.43) and (4.47), the probability mass function of
N ∼ DirichletMultinomial(α,m) is given by

P[N = n] =

(
m

n

)
B(α+ n)

B(α)
(4.49)

for all n = (n1, . . . , nd) ∈ Nd
0 with n1 + · · ·+ nd = m; it generalizes (2.36).

Exercise 4.31 (Expectation and covariance matrix of the Dirichlet-multinomial
distribution). Consider d,m ∈ N with d ≥ 2 and α ∈ (0,∞)d. Let N ∼
DirichletMultinomial(α,m). Define the probability column vector α̃ = α/∥α∥1
and show that E[N ] = mα̃ and

Cov(N) = m
m+ ∥α∥1
1 + ∥α∥1

(
diag(α̃)− α̃α̃T

)
.

Hint: Use (4.44), (4.45) and (4.48).

4.3 Application to the General Multivariate Poisson Mixture
Model

We start by using the multiplication theorem (Theorem 4.16) to calculate the
probability-generating function of the multivariate Poisson distribution given by
Definition 3.42

Example 4.32 (Multivariate Poisson distribution). Assume that N has the
multivariate Poisson distribution MPoisson(G, (λg)g∈G,m). By the representation
(3.53), using multi-index notation, the probability-generating function is given by

φN (s)
(4.1)
= E

[
sN

] (3.53)
= E

[ ∏
g∈G

(scg)Ng

]
, s ∈ Cm, (4.50)

where scg =
∏

i∈g si by (3.54). Using the independence of (Ng)g∈G and the
multiplication theorem (4.31) of probability-generating functions,

φN (s) =
∏
g∈G

E
[
(scg)Ng

]
, s ∈ Cm.

Finally, using the probability-generating function of Poisson(λg) for every g ∈ G,
see Example 4.3,

φN (s) =
∏
g∈G

exp
(
λg

(
scg − 1

))
= exp

(∑
g∈G

λg
(
scg − 1

))
, s ∈ Cm. (4.51)

32 Also called multivariate Pólya distribution, because it appears in Pólya’s urn model, see [49].
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Exercise 4.33 (Proof of the summation property of the multivariate Poisson
distribution). Use (4.51) and Theorem 4.16 to prove Lemma 3.43 without the
extra assumption in Exercise 3.44.

Let us reconsider the general multivariate Poisson mixture model introduced
in Subsection 3.6.

Example 4.34 (General multivariate Poisson mixture model from Section 3.6).
We start by considering the random vector (N1, . . . , Nm)T of defaults of the
individual m obligors and use the representation (3.62) and the calculation (4.50)
to see that the corresponding probability-generating function is given by

φ(N1,...,Nm)(s) = E
[ ∏
g∈G

(scg)Ng

]
with scg =

∏
i∈g

si

at least for all s = (s1, . . . , sm) ∈ Cm with ∥s∥∞ ≤ 1. By conditioning on the
random intensities (Λh)h∈G and using conditional independence, see (3.58), as
well as (3.57), it follows that

φ(N1,...,Nm)(s) = E
[
E
[ ∏
g∈G

(scg)Ng

∣∣∣∣(Λh)h∈G

]]

= E
[ ∏
g∈G

E
[
(scg)Ng

∣∣Λg

]︸ ︷︷ ︸
a.s.
= exp(Λg(s

cg−1)) by (4.3)

]
= E

[
exp

(∑
g∈G

Λg(s
cg − 1)

)]
.

For the number of defaults N := N1 + · · ·+Nm in the portfolio as considered
in (3.64), Example 4.7(b) yields

φN (s) = φ(N1,...,Nm)(s, . . . , s︸ ︷︷ ︸
d entries

) = E
[
exp

(∑
g∈G

Λg(s
|g| − 1)

)]
,

at least for all s ∈ C with |s| ≤ 1. In the case G = {{1}, . . . , {m}}, writing
Λi := Λ{i} for each i ∈ {1, . . . ,m}, the last result simplifies to

φN (s) = E
[
e(Λ1+···+Λm)(s−1)

]
and, provided Λ1, . . . ,Λm are independent, to

φN (s) =

m∏
i=1

E
[
eΛi(s−1)

]
.

4.4 Properties of the Gamma Distribution

In Subsection 4.3, no assumption was made about the distribution of any Λi. In
this subsection we will consider only one factor Λ. An arbitrary, but well-accepted
choice for mathematical convenience, is the gamma distribution. Therefore,
suppose Λ to be gamma-distributed (notation Λ ∼ Gamma(α, β)) with shape
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parameter α > 0 and rate (or inverse scale) parameter β > 0, i.e., Λ has a density

f(λ) :=

{
βα

Γ(α)λ
α−1 e−βλ for λ > 0,

0 for λ ≤ 0,
(4.52)

where Γ denotes the gamma function given in (2.29). The integral substitution
x := βλ shows that f is indeed a probability density.

Note that Gamma(1, β) is the exponential distribution with rate parameter
β > 0, whereas Gamma(n, β) with general n ∈ N is called Erlang distribution.
Furthermore, Gamma(n2 ,

1
2) is called χ2-distribution with n ∈ N degrees of

freedom.
The next lemma shows that, for every rate parameter β > 0, the gamma

distributions {Gamma(α, β)}α>0 form a semigroup under convolution. It also
implies that the gamma distribution is infinitely divisible.

Lemma 4.35 (Summation property of the gamma distribution). Let k ∈ N
and α1, . . . , αk, β > 0. If Λ1, . . . ,Λk are independent random variables with
Λi ∼ Gamma(αi, β) for every i ∈ {1, . . . , k}, then

k∑
i=1

Λi ∼ Gamma(α1 + · · ·+ αk, β).

Proof. The lemma follows by induction as soon as it is proved for k = 2. Let
f1 and f2 be densities according to (4.52) for Λ1 ∼ Gamma(α1, β) and Λ2 ∼
Gamma(α2, β), respectively. Due to the independence of Λ1 and Λ2, a density f
for Λ := Λ1 + Λ2 is given by the convolution, i.e., for all λ > 0,

f(λ) =

∫ λ

0
f1(µ)f2(λ− µ) dµ

=

∫ λ

0

βα1

Γ(α1)
µα1−1 e−βµ βα2

Γ(α2)
(λ− µ)α2−1 e−β(λ−µ) dµ.

Rearranging, defining α = α1 + α2, and using the substitution µ := λx yields

f(λ) =
βα

Γ(α)
λα−1 e−βλ︸ ︷︷ ︸

Gamma(α,β)-density

· Γ(α)

Γ(α1) Γ(α2)

∫ 1

0
xα1−1(1− x)α2−1 dx, λ > 0,

where the remaining constant needs to equal 1, because both sides are probability
distributions. As a side effect, this calculation evaluates the beta function
B(α1, α2), see Exercise 2.5 and (2.34).
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4.4.1 Moments of the Gamma Distribution

For γ ∈ (−α,∞) and z ∈ (−∞, β), we can generally compute

E[Λγ eΛz] =

∫ ∞

0
λγ eλz

βα

Γ(α)
λα−1 e−βλ dλ by (4.52)

=
Γ(α+ γ)

Γ(α)

βα

(β − z)α+γ

∫ ∞

0

(β − z)α+γ

Γ(α+ γ)
λα+γ−1 e−(β−z)λ︸ ︷︷ ︸

Gamma(α+γ,β−z)-density

dλ

=
Γ(α+ γ)

βγ Γ(α)
(1− z/β)−(α+γ).

(4.53)

For z = 0, the calculation (4.53) gives all the moments

E[Λγ ] =
Γ(α+ γ)

βγ Γ(α)
, γ ∈ (−α,∞), (4.54)

in particular, using the functional equation (2.30) for the gamma function,

E[Λ] =
Γ(α+1)

β Γ(α)
=
α

β
, (4.55)

E[Λ2] =
Γ(α+2)

β2 Γ(α)
=
α(α+1)

β2
,

and
Var(Λ) = E[Λ2]− (E[Λ])2 =

α

β2
. (4.56)

For γ = 0, the calculation (4.53) gives the exponential moments and the moment-
generating function

E
[
eΛz

]
= (1− z/β)−α, z ∈ (−∞, β), (4.57)

and the Laplace transform

E
[
e−Λs

]
= (1 + s/β)−α, s ∈ (−β,∞).

Given γ ∈ (−α,∞), let Λ′ ∼ Gamma(α + γ, β), where the shape parameter is
shifted by γ. Then (4.53), (4.54) and (4.57) imply the peculiar relation

E[Λγ eΛz] = E[Λγ ](1− z/β)−(α+γ) = E[Λγ ]E
[
eΛ

′z
]
, z ∈ (−∞, β), (4.58)

which we will use to derive (7.77) below.

4.4.2 Biased Gamma Distribution

The following lemma makes clear that the peculiar relation (4.58) is the conse-
quence of a more general observation, which is very similar to Lemma 2.12 for
the beta distribution and Lemma 4.29 for the Dirichlet distribution.
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Lemma 4.36. Assume that Λ ∼ Gamma(α, β) with parameters α, β > 0 and
that γ ∈ (−α,∞) and δ ∈ (−β,∞). Then PΛγ e−δΛΛ−1 = Gamma(α+ γ, β + δ),
that means the distribution of Λ under the Λγ e−δΛ-biased probability measure
PΛγ e−δΛ given by Definition 2.11 is the Gamma(α+ γ, β + δ) distribution.

Proof. By (2.44) and (4.53), a density of the Λγ e−δΛ-biased probability measure
PΛγ e−δΛ is given by

dPΛγ e−δΛ

dP
=

βγ Γ(α)

Γ(α+ γ)

(
1 +

δ

β

)α+γ
Λγ e−δΛ =

(β + δ)α+γ Γ(α)

βα Γ(α+ γ)
Λγ e−δΛ .

Let µ denote the Lebesgue–Borel measure on R. Using the density f from (4.52)
shows that, for µ-almost all λ > 0,

d(PΛγ e−δΛΛ−1)

dµ
(λ) =

d(PΛγ e−δΛΛ−1)

d(PΛ−1)
(λ) · d(PΛ

−1)

dµ
(λ)

=
(β + δ)α+γ Γ(α)

βα Γ(α+ γ)
λγ e−δλ ·f(λ)

=
(β + δ)α+γ

Γ(α+ γ)
λα+γ−1 e−(β+δ)λ,

which by (4.52) gives a density of the Gamma(α+ γ, β + δ) distribution.

4.5 Gamma-Mixed Poisson Distribution

To continue the investigation of Poisson mixture models, assume that Λ ∼
Gamma(α, β) with α, β > 0 and that the conditional distribution of N given Λ
is Poisson(Λ), notation L(N |Λ) a.s.

= Poisson(Λ), meaning that

P[N = n|Λ] a.s.=
Λn

n!
e−Λ, n ∈ N0. (4.59)

Combining (4.59) and (4.53) with z = −1, the unconditional distribution of N is

P[N = n] = E
[
P[N = n|Λ]

]
=

1

n!
E
[
Λn e−Λ

]
=

Γ(α+ n)

n! Γ(α)

1

βn(1 + 1/β)α+n

for all n ∈ N0. Using the abbreviations

p =
1

1 + β
∈ (0, 1) and q = 1− p =

β

1 + β
, (4.60)

and then the functional equation (2.31) of the gamma function, we get

P[N = n] =
Γ(α+ n)

n! Γ(α)
pnqα =

(
α+ n− 1

n

)
pnqα, n ∈ N0, (4.61)

which is called the negative binomial distribution.33 We will use the nota-
tion N ∼ NegBin(α, p). We will interpret NegBin(0, p) with p ∈ [0, 1) and

33 The term
(
α+n−1

n

)
pn in (4.61) shows up when considering the binomial series for (1− p)−α,

see (5.29) and (5.30), which is a negative power. This might motivate the name.
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NegBin(α, 0) with α ≥ 0 as the degenerate distribution concentrated in 0. Note
that the right-hand sides of (4.62), (4.63), (4.64) and (4.65) below, hence also
(4.66) and (4.67) are correct for these cases.

If α ∈ N, then (4.61) gives the probability of exactly n ∈ N0 successes
before the α-th failure in a sequence of independent Bernoulli trials with success
probability p. For α = 1, the negative binomial distribution (4.61) reduces to the
geometric distribution with parameter p ∈ [0, 1).

Let us calculate the expectation, the variance and the probability-generating
function of N . Since L(N |Λ) a.s.

= Poisson(Λ) by assumption, we have

E[N ] = E
[
E[N |Λ]︸ ︷︷ ︸
a.s.
= Λ by (3.3)

]
= E[Λ] (4.55)=

α

β
=

αp

1− p
(4.62)

by the substitution β = 1−p
p arising from (4.60). Using the law of total variance,

i.e. (3.66) from Lemma 3.50, as well as (4.55) for the mean and (4.56) for the
variance of Λ, we obtain

Var(N) = E[Var(N |Λ)︸ ︷︷ ︸
a.s.
= Λ by (3.4)

] + Var(E[N |Λ]︸ ︷︷ ︸
a.s.
= Λ by (3.3)

)

= E[Λ] + Var(Λ) =
α

β
+

α

β2
= α

β + 1

β2
=

αp

(1− p)2
,

(4.63)

where we used (4.60) and β = 1−p
p for the last equation. It remains to calculate

the corresponding probability-generating function. We present two different
approaches. Using (4.61) and extending the fraction by (1− ps)α, it follows that

φN (s)
(4.1)
= E

[
sN

]
=

∞∑
n=0

sn P[N = n]

=
qα

(1− ps)α

∞∑
n=0

(
α+ n− 1

n

)
(ps)n(1− ps)α︸ ︷︷ ︸

NegBin(α,ps)-distribution

=
( q

1− ps

)α

(4.64)

for all real s ≥ 0 with ps < 1, hence for all s ∈ C with p|s| < 1 by the identity
theorem from complex analysis. Alternatively, using L(N |Λ) a.s.

= Poisson(Λ) and
the probability-generating function (4.3) of the Poisson distribution,

φN |Λ(s) := E
[
sN

∣∣Λ] a.s.
= eΛ(s−1), s ∈ C,

as well as the exponential moments (4.57) of Λ ∼ Gamma(α, β),

φN (s) = E
[
E
[
sN |Λ

]]
= E

[
eΛ(s−1)

]
=

(
1− s− 1

β

)−α

=
( β

1 + β − s

)α (4.60)
=

( q

1− ps

)α
(4.65)
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for all s ∈ C with p|s| < 1. Since

φ
(n)
N (s) =

pnqα

(1− ps)α+n

n−1∏
l=0

(α+ l), n ∈ N, (4.66)

it follows via (4.25) for the factorial moments of the negative binomial distribution
that

E
[ n−1∏

l=0

(N − l)

]
=
pn

qn

n−1∏
l=0

(α+ l), n ∈ N. (4.67)

Here is the analogue of the Poisson and gamma summation properties given
in Lemma 3.2 and Lemma 4.35, respectively, transferred to independent random
variables with a negative binomial distribution (see Lemma 4.53 below for a
multi-dimensional generalization):

Lemma 4.37 (Summation property of the negative binomial distribution). Let
k ∈ N and α1, . . . , αk ≥ 0 as well as p ∈ [0, 1). If N1, . . . , Nk are independent
with Ni ∼ NegBin(αi, p) for every i ∈ {1, . . . , k}, then

N :=

k∑
i=1

Ni ∼ NegBin(α1 + · · ·+ αk, p) .

Proof. By independence, see (4.31), and generating function from (4.65),

φN (s) =
k∏

i=1

φNi(s) =
k∏

i=1

( q

1− ps

)αi

=
( q

1− ps

)α1+···+αk

(4.68)

for all s ∈ C satisfying p|s| < 1. Therefore, N ∼ NegBin(α, p) with α =
α1 + · · ·+ αk, because the probability-generating function uniquely determines
the distribution, see (4.16).

Exercise 4.38. Give a more probabilistic derivation of Lemma 4.37 by considering
the negative binomial distribution as a gamma-mixed Poisson distribution and
using Lemma 3.2, Lemma 4.35, and the setup of the general multivariate Poisson
mixture model, see (3.57) and (3.58).

4.6 Generating Function of Compound Distributions

To study random sums, let N be an N0-valued random variable and (Xn)n∈N
a sequence of Nd

0-valued, independent, identically distributed random vectors,
which is independent of N . In actuarial science, N describes the number of
insurance claims during a given period and (Xn)n∈N denote the claim sizes (only
the first N are observed during the period) arising from a homogeneous portfolio
of insurance contracts. The total claim amount is given by the Nd

0-valued random
sum

S :=

N∑
n=1

Xn. (4.69)
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This is called collective risk model for the total claim amount and used in
ruin theory. Of course, this model can also be applied to credit risks. Using
Q := L(X1), we introduce the notation

Compound(L(N), Q) := L(S). (4.70)

Given k ∈ N0 with P[N = k] > 0, we use the independence of the sum
X1+· · ·+Xk from the event {N = k} as well as the i. i. d. assumption for (Xn)n∈N
to get in the case E[∥X1∥] < ∞ using the elementary definition E[S |N = k] =
E[S1{N=k}]/P[N = k] of the conditional expectation that

E[S |N = k] = E[X1 + · · ·+Xk |N = k] = kE[X1] ,

and in the case E
[
∥X1∥2

]
<∞ that

Cov(S |N = k) = Cov(X1 + · · ·+Xk |N = k)

= Cov(X1 + · · ·+Xk)

= kCov(X1)

by independence. These two results can be rewritten as

E[S |N ]
a.s.
= N E[X1] (4.71)

and
Cov(S |N)

a.s.
= N Cov(X1) , (4.72)

where the last equation gives the conditional variances on the diagonal. Therefore,
if N and X1 are integrable, we get a special case of Wald’s equation

E[S] = E[E[S |N ]] = E[N ]E[X1] (4.73)

and, if they are square integrable, using Lemma 3.50,

Cov(S) = E[Cov(S |N)] + Cov(E[S |N ])

= E[N ] Cov(X1) + Var(N)E[X1]E[X1]
T ,

(4.74)

which is a special case of the Blackwell–Girshick equation.
We compute the probability-generating function φS . Using the multi-index

notation as in Definition 4.1, the dominated convergence theorem, the indepen-
dence of the sum X1 + · · · + Xn from the event {N = n} as well as the i. i. d.
assumption for the sequence (Xn)n∈N,

φS(s)
(4.1)
= E

[
sX1+···+XN

]
=

∞∑
n=0

E
[
sX1+···+Xn1{N=n}

]
=

∞∑
n=0

E
[
sX1+···+Xn

]︸ ︷︷ ︸
=(E[sX1 ])n =(φX1

(s))n

P[N = n]

= φN (φX1(s)),

(4.75)
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where is calculation is valid for all s ∈ Cd such that the power series defining
φX1(s) is absolutely convergent and such that the power series defining φN

converges at |φX1(s)|. This is the case at least for all s ∈ Cd with ∥s∥∞ ≤ 1; note
that |φX1(s)| ≤ 1 for these s.

Example 4.39 (Pairwise independence is not enough for (4.75)). We emphasise
that the i.i.d. sequence (Xn)n∈N should be independent of N ; the independence
of Xn and N for every n ∈ N, that means pairwise independence, is not enough34

for (4.75). For a counterexample, consider an i.i.d. sequence (Xn)n∈N with X1 ∼
Bin(1, 12), hence φX1(s) =

1
2(1+ s) for s ∈ C by (4.2). Define N = 2− ((X1+X2)

mod 2). Then P[N = 1] = P[N = 2] = 1
2 and, for all i ∈ {1, 2} and j ∈ {0, 1},

P[N = 1, Xi = j] = P[Xi = j, X3−i = 1− j] = 1
4

as well as
P[N = 2, Xi = j] = P[X1 = j, X2 = j] = 1

4 ,

hence N and Xi are independent for every i ∈ {1, 2}. Note that φN (s) = 1
2s+

1
2s

2

and

φN (φX1(s)) =
1
4(1 + s) + 1

8(1 + s)2 = 3
8 + 1

2s+
1
8s

2, s ∈ C. (4.76)

However, for the compound sum S given by (4.69), we have that {S = 0} =
{X1 = 0}, {S = 1} = {X1 = 1, X2 = 0} and {S = 2} = {X1 = 1, X2 = 1}, hence

φS(s) =
1
2 + 1

4s+
1
4s

2, s ∈ C,

which differs from (4.76), hence (4.75) does not hold in this case.

Let Q = (qν)ν∈Nd
0
with qν := P[X1 = ν] denote the distribution of X1. If

N ∼ Poisson(λ) with λ ≥ 0, then the random sum S in (4.69) has a so-called
compound Poisson distribution and we use the notation S ∼ CPoisson(λ,Q).
Since φN (s) = eλ(s−1) for all s ∈ C by (4.3), the calculation in (4.75) implies that

φS(s) = exp
(
λ(φX1(s)− 1)

)
(4.77)

for all s ∈ Cd for which the power series defining φX1(s) converges, which is the
case at least when ∥s∥∞ ≤ 1.

Similarly, if N ∼ NegBin(α, p) with α ≥ 0 and p ∈ [0, 1), then S from (4.69)
has a so-called compound negative binomial distribution and we use the notation
S ∼ CNegBin(α, p,Q). Since φN (s) = qα/(1− ps)α with q := 1− p for all s ∈ C
with p|s| < 1 by (4.65), the calculation in (4.75) implies that

φS(s) =
( q

1− pφX1(s)

)α
(4.78)

for all s ∈ Cd for which the power series defining φX1(s) is absolutely convergent
and for which p|φX1(s)| < 1, which is the case at least when ∥s∥∞ ≤ 1.

Let us look at a prominent example and its credit risk interpretation.

34 A careful study of (4.75) shows that the independence of X1 + · · ·+Xn from {N = n} for
each n ∈ N is sufficient. Therefore, modifying Example 4.39 by defining N = (X1 +X2) mod 2
makes N dependent on X1 +X2 but has no influence on the distribution of the random sum S.
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Example 4.40 (Negative binomial distribution as compound Poisson distribu-
tion). Let (Xn)n∈N denote i.i.d. random variables, where X1 ∼ Log(p) has a
univariate logarithmic distribution with parameter p ∈ (0, 1), see Example 4.4.
Recall (4.6) to see that

φX1(s) =
log(1− ps)

log(1− p)
, |s| < 1/p.

According to (4.77), the compound Poisson sum S has the generating function

φS(s) = exp

(
λ

(
log(1− ps)

log(1− p)
− 1

)
︸ ︷︷ ︸

= λ
log(1−p)

log 1−ps
1−p

)
=

( 1− p

1− ps

)α
, |s| < 1/p,

with

α := − λ

log(1− p)
≥ 0, (4.79)

which according to (4.65) is the probability-generating function of a negative
binomial distribution, hence

CPoisson(λ,Log(p)) = NegBin(α, p) . (4.80)

Remark 4.41 (Historical remark). Note that the result of Example 4.40 can
be traced back at least to H. Ammeter35 [2]. At [2, top of page 183] he makes
the Ansatz to write the characteristic function of a compound negative binomial
distribution as a characteristic function of a compound Poisson distribution. He
uses h0 and P/(h0+P ) for our parameters α and p to specify NegBin(α, p), hence
P is the expectation of the distribution, see (4.62). At the bottom of the page, he
obtains the logarithmic distribution with parameter χ

1+χ where χ = P/h0, which

is our parameter p, and also the Poisson intensity P
χ log(1 + χ), which simplifies

to −α log(1− p) in our notation and agrees with (4.79).

Remark 4.42 (Interpretation of the negative binomial distribution as a model
for dependent defaults). Motivated by the Poisson approximation discussed in
Section 3.4, we can model the number of defaults in a credit portfolio during one
period by N ∼ Poisson(λ) with λ > 0 and visualize N as the number of events of
a homogeneous Poisson process of intensity λ (see [40, Section 2.1]) during [0, 1].
To reflect the imprecise knowledge of the rate parameter λ, we can model it by a
random factor Λ ∼ Gamma(α, β) with α, β > 0 such that E[Λ] = 1 and express
the uncertainty by Var(Λ) = σ2 > 0. We assume that L(N |Λ) a.s.

= Poisson(λΛ),
which implies that E[N ] = E[E[N |Λ]] = E[λΛ] = λ. Since E[Λ] = α/β and
Var(Λ) = α/β2 by (4.55) and (4.56), this means α = β = 1/σ2. Then λΛ ∼
Gamma(α, β/λ) = Gamma(1/σ2, 1/(λσ2)), hence N ∼ NegBin

(
1/σ2, p

)
with

p
(4.60)
:=

1

1 + 1/(λσ2)
=

λσ2

1 + λσ2
(4.81)

35 Prof. Dr. h.c. Hans A. Ammeter (1912–1986), president of the Schweizerische Lebensver-
sicherungs- und Rentenanstalt (now Swiss Life) from 1973 to 1978.
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1
f(x) =

x
log(1+x)

f(x) = log(1+x)
x
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x

Figure 4.1: Illustration of the factor f(x) from (4.83) reducing the Poisson intensity in
(4.82) with increasing variance, and increasing the expectation of the number of defaults
happening together, see (4.84).

as shown in Section 4.5, and we can visualize N as the number of events of a
mixed Poisson process of random intensity λΛ during [0, 1] (see [40, Section 2.3],
it is also a special version of a Cox process).

Example 4.40 offers another interpretation of the distribution of N : We can
consider a compound Poisson process with reduced intensity

λ′
(4.79)
:= −α log(1− p)

(4.81)
= − 1

σ2
log

1

1 + λσ2
= λf(λσ2), (4.82)

where

f(x) :=
1

x
log(1 + x), x > 0, (4.83)

see Figure 4.1. At the ith event of the Poisson process, there are one or several
joint defaults given by Xi ∼ Log(p) with

E[Xi] = − p

(1− p) log(1− p)

(4.81)
=

λσ2

log(1 + λσ2)

(4.83)
=

1

f(λσ2)
, i ∈ N, (4.84)

see (4.29) with n = 1 and (4.5). By (4.80), this leads to the same distribution of
the number of defaults during [0, 1], namely N ∼ CPoisson(λ′,Log(p)).

As a corollary to the summation property of the Poisson distribution (Lemma
3.2) and the negative binomial distribution (Lemma 4.37), we get the correspond-
ing property for the compound distributions.

Corollary 4.43 (Summation property for some compound distributions). Fix
k ∈ N. Let Q,Q1, . . . , Qk denote probability distributions on Nd

0 and let S1, . . . , Sk
be independent Nd

0-valued random vectors.
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(a) Let λ1, . . . , λk ≥ 0. If Si ∼ CPoisson(λi, Qi) for every i ∈ {1, . . . , k}, then

S1 + · · ·+ Sk ∼ CPoisson(λ1 + · · ·+ λk, Q) ,

if Q satisfies36 (λ1 + · · ·+ λk)Q = λ1Q1 + · · ·+ λkQk.

(b) Let α1, . . . , αk ≥ 0 and p ∈ [0, 1). If Si ∼ CNegBin(αi, p,Q) for every
i ∈ {1, . . . , k}, then37

S1 + · · ·+ Sk ∼ CNegBin(α1 + · · ·+ αk, p,Q) .

Exercise 4.44. Prove Corollary 4.43. Hint: Use probability-generating functions,
(4.32), (4.68), (4.75), (4.77) and (4.78).

Remark 4.45. The definitions and Corollary 4.43 can be extended to probability
distributions Q,Q1, . . . , Qk on Rd. In this case the proof can be done using
characteristic functions.

Lemma 4.46 (Representation of the multivariate Poisson distribution as com-
pound Poisson distribution). Given MPoisson(G, (λg)g∈G,m) as in Definition
3.42, define the total intensity by λ =

∑
g∈G λg and let µ be a probability measure

on {0, 1}m satisfying λµ =
∑

g∈G λgδcg , where δcg denotes the Dirac measure
concentrated in cg ∈ {0, 1}m given by (3.54). Then MPoisson(G, (λg)g∈G,m) =
CPoisson(λ, µ).

Proof. The probability-generating function of the Dirac measure δcg is given
in multi-index notation by φδcg(s) = scg for all s ∈ Cm. When λ > 0, then
µ = Convex((λg/λ, δcg)g∈G), hence by (4.22) in Example 4.9,

λφµ(s) =
∑
g∈G

λgs
cg , s ∈ Cm.

Therefore, using (4.77), the probability-generating function φ of CPoisson(λ, µ)
is given by

φ(s) = exp
(
λ(φµ(s)− 1)

)
= exp

(∑
g∈G

λg(s
cg − 1)

)
, s ∈ Cm,

which agrees with the probability-generating function (4.51) of the multivariate
Poisson distribution MPoisson(G, (λg)g∈G,m).

36 If λ := λ1 + · · ·+λk > 0, then the degenerate case in excluded and Q is uniquely determined
as the convex combination Convex((λi/λ,Qi)i∈{1,...,k}) of Q1, . . . , Qk, see Example 4.9.

37 For a generalization, see Corollary 4.61 below.
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4.7 Some Compound Distributions
Arising from the Multivariate Bernoulli Distribution

The purpose of this subsection is to introduce several multivariate discrete
distributions on Nd

0 and to discuss their characteristics. Throughout this sub-
section, let (Bm)m∈N denote i.i.d. multivariate Bernoulli random vectors with
B1 ∼ Multinomial(1, p̃1, . . . , p̃d), where p̃1, . . . , p̃d ∈ [0, 1] with p̃1 + · · ·+ p̃d = 1,
see Example 4.5. Then φB1(s) =

∑d
i=1 p̃isi for all s = (s1, . . . , sd) ∈ Cd by (4.8).

Furthermore, let M be an N0-valued random variable, independent of (Bm)m∈N,
and consider the random sum

N = (N1, . . . , Nd) =

M∑
m=1

Bm. (4.85)

Remark 4.47 (Covariance of components). Suppose that Var(M) <∞. Using
the representation from (4.85), the law of total covariance (Lemma 3.50) applied
with B = σ(M), as well as (4.71), (4.72), (4.7) and (4.12),

Cov(Ni, Nj) = Cov
(
E[Ni |M ]︸ ︷︷ ︸

= p̃iM

,E[Nj |M ]︸ ︷︷ ︸
= p̃jM

)
+ E

[
Cov(Ni, Nj |M)︸ ︷︷ ︸
=−p̃ip̃jM if i̸=j

]
= p̃i p̃j

(
Var(M)− E[M ]

)
, i, j ∈ {1, . . . , d} with i ̸= j.

Hence the sign of the covariance of two different components can vary depending
on the expectation and the variance of the distribution of M . It vanishes for
M ∼ Poisson(λ) due to (3.3) and (3.4); Example 4.48 below shows that there is
even independence in this case. For M ∼ Log(p) the sign depends on the value
of p ∈ (0, 1), see Exercise 4.50(b) below.

Example 4.48. (Compound Poisson) Let M ∼ Poisson(λ) with λ ≥ 0. Then
(4.8) substituted into (4.77) implies for the random sum (4.85) that

φN (s) = exp

(
λ

( d∑
i=1

p̃isi − 1︸ ︷︷ ︸
=

∑d
i=1 p̃i(si−1)

))
=

d∏
i=1

exp
(
λp̃i(si − 1)

)
(4.86)

for all s = (s1, . . . , sd) ∈ Cd, hence the components of N are independent and
satisfy Ni ∼ Poisson(λp̃i) for every i ∈ {1, . . . , d}. This independence may
come as a surprise, because different components of the multivariate Bernoulli
distributed summands are dependent. However, this independence is a special
feature of the Poisson distribution, it is lost if, for example, the logarithmic
distribution (see Subsection 4.7.1) or the negative binomial distribution (see
Subsection 4.7.2) is considered for M .

If P[M = m] = 1 for an m ∈ N, then N ∼ Multinomial(m, p̃1, . . . , p̃d) for the
random variable in (4.85), see Example 4.19. More generally, given (n1, . . . , nd) ∈
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Nd
0, define m = n1 + · · ·+ nd ∈ N0. Then N = (n1, . . . , nd) is only possible when

M = m, hence by independence

P[N = (n1, . . . , nd)] = P[M = m]P[B1 + · · ·+Bm = (n1, . . . , nd)|M = m]

= P[M = m]P[B1 + · · ·+Bm = (n1, . . . , nd)] .

Since B1 + · · ·+Bm ∼ Multinomial(m, p̃1, . . . , p̃d), it follows from (4.35) that

P[N = (n1, . . . , nd)] = P[M = m] ·m!
d∏

i=1

p̃ni
i

ni!
(4.87)

In the next subsections, we will look at three additional interesting examples
for the distribution of M , namely the logarithmic distribution, the negative
binomial distribution and the binomial distribution. Of course, additional choices
are possible, like the extended negative binomial distribution (see Example 5.26),
the extended logarithmic distribution (see Example 5.27) and truncations of these
distribution (see Definition 5.11).

4.7.1 Multivariate Logarithmic Distribution

Consider M ∼ Log(p) with p ∈ (0, 1), see Example 4.4. It follows from (4.4) and
(4.87) that, for every (n1, . . . , nd) ∈ Nd

0 \ {(0, . . . , 0)},

P[N = (n1, . . . , nd)] =
pm−1

c(p)m
·m!

d∏
i=1

p̃ni
i

ni!
=

(m− 1)!

c(p)p

d∏
i=1

pni
i

ni!
,

with m := n1 + · · · + nd and pi := pp̃i for i ∈ {1, . . . , d}. This motivates the
following definition:

Definition 4.49 (Multivariate logarithmic distribution). A random vector N =
(N1, . . . , Nd) of dimension d ∈ N is said to have the multivariate logarithmic
distribution MLog(p1, . . . , pd) with parameters p1, . . . , pd ∈ [0, 1) satisfying 0 <
p := p1 + · · ·+ pd < 1, if

P[N = (n1, . . . , nd)] =
(n1 + · · ·+ nd − 1)!

c(p)p

d∏
i=1

pni
i

ni!
(4.88)

for all (n1, . . . , nd) ∈ Nd
0 \ {(0, . . . , 0)} with normalising factor, see (4.5),

c(p) := − log(1− p)

p
.

For d = 1, Definition 4.49 reduces to the univariate logarithmic distribution
given in Example 4.4, which is well defined also for p = 0.

With

φM (s) =
log(1− ps)

log(1− p)
, |s| < 1/p,
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given by (4.6) and φB1(s) =
∑d

i=1 p̃isi for s = (s1, . . . , sd) ∈ Cd given by (4.8), it
follows from (4.75) for the probability-generating function of N that

φN (s) =
log

(
1−

∑d
i=1 pisi

)
log(1− p)

(4.89)

for all s = (s1, . . . , sd) ∈ Cd with
∣∣∑d

i=1 pisi
∣∣ < 1, which is certainly the case if

∥s∥∞ < 1/p.

Exercise 4.50 (Properties of the multivariate logarithmic distribution). Assume
that N = (N1, . . . , Nd)

T ∼ MLog(p1, . . . , pd) with p1, . . . , pd ∈ [0, 1) satisfying
0 < p := p1 + · · ·+ pd < 1, see Definition 4.49. Show:

(a) Factorial moments: For every (n1, . . . , nd) ∈ Nd
0 \ {0},

E
[ d∏
i=1

ni−1∏
li=0

(Ni − li)

]
= −(n1 + · · ·+ nd − 1)!

log(1− p)

d∏
i=1

( pi
1− p

)ni

,

which generalizes (4.29), hence for the components,

ei := E[Ni] = − pi
(1− p) log(1− p)

, i ∈ {1, . . . , d}.

(b) Covariance matrix: With expectation vector e := (e1, . . . , ed)
T,

Cov(N) = diag(e)− (1 + log(1− p))eeT,

which generalizes (4.30). When p1, . . . , pd > 0, conclude for all i, j ∈
{1, . . . , d} with i ̸= j that Cov(Ni, Nj) ≥ 0 and Var(Ni) ≥ E[Ni] for all
p ≥ 1− 1

e ≈ 0.6321 and reversed inequalities otherwise.

(c) Permutation property: For every permutation σ of {1, . . . , d},

(Nσ(1), . . . , Nσ(d)) ∼ MLog(pσ(1), . . . , pσ(d)).

(d) Aggregation property: For every i ∈ {1, . . . , d− 1},

(N1, . . . , Ni, Ni+1 + · · ·+Nd) ∼ MLog(p1, . . . , pi, pi+1 + · · ·+ pd).

(e) N1 + · · ·+Nd ∼ Log(p).

Remark 4.51. Parts (a) and (b) of Exercise 4.50 can be solved using probability-
generating functions, see (4.23), (4.24), (4.26), (4.27), (4.28) and (4.89), or they
can be solved using the representation (4.85) together with the law of total
covariance (Lemma 3.50) and results for the multinomial distribution and the
univariate logarithmic distribution, see Exercises 4.20 and 4.13, respectively.
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4.7.2 Negative Multinomial Distribution

Let M ∼ NegBin(α, p) with α > 0 and p ∈ [0, 1), see (4.61). It follows from
(4.61) and (4.87) that, for every (n1, . . . , nd) ∈ Nd

0,

P[N = (n1, . . . , nd)] =
Γ(α+m)

m! Γ(α)
pmqα ·m!

d∏
i=1

p̃ni
i

ni!
=

Γ(α+m)

Γ(α)
qα

d∏
i=1

pni
i

ni!
,

with m := n1+ · · ·+nd and q := 1− p as well as pi := pp̃i for i ∈ {1, . . . , d}. This
motivates the following definition:

Definition 4.52 (Negative multinomial distribution). A random vector N = (N1,
. . . , Nd) of dimension d ∈ N is said to have the negative multinomial distribution
NegMult(α, p1, . . . , pd) with shape parameter α > 0 and success probabilities
p1, . . . , pd ∈ [0, 1) satisfying q := 1− (p1 + · · ·+ pd) ∈ (0, 1], if

P[N = (n1, . . . , nd)] =
Γ(α+ n1 + · · ·+ nd)

Γ(α)
qα

d∏
i=1

pni
i

ni!
(4.90)

for all (n1, . . . , nd) ∈ Nd
0. We interpret NegMult(0, p1, . . . , pd) as the degenerate

distribution concentrated in (0, . . . , 0) ∈ Nd
0.

For d = 1, Definition 4.52 reduces to the negative binomial distribution given
by (4.61).

For α ∈ N the negative multinomial distribution has a combinatorial inter-
pretation: Consider the d components as mutually different types of successes,
which occur with probabilities p1, . . . , pd, and let q denote the probability of
failure. Using the functional equation (2.31) of the gamma function, (4.90) can
be rewritten with a multinomial coefficient, see (4.36), as

P[N = (n1, . . . , nd)] =

(
α− 1 + n1 + · · ·+ nd

n1, . . . , nd

)
qα

d∏
i=1

pni
i (4.91)

for (n1, . . . , nd) ∈ Nd
0, and the product in (4.91) could be written using multi-

index notation. In a sequence of independent trials, (4.91) gives the probability
of n1, . . . , nd ∈ N0 successes of types 1, . . . , d before the αth failure happens.

With
φM (s) =

( q

1− ps

)α
, s ∈ C with p|s| < 1,

given by (4.64) and φB1(s) =
∑d

i=1 p̃isi for s = (s1, . . . , sd) ∈ Cd given by (4.8),
it follows from (4.75) for the probability-generating function of N that

φN (s) =

(
q

1−
∑d

i=1 pisi

)α

(4.92)

for all s = (s1, . . . , sd) ∈ Cd with
∣∣∑d

i=1 pisi
∣∣ < 1, which is certainly the case if

(p1 + · · ·+ pd)∥s∥∞ < 1. Note that the calculation leading to (4.92) is correct for
p1 = · · · = pd = 0, and the result (4.92) is also correct for α = 0.
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Here is the multi-dimensional generalization of Lemma 4.37, which also implies
that the negative multinomial distribution is infinitely divisible:

Lemma 4.53 (Summation property of the negative multinomial distribution). Let
k ∈ N, α1, . . . , αk ≥ 0 and p1, . . . , pd ∈ [0, 1) with p1+· · ·+pd < 1. If N1, . . . , Nk

are independent with Ni ∼ NegMult(αi, p1, . . . , pd) for every i ∈ {1, . . . , k}, then

N :=
k∑

i=1

Ni ∼ NegMult(α1 + · · ·+ αk, p1, . . . , pd). (4.93)

Exercise 4.54. Prove Lemma 4.53.

Exercise 4.55 (Properties of the negative multinomial distribution). Assume that
N = (N1, . . . , Nd) ∼ NegMult(α, p1, . . . , pd) with α ≥ 0 and p1, . . . , pd ∈ [0, 1)
satisfying q := 1− (p1 + · · ·+ pd) ∈ (0, 1], see Definition 4.52. Show:

(a) Factorial moments and variances: For every (n1, . . . , nd) ∈ Nd
0,

E
[ d∏
i=1

ni−1∏
li=0

(Ni − li)

]
=

( n1+···+nd−1∏
l=0

(α+ l)

) d∏
i=1

(pi
q

)ni

,

and for every component i ∈ {1, . . . , d},

Var(Ni) =
αpi(pi + q)

q2
.

In the case d = 1, these results coincide with (4.67) and (4.63), respectively.

(b) Covariances: For every i, j ∈ {1, . . . , d} with i ̸= j,

Cov(Ni, Nj) = α
pipj
q2

.

(c) Permutation property: For every permutation σ of {1, . . . , d},

(Nσ(1), . . . , Nσ(d)) ∼ NegMult(α, pσ(1), . . . , pσ(d)).

(d) Aggregation property: For every i ∈ {1, . . . , d− 1},

(N1, . . . , Ni, Ni+1 + · · ·+Nd) ∼ NegMult(α, p1, . . . , pi, pi+1 + · · ·+ pd).

(e) N1 + · · ·+Nd ∼ NegBin(α, p1 + · · ·+ pd).

(f) Marginal distributions: For every i ∈ {1, . . . , d},

(N1, . . . , Ni) ∼ NegMult
(
α,

p1
1− pi+1 − · · · − pd

, . . . ,
pi

1− pi+1 − · · · − pd

)
,

in particular Ni ∼ NegBin
(
α, pi

pi+q

)
.
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4.7.3 Multivariate Binomial Distribution

Let M ∼ Bin(m, p) with m ∈ N0 and p ∈ [0, 1]. It follows from (2.9) and (4.87)
that, for every (n1, . . . , nd) ∈ Nd

0 with l := n1 + · · ·+ nd ≤ m,

P[N = (n1, . . . , nd)] =

(
m

l

)
pl(1− p)m−l · l!

d∏
i=1

p̃ni
i

ni!

=
m!

(m− l)!
(1− p)m−l

d∏
i=1

pni
i

ni!

(4.94)

with pi := pp̃i for i ∈ {1, . . . , d}. This can be called multivariate binomial
distribution MBin(m, p1, . . . , pd) with m ∈ N0 independent trials and success
probabilities p1, . . . , pd ∈ [0, 1] satisfying p1 + · · · + pd ≤ 1. For d = 1, this
coincides with the binomial distribution, compare (2.9) with (4.94). If p = 1,
hence p1 + · · ·+ pd = 1, then MBin(m, p1, . . . , pd) = Multinomial(m, p1, . . . , pd).

With φM (s) = (1 + p(s− 1))m for s ∈ C as in (4.33) and φB1(s) =
∑d

i=1 p̃isi
for s = (s1, . . . , sd) ∈ Cd given by (4.8), it follows from (4.75) for the probability-
generating function of N that

φN (s) =

(
1 +

d∑
i=1

pi(si − 1)

)m

, s = (s1, . . . , sd) ∈ Cd, (4.95)

which is a generalization of (4.34).

Remark 4.56 (Relation to multinomial distribution). While the multivariate
binomial distribution generalizes the multinomial distribution (see Example
4.19), it is not a new distribution but already contained in the multinomial
distribution of higher dimension by looking at marginals: More precisely, if
(N1, . . . , Nd) ∼ MBin(m, p1, . . . , pd) with m ∈ N0 and p1, . . . , pd ∈ [0, 1] satisfying
p1 + · · ·+ pd ≤ 1, then it follows from (4.35) and (4.94) that(

N1, . . . , Nd,m− (N1 + · · ·+Nd)
)

∼ Multinomial
(
m, p1, . . . , pd, 1− (p1 + · · ·+ pd)

)
. (4.96)

The other way round, if (N1, . . . , Nd) ∼ Multinomial(m, p1, . . . , pd) with m ∈ N0

and p1, . . . , pd ∈ [0, 1] satisfying p1 + · · ·+ pd = 1, then, using the aggregation
property of the multinomial distribution from Exercise 4.20(c) and (4.96),

(N1, . . . , Ni) ∼ MBin(m, p1, . . . , pi) (4.97)

for every i ∈ {1, . . . , d}. Of course, (4.96) and (4.97) can also be proved by
applying (4.18) to the probability generating functions (4.34) and (4.92).

Due to Remark 4.56, the multivariate binomial distribution inherits many
properties of the multinomial distribution given in Exercise 4.20.
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Exercise 4.57 (Properties of the multivariate binomial distribution). Let N =
(N1, . . . , Nd) ∼ MBin(m, p1, . . . , pd) with parameters m ∈ N0 and p1, . . . , pd ∈
[0, 1] satisfying p1 + · · ·+ pd ≤ 1. Show the following:

(a) N1 + · · ·+Nd ∼ Bin(m, p1 + · · ·+ pd).

(b) Aggregation property: For every i ∈ {1, . . . , d− 1},

(N1, . . . , Ni, Ni+1 + · · ·+Nd) ∼ MBin(m, p1, . . . , pi, pi+1 + · · ·+ pd).

(c) Marginal distributions: For every i ∈ {1, . . . , d},

(N1, . . . , Ni) ∼ MBin(m, p1, . . . , pi).

(d) Permutation property: For every permutation σ of {1, . . . , d},

(Nσ(1), . . . , Nσ(d)) ∼ MBin(m, pσ(1), . . . , pσ(d)).

(e) Expectations and variances: E[Ni] = mpi and Var(Ni) = mpi(1 − pi) for
every i ∈ {1, . . . , d}.

(f) Covariances: Cov(Ni, Nj) = −mpipj for all i, j ∈ {1, . . . , d} with i ̸= j.

Lemma 4.58 (Summation property of the multivariate binomial distribution).
Let k ∈ N, m1, . . . ,mk ∈ N0 and p1, . . . , pd ∈ [0, 1] with p1 + · · · + pd ≤ 1. If
N1, . . . , Nk are independent with Ni ∼ MBin(mi, p1, . . . , pd) for every i ∈ {1, . . . ,
k}, then

N :=

k∑
i=1

Ni ∼ MBin(m1 + · · ·+mk, p1, . . . , pd). (4.98)

Exercise 4.59. Prove Lemma 4.58 (using (4.92) or Lemma 4.21 and (4.96)).

4.8 Conditional Compound Distributions

In the next step we look at the case, where N is conditionally Poisson-distributed,
namely L(N |Λ) a.s.

= Poisson(Λ) for a non-negative random variable Λ. To compute
the generating function of the random sum S given in (4.69), conditioned on Λ,
first note that

φN |Λ(s) := E
[
sN

∣∣Λ] a.s.
= exp(Λ(s− 1)), s ∈ C, (4.99)

by (4.3). Assume that the i.i.d. sequence (Xn)n∈N is not only independent of
N , but even independent of (Λ, N). Then, for every n ∈ N0, using multi-index
notation and the multiplication theorem for probability-generating functions,

1{N=n} E
[
sX1+···+XN

∣∣Λ, N] a.s.
= 1{N=n} E

[
sX1+···+Xn

∣∣Λ, N]
a.s.
= 1{N=n} E

[
sX1+···+Xn

]
= 1{N=n}

(
φX1(s)

)n
,
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hence by summation over n ∈ N0,

E
[
sX1+···+XN

∣∣Λ, N] a.s.
=

(
φX1(s)

)N
(4.100)

for all s ∈ Cd for which the power series defining φX1(s) converges,
38 which is

the case at least for all s ∈ Cd with ∥s∥∞ ≤ 1. Hence for these s ∈ Cd, by using
the tower property of conditional expectation,

φS|Λ(s) := E
[
sX1+···+XN

∣∣Λ]
a.s.
= E

[
E
[
sX1+···+XN |Λ, N

]∣∣Λ]
a.s.
= E

[(
φX1(s)

)N ∣∣Λ] by (4.100)
a.s.
= φN |Λ(φX1(s))
a.s.
= exp

(
Λ(φX1(s)− 1)

)
by (4.99),

and therefore

φS(s) = E[φS|Λ(s)] = E
[
exp

(
Λ(φX1(s)− 1)

)]
(4.101)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1, which generalizes (4.77).
If Λ ∼ Gamma(α, β) with α, β > 0, then N ∼ NegBin(α, p) with p = 1

1+β by
(4.60) and (4.61), hence S ∼ CNegBin(α, p,Q), where Q denotes the distribution
of Nd

0-valued X1, and the probability-generating function of S is given by (4.78).
Evaluating the right-hand side of (4.101) using the exponential moment of Λ
given by (4.57) and β = 1−p

p leads to

φS(s) =

(
1− φX1(s)− 1

β

)−α

=

(
1− p

1− pφX1(s)

)α

(4.102)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1, which agrees with (4.78).

Exercise 4.60 (Generalization of (4.80) to compound distributions). Let the
array (Xm,n)m,n∈N consist of Nd

0-valued i.i.d. random vectors and define Q =

L(X1,1). Given α, β, λ > 0, let Λ ∼ Gamma(α, β) and L(N |Λ) a.s.
= Poisson(λΛ).

Assume that (Xm,n)m,n∈N and (Λ, N) are independent. Define p = λ/(β + λ) ∈
(0, 1) and µ = −α log(1 − p) > 0. Let (Nm)m∈N be an i.i.d. sequence with
N1 ∼ Log(p) and let M ∼ Poisson(µ). Assume that M , the sequence (Nm)m∈N
and the double-indexed sequence (Xm,n)m,n∈N are independent.

(a) Show that N ∼ NegBin(α, p).

(b) Show by calculating the probability-generating functions of

S :=

N∑
n=1

X1,n and S′ :=

M∑
m=1

Nm∑
n=1

Xm,n,

38 For these s the random variable sX1+···+XN is σ-integrable, and the corresponding general-
ization of conditional expectations should be used.
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that they have the same distribution, which is then a compound negative
binomial as well as a compound Poisson distribution, cf. (4.80), i.e.

CNegBin(α, p,Q) = CPoisson(µ,CLog(p,Q)) . (4.103)

(c) Assume that E[Λ] = 1 and Var(Λ) = σ2 > 0. Show that α = β = 1/σ2 and
conclude that

p =
λσ2

1 + λσ2

and

µ = − 1

σ2
log

(
1− λσ2

1 + λσ2

)
=

λ

1 + λσ2

(
1 +

∞∑
n=2

1

n

( λσ2

1 + λσ2

)n−1
)
,

where the right-hand side is numerically stable for small σ2. Show that
p↘ 0 and µ→ λ as σ2 ↘ 0 and, using Definition 4.4, that the right-hand
side of (4.103) equals CPoisson(λ,Q) for the limiting values.

Corollary 4.61 (General summation property for compound negative binomial
distributions, generalization of Corollary 4.43(b)). With k ∈ N, consider for
each i ∈ {1, . . . , k} a parameter αi > 0, a probability pi ∈ (0, 1), a probability
distribution Qi on Nd

0, and a random vector Si ∼ CNegBin(αi, pi, Qi). Define
µi = −αi log(1−pi) for every i ∈ {1, . . . , k} and µ = µ1+ · · ·+µk. If S1, . . . , Sk
are independent, then

S1 + · · ·+ Sk ∼ CPoisson(µ,Q) .

where
Q := Convex((µi/µ,CLog(pi, Qi))i∈{1,...,k}).

Exercise 4.62. Prove Corollary 4.61. Hint: Combine (4.103) and Corollary
4.43(a).

4.8.1 Expectation, Variance and Covariance

Assume that N is N0-valued and that (Xn)n∈N is a sequence of Nd
0-valued,

independent, identically distributed random vectors Xn = (Xn,1, . . . , Xn,d), which
is independent of N . We want to calculate the expectations, variances and
covariances of the components (S1, . . . , Sd) of the random sum S := X1+ · · ·+XN

considered in (4.69).
We now specialize to the case where N is conditionally Poisson-distributed,

namely L(N |Λ) a.s.
= Poisson(Λ) for a non-negative random variable Λ. Then the

random sum S is conditionally compound Poisson given Λ, hence, if E[∥X1∥] <∞,
then (4.71) is turned into

E[S |Λ, N ]
a.s.
= N E[X1] ,
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and taking conditional expectations using the tower property replaces (4.73) by

E[S |Λ] a.s.= E[N |Λ]︸ ︷︷ ︸
a.s.
= Λ by (3.3)

E[X1]
a.s.
= ΛE[X1] (4.104)

and, if E
[
∥X1∥2

]
<∞, then (4.72) is turned into

Cov(S |Λ, N)
a.s.
= N Cov(X1) ,

and (4.74) turns into

Cov(S |Λ) a.s.
= E[N |Λ]︸ ︷︷ ︸

a.s.
= Λ by (3.3)

Cov(X1) + Var(N |Λ)︸ ︷︷ ︸
a.s.
= Λ by (3.4)

E[X1]E[X1]
T

a.s.
= ΛE

[
X1X

T
1

]
.

(4.105)

If N is unconditionally Poisson distributed, i.e., L(N) = Poisson(λ), then
(4.73) and (4.74) simplify to

E[S] = λE[X1] (4.106)
and

Cov(S) = λE
[
X1X

T
1

]
. (4.107)

5 Recursive Algorithms and Weighted Convolutions

For j, n ∈ Nd
0 we write j ≤ n if this is true for all d components, and we write

j < n if j ≤ n and j ≠ n, meaning that there is strict inequality for at least one
component. Note that ≤ is then a partial order on Nd

0. We write ⟨·, ·⟩ for the
standard inner product in Rd.

5.1 Convolutions

Remark 5.1 (Convolution). Let X and Y be two independent Nd
0-valued random

vectors, let P = (pn)n∈Nd
0
and Q = (qn)n∈Nd

0
denote their distributions, and φX

as well as φY their probability-generating functions given via (4.1), respectively.
Then P ∗ Q := L(X + Y ) denotes the distribution of their sum and can be
computed in a numerically stable way by

P[X + Y = n] =
∑
j∈Nd

0

P[X = n− j, Y = j]︸ ︷︷ ︸
=P[X=n−j]P[Y=j]

by independence

=
∑
j∈Nd

0
j≤n

pn−jqj , n ∈ Nd
0, (5.1)

where j ≤ n is understood componentwise. Comparison with (4.1) shows that
(5.1) is a way to calculate the coefficients of the power series φX+Y .
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Recall that φX+Y (s) = φX(s)φY (s) at least for all s ∈ Cd with ∥s∥∞ ≤ 1 by
Theorem 4.16, hence an application of the general Leibniz rule for every one of
the d dimensions gives in multi-index notation

φ
(n)
X+Y (s) =

∑
j∈Nd

0
j≤n

φ
(n−j)
X (s)φ

(j)
Y (s)

d∏
i=1

(
ni
ji

)
, n = (n1, . . . , nd) ∈ Nd

0,

which via (4.16) also leads to (5.1).
If X and Y have the same distribution Q, then by commutativity of multipli-

cation, the number of terms on the right-hand side of (5.1) can be cut in half
(only approximately if the scaled vector 1

2n is in Nd
0) and we can replace (5.1) by

P[X + Y = n] = 1Nd
0
(n/2)q2n/2 + 2

∑
j∈Nd

0, j≤n
j<tn−j

qn−jqj , n ∈ Nd
0, (5.2)

where j ≤ n is understood componentwise and <t denotes a total order of Nd
0,

for example the lexicographic order.
The binary operation ∗ for distributions is called convolution. Since addition

of Nd
0-valued random vectors is commutative and associative, the same is true

for the convolution operation. Note that the Dirac measure δ0 concentrated in
the origin of Nd

0 is the neutral element w.r.t. convolution. Given Nd
0-valued i.i.d.

random vectors X1, . . . , Xk with distribution Q, the distribution of their sum
Sk := X1 + · · ·+Xk is denoted by the convolution power Q∗k for each k ∈ N0.
Note that Q∗1 = Q and Q∗0 = δ0 (by the convention for the empty sum).

Algorithm 5.2 (Calculation of convolution powers). Fix k ∈ N with k ≥ 2 and
Nd
0-valued i.i.d. random vectors X1, . . . , Xk with distribution Q. The convolution

power Q∗k := L(Sk) for Sk := X1 + · · ·+Xk can be calculated in two ways:

(a) The recursive and numerically stable calculation of

Q∗(i+1) = Q∗i ∗Q, i ∈ {1, . . . , k − 1}, (5.3)

via (5.2) if i = 1 and (5.1) otherwise, requiring k − 1 convolutions.

(b) Starting with k ≥ 4, there is a method to calculate Q∗k with a fewer
number of convolutions, similar to the exponentiation by squaring or the
Russian peasant multiplication. Define l = ⌊log2 k⌋ and represent k in the
binary form k =

∑l
i=0 bi2

i with bl = 1 and b0, . . . , bl−1 ∈ {0, 1}. Calculate
iteratively via (5.2) the convolution powers

Q∗2i+1
= Q∗2i ∗Q∗2i , i ∈ {0, . . . , l − 1}, (5.4)

which requires l convolutions. If k = 2l, then we are done, otherwise Q∗k is
obtained by using (5.1) to calculate the convolution

Q∗k = Q2lbl ∗ · · · ∗Q∗22b2 ∗Q∗21b1 ∗Q∗20b0 , (5.5)
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where Q∗2ibi = Q∗0 = δ0 is the convolution-neutral element when bi = 0 for
i ∈ {0, . . . , l − 1}. This requires b0 + · · ·+ bl−1 additional convolutions, so
there are l + b0 + · · ·+ bl−1 ≤ 2l altogether. This algorithm is numerically
slightly more precise than the k−1 recursive convolutions for (5.3), because
a smaller number of operations for the calculation of Q∗k and, therefore,
a smaller number of rounding errors to machine precision are needed.
Furthermore, it can be substantially faster for large k (see however Example
5.3 below), and work on (5.5) can start in parallel as soon as the first results
needed from (5.4) are available.

Example 5.3 (Comparison of the two algorithms for computing Q∗k). Due to
an effect discussed also in Remark 5.19 below, the speed-up by Algorithm 5.2(b)
compared to version (a) might not be as large as the logarithmically smaller
number of convolutions suggests. On the contrary, the seemingly faster algorithm
can be much slower when counting the total number of multiplications yielding a
non-zero product!

In general, it doesn’t seem to be easy to predict and count the total number
of non-zero terms appearing on the right-hand side of (5.1) or (5.2), respectively,
when calculating the convolutions in (5.3), (5.4) and (5.5). Therefore, we will
focus on a special case, for which some notation is helpful. Fix d ∈ N. Define the
standard discrete d-dimensional simplex in Nd

0 of size ν ∈ N0 by

∆d,ν = {n ∈ Nd
0 | ∥n∥1 ≤ ν} (5.6)

Note that each n = (n1, . . . , nd) ∈ ∆d,ν is via ñ := (n1, . . . , nd, ν− (n1+ · · ·+nd))
in a one-to-one correspondence to an element of {ñ ∈ Nd+1

0 | ∥ñ∥1 = ν}, hence39

|∆d,ν | =
(
d+ ν

d

)
, ν ∈ N0. (5.7)

To illustrate the above claim concerning Algorithms 5.2(a) and (b), fix k, ν ∈ N
with k ≥ 2 and suppose that X1 takes only values in ∆d,ν , each one with strictly
positive probability. Then P[Si = n] > 0 if and only if n ∈ ∆d,iν for each
i ∈ {1, . . . , k}. Hence when calculating the distribution Q∗(i+1) given by (5.3)
for i ∈ {1, . . . , k − 1}, i.e. P[Si+1 = n] for all n ∈ ∆d,(i+1)ν , then there are in
total exactly |∆d,iν | · |∆d,ν | pairs appearing on the right-hand side of (5.1) giving
a non-zero product. In the case i = 1, (5.2) reduces the number of non-zero
products to 1

2 |∆d,ν |(|∆d,ν | + 1). Hence when calculating Q∗k using Algorithm
5.2(a), there are in total exactly

Na(d, k, ν) := |∆d,ν |
(
|∆d,ν |+ 1

2
+

k−1∑
i=2

|∆d,iν |
)

(5.8)

non-zero summands (and products).

39 Line up d+ ν equal objects and choose d of them to mark the boundaries between d+ 1
boxes containing the other ν objects. The number of choices is given by the binomial coefficient.
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|∆d,ν | k = 3 k = 7 k = 15 k = 31 k = 63

Na(1, k, 2) 3 21 141 669 2 877 11 901
Nb(1, k, 2) 3 21 99 399 1 575 6 231
Nr(1, k, 2) 3 12 28 60 124 252

Na(2, k, 1) 3 24 246 2 034 16 362 131 034
Nb(2, k, 1) 3 24 195 1 935 23 778 331 767
Nr(2, k, 1) 3 13 57 241 993 4 033

Na(3, k, 1) 4 50 830 12 230 185 494 2 882 870
Nb(3, k, 1) 4 50 805 21 235 825 634 40 460 879
Nr(3, k, 1) 4 31 253 2 041 16 369 131 041
upper est. ≤ 58 ≤ 358 ≤ 2 446 ≤ 17 950 ≤ 137 278

Na(3, k, 2) 10 405 10 305 191 545 3 278 505 54 183 305
Nb(3, k, 2) 10 405 14 895 687 510 36 866 995 2 150 779 180
Nr(3, k, 2) 10 ≤ 748 ≤ 6 112 ≤ 49 096 ≤ 393 112 ≤ 3 145 528

Table 5.1: Comparison of the total number of non-zero terms to be calculated for the
right-hand side of (5.1) or (5.2), respectively, when calculating the convolution power
Q∗k, provided the support of Q agrees with the discrete d-dimensional simplex ∆d,ν

of size ν in Nd
0 given by (5.6). We concentrate on k = 2l+1 − 1 for l ∈ {1, . . . , 5}

such that b0 = · · · = bl = 1 in the binary representation of k, and compare Na(d, k, ν)
given by (5.8) with Nb(d, k, ν) given by (5.9) corresponding to Algorithm 5.2(a) and
(b), respectively. For comparison, also the number Nr(d, k, ν) of terms (or the upper
estimate from (5.16), or both) required by the recursive algorithm from Theorem 5.6 are
given, see Remark 5.7(c). The size |∆d,ν | of the support of Q is determined via (5.7).

In Algorithm 5.2(b), by the same reasoning and referring to (5.2), there are
1
2

∑l−1
i=0 |∆d,2iν |(|∆d,2iν |+ 1) non-zero summands (and products) in total to cal-

culate the l convolution powers in (5.4). Let imin := min{i ∈ {0, . . . , l} | bi = 1}
indicate the first non-trivial convolution factor in (5.5). Then there are in
total |∆d,2iν | · |∆d,(20b0+···+2i−1bi−1)ν | non-zero terms (and products) for each
i ∈ {1, . . . , l} satisfying i > imin and bi = 1 when calculating the convolution of
Q∗2i with Q2i−1bi−1 ∗ · · · ∗Q∗20b0 in (5.5). In total we get

Nb(d, k, ν) :=
1

2

l−1∑
i=0

|∆d,2iν |
(
|∆d,2iν |+1

)
+

l∑
i=imin+1

bi=1

|∆d,2iν | · |∆d,(2i−1bi−1+···+20b0)ν |

(5.9)
terms. Depending on the choice of the dimension d ∈ N, the size parameter
ν ∈ N for the support of Q, and the power k ∈ N for Q∗k, the resulting num-
ber Nb(d, k, ν) in (5.9) can be smaller or, particularly in higher dimensions,
substantially larger than Na(d, k, ν) in (5.8), see Table 5.1.

Exercise 5.4 (Revisit of the basic Bernoulli model). Consider independent
Bernoulli random variables N1, . . . , Nm, allowing for pairwise different success
probabilities p1, . . . , pm ∈ [0, 1]. Show that the distribution of N := N1+· · ·+Nm,
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see (2.2), can be calculated using convolutions by (m+ 1)m− 2 multiplications
of probabilities and compare this result with the approach via (2.8).

Hint: Study Algorithm 5.2(a) and Example 5.3.

Instead of using iterated convolutions as explained in Algorithm 5.2, it is
possible to use a direct recursion based on the following observation (which is
well known for powers of formal power series, cf. [57], and goes back at least to
Euler [18, Chapter 4, Section 76], see also Remark 5.28 below).

Lemma 5.5 (Relation for convolution powers). Let (Xi)i∈N be a sequence of
Nd
0-valued, independent, identically distributed random vectors. For k ∈ N0 define

Sk =
∑k

i=1Xi, where the empty sum is the zero vector in Nd
0. Then, for every

k ∈ N0 and n ∈ Nd
0,∑

j∈Nd
0

j≤n

(
(k + 1)j − n

)
P[Sk = n− j]P[X1 = j] = 0. (5.10)

Proof. For k = 0 we have that S0 ≡ 0 ∈ Nd
0, hence P[Sk = n− j] = 0 unless

n = j. In this case (k + 1)j − n = 0, hence (5.10) holds for all n ∈ Nd
0.

Now fix k ∈ N and n ∈ Nd
0. First note that Sk+1 = Sk +Xk+1, where Sk and

Xk+1 are independent. We can rewrite the convolution formula (5.1) in the form

nP[Sk+1 = n] = n
∑
j∈Nd

0
j≤n

P[Sk = n− j]P[Xk+1 = j]︸ ︷︷ ︸
=P[X1=j]

. (5.11)

Furthermore,

nP[Sk+1 = n] = E
[
Sk+11{Sk+1=n}

]
=

k+1∑
i=1

E
[
Xi1{Sk+1=n}

]
.

Note that all terms in this sum are equal. Hence, by writing down the expectation,

nP[Sk+1 = n] = (k + 1)E
[
Xk+11{Sk+1=n}

]
= (k + 1)

∑
j∈Nd

0
j≤n

j P[Sk = n− j, Xk+1 = j]︸ ︷︷ ︸
=P[Sk=n−j]P[X1=j]

. (5.12)

Subtracting (5.11) from (5.12) yields (5.10).

Theorem 5.6 (Recursion for convolution powers).

(a) There exists a vector c ∈ [0,∞)d \ {0} such that there is a unique m ∈ Nd
0

with P[X1 = m] > 0 satisfying ⟨c,m⟩ < ⟨c, j⟩ for all j ∈ Nd
0 \ {m} with

P[X1 = j] > 0.
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(b) For c and m satisfying (a), and for every natural number k ≥ 2, the
distribution of Sk = X1 + · · ·+Xk can be calculated by

P[Sk = n] =

{
0 if n ∈ Nd

0 \ {km} with ⟨c, n⟩ ≤ k⟨c,m⟩,(
P[X1 = m]

)k
if n = km,

(5.13)
and, for every n ∈ Nd

0 with ⟨c, n⟩ > k⟨c,m⟩, via the recursion

P[Sk = n] =
1

⟨c, n− km⟩P[X1 = m]

×
∑

j∈Nm,n

⟨c, (k + 1)j −m− n⟩P[Sk = m+ n− j]P[X1 = j]

(5.14)

with summation over

Nm,n :=
{
j ∈ Nd

0

∣∣ P[X1 = j] > 0 and j ≤ m+ n

and ⟨c,m⟩ < ⟨c, j⟩ ≤ ⟨c, n− (k − 1)m⟩
}
.

(5.15)

Proof. (a) A vector c with integer components is useful to avoid rounding errors
in the computation of the inner product ⟨c, (k + 1)j − m − n⟩ appearing in
the recursion formula (5.14). Naturally, small components of c are preferred.
Note that ∥X1∥1 takes values in N0, hence there is a smallest m̃ ∈ N0 with
P[∥X1∥1 = m̃] > 0. Consider the first of the following cases that applies:

If there is just a single m ∈ Nd
0 with ∥m∥1 = m̃ and P[X1 = m] > 0 (which is

certainly the case when d = 1 or m̃ = 0), then m and c := (1, . . . , 1) ∈ Nd have
the properties required in (a).

If there exists an i ∈ {1, . . . , d} such that m = (0, . . . , 0, m̃, 0, . . . , 0) with m̃
at position i satisfies P[X1 = m] > 0 (which is necessarily the case when m̃ = 1),
then take c = (2, . . . , 2, 1, 2, . . . , 2) with the 1 at position i. Then ⟨c,m⟩ = m̃
while ⟨c, j⟩ ≥ m̃+ 1 for all j ∈ Nd

0 \ {m} satisfying ∥j∥1 ≥ m̃.
For the general case, consider

M :=
{
m ∈ Nd

0

∣∣ ∥m∥1 = m̃ and P[X1 = m] > 0
}

and let

M0 :=
{
(md:d,md−1:d, . . . ,m1:d)

∣∣ (m1, . . . ,md) ∈M,

m1:d ≤ m2:d ≤ · · · ≤ md:d

}
be the set of tuples arising from M such that their components are ordered is a
decreasing way. To optimize componentwise, iteratively for each i ∈ {1, . . . , d},
let

Mi :=
{
(m1, . . . ,md) ∈Mi−1

∣∣ mi = max{ni | (n1, . . . , nd) ∈Mi−1}
}
.

Then Md contains a single element. Now fix an m = (m1, . . . ,md) ∈ M such
that there exists a permutation π of {1, . . . , d} satisfying (mπ(1), . . . ,mπ(d)) ∈Md.

86



Define c = (c1, . . . , cd) ∈ Nd by cπ(i) = c̃ + i for all i ∈ {1, . . . , d}, where

c̃ :=
∑d

i=1(i− 1)mπ(i).

To verify that (a) holds for m and c, first consider j = (j1, . . . , jd) ∈ Nd
0 such

that ∥j∥1 ≥ m̃+ 1. Then

⟨c, j⟩ =
d∑

i=1

(c̃+ i)jπ(i) ≥ (c̃+ 1)∥j∥1 ≥ (c̃+ 1)(m̃+ 1),

hence

⟨c,m⟩ =
d∑

i=1

(c̃+ i)mπ(i) = (c̃+ 1)m̃+
d∑

i=1

(i− 1)mπ(i)︸ ︷︷ ︸
= c̃

< ⟨c, j⟩.

It remains to consider j = (j1, . . . , jd) ∈M\{m}. Since cπ(1) < cπ(2) < · · · < cπ(d),
we may assume by the rearrangement inequality that jπ(1) ≥ jπ(2) ≥ · · · ≥ jπ(d),
because ⟨c,m⟩ < ⟨c, j⟩ otherwise. Hence (jπ(1), . . . , jπ(d)) ∈ M0. By the above
construction ofm we must have (jπ(1), . . . , jπ(d)) = (mπ(1), . . . ,mπ(d)) unless there
exists an i0 ∈ {1, . . . , d} with jπ(i0) < mπ(i0). In this case take the smallest i0.
Since ∥j∥1 = ∥m∥1, there exists a largest i1 ∈ {i0 + 1, . . . , d} with jπ(i1) > mπ(i1).
Define j′ = (j′1, . . . , j

′
d) by

j′π(i) =


jπ(i0) + 1 for i = i0,

jπ(i1) − 1 for i = i1,

jπ(i) for i ∈ {1, . . . , d} \ {i0, i1}.

Then ⟨c, j⟩ = ⟨c, j′⟩+ i1 − i0 > ⟨c, j′⟩ and still j′π(1) ≥ j′π(2) ≥ · · · ≥ j′π(d), because

if i0 ≥ 2 then j′π(i0−1) = jπ(i0−1) = mπ(i0−1) ≥ mπ(i0) ≥ j′π(i0) by the minimality

of i0, and if i1 ≤ d − 1, then j′π(i1) ≥ mπ(i1) ≥ mπ(i1+1) ≥ jπ(i1+1) = j′π(i1+1) by

the maximality of i1. Iterating this procedure, we arrive at (mπ(1), . . . ,mπ(d)),
which proves that ⟨c, j⟩ > ⟨c,m⟩, verifying the assumption in Theorem 5.6.

(b) Since we are only interested in the distribution of the partial sums, and due
to the choice of c and m, we may redefine each Xi on a set of probability zero such
that {⟨c,Xi⟩ ≤ ⟨c,m⟩} = {Xi = m}. Define X ′

i = ⟨c,Xi −m⟩ for i ∈ N. These
are i.i.d. and R+-valued random variables. Fix the natural number k ≥ 2. Define
S′
k = X ′

1 + · · ·+X ′
k. Then 0 ≤ S′

k = ⟨c, Sk − km⟩ and {S′
k = 0} = {X ′

1 = 0, . . . ,
X ′

k = 0} = {X1 = m, . . . ,Xk = m}. Using the i.i.d. assumption, (5.13) follows.
To prove (5.14) for a given n ∈ Nd

0 with ⟨c, n⟩ > k⟨c,m⟩, rewrite (5.10) with
m+ n in place of n. Then take the inner product with c and solve for P[Sk = n],
which is possible because ⟨c, n− km⟩ ≠ 0 and P[X1 = m] > 0 by the choice of c
and m. Furthermore, all remaining terms with ⟨c, j⟩ ≤ ⟨c,m⟩ on the right-hand
side of (5.14) are zero and can be omitted. Since ⟨c,X1⟩ ≥ ⟨c,m⟩, it follows that
⟨c, Sk⟩ ≥ k⟨c,m⟩ by the above part of the proof, hence we may skip all terms on
the right-hand side of (5.14) with ⟨c,m+n−j⟩ < k⟨c,m⟩. These are the ones with
⟨c, j⟩ > ⟨c,m+n⟩−k⟨c,m⟩ = ⟨c, n− (k−1)m⟩. Since j ≤ m+n by the rewritten
version of (5.10), this justifies to sum only over j ∈ Nm,n given by (5.15).
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Remark 5.7 (Applicability of Theorem 5.6).

(a) Equation (5.14) is indeed a recursion, because for P[Sk = n] only values
P[Sk = l] with ⟨c, l⟩ < ⟨c, n⟩ are used, since for l := m+ n− j this follows
from the last strict inequality in definition (5.15) of Nm,n.

(b) Contrary to the approach given in Algorithm 5.2, the recursion (5.14) can
be numerically unstable, because already in one dimension (hence c := 1
works), for a distribution with m = 0, and n > k + 1 the term (k + 1)j − n
changes sign as j runs from 1 to n. For an example, see Exercise 5.8 below.

(c) As in Example 5.3, assume that X1 attains every vector in the d-dimen-
sional simplex ∆d,ν given by (5.6) with strictly positive probability. Then
P[Sk = n] > 0 if and only if n ∈ ∆d,kν , and for every n ∈ ∆d,kν \ {0} there
are at most |∆d,ν | − 1 non-zero terms in the sum in (5.14), hence with the
term for n = 0 given by (5.13) the total number Nr(d, k, ν) of terms in the
recursive method satisfies

Nr(d, k, ν) ≤ 1 + (|∆d,kν | − 1)|(|∆d,ν | − 1), (5.16)

see (5.7) for further evaluation and Table 5.1 for comparison. For d = 1 or
ν = 1 the value of Nr(d, k, ν) can be determined explicitly.

Exercise 5.8 (Complete cancellation in recursion (5.14)). Fix l ∈ N with l ≥ 3
and a probability distribution on N0 such that P[X1 = j] > 0 for j ∈ {0, 1, l} and
P[X1 = j] = 0 for all other j ∈ N0. Show that the right-hand side of (5.14) for
k = l − 1 and n = 2l − 1 contains exactly two non-zero terms of opposite sign,
hence complete cancellation occurs and P[Sl−1 = 2l − 1] = 0.

5.2 Panjer Distributions and Extended Panjer Recursion

As in Subsection 4.6, assume that N is N0-valued and that (Xn)n∈N is a sequence
of Nd

0-valued, independent, identically distributed random vectors, which is
independent of N . We want to calculate the distribution

pn := P[S = n] , n ∈ Nd
0,

of the random sum S = X1 + · · ·+XN defined in (4.69). If the distribution

qn := P[N = n] , n ∈ N0,

of N satisfies the recursion formula given in Definition 5.9 below, then Theorem
5.16 shows that there is an efficient way to do this.

Definition 5.9 (Panjer distribution). A probability distribution (qn)n∈N0 is called
Panjer(a, b, k) distribution with a, b ∈ R and k ∈ N0 if q0 = q1 = · · · = qk−1 = 0
and

qn =
(
a+

b

n

)
qn−1 for all n ∈ N with n ≥ k + 1. (5.17)
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Remark 5.10 (Uniqueness). Given a, b ∈ R and k ∈ N0, the linearity of (5.17)
implies that there exists at most one probability distribution (qn)n∈N0 satisfying
Definition 5.9, because there can be at most one qk ∈ (0, 1] such that

∑∞
n=k qn = 1.

Definition 5.11 (Truncation). Let (qn)n∈N0 be a probability distribution and
l ∈ N0 such that there is mass at l or above, meaning that

∑∞
n=l qn > 0.

Then the l-truncated probability distribution (q̃n)n∈N0 of (qn)n∈N0 is defined by
q̃0 = · · · = q̃l−1 = 0 and

q̃n =
qn

1−
∑l−1

j=0 qj
, n ≥ l. (5.18)

For N ∼ (qn)n∈N the l-truncated probability distribution (q̃n)n∈N0 is the
conditional distribution satisfying q̃n = P[N = n |N ≥ l] for all n ∈ N0.

Lemma 5.12 (Truncations of Panjer distributions). Suppose (qn)n∈N0 is the
Panjer(a, b, k) distribution and l ≥ k is an integer such that there is mass at l or
above. Then the l-truncation of (qn)n∈N0 is the Panjer(a, b, l) distribution.

Exercise 5.13. Prove Lemma 5.12 using the linearity of the recursion equation
(5.17)

Remark 5.14 (List of Panjer distributions). All probability distributions satis-
fying Definition 5.9 were identified by Sundt and Jewell [52] for the case k = 0,
Willmot [60] for the case k = 1, and finally Hess, Liewald and Schmidt [29] for
general k ∈ N0. The Panjer distributions are the following:

(a) Poisson distribution (see Example 5.21),

(b) Negative binomial distribution (see Example 5.22),

(c) Binomial distribution (see Example 5.24),

(d) Logarithmic distribution (see Example 5.25),

(e) Extended negative binomial distribution (see Example 5.26),

(f) Extended logarithmic distribution (see Example 5.27),

(g) All truncations of these distributions (see Definition 5.11 and Lemma 5.12).

Exercise 5.15 (Sundt and Jewell [52]). Prove that the only non-degenerate
probability distributions in the class {Panjer(a, b, 0) | a, b ∈ R} are the Poisson,
the binomial, and the negative binomial distributions.

Hint: Discuss the cases a < 0, a = 0 and a > 0 separately.
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The following theorem combines results of Panjer [42] and Hess, Liewald and
Schmidt [29] with the multivariate extension of Sundt [51].

Theorem 5.16 (Multivariate extended Panjer recursion). Assume that the
probability distribution (qn)n∈N0 of N is the Panjer(a, b, k) distribution. The
distribution (pn)n∈Nd

0
of the random sum S defined in (4.69) is denoted by

CPanjer(a, b, k,Q) with Q := L(X1). If aP[X1 = 0] ≠ 1, then L(S) can be
calculated by

p0 = φN (P[X1 = 0]) =

{
q0 if P[X1 = 0] = 0,

E
[
(P[X1 = 0])N

]
otherwise,

(5.19)

where φN is the probability-generating function of N , and the recursion formula

pn =
1

1− aP[X1 = 0]

(
P[Sk = n] qk+

∑
j∈Nd

0
0̸=j≤n

(
a+

b⟨cn, j⟩
⟨cn, n⟩

)
P[X1 = j] pn−j

)
(5.20)

for all n ∈ Nd
0 \ {0}, where Sk := X1 + · · ·+Xk and cn ∈ Rd is chosen such that

⟨cn, n⟩ ̸= 0; the vector cn := (1, . . . , 1) works in every case.

Proof. Theorem 5.16 is a corollary of Theorem 5.30(a) below, hence its proof is
given just after the statement of Theorem 5.30.

Remark 5.17 (Recursional character and parallel computing). Observe that
(5.20) is indeed a recursion: For the computation of pn only values pn−j with
j ̸= 0 are used, these satisfy ∥n− j∥1 < ∥n∥1. In dimension d ≥ 2, for the same
reason, the values pn for vectors n sharing the same ∥ · ∥1-norm can be computed
in parallel.

Remark 5.18 (Technical assumption). Of the Panjer distributions given in Re-
mark 5.14, only the uninteresting case P[X1 = 0] = 1 with N ∼ ExtLog(k, 1), see
Example 5.27 below, or one of its truncations, see Lemma 5.12, violates the techni-
cal assumption aP[X1 = 0] ≠ 1. Obviously, p0 = 1 and pn = 0 for all n ∈ Nd

0 \ {0}
in these cases, and we define CPanjer(1,−k, k, δ0) = δ0 for each k ∈ N with k ≥ 2.

Remark 5.19 (Computational speed-up for small support of L(X1)). For n =
(n1, . . . , nd) ∈ Nd

0 \ {0}, the number of terms in (5.20) is (n1 + 1) · · · (nd + 1)− 1,
which may limit the practical applicability of the recursion to small dimension d.
A remarkable speed-up is possible if the support of the distribution of X1 is
concentrated on just a few points of Nd

0, let’s write SX = {n ∈ Nd
0 \ {0} |

P[X1 = n] > 0} for this support without the origin of Nd
0. Then the sum in (5.20)

runs over all j ∈ SX satisfying j ≤ n, i.e.

j ∈ Sn(X) := SX ∩
d

×
i=1

{0, . . . , ni},

and their cardinalities satisfy |Sn(X)| ≤ min{|SX |, (n1 + 1) · · · (nd + 1)− 1}. If
|SX | <∞, then |SX | is an upper bound for the number of terms which doesn’t
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grow with n. Remark 5.20 below simplifies the computation of the individual
terms.

Remark 5.20 (Choice of cn). While cn = (1, . . . , 1) works in (5.20) for every
n ∈ Nd

0 \ {0}, there is a computational advantage in choosing cn dependent
on n. To illustrate this, let us take the notation of Remark 5.19 and define
Si,n(X) = {ji | (j1, . . . , jd) ∈ Sn(X)} for every i ∈ {1, . . . , d}. Since every
n = (n1, . . . , nd) ∈ SX has at least one non-zero component, let’s say the ith
one ni, we can then choose the unit vector cn = (0, . . . , 0, 1, 0, . . . , 0) with the 1
at the ith position, which simplifies ⟨cn, j⟩ and ⟨cn, n⟩ to ji and ni, respectively,
and allows us to pull out the factor from the other summations in (5.20), i.e.,

∑
j∈Sn(X)

(
a+

b⟨cn, j⟩
⟨cn, n⟩

)
P[X1 = j] pn−j

=
∑

l∈Si,n(X)

(
a+

bl

ni

) ∑
j=(j1,...,jd)∈Sn(X)

ji=l

P[X1 = j] pn−j .

Before we derive Theorem 5.16 from Theorem 5.30(a) below, let us look at
several examples and keep the question of numerical stability for the recursion
formula (5.20) in mind.

Example 5.21 (Poisson distribution). If (qn)n∈N0 is Poisson(λ) with λ ≥ 0, then
q0 = e−λ and

qn
(3.1)
=

λn

n!
e−λ =

λ

n
qn−1, n ∈ N,

hence by comparison40 with (5.17), Poisson(λ) is the Panjer(0, λ, 0) distribution.
Using (4.3), the initial value (5.19) turns into

p0 = eλ(P[X1=0]−1) . (5.21)

The recursion formula (5.20) can be simplified to

pn =
λ

ni

∑
j∈Nd

0
0̸=j≤n

ji P[X1 = j] pn−j , (5.22)

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0}, where i ∈ {1, . . . , d} is chosen such that

ni ̸= 0. See Remark 5.19 to omit terms in (5.22) with value zero. The recursion
(5.22) is numerically stable because only non-negative numbers are multiplied
and added.

40 Here and in the following examples we use that in the vector space of all functions N → R
the constant function f ≡ 1 and the function g(n) := 1/n for all n ∈ N are linearly independent,
hence the coefficients for functions in the linear span of them are uniquely determined.
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Example 5.22 (Negative binomial distribution). If (qn)n∈N0 is NegBin(α, p)
with parameters α > 0 and p ∈ [0, 1) as specified in (4.61), then q0 = qα and

qn =

(
α+ n− 1

n

)
pnqα =

α+ n− 1

n
p qn−1, n ∈ N,

with q := 1− p, hence NegBin(α, p) is the Panjer(p, (α− 1)p, 0) distribution by
comparison with (5.17). Using (4.65), the initial value (5.19) turns into

p0 =
( q

1− pP[X1 = 0]

)α
. (5.23)

The recursion formula (5.20) can be simplified to

pn =
p

ni(1− pP[X1 = 0])

∑
j∈Nd

0
0̸=j≤n

(αji + ni − ji)P[X1 = j] pn−j (5.24)

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0}, where i ∈ {1, . . . , d} is chosen such that

ni ̸= 0. See Remark 5.19 for the possibility to omit terms in (5.24) with value
zero. The recursion (5.24) is numerically stable because ni − ji ∈ N0 (this
requires proper programming, αji has to be added afterwards) and otherwise
only non-negative numbers are multiplied and added to calculate the sum.

Remark 5.23 (Algorithm for a very small initial value). To apply the d-
dimensional extended Panjer recursion (5.20), the probability p0 of a loss of
zero is needed as starting value, see (5.19). If N ∼ Poisson(λ) with λ ≥ 0, then
p0 is given by (5.21). If N ∼ NegBin(α, p) with α > 0 and p ∈ [0, 1), then p0 is
given by (5.23). When modeling large portfolios with the collective risk model
(4.69) using one of these two claim number distributions, it can happen for large λ
or α, respectively, that p0 is so small that it can only be represented as zero on a
computer (arithmetic underflow). The recursion (5.20) then produces pn = 0 for
all n ∈ Nd

0 \ {0}, which is clearly wrong. The standard solution, cf. [34, Section
6.6.2], is to perform Panjer’s recursion with the reduced parameter λ′ := λ/2l

(resp. α′ := α/2l) instead, where l ∈ N is chosen such that the new starting
value p0 is properly representable on the computer. Afterwards, l iterative and
numerically stable convolutions are needed to calculate the original probability
distribution, see (5.4) in Subsection 5.1. This approach works because for indepen-
dent N1, . . . , N2l ∼ Poisson

(
λ/2l

)
, we have that N = N1+ · · ·+N2l ∼ Poisson(λ)

by the summation property, see Lemma 3.2, similarly for the negative binomial
distribution, see Lemma 4.37. For the corresponding property of the compound
distributions, see Corollary 4.43. In general, this approach works for claim number
distributions closed under convolutions.

Example 5.24 (Binomial distribution). Let (qn)n∈N0 denote the binomial distri-
bution Bin(m, p) with success probability p ∈ [0, 1) and number of trials m ∈ N.
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Let q := 1− p denote the failure probability. Then, for every n ∈ N,

qn =

(
m

n

)
pnqm−n =

m− n+ 1

n

p

q
·
(

m

n− 1

)
pn−1qm−(n−1)

=

(
−p
q︸︷︷︸

=: a

+
(m+ 1)p

q︸ ︷︷ ︸
=: b

1

n

)
qn−1

by comparison with (5.17), hence Bin(m, p) is the Panjer(−p/q, (m + 1)p/q, 0)
distribution. The recursion factor a+ b/n is zero for n = m+ 1, giving qn = 0
for n ≥ m+ 1 as expected. Using (4.33), the initial value (5.19) turns into

p0 =
(
1 + p(P[X1 = 0]− 1)

)m
. (5.25)

Consider Panjer’s recursion formula (5.20) for n = (n1, . . . , nd) ∈ Nd
0 \ {0} with

n1 ≥ m + 2 and n2 = · · · = nd = 0. Without loss of generality we can take
cn = (1, 0, . . . , 0). Then the term

a+
b⟨cn, j⟩
⟨cn, n⟩

= −p
q

(
1− m+ 1

n1
j1

)
changes sign as j = (j1, 0, . . . , 0) varies between (1, 0, . . . , 0) and (n1, 0, . . . , 0).
Therefore, the recursion can be numerically unstable because cancellations can
occur. The problem with numerical underflow during the calculation of the initial
value p0 given in (5.25) can also occur for large m, see Remark 5.23. Since

φS(s) = φN

(
φX1(s)

)
=

(
q + pφX1(s)

)m
=

l∏
k=0
bk=1

(
q + pφX1(s)

)2k
at least for all s ∈ Cd with ∥s∥∞ ≤ 1, where m =

∑l
k=0 bk2

k with b1, . . . , bl−1 ∈
{0, 1}, bl = 1 and l = ⌊log2m⌋ denotes the binary representation of m, we see
that the distribution (pn)n∈Nd

0
of S can be computed in a numerically stable way

with b0 + · · ·+ bl−1 + l ≤ 2l convolutions, see Algorithm 5.2.

Example 5.25 (Logarithmic distribution). If (qn)n∈N0 is Log(p) with p ∈ [0, 1),
see Example 4.4, then q0 = 0, q1 = 1/c(p) with c(p) defined by (4.5), and

qn =
pn−1

c(p)n
= p

n− 1

n
qn−1 for n ∈ N, n ≥ 2,

hence by comparison with (5.17), Log(p) is the Panjer(p,−p, 1) distribution.
Using (4.6), the initial value (5.19) turns into

p0 = P[X1 = 0]
c(pP[X1 = 0])

c(p)
. (5.26)

The recursion formula (5.20) simplifies to

pn =
1

1− pP[X1 = 0]

(
P[X1 = n]

c(p)
+

p

ni

∑
j∈Nd

0
0̸=j<n
ji<ni

(ni − ji)P[X1 = j] pn−j

)
(5.27)
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for every n = (n1, . . . , nd) ∈ Nd
0 \ {0}, where i ∈ {1, . . . , d} is chosen such that

ni ̸= 0. See Remark 5.19 about the possibility to omit further terms in (5.27)
with value zero. The recursion (5.27) is numerically stable because ni − ji ∈ N0

and otherwise only non-negative numbers are multiplied and added inside the
parenthesis to calculate the sum. For p = 0, hence c(p) = 1 by (4.5), the recursion
(5.27) simplifies dramatically to pn = P[X1 = n] for all n ∈ Nd

0 \ {0}.

Example 5.26 (Extended negative binomial distribution). For parameters k ∈ N,
α ∈ (−k, 0) \ {−1,−2, . . . ,−(k − 1)} and p ∈ (0, 1], define q0 = · · · = qk−1 = 0
and, using the abbreviation q := 1− p,

qn =

(
α+n−1

n

)
pn

q−α −
∑k−1

j=0

(
α+j−1

j

)
pj

for n ≥ k. (5.28)

We will verify below that (5.28) is a well-defined probability distribution (qn)n∈N0 ,
called extended negative binomial distribution, notation ExtNegBin(α, k, p).

First note that the k-truncation, see (5.18) in Definition 5.11, of the negative
binomial distribution defined in (4.61) gives the same formula, however with
α > 0 and valid for p ∈ [0, 1). A short calculation shows that the k-truncation
of an ExtNegBin(α, l, p) distribution with l ∈ {1, . . . , k − 1}, α ∈ (−l,−l + 1)
and p ∈ (0, 1] is also given by (5.28). Hence, for every k ∈ N, the formula
(5.28) defines a probability distribution for all α ∈ (−k,∞) \ {0,−1,−2, . . .} and
p ∈ (0, 1). If −α ∈ N0, then

(
α+n−1

n

)
= 0 for all n ∈ N with n ≥ 1− α and the

binomial coefficient is of different sign for the even and the odd n ∈ {1, . . . ,−α},
hence (5.28) cannot define an interesting probability distribution is this case.

To verify that (5.28) defines a probability distribution, note that, for every
n ∈ N0, (

α+ n− 1

n

)
=

1

n!

n∏
j=1

(α+ n− j)

=
(−1)n

n!

n−1∏
l=0

(−α− l) = (−1)n
(
−α
n

)
,

(5.29)

and, for all integers n ≥ k,

(
α+ n− 1

n

)
=

( k∏
j=1

α+ j − 1

j

) n∏
j=k+1

(
1 +

>−k−1︷ ︸︸ ︷
α− 1

j︸ ︷︷ ︸
> 0

)

has the same sign. Using log(1 + x) ≤ x for x > −1 and noting that α− 1 < 0,

log
n∏

j=k+1

(
1 +

α− 1

j

)
≤

n∑
j=k+1

α− 1

j
≤ (α− 1)

∫ n+1

k+1

dx

x
= log

(n+ 1

k + 1

)α−1
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for all integers n ≥ k. Therefore,

∞∑
n=k

∣∣∣∣(α+ n− 1

n

)∣∣∣∣ ≤ ∣∣∣∣ k∏
j=1

α+ j − 1

j

∣∣∣∣ ∞∑
n=k

(k + 1

n+ 1

)1−α
<∞

by the integral test for convergence, because 1− α > 1 and

∞∑
n=k

1

(n+ 1)1−α
≤

∫ ∞

k

dx

x1−α
= − 1

αk−α
<∞.

Using (5.29), we see that the binomial series

(1 + x)−α =
∑
n∈N0

(
−α
n

)
xn (5.30)

converges absolutely for all x ∈ C with |x| ≤ 1; for x = −p we see that∑
n∈N0

(
α+ n− 1

n

)
pn =

∑
n∈N0

(
−α
n

)
(−p)n = (1− p)−α = q−α. (5.31)

We conclude that the nominators in (5.28) are all of the same sign and, by (5.31),
the denominator is the sum of these. Hence qn > 0 for all integers n ≥ k and∑∞

n=k qn = 1.
Using the first equality in (5.29) and an index shift, we see that, for every

n ≥ k + 1,(
α+ n− 1

n

)
pn =

α+ n− 1

n
p · pn−1

(n− 1)!

n−1∏
j=1

(α+ n− 1− j)

=
(
1 +

α− 1

n

)
p ·

(
α+ n− 2

n− 1

)
pn−1,

hence by comparison with (5.17), ExtNegBin(α, k, p) is the Panjer(p, (α− 1)p, k)
distribution. Consider Panjer’s recursion formula (5.20) for n = (n1, . . . , nd) ∈
Nd
0 \ {0} with n1 > 1− α and n2 = · · · = nd = 0. Without loss of generality we

can take cn = (1, 0, . . . , 0). Then the term

a+
b⟨cn, j⟩
⟨cn, n⟩

=
(
1 +

α− 1

n1
j1

)
p

changes sign as j = (j1, 0, . . . , 0) varies between (1, 0, . . . , 0) and (n1, 0, . . . , 0).
Therefore, the recursion can be numerically unstable due to cancellations, see
Remark 5.34 below.

To calculate the probability-generating function of a random variable N ∼
ExtNegBin(α, k, p), note that by (5.31) applied to ps in place of p,∑

n∈N0

(
α+ n− 1

n

)
pn sn = (1− ps)−α, |s| ≤ 1

p
,
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therefore

φN (s) =
∑
n∈N0

qns
n (5.28)

=
(1− ps)−α −

∑k−1
j=0

(
α+j−1

j

)
(ps)j

q−α −
∑k−1

j=0

(
α+j−1

j

)
pj

, |s| ≤ 1

p
. (5.32)

For k = 1, hence α ∈ (−1, 0), this simplifies to

φN (s) =
1− (1− ps)−α

1− q−α
, |s| ≤ 1

p
. (5.33)

Example 5.27 (Extended logarithmic distribution). Assume that (qn)n∈N0 is an
extended logarithmic distribution, notation ExtLog(k, p), with parameters k ∈ N,
k ≥ 2, and p ∈ (0, 1], which means that q0 = · · · = qk−1 = 0 and

qn =

(
n
k

)−1
pn∑∞

l=k

(
l
k

)−1
pl
, n ≥ k. (5.34)

Since, for every m ∈ N with m ≥ k,

m∑
l=k

1(
l
k

) ≤
m∑
l=k

k!

l(l − 1)
= k!

m∑
l=k

( 1

l − 1
− 1

l

)
= k!

( 1

k − 1
− 1

m

)
≤ k!

k − 1
,

the extended logarithmic distribution is well defined for every p ∈ (0, 1]. For
n ≥ k + 1 we have (

n

k

)
=

n

n− k

(
n− 1

k

)
,

which via (5.34) yields

qn =
n− k

n
p · qn−1 =

(
p− kp

n

)
qn−1,

hence by comparison with (5.17), ExtLog(k, p) is the Panjer(p,−kp, k) distribu-
tion. Consider Panjer’s recursion formula (5.20) for n = (n1, . . . , nd) ∈ Nd

0 \ {0}
with n1 ≥ k + 1 and n2 = · · · = nd = 0. Without loss of generality we can take
cn = (1, 0, . . . , 0). Then the term

a+
b⟨cn, j⟩
⟨cn, n⟩

= p

(
1− kj1

n1

)
changes sign as j = (j1, 0, . . . , 0) varies between (1, 0, . . . , 0) and (n1, 0, . . . , 0).
Therefore, the recursion can be numerically unstable because cancellations might
occur; see Subsection 5.5 and [22, Section 5.2] for a solution of this problem. We
remark that a closed-form expression for the denominator in (5.34) is given by
[22, Lemma 2.1], which makes it possible to express the probability-generating
function also in closed form, cf. [22, (2.7)]
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Remark 5.28 (Historical remark). We mention that the one-dimensional Panjer
recursion for claim number distributions given by the binomial, the negative
binomial, and the extended negative binomial distribution with k = 1 is contained
in a much older result: For α ∈ R and a power series f(s) =

∑∞
j=0 ajs

j with

a0 ̸= 0, the coefficients (bn)n∈N0 of the power series f−α(s) satisfy the recursion

bn =
1

na0

n∑
j=1

((1− α)j − n)aj bn−j , n ∈ N, (5.35)

starting with b0 = 1/aα0 . Gould [26] has traced this remarkable, often rediscovered
recurrence back to Euler [18, Chapter 4, Section 76]. Using the probability-
generating functions of the above distributions and φS = φN ◦ φX1 , the formula
(5.35) applied to f(s) = q + pφX1(s) or f(s) = 1− pφX1(s), respectively, yields
recursions which indeed agree with the respective Panjer recursions.

Exercise 5.29. Use (4.33), (4.65) and (5.33) to verify the last statement in
Remark 5.28.

5.3 A Generalisation of the Multivariate Panjer Recursion

The multivariate extended Panjer recursion in Theorem 5.16 is a special case of
part (a) of the following theorem, which combines [22, Theorem 4.5] with the
multivariate idea in [51, Theorem 1] and is of independent interest for questions
of numerical stability, see Subsections 5.4 and 5.5 below.

Theorem 5.30. Fix l ∈ N. Let (qn)n∈N0 and (q̃i,n)n∈N0 denote the probability
distributions of the N0-valued random variables N and Ñi for i ∈ {1, . . . , l},
where (N, Ñ1, . . . , Ñl) is independent of the Nd

0-valued i. i. d. sequence (Xn)n∈N.
Let (pn)n∈Nd

0
and (p̃i,n)n∈Nd

0
denote the probability distributions of the random

sums S = X1+ · · ·+XN and S̃(i) = X1+ · · ·+XÑi for i ∈ {1, . . . , l}, respectively.

(a) Assume41 that there exist k ∈ N0 and a1, . . . , al, b1, . . . , bl ∈ R such that

qn =

l∑
i=1

(
ai +

bi
n

)
q̃i,n−i, n ∈ N with n ≥ k + l, (5.36)

and all probabilities not used on the right-hand side of (5.36) are zero, i.e.

q̃i,0 = · · · = q̃i,k+l−i−1 = 0, i ∈ {1, . . . ,min{l, k + l − 1}}. (5.37)

Then, for every n ∈ Nd
0 \ {0} and cn ∈ Rd with ⟨cn, n⟩ ̸= 0,

pn =
k+l−1∑
j=1

P[Sj = n] qj +
l∑

i=1

∑
j∈Nd

0
j≤n

(
ai +

bi⟨cn, j⟩
i⟨cn, n⟩

)
P[Si = j] p̃i,n−j (5.38)

with Sj := X1 + · · ·+Xj, and p0 is given by (5.19).

41 In these lecture notes, we only apply this case with l = 1.
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(b) Assume that there exist ν1, . . . , νl ∈ [0, 1] with ν1 + · · ·+ νl ≤ 1 such that
qn =

∑l
i=1 νi q̃i,n for all n ∈ N. Then pn =

∑l
i=1 νi p̃i,n for all n ∈ Nd

0 \ {0}.

Remark 5.31 (Reformulation and proof of Theorem 5.30(b)). Let Q := L(X1)
denote the claim size distribution, define Ñ0 ≡ 0 and ν0 = 1− (ν1 + · · ·+ νl) ∈
[0, 1]. Using the notation for finite convex combinations from Example 4.9, the
assumption of Theorem 5.30(b) can be reformulated as

L(N) = Convex
(
(νi,L(Ñi))i∈{0,...,l}

)
hence φN =

∑l
i=0 νiφÑi by (4.22). Using (4.70), the result in (b) is

Compound
(
L(N), Q

)
= Convex

((
νi,Compound

(
L(Ñi), Q

))
i∈{0,...,l}

)
,

which follows via (4.75) in Example 4.9, because

φS = φN ◦ φQ =

( l∑
i=0

νiφÑi

)
◦ φQ =

l∑
i=0

νi(φÑi
◦ φQ) = ν0 +

l∑
i=1

νiφS̃(i) .

Proof of Theorem 5.16. If (qn)n∈N0 is the Panjer(a, b, k) distribution, then Theo-
rem 5.30(a) is applicable by choosing l = 1 and q̃1,n = qn for all n ∈ N0, which
implies pn = p̃1,n for all n ∈ Nd

0. Using q0 = · · · = qk−1 = 0, which implies (5.37),
and solving (5.38) for pn yields (5.20).

Proof of Theorem 5.30. (a) We extend a standard proof (cf. [40, Theorem 3.3.9]
for the case k = 0 and l = 1) with the idea from [51] for the d-dimensional setting.

To prove the representation for the initial value given in (5.19), note that

p0
(4.14)
= φS(0)

(4.75)
= φN (φX1(0))

(4.14)
= φN (P[X1 = 0]).

We now prove (5.38) for fixed n ∈ Nd
0 \ {0} and c ∈ Rd satisfying ⟨c, n⟩ ̸= 0. For

this we need a preparation. Fix i ∈ {1, . . . , l}. For every m ∈ N with m ≥ i,
we use the representation Sm = X1 + · · · + Xm = Sm−i + Si,m with Si,m :=
Xm−i+1 + · · ·+Xm and independent and identically distributed X1, . . . , Xm. If
P[Sm = n] > 0, then

⟨c, n⟩ = E
[
⟨c, Sm⟩

∣∣Sm = n
]
=

m∑
j=1

E
[
⟨c,Xj⟩

∣∣Sm = n
]

= mE
[
⟨c,Xm⟩

∣∣Sm = n
]
=
m

i
E
[
⟨c, Si,m⟩

∣∣Sm = n
]
,

hence by solving for 1
m and calculating the conditional expectation,

ai +
bi
m

= E
[
ai +

bi⟨c, Si,m⟩
i⟨c, n⟩

∣∣∣∣Sm = n

]
=

∑
j∈Nd

0
j≤n

(
ai +

bi⟨c, j⟩
i⟨c, n⟩

)
P[Si,m = j |Sm = n] .

(5.39)
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For every m ≥ i the sums Sm−i and Si,m are independent, hence

P[Si,m = j, Sm = n] = P[Si,m = j, Sm−i = n− j]

= P[Si,m = j]︸ ︷︷ ︸
=P[Si=j]

P[Sm−i = n− j] . (5.40)

We now rewrite pn = P[S = n] using (5.36) as follows

pn =
∞∑

m=1
qm>0

P[Sm = n|N = m]︸ ︷︷ ︸
=P[Sm=n] by indep.

P[N = m]︸ ︷︷ ︸
= qm

=
k+l−1∑
m=1

P[Sm = n] qm +
∞∑

m=k+l

l∑
i=1

(
ai +

bi
m

)
P[Sm = n] q̃i,m−i︸ ︷︷ ︸

=: (∗)

.
(5.41)

Inserting (5.39) and (5.40) yields for the series

(∗) =
∞∑

m=k+l

l∑
i=1

∑
j∈Nd

0
j≤n

(
ai +

bi⟨c, j⟩
i⟨c, n⟩

)
P[Si = j]P[Sm−i = n− j] q̃i,m−i

=

l∑
i=1

∑
j∈Nd

0
j≤n

(
ai +

bi⟨c, j⟩
i⟨c, n⟩

)
P[Si = j]

∞∑
m=k+l

P[Sm−i = n− j] q̃i,m−i︸ ︷︷ ︸
=: (∗∗)

,

where the rearrangement from the first to the second line is admissible, because
the series in the second line converge for every i ∈ {1, . . . , l} and j ∈ Nd

0 satisfying
j ≤ n, as we show next. Using (5.37), the index shift m − i ⇝ m, and similar
arguments as for (5.41), we get for these series

(∗∗) =
∞∑

m=i

P[Sm−i = n− j] q̃i,m−i

=
∞∑

m=0

P
[
Sm = n− j, Ñi = m

]
= P

[
S̃(i) = n− j

]
= p̃i,n−j .

Substituting (∗∗) into (∗) and this result into (5.41) gives (5.38).
(b) Modifying the calculation in (5.41) using independence of {Sm = n} and

{N = m} and the formula P[N = m] =
∑l

i=1 νi P[Ñi = m] for m ∈ N, we obtain

pn =
∞∑

m=1

P[Sm = n, N = m]︸ ︷︷ ︸
=P[Sm=n]P[N=m]

=
l∑

i=1

νi

∞∑
m=1

P[Sm = n]P[Ñi = m]︸ ︷︷ ︸
= p̃i,n

for every n ∈ Nd
0 \ {0}.
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The next corollary of Theorem 5.30(b) is useful, when only a k-truncation of
a probability distribution is a Panjer(a, b, k) distribution but the first terms don’t
satisfy the recursion (5.17). It is the multivariate extension of [22, Corollary 4.7].

Corollary 5.32. Assume that (qn)n∈N0 has mass at or above k ∈ N and that
(q̃n)n∈N0 denotes its k-truncated probability distribution according to Definition
5.11. Assume that N respectively Ñ have these distributions, and that S =
X1 + · · ·+XN and S̃ = X1 + · · ·+XÑ are the corresponding random sums with
distributions (pn)n∈Nd

0
and (p̃n)n∈Nd

0
. Then p0 is given by (5.19) and

pn =

k−1∑
i=1

P[Si = n] qi +

(
1−

k−1∑
j=0

qj

)
p̃n, n ∈ Nd

0 \ {0}.

Proof. Use Theorem 5.30(b) with l = k, νi = qi and q̃i,i = 1 for i ∈ {1, . . . , k− 1},
νk = 1− (q0 + · · ·+ qk−1), q̃k,n = q̃n for all n ≥ k, and all other q̃i,n = 0.

Exercise 5.33 (Combining Panjer’s algorithm with convolutions and convex
combinations). Let Q denote a probability distribution of Nd

0, and N an N0-valued
random variable. Fix k < l in N0 such that P[N ≥ l ] > 0 and P[k ≤ N < l ] > 0.
Assume that L(N |N ≥ l) = Panjer(a, b, l) and that L(N |k ≤ N < l) is a k-
truncated binomial distribution with l− 1 trials and success probability p ∈ [0, 1].
Devise at least one algorithm to calculate Compound(L(N), Q) given by (4.70)
and discuss numerical stability.

Hints: See Subsections 5.1 and 5.2, Theorem 5.30(b) and Remark 5.31 as well as
Corollary 5.32.

5.4 Numerically Stable Algorithm for ExtNegBin

Remark 5.34. As noticed in Example 5.26, the Panjer algorithm for the extended
negative binomial distribution can be numerically unstable due to cancellations.
To show that this is a real danger, let us consider the following example. Take
k ∈ N and ε, p ∈ (0, 1), define α = −k+ε and let (qn)n∈N0 denote the distribution
of N ∼ ExtNegBin(α, k, p) given by (5.28). Choose l ∈ N with l ≥ 3 and
P[X1 = 1] = P[X1 = l ] = 1/2 as one-dimensional loss distribution. Note that

pk = P[N = k, X1 = · · · = Xk = 1] =
qk
2k
,

because P[N < k] = 0, and correspondingly

pk+l−1 =
k∑

j=1

P[N = k, Xj = l, Xi = 1 for all i ∈ {1, . . . , k} \ {j}]

+ P[N = k + l − 1, X1 = · · · = Xk+l−1 = 1]

=
kqk
2k

+
qk+l−1

2k+l−1
.

Recall from Example 5.26 that the frequency distribution ExtNegBin(α, k, p)
is the Panjer(p, (α − 1)p, k) distribution. Note that Sk takes values in the set
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{k + j(l − 1) | j = 0, . . . , k}, which does not contain k + l, hence the Panjer
recursion formula (5.20) for pk+l with ck+l := 1 reduces to

pk+l =
k+l∑
j=1

p
(
1 +

α− 1

k + l
j
)
P[X1 = j] pk+l−j .

Since P[X1 = j] ̸= 0 only for j ∈ {1, l}, this simplifies to two summands, i.e.,

pk+l = p
(
1 +

α− 1

k + l

)pk+l−1

2
+ p

(
1 +

α− 1

k + l
l
)pk
2

= p
k(l − 1) + εk

k + l

( qk
2k+1

+
qk+l−1

k2k+l

)
− p

k(l − 1)− εl

k + l

qk
2k+1

,

hence severe cancellation occurs for pk+l when ε is small and qk+l−1 ≪ 2l−1kqk.
For example, the values ε = 10−4, k = 1, l = 5 and p = 9/10 give

p6 ≈ 0.14999262− 0.14997009 = 0.00002253,

hence we lose four significant digits in this case.

Following [22, Section 5.1], we now develop a numerically stable algorithm
to compute the distribution of (pn)n∈Nd

0
of S = X1 + · · ·+XN , when N has an

extended negative binomial distribution. The main ingredient is the following
corollary of Theorem 5.30(a) for the case l = 1 (we will omit the index 1 for
simplicity).

Corollary 5.35. For the parameters k ∈ N0, α ∈ (−k,−k + 1) and p ∈ (0, 1],
with p ̸= 1 for k = 0, let (qn)n∈N0

:= ExtNegBin(α− 1, k + 1, p) and

(q̃n)n∈N0
:=

{
ExtNegBin(α, k, p) if k ∈ N,
NegBin(α, p) if k = 0.

Then (5.36) holds with l = 1 and q̃1,n = q̃n for n ≥ k + 1. The constants are
given by a = 0 and

b = (α− 1)p
q−α −

∑k−1
j=0

(
α+j−1

j

)
pj

q1−α −
∑k

j=0

(
α+j−2

j

)
pj
, (5.42)

hence (5.38) simplifies to the numerically stable weighted convolution

pn =
b

ni

∑
j∈Nd

0
j≤n, ji>0

ji P[X1 = j] p̃n−j , (5.43)

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0}, where i ∈ {1, . . . , d} is chosen such that

ni ̸= 0. The initial value p0 is given by (5.19) with probability-generationg
function from (5.32) with parameters α and k replaced by α − 1 and k + 1,
respectively.
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Proof. Using (5.28), we see that, for every n ≥ k + 1,(
(α− 1) + n− 1

n

)
pn =

(α− 1)p

n

(
α+ (n− 1)− 1

n− 1

)
pn−1,

hence qn = bq̃n−1/n and Theorem 5.30(a) is applicable.

The case k = 0, p = 1 is excluded in the preceding corollary. We cannot
reduce the calculation for a claim number N ∼ ExtNegBin(α − 1, k + 1, p) to
the one for N ∼ ExtNegBin(α, k, p) in this case, because the negative binomial
distribution is not defined for p = 1. However, a suitable limit p↗ 1 gives the
following numerically stable procedure.

Lemma 5.36 (Stable recursion for ExtNegBin(α − 1, 1, 1)). For α ∈ (0, 1)
consider a claim number N ∼ ExtNegBin(α − 1, 1, 1). Then the distribution
(pn)n∈Nd

0
of the random sum S = X1 + · · · + XN can be calculated by p0 =

1− (P[X1 ̸= 0])1−α and

pn =

{
1−α
ni

∑
j∈Nd

0, 0̸=j≤n ji P[X1 = j] rn−j if P[X1 ̸= 0] > 0,

0 if P[X1 = 0] = 1,

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0}, where i ∈ {1, . . . , d} is chosen such that

ni ̸= 0. In the case P[X1 ̸= 0] > 0 the non-negative sequence (rn)n∈Nd
0
is defined

by r0 = (P[X1 ̸= 0])−α and recursively in a numerically stable way by

rn =
1

ni P[X1 ̸= 0]

∑
j∈Nd

0
0̸=j≤n

(αji + ni − ji)P[X1 = j] rn−j

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0}, where i ∈ {1, . . . , d} is chosen such that

ni ̸= 0.

Proof. It suffices to consider the non-trivial case P[X1 ̸= 0] > 0. We start with
p ∈ (0, 1) and let (p̃n(p))n∈Nd

0
denote the distribution of S̃ = X1 + · · · + XÑ ,

where Ñ ∼ NegBin(α, p), and (pn(p))n∈Nd
0
the distribution of S = X1 + · · ·+XN ,

where N ∼ ExtNegBin(α−1, 1, p). Since NegBin(α, p) is the Panjer(p, (α−1)p, 0)
distribution, a recursion for the auxiliary sequence

rn(p) := (1− p)−αp̃n(p), n ∈ Nd
0, (5.44)

follows from Panjer’s recursion (5.24) for (p̃n(p))n∈Nd
0
, namely

rn(p) =
p

ni(1− pP[X1 = 0])

∑
j∈Nd

0
0̸=j≤n

(αji + ni − ji)P[X1 = j] rn−j(p) (5.45)

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0} and i ∈ {1, . . . , d} satisfying ni ̸= 0 and

with starting value
r0(p) = (1− pP[X1 = 0])−α (5.46)
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given by (5.19) with probability-generating function from (5.23). The weighted
convolution (5.43) becomes

pn(p) =
(1− p)αb(p)

ni

∑
j∈Nd

0
j≤n, ji>0

ji P[X1 = j] rn−j(p) (5.47)

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0} and i ∈ {1, . . . , d} satisfying ni ̸= 0 and

with b(p) := (1− α)p(1− p)−α/(1− (1− p)1−α) from (5.42) and starting value

p0(p) =
1− (1− pP[X1 = 0])1−α

1− (1− p)1−α
(5.48)

given by (5.19) with probability-generating function from (5.33). The normaliza-
tion in (5.44) is chosen so that we can take the limit p↗ 1 in (5.45)–(5.48), in par-
ticular (1−p)αb(p) tends to 1−α. With rn := limp↗1 rn(p) and pn := limp↗1 pn(p),
the lemma follows.

Algorithm 5.37. Corollary 5.35 and Lemma 5.36 lead to the following numeri-
cally stable algorithm for the calculation of the distribution of the aggregate loss
in the collective risk model S = X1 + · · ·+XN , where N ∼ ExtNegBin(α, k, p)
with k ∈ N, α ∈ (−k,−k + 1) and p ∈ (0, 1]:

• If p < 1, perform a stable Panjer recursion according to Theorem 5.16 for
N ∼ NegBin(α+ k, p), followed by a stable weighted convolution according
to Corollary 5.35 to pass to N ∼ ExtNegBin(α+ k − 1, 1, p).

• If p = 1, use Lemma 5.36 to calculate the distribution of the compound
sum S for N ∼ ExtNegBin(α+ k − 1, 1, p).

Calculate k − 1 weighted convolutions according to (5.43) to pass iteratively to
N ∼ ExtNegBin(α+ k − 2, 2, p), . . ., and finally to N ∼ ExtNegBin(α, k, p).

Remark 5.38. Of course, compared to the ordinary (but possibly unstable)
Panjer recursion of Theorem 5.16, Algorithm 5.37 increases the numerical effort
by a factor of k + 1. Note that the weighted convolution in (5.43) is not a
recurrence, hence unavoidable rounding errors do not propagate as in a recursive
calculation.

5.5 Numerically Stable Algorithm for ExtLog

Similar results as in the previous subsection can be obtained for the extended
logarithmic distribution.42

Corollary 5.39 ([22, Corollary 5.4]). For the parameters k ∈ N and p ∈ (0, 1]
with p < 1 in case k = 1, let (qn)n∈N0

:= ExtLog(k + 1, p) and

(q̃n)n∈N0
:=

{
ExtLog(k, p) if k ≥ 2,

Log(p) if k = 1.

42 The results of this subsection will not be used in the remaining part of the lecture notes.
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Then (5.36) holds with l = 1 (we drop this index for convenience) and q̃1,n = q̃n
for n ≥ k + 1. The constants are given by a = 0 and

b = (k + 1)p

∑∞
l=k

(
l
k

)−1
pl∑∞

l=k+1

(
l

k+1

)−1
pl

hence (5.38) simplifies to the numerically stable weighted convolution (5.43) and
p0 is given by (5.19).

Exercise 5.40. Use Theorem 5.30(a) to prove Corollary 5.39.

In the excluded case (k, p) = (1, 1), we cannot reduce the calculation for N ∼
ExtLog(2, p) to that for N ∼ Log(p), because the logarithmic distribution from
Example 4.4 is not defined for p = 1. Fortunately, a similar limit consideration
as for the extended negative binomial distribution works.

Lemma 5.41 (Multi-dimensional version of [22, Lemma 5.5], stable recursion for
ExtLog(2, 1)). Assume that N ∼ ExtLog(2, 1). Then the distribution (pn)n∈Nd

0

of the random sum S = X1 + · · ·+XN can be calculated by

p0 = P[X1 = 0] + P[X1 ̸= 0] logP[X1 ̸= 0]

with the convention 0 log 0 = 0, and

pn =

{
1
ni

∑
j∈Nd

0, 0<j≤n ji P[X1 = j] rn−j if P[X1 ̸= 0] > 0,

0 if P[X1 = 0] = 1,

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0} and i ∈ {1, . . . , d} satisfying ni ̸= 0, where

for the case P[X1 ̸= 0] > 0 the non-negative sequence (rn)n∈Nd
0
is defined by

r0 = − logP[X1 ̸= 0] and recursively in a numerically stable way by

rn =
1

P[X1 ̸= 0]

(
P[X1 = n] +

1

ni

∑
j∈Nd

0\{0}
j<n, ji<ni

(ni − ji)P[X1 = j] rn−j

)

for every n = (n1, . . . , nd) ∈ Nd
0 \ {0} and i ∈ {1, . . . , d} satisfying ni ̸= 0.

Exercise 5.42. Prove Lemma 5.41. Hints: For p ∈ (0, 1) consider Ñ ∼ Log(p),
let (p̃n(p))n∈Nd

0
denote the distribution of S̃ = X1+ · · ·+XÑ , and let (pn(p))n∈Nd

0

denote the distribution of S = X1 + · · ·+XN , where N ∼ ExtLog(2, p). Define
the auxiliary sequence

rn(p) := −p̃n(p) log(1− p), n ∈ Nd
0.

and proceed in a similar way as in the proof of Lemma 5.36. Consider the limit
p↗ 1 at the end.
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6 Stochastic Rounding
and Copula-Based Aggregation

6.1 Stochastic Rounding

While losses are certainly multiples of one cent, the computation time required
for this precision normally forces us to use basic loss units E1, . . . , Ed of a larger
size like 100 000 Euro. Then, however, losses are in general not integer multiples
of this quantity and some rounding is required. Deterministic rounding with
the aforementioned basic loss unit would round, for example, every loss below
50 000 Euro to zero, which is certainly not acceptable since it ignores the risk.
The idea of stochastic rounding is to keep at least the expected loss constant.
Hence, for example, a loss of 150 000 Euro happening with probability p should
be turned into two losses of sizes 100 000 and 200 000 Euros, respectively, each
one happening with probability p/2. This idea, generalized to higher dimensions
and mixed moments, is the content of the next lemma.

Lemma 6.1 (Stochastic rounding). Let X = (X1, . . . , Xd) be an Rd-valued
random vector. Define

pn = E
[ d∏
i=1

(1− |Xi − ni|)+
]
, n = (n1, . . . , nd) ∈ Zd, (6.1)

where x+ := max{x, 0} for all x ∈ R. Then the following holds:

(a) (pn)n∈Zd is a probability mass function.

(b) If all components of X are almost surely non-negative, then (pn)n∈Nd
0
is a

probability mass function.

Let Y = (Y1, . . . , Yd) be a Zd-valued random vector with distribution (pn)n∈Zd

given by (6.1) and let I be a non-empty subset of {1, . . . , d}.

(c) Stochastic rounding commutes with taking marginal distributions, i.e.,
stochastic rounding of the distribution of the random vector (Xi)i∈I equals
the distribution of (Yi)i∈I .

(d) If (Xi)i∈I are independent, then (Yi)i∈I are independent.

(e) For every i ∈ I let gi: R → R be a function which changes sign only at
integers and which is piecewise affine between adjacent integers, i.e.

λgi(k) + (1− λ)gi(k + 1) = gi
(
λk + (1− λ)(k + 1)

)
(6.2)

for all k ∈ Z and λ ∈ [0, 1]. Then the product
∏

i∈I gi(Xi) is integrable if
and only if

∏
i∈I gi(Yi) is integrable and in this case

E
[∏

i∈I
gi(Xi)

]
= E

[∏
i∈I

gi(Yi)

]
. (6.3)
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Remark 6.2. Part (e) applied to I = {i} with i ∈ {1, . . . , d} and the identity
function gi(x) = x on R implies that expectations are unchanged by stochastic
rounding, i.e. E[Xi] = E[Yi], provided at least one (and therefore both) expecta-
tions exist. For I = {i, j} ⊆ {1, . . . , d} with i ≠ j and gj also the identity function,
we see that E[XiXj ] = E[YiYj ], hence Cov(Xi, Xj) = Cov(Yi, Yj), provided Xi,
Xj and their product XiXj are integrable.

Proof of Lemma 6.1. For each integer k ∈ Z define fk: R → [0, 1] by fk(x) =
(1− |x− k|)+ for all x ∈ R. Note that

∏d
i=1 fni(Xi) coincides with the product in

(6.1) for each (n1, . . . , nd) ∈ Zd. Let g: R → R be a function which is piecewise
affine between adjacent integers, see (6.2). For x ∈ R define kx = ⌊x⌋ and observe
that fk(x) = 0 for all k ∈ Z \ {kx, kx + 1}. Using (6.2) for the third equality,∑

k∈Z
fk(x)g(k) = fkx(x)g(kx) + fkx+1(x)g(kx + 1)

= (1− (x− kx))︸ ︷︷ ︸
=:λ∈ [0,1]

g(kx) + (1− (kx + 1− x))︸ ︷︷ ︸
=1−λ=x−kx

g(kx + 1)

= g
(
(1− (x− kx))kx + (x− kx)(kx + 1)

)
= g(x).

(6.4)

Note that no convergence problems arise on the left-hand side of (6.4), since
at most two terms are different from zero. Using (6.4) for g ≡ 1, we see that
{fk}k∈Z is a partition of unity, meaning in particular that∑

k∈Z
fk(x) = 1, x ∈ R. (6.5)

(a) Using (6.5) for every dimension and expanding (keeping in mind that at
most 2d terms can be different from zero) leads to∑

(n1,...,nd)∈Zd

d∏
i=1

fni(xi) =
d∏

i=1

∑
ni∈Z

fni(xi) = 1, (x1, . . . , xd) ∈ Rd.

Hence by monotone convergence,∑
n∈Zd

pn = E
[ ∑
n∈Zd

d∏
i=1

fni(Xi)

]
= 1.

(b) For every n = (n1, . . . , nd) ∈ Zd \ Nd
0 there exists i ∈ {1, . . . , d} with

ni ≤ −1, hence fni(Xi)
a.s.
= 0 and pn = 0.

(c) Let (ni)i∈I ∈ ZI and J := {1, . . . , d} \ I. Using σ-additivity, monotone
convergence and factoring,

P[Yi = ni for all i ∈ I] =
∑

(nj)j∈J∈ZJ

P[(Y1, . . . , Yd) = (n1, . . . , nd)]︸ ︷︷ ︸
=E[

∏d
i=1 fni (Xi)] by (6.1)

= E
[(∏

i∈I
fni(Xi)

)∏
j∈J

∑
nj∈Z

fnj (Xj)︸ ︷︷ ︸
=1 by (6.5)

]
.

106

http://en.wikipedia.org/wiki/Partition_of_unity


(d) Let (ni)i∈I ∈ ZI . Using part (c), the independence of (Xi)i∈I , and again
part (c),

P[Yi = ni for all i ∈ I] = E
[∏

i∈I
fni(Xi)

]
=

∏
i∈I

E[ fni(Xi)] =
∏
i∈I

P[Yi = ni] .

(e) Note that, if the functions gi change sign only at integers, then the functions
R ∋ x 7→ |gi(x)| are also piecewise affine between adjacent integers, see (6.2),
and (6.4) applies to them. Since all terms are non-negative, using the monotone
convergence theorem,

E
[∏
i∈I

|gi(Yi)|
]
=

∑
(ni)i∈I∈ZI

(∏
i∈I

|gi(ni)|
)
P[Yi = ni for all i ∈ I]︸ ︷︷ ︸
=E[

∏
i∈I fni (Xi)] by part (c)

=
∑

(ni)i∈I∈ZI

E
[∏
i∈I

fni(Xi)|gi(ni)|
]
= E

[∏
i∈I

∑
ni∈Z

fni(Xi)|gi(ni)|︸ ︷︷ ︸
= |gi(Xi)| by (6.4)

]
,

hence
∏

i∈I gi(Yi) is integrable if and only if
∏

i∈I gi(Xi) is integrable. The same
calculation without the absolute value, which uses the dominated convergence
theorem, proves (6.3).

Example 6.3 (Stochastic rounding can change the variance). Consider a degen-
erate random variable X with P

[
X = 1

2

]
= 1, which has zero variance. Stochastic

rounding produces the Bernolli distribution Bin(1, 12), which has variance 1
4 .

Example 6.4 (Stochastic rounding can change the correlation). While Lemma
6.1(e) guarantees that stochastic rounding preserves covariances, rounding can
change the correlations. As an explicit example, consider a random vector
(X1, X2) =

1
2(Z,Z) with Z ∼ Bin(2, 12). Then Var(Z) = 1

2 , hence Cov(X1, X2) =
1
4 Var(Z) =

1
8 . Since X1 and X2 are comonotone, or by noting that Var(X1) =

Var(X2) =
1
4 Var(Z) =

1
8 , it follows that Corr(X1, X2) = 1. Stochastic rounding

produces the probability mass function p(0,0) = p(1,1) =
3
8 and p(1,0) = p(0,1) =

1
8 .

If (Y1, Y2) has this distribution, then Cov(Y1, Y2) = 1
8 by explicit calculation

or an application of Lemma 6.1(e). Since Y1, Y2 ∼ Bin(1, 12), it follows that
Var(Y1) = Var(Y2) =

1
4 , hence Corr(Y1, Y2) =

1
2 ̸= 1.

Example 6.5 (Stochastic rounding can create independence). If (X1, X2) is
a random vector with dependent components, then stochastic rounding might
remove the dependence. If Cov(X1, X2) is well defined, then Lemma 6.1(e) shows
that Cov(X1, X2) = 0 is a necessary condition for this phenomenon to occur. As
an example, consider a random vector (X1, X2) taking with probability 1

4 the
four values (1, 0), (1, 1), (12 ,

1
2) and (32 ,

1
2), respectively, which are located on a

square. The components X1 and X2 are clearly dependent, because

P
[
X1 = 1, X2 =

1
2

]
= 0 ̸= 1

4 = P[X1 = 1]P
[
X2 =

1
2

]
.
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Stochastic rounding moves one quarter of the probability of (12 ,
1
2) equally to each

of its is four neighbouring lattice points in Z2, the same happens to the probability
of (32 ,

1
2). Hence p(0,0) = p(0,1) = p(2,0) = p(2,1) =

1
16 and p(1,0) = p(1,1) =

3
8 . This

is the product measure of 1
8(δ0 + 6δ1 + δ2) with

1
2(δ0 + δ1).

6.2 Introduction to Copulas

6.3 Aggregation of Integer-Valued Risks
with Copula-Induced Dependency Structure

This subsection is based on joint work with Martin Schmidt contained in [48],
see this reference for further details and illustrations.

Let d ∈ N with d ≥ 2 and let X1, . . . , Xd denote N0-valued random variables
such that Xi ∼ Fi for each i ∈ {1, . . . , d} with given univariate distribution
functions F1, . . . , Fd. The random variables X1, . . . , Xd can represent claim sizes
in an insurer’s portfolio or credit losses in banking. The main objective of this
subsection is to examine the distribution of the aggregated components, i.e., the
sum S := X1 + · · ·+Xd.

Recall that ∆d,ν = {n ∈ Nd
0 | ∥n∥1 ≤ ν} denotes the standard discrete

d-dimensional simplex in Nd
0 of size ν ∈ N0 as given in (5.6). Let ∂∆d,ν := {n ∈

Nd
0 | ∥n∥1 = ν} denote the discrete inner boundary of ∆d,ν in Nd

0, i.e., the set of
all n ∈ ∆d,ν such that there exists x ∈ Nd

0 \∆d,ν with |n− x| = 1.
Let us first consider the case where the random vector X = (X1, . . . , Xd) has

independent components. Let Qi = (qi,n)n∈N0 denote the distribution of Xi, i.e.
qi,n := P[Xi = n] for each n ∈ N0 and i ∈ {1, . . . , d}. Then the probability mass
function of the sum S can be written down explicitly as

P[S = ν] =
∑

n∈∂∆d,ν

P[X1 = n1, . . . , Xd = nd]︸ ︷︷ ︸
=

∏d
i=1 qi,ni

, ν ∈ N0. (6.6)

Starting with d ≥ 3, it can be computationally more efficient to calculate the
probability mass function of S using iterative convolutions Q1 ∗ · · · ∗ Qd, see
Subsection 5.1 and Exercise 5.4. If Q1 = · · · = Qd, then Algorithm 5.2 and the
recursion from Theorem 5.6 are available.

Suppose from now on that the dependence structure of the components of
the random vector X = (X1, . . . , Xd) is given by a d-dimensional copula C, see
Subsection 6.2. Let Id := {0, 1}d denote the set of vertices of the d-dimensional
unit hypercube and define sign(i) = (−1)i1+···+id for every i = (i1, . . . , id) ∈ Id.

By the defining property of the copula C,

P[An] = C
(
F1(n1), . . . , Fd(nd)

)
, n = (n1, . . . , nd) ∈ Nd

0,

with An := {X1 ≤ n1, . . . , Xd ≤ nd}. Defining Aj,n = {Xj ≤ nj − 1} ∩ An for
each j ∈ {1, . . . , d}, it follows that

{X = n} = {X1 = n1, . . . , Xd = nd} = An \ (A1,n ∪ · · · ∪Ad,n) (6.7)

108



and by the inclusion–exclusion principle

P[A1,n ∪ · · · ∪Ad,n] =
∑

(i1,...,id)∈Id\{0}

(−1)i1+···+id+1 P
[ ⋂
j∈{1,...,d}

ij=1

Aj,n

]
, (6.8)

hence by (6.7) and (6.8), for every n = (n1, . . . , nd) ∈ Nd
0,

P[X = n] = P[An]− P[A1,n ∪ · · · ∪Ad,n]

=
∑
i∈Id

sign(i)P[X1 ≤ n1 − i1, . . . , Xd ≤ nd − id]︸ ︷︷ ︸
=C(F1(n1−i1),...,Fd(nd−id))

(6.9)

Since X takes values in Nd
0, the defining property of the copula C implies that

C
(
F1(n1), . . . , Fd(nd)

)
= P[X ≤ n] = 0, n = (n1, . . . , nd) ∈ Zd \ Nd

0,

hence we can restrict the summation in (6.9) to all i ∈ Id with i ≤ n. As a
generalization of (6.6), the probability mass function of S is given by

P[S = ν] =
∑

n∈∂∆d,ν

P[X = n]

=
∑

n∈∂∆d,ν

∑
i∈Id
i≤n

sign(i)C
(
F1(n1 − i1), . . . , Fd(nd − id)

)
, ν ∈ N0.

(6.10)

Using that the discrete simplex satisfies ∆d,ν =
⋃ν

l=0 ∂∆d,l, where the union is
disjoint, it follows from (6.10) that the distribution function of S is given by

P[S ≤ ν] =
ν∑

l=0

P[S = l]

=
∑

n∈∆d,ν

∑
i∈Id
i≤n

sign(i)C
(
F1(n1 − i1), . . . , Fd(nd − id)

)
, ν ∈ N0.

(6.11)

Using (5.7), it follows that the right-hand side of (6.11) without the restriction
i ≤ n has 2d

(
d+ν
d

)
terms to be summed up. Due to the inner summation over the

elements of Id, most terms can appear up to 2d times with positive or negative
sign. This calls for a more efficient way to add the terms, which is given in the
next lemma.

Lemma 6.6 (Distribution function of S = X1 + · · ·+Xd). Define

cj =
∑

n∈∂∆d,j

C
(
F1(n1), . . . , Fd(nd)

)
, j ∈ N0. (6.12)

Then

P[S ≤ ν] =

(d−1)∧ν∑
l=0

(−1)l
(
d− 1

l

)
cν−l, ν ∈ N0. (6.13)
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Remark 6.7. Compared to (6.10) and (6.11), each evaluation of the copula is
only needed once for the calculation of the corresponding cj via (6.12). For the
calculation of the distribution function of S on {0, . . . , ν}, the upper bound of
2d
(
d+ν
d

)
terms to be summed up via (6.11) is substantially reduced to dν +

(
d+ν
d

)
by the method from Lemma 6.6 (only the case d ≥ 2 is of interest here). Note
that due to the alternating sign in (6.13), cancellations can occur, but they don’t
propagate via a recursion.

The terms C
(
F1(n1), . . . , Fd(nd)

)
in (6.12) are computed without much effort

when the distribution function C is given explicitly, examples are the Clayton
copula, the Gumbel copula, and the Frank copula.

Proof of Lemma 6.6. Fix ν ∈ N0. Note that Id =
⋃d

k=0 Id,k with Id,k := {i ∈
Id : ∥i∥1 = k} and ∆d,ν =

⋃ν
l=0 ∂∆d,l, where the unions are disjoint. Rewriting

(6.11),

P[S ≤ ν] =
∑
i∈Id

sign(i)
∑

n∈∆d,ν

i≤n

C
(
F1(n1 − i1), . . . , Fd(nd − id)

)

=
d∧ν∑
k=0

(−1)k
ν∑

l=k

∑
i∈Id,k

∑
n∈∂∆d,l

i≤n

C
(
F1(n1 − i1), . . . , Fd(nd − id)

) (6.14)

Given k ∈ {0, . . . , d ∧ ν} and l ∈ {k, . . . , ν}, note that for every pair (i, n) ∈
Id,k × ∂∆d,l with i ≤ n there exists ñ := n− i such that (i, ñ) ∈ Id,k × ∂∆d,l−k.
For the reverse direction, given (i, ñ) ∈ Id,k × ∂∆d,l−k, there exists n := ñ + i
such that (i, n) ∈ Id,k × ∂∆d,l and i ≤ n. Due to this bijection, the last sum in

(6.14) equals cl−k given by (6.12). Since |Id,k| =
(
d
k

)
, (6.14) can be rewritten as

P[S ≤ ν] =

d∧ν∑
k=0

(−1)k
(
d

k

) ν∑
l=k

cl−k =

d∧ν∑
k=0

(−1)k
(
d

k

) ν∑
l=k

cν−l =

ν∑
l=0

cν−lJd,l

(6.15)
with

Jd,l :=
d∧l∑
k=0

(−1)k
(
d

k

)
, l ∈ N0,

where we used the index substitution l⇝ ν − l + k for the second equality and
interchanged the sums for the last one. We claim that

Jd,l =

{
(−1)l

(
d−1
l

)
for l ∈ {0, . . . , d− 1},

0 otherwise,
(6.16)

which follows inductively: By direct evaluation, Jd,0 = 1. For l ∈ {1, . . . , d},

(−1)lJd,l =

(
d

l

)
+ (−1)lJd,l−1 =

(
d

l

)
−
(
d− 1

l − 1

)
=
d− l

l

(
d− 1

l − 1

)
=

(
d− 1

l

)
.

Hence Jd,d = 0 and the second case in (6.16) follows. Substitution of (6.16) into
(6.15) proves (6.13).
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The probability mass function of the sum S can be calculated via P[S = ν] =
P[S ≤ ν]− P[S ≤ ν − 1] for ν ∈ N and (6.13) from Lemma 6.6. Using this idea,
there is also a direct formula available, which looks very similar to (6.13):

Lemma 6.8 (Probability mass function of S = X1 + · · ·+Xd). With (cj)j∈N0

given by (6.12),

P[S = ν] =
d∧ν∑
l=0

(−1)l
(
d

l

)
cν−l, ν ∈ N0. (6.17)

Proof. For ν = 0, (6.17) reduces to P[S = 0] = c0, which is correct. Fix ν ∈ N.
We use (6.13) from Lemma 6.6 to see that

P[S ≤ ν] = cν +

(d−1)∧ν∑
l=1

(−1)l
(
d− 1

l

)
cν−l

and, performing an index shift,

P[S ≤ ν − 1] =

(d−1)∧(ν−1)∑
l=0

(−1)l
(
d− 1

l

)
cν−1−l = −

d∧ν∑
l=1

(−1)l
(
d− 1

l − 1

)
cν−l.

Using these two results and the recursive formula for binomial coefficients, which
is the basis of Pascal’s triangle,

P[S = ν] = P[S ≤ ν]− P[S ≤ ν − 1]

= cν +

(d−1)∧ν∑
l=1

(−1)l
{(

d− 1

l

)
+

(
d− 1

l − 1

)
︸ ︷︷ ︸

= (dl)

}
cν−l + (−1)dcν−d1d≤ν ,

where the last term is only present when d ≤ ν and can be included to the sum
by changing the upper bound of the summation index to d ∧ ν. Including also cν
by starting the summation with l = 0, the claim (6.17) follows.

7 Extensions of CreditRisk+

Note that the extended multi-period CreditRisk+ framework presented here can
also be seen as a multi-period multi-business-line extension of the collective risk
model from actuarial science.

7.1 Introduction

With the tools developed in the previous chapters we can now introduce the
CreditRisk+ framework and its extensions. First some general notes:

• The original CreditRisk+ framework was developed by Credit Suisse First
Boston (CSFB) [11].
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• It is a one-period actuarial model for the aggregation of credit risks.

• It is based on the Poisson approximation of individual defaults, utilizing a
trade-off effect occurring in sums, see Remark 3.32.

• One of the big advantages of the model is that the probability-generating
function of the loss distribution is available in closed form.

• Extending the Poisson mixture model, several independent and gamma-
distributed default causes as well as deterministic exposures are taken into
account.

• The model does not call for Monte Carlo methods, hence the output is
completely determined by the input data without any variations due to
different simulation runs.

The extensions presented here include:

• The individual exposures of obligors are allowed to be d-dimensional random
vectors making a multi-period model possible.

• Risk groups of obligors and corresponding, possibly stochastically dependent
exposures can be handled.

• Default causes don’t need to be independent, they are allowed to have a spe-
cial but flexible dependence structure, given by scenarios and independent
risk factors.

• The distributions of the risk factors are not restricted to gamma distribu-
tions, instead also more flexible distributions like tempered stable distribu-
tions can be used.

• At least for gamma-distributed risk factors, the risk contributions of indi-
vidual obligors can be calculated.

• The probability distribution of the portfolio loss can be derived with a
numerically stable algorithm, even with all the mentioned extensions.

Note that, due to stochastic exposures, the risk of a downgraded credit rating
can easily be incorporated in the extended version of CreditRisk+. Using risk
groups, even joint downgrades can be modelled.

Remark 7.1 (Multi-period extension). The extension to several periods can be
used in various ways and is also applicable in actuarial mathematics.

(a) Several periods: If there are d periods, it is of importance to know in
which period an obligor defaults. For example, an early default might
cause liquidity problems for the lender, because write off is required early.
Furthermore, the size of the loss given default can depend on the time of
the default, in particular when a loan or a mortgage is amortized during its
life span and not at maturity.
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(b) Immediate payments and actuarial reserves: A two-period model is of
interest for a portfolio of credit guarantees. Here the default probability
(or intensity) only refers to defaults happening during the first period, and
the first component for the losses refers to the payout during this period.
The second component of the losses models the payment obligations after
the first period, it would correspond to the actuarial reserves to be built up
at the end of the first period.

(c) Profits and losses: To aggregate profits as well as losses, that means Z-
valued random variables, we consider N2

0-valued random vectors whose
components are the positive and negative parts, i.e. for each Z-valued X we
consider (X+, X−) and aim to determine the two-dimensional distribution
of all profits and losses. Of course, netting can be done afterwards. In
general, Zd-valued random vectors are converted into N2d

0 -valued ones.

(d) Different types of claim payments: In an insurance context, the d compo-
nents can represent different types of claim payments. For a portfolio of
health insurance contracts, this can be costs of medical treatments and
allowances for missing income of the insured. For a portfolio of personal
liability or automobile collision insurances, these can be claims for bodily
injuries and property damages.

(e) Stochastic claims reserving: In the context of stochastic claims reserving
(see e.g. [61] for a textbook presentation), the d periods can represent the
development years. Here the default probability (or intensity) refers to
the claims originating from the initial insured period; the claims may be
reported at a later period and payments may be spread out during the
remaining periods of the model.

7.2 Description of the Model

We now assemble the necessary input parameters and the notation of the extended
CreditRisk+ methodology.

7.2.1 Input Parameters

Our extended version of CreditRisk+ needs the following input parameters:

• The number m ∈ N of obligors,

• the number d ∈ N of periods,

• the basic loss units E1, . . . , Ed > 0 for the d periods,

• the number C ∈ N of non-idiosyncratic default causes,

• the number K ∈ N of independent risk factors,

113



• the parameters specifying the gamma distributions or the tempered stable
distributions of the independent risk factors R1, . . . , RK ,

• a non-empty finite set J of dependence scenarios,

• a probability distribution on the set J of dependence scenarios,

• for each dependence scenario j ∈ J a matrix Aj = (ajc,k)c∈{0,...,C},k∈{0,...,K}
of size (C + 1)× (K + 1) with non-negative entries, where

aj0,k = 0 for all j ∈ J and k ∈ {1, . . . ,K}, (7.1)

• the collection G of nonempty subsets of all obligors {1, . . . ,m}, called the
risk groups, which are subject to joint defaults.

For every group g ∈ G we need

• the d-period default probability pg ∈ [0, 1],

and then, for every dependence scenario j ∈ J ,

• the susceptibility w0,g,j ∈ [0, 1] to idiosyncratic default,

• the susceptibilities wc,g,j ∈ [0, 1] to default causes c ∈ {1, . . . , C},

• the multivariate probability distributions Qc,g,j = (qc,g,j,µ)µ∈(Nd
0)

g on (Nd
0)

g

describing the stochastic losses in d periods of all the obligors i ∈ g in
multiples of the basic loss units E1, . . . , Ed in case the risk group g defaults
due to cause c ∈ {0, . . . , C}.

Assumption 7.2. Every obligor i ∈ {1, . . . ,m} belongs to at least one group
g ∈ G. Let Gi := {g ∈ G | i ∈ g} denote the set of all groups to which obligor
i ∈ {1, . . . ,m} belongs, by assumption Gi ̸= ∅.

Remark 7.3. While Assumption 7.2 is not necessary for the algorithm, it is
useful to check the proper set-up of the model. If an obligor is not contained
in any risk group, then a default is impossible and the obligor could be left out
from the credit risk model.

Assumption 7.4. For each group g ∈ G and each scenario j ∈ J , the suscepti-
bilities (also called weights) exhaustively describe the default causes:

C∑
c=0

wc,g,j = 1, g ∈ G, j ∈ J . (7.2)

Remark 7.5. Assumption 7.4 is useful for the interpretation of the default
probability pg and the default intensity λg for every risk group g ∈ G in every
scenario j ∈ J , but the assumption is not necessary for the algorithm itself. See
also the normalization in Assumption 7.30 below.

114



The idea of risk groups modelling joint defaults is motivated by the common
Poisson shock models discussed by Lindskog and McNeil [37]. The idea to have
different scenarios comes from [47], it originates from the desire to make negatively
correlated default causes possible, see Example 7.33 below.

Remark 7.6 (Classical CreditRisk+ model). The classical CreditRisk+ model
is contained in the above set-up by choosing G = {{1}, {2}, . . . , {m}}, that
means the only risk groups are the individual obligors. In this case Qc,{i},j
denotes the univariate distribution of the stochastic loss given default of obligor
i ∈ {1, . . . ,m} due to cause c ∈ {0, . . . , C} in scenario j ∈ J . Note also that in
the classical CreditRisk+ model there is just one scenario, i.e. |J | = 1, one period,
i.e. d = 1, and default causes and risk factors are identified, which corresponds
to Aj being the identity matrix. Furthermore, all loss distributions Qc,{i},j are
one-dimensional and degenerate, which corresponds to deterministic one-period
losses given default. Therefore, the classical CreditRisk+ model doesn’t even
contain the collective model from actuarial mathematics.

Remark 7.7 (Directly dependent defaults). Suppose obligor i ∈ {1, . . . ,m} is a
large factory and the different obligors i1, . . . , il ∈ {1, . . . ,m} are suppliers of i,
being economically heavily dependent on the factory. If the factory i defaults and
is subsequently closed, the suppliers i1, . . . , il have a high probability to default,
too. Therefore, {i, i1, . . . , il} is certainly a meaningful risk group. Of course, G
should also contain {i}, because i could default and subsequently be taken over by
a competitor running its production in the factory. Also {i1}, . . . , {il} ∈ G makes
sense, because every supplier can individually default due to poor management
and subsequently be replaced by a competing supplier. Note that different
loss distributions Qc,g,j of the (Nd

0)
g-valued loss vectors given default due to

cause c ∈ {0, . . . , C} in scenario j ∈ J can be specified for the big risk group
g = {i, i1, . . . , il} and for the individual obligors represented by g = {i} and
g = {i1}, . . . , {il}.

Remark 7.8 (Hindering defaults, competition groups). Suppose that the different
obligors i1, . . . , il ∈ {1, . . . ,m} are direct competitors in the market (e.g. airline
companies), and a default of one of them may hinder a default of the others during
the d periods, because they can take over the market share of the defaulting obligor
and are then economically better off, they may even raise prices. To include this
effect in the model, define a risk group g = {i1, . . . , il} with a default probability
pg and choose the multivariate loss distribution Qc,g,j = (qc,g,j,µ)µ∈(Nd

0)
g in such a

way that qc,g,j,µ = 0 for every integer vector µ = (µi1 , . . . , µil) where two or more
of the components µi1 , . . . , µil ∈ Nd

0 representing the losses during the d periods
are different from 0 ∈ Nd

0. This means in case of a default of risk group g due
to cause c ∈ {0, . . . , C} in scenario j ∈ J , that only one of the obligors in the
group g causes a loss, and the distribution of this loss can of course depend on
the obligor, on the cause c and on the scenario j.

Remark 7.9 (Examples of default causes). Default causes make it possible to
build-in joint variations of default intensities for risk groups (and individual
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obligors); these variations jointly improve or degrade the credit quality of these
groups/obligors. Default causes can be industry sectors, individual countries,
currency regions (e.g. Euro zone), geographic regions (e.g. North Africa, Latin
America), religious regions (e.g. Islamic countries), economic regions (e.g. south-
ern Europe, petroleum exporting countries (OPEC)), or represent exposure to
macroeconomic indices like exchange rates, interest rates, business cycles, unem-
ployment rates, real estate prices, interest rate changes and divorce rates (for
modelling the risk of mortages, cf. [12, 13]), and so on. Note that these default
causes don’t need to be stochastically independent, this is handled separately by
the dependence scenarios and the matrices Aj with j ∈ J .

Remark 7.10 (Hierarchically ordered default causes). For a worldwide diversified
credit risk portfolio, it is a good idea to start with default cause intensities ordered
in a hierarchical way:

(a) Worldwide, continental or multi-national causes, like a pandemic, the state
of the economy in developed countries, international political or military
conflicts, energy prices, crises due to excessive national debt in the European
Union, turmoil in arabic countries, . . .

(b) Default causes for every country, modeling an economic crises, the burst
of a real-estate bubble, political turmoil, civil war, transfer risk, convert-
ibility of the local currency, international sanctions, natural or man-made
disasters, . . .

(c) Local, industry sector specific causes within every country, like agriculture,
mining, manufacturing, transport, financial and insurance industry, etc.,
where the granularity depends on the individual needs.

7.2.2 Derived Parameters

The following quantities are derived from the input parameters:

• The Poisson intensity λg for defaults of group g ∈ G during the d periods.
As explained in Subsection 3.2, the choices λg = pg and λg = pg(1 − pg)
as well as λg = − log(1 − pg) in case pg < 1 can be used to calibrate the
model. We will use the first choice in the following.

• From the multivariate probability distribution Qc,g,j on (Nd
0)

g of the loss
during the d periods due to a default of group g ∈ G caused by c ∈ {0, . . . , C}
in scenario j ∈ J , the d-dimensional distribution Qs

c,g,j = (qsc,g,j,ν)ν∈Nd
0
of

the group loss during the d periods as sum of the individual losses of all
the obligors i in the group g is given by

qsc,g,j,ν =
∑

µ=(µi)i∈g∈(Nd
0)

g∑
i∈g µi=ν

qc,g,j,µ , ν ∈ Nd
0, (7.3)
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see Remark 7.12 below. In the case d = 1, when Qc,g,j is specified by the
loss distribution of every obligor i ∈ g and a copula, see Subsection 6.3 for
the computation of Qs

c,g,j .

• The cumulative Poisson intensity

λj,k,ν :=
∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,k q

s
c,g,j,ν ≥ 0 (7.4)

in scenario j ∈ J for losses of size ν ∈ Nd
0 \ {0} in the portfolio due to

idiosyncratic risk k = 0 or risk factor k ∈ {1, . . . ,K}. In the last case, due
to (7.1), the term for c = 0 can be omitted in (7.4).

• The set
Sj,k := { ν ∈ Nd

0 \ {0} | λj,k,ν > 0} (7.5)

of all non-zero d-period exposure vectors with strictly positive intensity in
scenario j ∈ J due to risk factor k ∈ {1, . . . ,K} in terms of the basic loss
units E1, . . . , Ed. This set is used in (7.74) and (7.83) below.

• The cumulative Poisson intensity for non-zero d-period loss vectors in the
portfolio in scenario j ∈ J due to risk k ∈ {0, 1, . . . ,K}, given by

λ̄j,k :=
∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,k(1− qsc,g,j,0)

=
∑

ν∈Nd
0\{0}

∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,k q

s
c,g,j,ν =

∑
ν∈Sj,k

λj,k,ν ≥ 0,

(7.6)

where we used (7.4) and (7.5) for the last equality. Due to (7.5), λ̄j,k = 0 if
and only if Sj,k = ∅.

• If λ̄j,k > 0 for scenario j ∈ J and risk k ∈ {0, . . . ,K}, then we can define
the d-dimensional distribution Qj,k = (qj,k,ν)ν∈Nd

0
by

qj,k,ν =

{
λj,k,ν/λ̄j,k for all ν ∈ Nd

0 \ {0},
0 for ν = 0 ∈ Nd

0.
(7.7)

It is a probability distribution due to (7.6). By (7.4) and (7.6), the distri-
bution Qj,k is a mixture distribution of the family {Qs

c,g,j | c ∈ {0, . . . , C},
g ∈ G}, conditioned to be non-zero. If λ̄j,k = 0 for a scenario j ∈ J and a
risk k ∈ {0, . . . ,K}, then no non-zero d-period loss vector in this scenario
due to this risk factor is possible and we define

qj,k,ν =

{
0 for all ν ∈ Nd

0 \ {0},
1 for ν = 0 ∈ Nd

0,
(7.8)

to avoid notational complications.
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Note that the algorithm in Section 7.7 uses the intensities from (7.4) and (7.6), but
not the default intensities of individual groups, not the individual susceptibilities,
not the matrices Aj with j ∈ J , and not the individual d-period loss distributions.
Without loss of precision, the data can be aggregated accordingly. However, for
the calculation of risk contributions (see Lemma 8.33 below), the individual
quantities are important.

7.2.3 Notation for the Number of Default Events

For every risk group g ∈ G and every scenario j ∈ J we write

• N0,g,j for the number of idiosyncratic defaults (during the d periods),

• Nc,g,j for the number of defaults due to cause c ∈ {1, . . . , C},

• Ng,j :=
∑C

c=0Nc,g,j for the total number of defaults.

For every obligor i ∈ {1, . . . ,m} and every scenario j ∈ J we write analogously

• N0,i,j :=
∑

g∈Gi
N0,g,j for the number of idiosyncratic defaults,

• Nc,i,j :=
∑

g∈Gi
Nc,g,j for the number of defaults caused by c ∈ {1, . . . , C},

• Ni,j :=
∑C

c=0Nc,i,j =
∑

g∈Gi
Ng,j for the total number of defaults.

It may happen that a default results in a d-period loss vector of size zero.
Let J be a random variable selecting the scenario, i.e., J takes values in the

set J . Then

• Nc,g := Nc,g,J =
∑

j∈J Nc,g,j1{J=j} is the number of defaults of group
g ∈ G due to cause c ∈ {0, . . . , C},

• Ng := Ng,J :=
∑C

c=0Nc,g describes the total number of defaults of risk
group g ∈ G, and

• Ni := Ni,J =
∑

j∈J Ni,j1{J=j} describes the total number of defaults of the
individual obligor i ∈ {1, . . . ,m}.

7.2.4 Notation for Stochastic Losses

Losses are Nd
0-multiples of the basic loss units E1, . . . , Ed. As in Subsection 7.2.3,

let J be a random variable selecting the scenario from J .

• Let Lc,g,i,j,n denote the Nd
0-valued loss vector attributed to obligor i ∈ g at

default number n ∈ N of risk group g ∈ G in scenario j ∈ J due to cause
c ∈ {1, . . . , C} or due to idiosyncratic cause c = 0.

• The Nd
0-valued loss vector due to default number n ∈ N of group g ∈ G in

scenario j ∈ J caused by c ∈ {1, . . . , C} or due to idiosyncratic cause c = 0
is defined by

Lc,g,j,n =
∑
i∈g

Lc,g,i,j,n. (7.9)
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• The Nd
0-valued loss vector in scenario j ∈ J due to risk group g ∈ G and

cause c ∈ {1, . . . , C} or idiosyncratic cause c = 0 is defined by

Lc,g,j =

Nc,g,j∑
n=1

Lc,g,j,n. (7.10)

• The Nd
0-valued loss vector due to risk group g ∈ G and cause c ∈ {0, . . . , C}

is defined by

Lc,g = Lc,g,J =
∑
j∈J

Lc,g,j1{J=j}. (7.11)

• The total Nd
0-valued loss vector in scenario j ∈ J due to group g ∈ G is

given by

Lg,j :=

C∑
c=0

Lc,g,j . (7.12)

• The total Nd
0-valued loss vector in the portfolio in scenario j ∈ J is given

by

Lj :=
∑
g∈G

Lg,j . (7.13)

• The total Nd
0-valued loss vector in the portfolio is given by

L := LJ =
∑
j∈J

Lj1{J=j}. (7.14)

For the interpretation of the model and the calculation of risk contributions in
Subsection 8.3 below, we will also need the following definitions of Nd

0-valued loss
vectors attributed to obligor i ∈ {1, . . . ,m}:

• The attributed Nd
0-valued loss vector in scenario j ∈ J due to defaults of

group g ∈ Gi and cause c ∈ {0, . . . , C} is given by

Lc,g,i,j :=

Nc,g,j∑
n=1

Lc,g,i,j,n. (7.15)

• The attributed Nd
0-valued loss vector in scenario j ∈ J due to cause

c ∈ {0, . . . , C} is given by the sum over all risk groups to which obligor i
belongs, i.e.,

Lc,i,j :=
∑
g∈Gi

Lc,g,i,j . (7.16)

• The total attributed Nd
0-valued loss vector in scenario j ∈ J is calculated

by summing over all default causes, i.e.,

Li,j :=

C∑
c=0

Lc,i,j . (7.17)
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• The total attributed Nd
0-valued loss vector is given by the loss in the

randomly selected scenario, i.e.,

Li := Li,J =
∑
j∈J

Li,j1{J=j}. (7.18)

7.3 Probabilistic Assumptions

The following assumptions are made:

Assumption 7.11 (Independence and distribution of group losses). For every
group g ∈ G, every default cause c ∈ {0, . . . , C} and every dependence scenario
j ∈ J , the sequence of (Nd

0)
g-valued random group loss vectors (Lc,g,i,j,n)i∈g with

n ∈ N is i.i.d. and independent of all other random variables,43 with distribution

P[Lc,g,i,j,1 = µi for all i ∈ g] = qc,g,j,µ, µ = (µi)i∈g ∈ (Nd
0)

g. (7.19)

Remark 7.12. From Assumption 7.11 it follows that the sequence (Lc,g,j,n)n∈N
of Nd

0-valued loss vectors of group g ∈ G in scenario j ∈ J due to cause
c ∈ {0, . . . , C} defined in (7.9) is also i.i.d. with distribution Qs

c,g,j given in (7.3).

More explicitly, for all n ∈ N and ν ∈ Nd
0,

P[Lc,g,j,n = ν]
(7.9)
= P

[∑
i∈g

Lc,g,i,j,n = ν

]
=

∑
µ=(µi)i∈g∈(Nd

0)
g∑

i∈g µi=ν

P[Lc,g,i,j,n = µi for all i ∈ g]︸ ︷︷ ︸
= qc,g,j,µ

(7.3)
= qsc,g,j,ν .

(7.20)

In some cases the distribution of the sum of the components is available in closed
form. Examples are the multivariate Bernoulli distribution, the multinomial dis-
tribution, the multivariate logarithmic distribution, and the negative multinomial
distribution, see (4.9), Exercise 4.20(a), Exercise 4.50(e), and Exercise 4.55(e),
respectively.

Example 7.13 (Deterministic subdivision of a loss within a risk group). Given a
risk group g ∈ G with at least two obligors, a scenario j ∈ J and a default cause
c ∈ {0, . . . , C}, we may want to attribute a deterministic share of the group loss
to the individual obligors i ∈ g of the group. For this purpose, consider for every
obligor i ∈ g a deterministic function hc,g,i,j : Nd

0 → Nd
0 such that∑

i∈g
hc,g,i,j(ν) = ν, for all ν ∈ Nd

0. (7.21)

43 This means all other sequences of loss vectors, the scenario J , the idiosyncratic default num-
bers (N0,g)g∈G in Assumption 7.20, the non-idiosyncratic default numbers (Nc,g)c∈{1,...,C},g∈G

in Assumption 7.25 and the risk factors R1, . . . , RK in Assumption 7.26 below.
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We can then divide up the nth group loss Lc,g,j,n ∼ Qs
c,g,j in a deterministic

way and attribute the loss Lc,g,i,j,n = hc,g,i,j(Lc,g,j,n) to obligor i ∈ g. Due to
(7.21), we have

∑
i∈g Lc,g,i,j,n = Lc,g,j,n for every n ∈ N. For all n ∈ N and

µ = (µi)i∈g ∈ (Nd
0)

g with ν :=
∑

i∈g µi we have that

qc,g,j,µ = P[Lc,g,i,j,n = µi for all i ∈ g] =

{
qsc,g,j,ν , if µ = (hc,g,i,j(ν))i∈g,

0, otherwise,

in particular the right-hand side of (7.3) only consists of a single term. If we
restrict to the one-period case d = 1 and the functions {hc,g,i,j}i∈g are non-
decreasing, then the attributed losses (Lc,g,i,j,n)i∈g are comonotonic. If we want
to distribute the one-period loss of a group g = {i1, . . . , il} as uniform as possible
over its members in a comonotone way, then

hc,g,ik,j(ν) = ⌊(ν + k − 1)/l⌋, for all k ∈ {1, . . . , l} and ν ∈ N0, (7.22)

is a possible choice.

Remark 7.14. Suppose that a risk group g has at least two members and that,
for a specific default cause c ∈ {0, . . . , C} and scenario j ∈ J , the individual
Nd
0-valued loss vectors of the obligors in g are given. If all but at most one of these

losses are deterministic, then the losses are independent and the distribution of
the (Nd

0)
g-valued group loss vector and, therefore, the distribution Qs

c,g,j from
(7.3) and (7.20) are uniquely determined. If at least two individual loss vectors
are non-deterministic, then their joint distribution on (Nd

0)
g is not uniquely

determined and can only be computed under additional assumptions. We treat
the case of independent loss vectors in Example 7.15. For d = 1, we treat the
case of comonotonic losses in Example 7.16, and the mixture of independent
and comonotonic losses in Example 7.17. For copula-induced dependence, see
Subsection 6.3. In applications, it remains to decide whether the marginal
distributions of the group loss vector should equal the distributions of the loss
vectors of the individual obligors and whether the additional assumption is a
good approximation of economic reality.

Example 7.15 (Independent losses within a risk group). Given a risk group g ∈ G
with at least two obligors, a scenario j ∈ J and a default cause c ∈ {0, . . . , C},
we can consider independent Nd

0-valued loss vectors (Lc,g,i,j,n)i∈g of the obligors
in g given default of the group, with Lc,g,i,j,n ∼ Qc,g,i,j = (qc,g,i,j,ν)ν∈Nd

0
for every

i ∈ g and n ∈ N. In this case Qc,g,j = (qc,g,j,µ)µ∈(Nd
0)

g is given by

qc,g,j,µ = P[Lc,g,i,j,1 = µi for all i ∈ g] =
∏
i∈g

P[Lc,g,i,j,1 = µi]︸ ︷︷ ︸
= qc,g,i,j,µi

(7.23)

for every µ = (µi)i∈g ∈ (Nd
0)

g. The distribution Qs
c,g,j = (qsc,g,j,ν)ν∈Nd

0
from (7.20)

for the group loss is then the convolution of the Qc,g,i,j with i ∈ g, explicitly

qsc,g,j,ν =
∑

µ=(µi)i∈g∈(Nd
0)

g∑
i∈g µi=ν

∏
i∈g

qc,g,i,j,µi , ν ∈ Nd
0, (7.24)
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see also Subsection 5.1.

Example 7.16 (Comonotonic one-period losses within a risk group). Given a
risk group g ∈ G with at least two obligors, a scenario j ∈ J and a default cause
c ∈ {0, . . . , C}, we can consider comonotonic N0-valued losses (Lc,g,i,j,n)i∈g of the
obligors in g given default of the group, with Lc,g,i,j,n ∼ Qc,g,i,j = (qc,g,i,j,ν)ν∈N0

for every i ∈ g and n ∈ N. Let

Fc,g,i,j(µi) =

µi∑
ν=0

qc,g,i,j,ν , µi ∈ N0,

denote the discrete distribution function of Qc,g,i,j for i ∈ g. In this case the dis-
tribution Qc

c,g,j = (qcc,g,j,µ)µ∈Ng
0
, where the superscript reminds of comonotonicity,

with discrete distribution function

Fc,g,j(µ) =
∑
ν∈Ng

0
ν≤µ

qcc,g,j,ν , µ ∈ Zg,

of the group loss vector is given recursively by

qcc,g,j,µ = min
i∈g

Fc,g,i,j(µi)−max
i∈g

Fc,g,j(µ− ei), µ = (µi)i∈g ∈ Ng
0, (7.25)

where ei = (δi,i′)i′∈g with Kronecker’s delta. Due to comonotonicity there is,
for every ν ∈ N0, at most one µν = (µi,ν)i∈g ∈ Ng

0 with
∑

i∈g µi,ν = ν and
qcc,g,j,µν

> 0. Hence the distribution Qs,c
c,g,j = (qs,cc,g,j,ν)ν∈N0 , determined via (7.3),

is in the comonotonic case given by

qs,cc,g,j,ν =

{
qcc,g,j,µν

if µν exists,

0 otherwise,
ν ∈ N0. (7.26)

The discrete distribution function F s,c
c,g,j corresponding to Qs,c

c,g,j can be cal-
culated recursively as follows: For each i ∈ g let νi,0 ∈ N0 denote the smallest
number with qc,g,i,j,νi,0 > 0. With ν0 :=

∑
i∈g νi,0 define the initial terms by

F s,c
c,g,j(ν) =

{
0 for ν ∈ {0, . . . , ν0 − 1},
mini∈g Fc,g,i,j(νi,0) for ν = ν0.

For the recursion, assume that (νi,n)i∈g ∈ Ng
0 and νn =

∑
i∈g νi,n as well as F s,c

c,g,j

on {0, . . . , νn} are given. If F s,c
c,g,j(νn) = 1, then we can set F s,c

c,g,j(ν) = 1 for all
ν ∈ N with ν > νn and we are done. Otherwise, proceed as follows: Define for
every i ∈ g

νi,n+1 =

{
νi,n if Fc,g,i,j(νi,n) > F s,c

c,g,j(νn),

min{ν ∈ N0 | ν > νi,n, qc,g,i,j,ν > 0} otherwise,

νn+1 =
∑

i∈g νi,n+1, and correspondingly

F s,c
c,g,j(ν) =

{
F s,c
c,g,j(νn) for ν ∈ {νn + 1, . . . , νn+1 − 1},

mini∈g Fc,g,i,j(νi,n+1) for ν = νn+1.
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Example 7.17 (Mixture of independent and comonotonic one-period losses
within a risk group). Given a risk group g ∈ G with at least two obligors, a
scenario j ∈ J and a default cause c ∈ {0, . . . , C}, we can consider a mixture
distribution of independent and comonotonic N0-valued losses (Lc,g,i,j,n)i∈g of the
obligors in g given default of the group. Specifically, choose an αc,g,j ∈ [0, 1] and
define the mixed group loss distribution Qm

c,g,j = (qmc,g,j,µ)µ∈Ng
0
by

qmc,g,j,µ = αc,g,j qc,g,j,µ + (1− αc,g,j)q
c
c,g,j,µ, µ ∈ Ng

0,

with qc,g,j,µ given by (7.23) and qcc,g,j,µ given by (7.25). The distribution of the
sum of all the losses in the group is then

qs,mc,g,j,ν = αc,g,j q
s
c,g,j,ν + (1− αc,g,j)q

s,c
c,g,j,ν , ν ∈ N0,

with qsc,g,j,ν given by (7.24) with d = 1 and qs,cc,g,j,ν given by (7.26).

Remark 7.18 (Obligors with a credit guarantee44). Suppose a bank, a regional
authority or a country, let’s call it obligor a ∈ {1, . . . ,m}, gives a credit guarantee
to all obligors of a group g ⊆ {1, . . . ,m} \ {a} and possibly also issues a bond on
its own. A default of institution a can cause a substantial loss, because all its
credit guarantees become worthless and defaults of obligors in g cause greater
losses. To model this concentration of risk, there are several options:

(a) A rough solution is to take, for every obligor i ∈ g, every risk group h ∈ Gi

to which i belongs, every default cause c ∈ {0, . . . , C} and every scenario
j ∈ J , as loss distribution Qc,h,j a mixture of two distributions, the first
corresponding to the loss given the guarantee for i is in place, and the second
corresponding to the loss given the guarantor a defaulted before or together
with i. The weights for these mixtures have to be chosen appropriately.
Note that this modelling approach can be set up such that the expected
loss is the right one and the computational effort is minor. However, it
can be a (rough) approximation of the loss distribution, because it can
ignore a substantial part of the concentration risk arising from a default of
guarantor a while taking the larger losses of the obligors in g into account
without guarantor a actually defaulting.

(b) We can consider a risk group g(a) = {a} ∪ g consisting of the guarantor a
and all guarantees, because they may all default together. In the simplest
case, the default intensity λg(a) and the susceptibilities of the risk group
g(a) are those of obligor a, who does not appear as a risk group of its own.
Of course, a multivariate distribution Qc,g(a),j on (Nd

0)
g(a) describing the

stochastic loss of all the obligors in g(a) for scenario j ∈ J and default
cause c ∈ {0, . . . , C} is needed. The following practical problems come to
mind:

44 This remark needs an update based on the Master’s thesis [19] of Lukas Fabrykowski.
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• If g is large, think of |g| ≥ 100, then Qc,g(a),j and the corresponding
sum Qs

c,g(a),j from (7.3) are computationally hard to calculate. A
solution might be to make additional assumptions and apply the
extended CreditRisk+ methodology to calculate an approximation of
Qs

c,g(a),j .

• It’s not apparent how to choose the susceptibilities for the risk group
g(a). The default causes for the guarantor a might be disjoint from
the default causes of the obligors in g, for example.

Assumption 7.19 (Distribution of idiosyncratic default numbers). For each
group g ∈ G, the number N0,g of idiosyncratic defaults is, conditioned on J ,
Poisson distributed according to the Poisson intensity λg, the susceptibility w0,g,J

and the matrix entry aj0,0, i.e.,

L(N0,g|J) = Poisson
(
λgw0,g,J a

J
0,0

)
for every g ∈ G. (7.27)

Assumption 7.20 (Conditional independence of idiosyncratic default numbers).
Conditioned on J , the group default numbers (N0,g)g∈G due to idiosyncratic
defaults are independent from one another and everything else,45 in particular

P[N0,g = n0,g for all g ∈ G |J ] =
∏
g∈G

P[N0,g = n0,g |J ]

=
∏
g∈G

e−λgw0,g,Ja
J
0,0

(λgw0,g,J a
J
0,0)

n0,g

n0,g!

for all n0,g ∈ N0, where we used (7.27) for the second equality.

Assumption 7.21 (Structure of default cause intensities). The default cause
intensities Λ1, . . . ,ΛC are expressed in terms of the random matrix AJ =∑

j∈J Aj1{J=j} of size (C + 1) × (K + 1) and the non-negative risk factors
R1, . . . , RK by

Λc = aJc,0 +

K∑
k=1

aJc,kRk, c ∈ {1, . . . , C}. (7.28)

Remark 7.22 (Lower bound for default cause intensity). The scenario-dependent
but otherwise constant term aJc,0 ≥ 0 in (7.28) is added so that a strictly positive
lower bound for the default cause intensity Λc can be put into the model in
addition to mathematically convenient distributions (like gamma distributions)
for the risk factors R1, . . . , RK .

Remark 7.23 (Constant risk factor R0). For notational convenience, we will
sometimes use a constant ‘risk factor’ R0 ≡ 1 and a scenario-dependent default

45 This means the random loss vectors in Assumption 7.11, the non-idiosyncratic default
numbers (Nc,g)c∈{1,...,C},g∈G in Assumption 7.25 and the risk factors R1, . . . , RK in Assumption
7.26 below.
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cause intensity Λ0 = aJ0,0 for idiosyncratic risk, see (7.1), to write (7.28) in a more
compact form or in matrix notation as

Λ = AJR (7.29)

with column random vectors Λ = (Λ0, . . . ,ΛC)
T and R = (R0, . . . , RK)T.

Assumption 7.24 (Conditional distribution of non-idiosyncratic default num-
bers). For every default cause c ∈ {1, . . . , C} and every group g ∈ G, the
non-idiosyncratic default number Nc,g is, conditioned on J,R1, . . . , RK , Poisson
distributed with parameter given as product of the group default intensity λg, the
susceptibility wc,g,J , and the default cause intensity Λc, this means

P[Nc,g = n|J,R1, . . . , RK ]
a.s.
= P[Nc,g = n|J,Λc]

a.s.
= e−λgwc,g,JΛc

(λgwc,g,JΛc)
n

n!

(7.30)

for all n ∈ N0, i.e.,

L(Nc,g|J,R1, . . . , RK)
a.s.
= L(Nc,g|J,Λc)

a.s.
= Poisson(λgwc,g,JΛc) . (7.31)

Assumption 7.25 (Conditional independence of non-idiosyncratic default num-
bers). Conditionally on J,R1, . . . , RK , the family{

Nc,g

∣∣ c ∈ {1, . . . , C}, g ∈ G
}

of default numbers is independent, hence

P[Nc,g = nc,g for c ∈ {1, . . . , C} and g ∈ G|J,R1, . . . , RK ]

a.s.
=

C∏
c=1

∏
g∈G

P[Nc,g = nc,g |J,R1, . . . , RK ]

a.s.
=

C∏
c=1

∏
g∈G

e−λgwc,g,JΛc
(λgwc,g,JΛc)

nc,g

nc,g!
by (7.30)

for all nc,g ∈ N0.

Assumption 7.26 (Independence of risk factors and scenario). The non-negative
risk factors R1, . . . , RK and the scenario variable J are stochastically independent
random variables.

The independence of J and the risk factors R1, . . . , RK is used for the al-
gorithm in (7.76) below. It is also useful for calculating the moments and the
covariances of the default cause intensities, as the following remark shows.

Remark 7.27 (Expectation, variance and covariance of default cause intensities).
If R1, . . . , RK ∈ L1(P) and Assumptions 7.21 and 7.26 hold, then

E[Λc |J ]
(7.28)
= aJc,0 +

K∑
k=1

aJc,k E[Rk] (7.32)
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hence

E[Λc] = E
[
aJc,0

]
+

K∑
k=1

E
[
aJc,k

]
E[Rk] (7.33)

for every c ∈ {1, . . . , C}. If, in addition, R1, . . . , RK ∈ L2(P), then, for all
c, d ∈ {1, . . . , C},

Cov(Λc,Λd |J)
(7.28)
=

K∑
k,l=1

aJc,ka
J
d,l Cov(Rk, Rl)︸ ︷︷ ︸

= δk,l Var(Rk)

=

K∑
k=1

aJc,ka
J
d,k Var(Rk) , (7.34)

hence, by (3.65) from Lemma 3.50, it follows from (7.34) and (7.32) that

Cov(Λc,Λd) = E
[
Cov(Λc,Λd |J)

]
+Cov

(
E[Λc |J ] ,E[Λd |J ]

)
=

K∑
k=1

E
[
aJc,ka

J
d,k

]
Var(Rk) +

K∑
k,l=0

Cov
(
aJc,k, a

J
d,l

)
ek el

(7.35)

with expectations e0 := 1 and ek := E[Rk] for k ∈ {1, . . . ,K}.

Remark 7.28 (Pseudo risk factors). Due to the independence of the risk factors
R1, . . . , RK , see Assumption 7.26, it is not always possible to give them an
economic interpretation. On the other hand, the distribution of the group
losses, see Assumption 7.11, may vary with the default causes and might be
determined by the legal contract. Therefore, it can be difficult to set up a
dependence structure between the default cause intensities Λ1, . . . ,ΛC as in (7.28)
by economic considerations. A solution is the introduction of a random vector
P = (P0, . . . , PK′)T of pseudo risk factors with an economic interpretation. Then
a random matrix A′

J =
∑

j∈J A
′
j1{J=j} of size (C+1)×(K ′+1) with non-negative

entries can be set up by economic considerations such that Λ = A′
JP , where as

before Λ = (Λ0, . . . ,ΛC)
T. The dependence of P0, . . . , PK′ can be specified by a

random matrix ÃJ =
∑

j∈J Ãj1{J=j} of size (K ′+1)× (K+1) with non-negative

entries such that P = ÃJR, where R = (R0, . . . , RK)T is the column vector of
the independent risk factors. Then (7.29) is satisfied for the matrix product

AJ = A′
J ÃJ =

∑
j∈J

A′
jÃj1{J=j}. (7.36)

Of course one has to make sure that the entries of the matrices Aj := A′
jÃj for

j ∈ J satisfy (7.1); this is certainly the case if the corresponding entries of A′
j

and Ãj satisfy (7.1).

Assumption 7.29 (Gamma-distributed risk factors). The risk factors R1, . . . ,
RK are gamma distributed random variables with expectation ek := E[Rk] > 0
and variance σ2k := Var(Rk) > 0, i.e., with shape parameter αk = e2k/σ

2
k and

inverse scale parameter βk = ek/σ
2
k for all k ∈ {1, . . . ,K} by (4.55) and (4.56).
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Assumption 7.30 (Normalization of default causes). We assume that

E
[
w0,g,J a

J
0,0 +

C∑
c=1

wc,g,JΛc

]
= 1 (7.37)

for every group g ∈ G.

Remark 7.31. Similar to Assumption 7.4, the preceding Assumption 7.30 is
useful for the interpretation of the default probability pg and the default intensity
λg for every risk group g ∈ G, but the assumption is not necessary for the
algorithm itself.

Remark 7.32 (Sufficient conditions for Assumption 7.30). If E[Rk] = 1 for every
risk k ∈ {1, . . . ,K} and E[AJ ] is a stochastic matrix, then E[Λc] = 1 by (7.33) for
every default cause c ∈ {1, . . . , C}. If the weights are deterministic, meaning that
they do not depend on the scenario, then due to (7.1), which implies E[aJ0,0] = 1
for the stochastic matrix E[AJ ], and due to Assumption 7.4, the condition (7.37)
is satisfied for every group g ∈ G.

7.4 Covariance Structure of Default Cause Intensities

The following example, which is based on [45, Ex. 3.14], shows that due to the
scenarios we can have negatively correlated default cause intensities and the
correlation can be any value in [−1, 0).

Example 7.33 (Negative correlation of default cause intensities). Let J attain
the values in J = {0, 1} with strictly positive probability. Let R1 and R2 be two
independent and gamma distributed random variables, independent of J , with
E[R1] = E[R2] = 1. Then Assumptions 7.26 and 7.29 are satisfied. Define

AJ =

1 0 0

0 J
E[J ] 0

0 0 1−J
1−E[J ]

 .

Then Λ1 = JR1/E[J ] and Λ2 = (1− J)R2/E[1− J ] by (7.28). Since E[AJ ] = I3
is a stochastic matrix, E[Λ1] = E[Λ2] = 1. If the weights do not depend on the
scenario j ∈ {0, 1} and satisfy Assumption 7.4, then Assumption 7.30 is satisfied,
see Remark 7.32. Since the product Λ1Λ2 contains the factor J(1− J) ≡ 0, we
get Λ1Λ2 ≡ 0 and

Cov(Λ1,Λ2) = −E[Λ1]E[Λ2] = −1.

By direct computation using E[R2
k] = Var(Rk) + 1 for k ∈ {1, 2} or by (7.35),

Var(Λ1) =
Var(R1) + 1

E[J ]
− 1 and Var(Λ2) =

Var(R2) + 1

1− E[J ]
− 1.

The correlation is therefore given by

Corr(Λ1,Λ2) =
Cov(Λ1,Λ2)√
Var(Λ1)Var(Λ2)

= −
√

E[J ]E[1− J ]√
Var(R1) + 1− E[J ]

√
Var(R2) + E[J ]

,
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which attains every value in [−1, 0) if suitable values for Var(R1) and Var(R2) in
[0,∞) are chosen. For the symmetric case E[J ] = 1/2 and Var(R1) = Var(R2),
this simplifies to

Corr(Λ1,Λ2) = − 1

1 + 2Var(R1)
.

Example 7.33 raises the question, whether every covariance structure of the
default cause intensities is possible. We first characterize covariance matrices and
collect some of their properties.

Definition 7.34. A quadratic matrix Σ of size d with real entries is called positive
semidefinite, if Σ is symmetric and vTΣv ≥ 0 for all v ∈ Rd.

Remark 7.35. If a symmetric matrix Σ with real entries is not positive semidef-
inite, the R-command nearPD can be used to calculate a corresponding approxi-
mation.

Lemma 7.36. (a) Let X be a square-integrable Rd-valued random vector.
Then its covariance matrix Cov(X,X) is positive semidefinite.

(b) Let Σ be a positive semidefinite d× d matrix with real entries. Then there
exists a square-integrable Rd-valued random vector with Cov(X,X) = Σ.

(c) Let X = (X1, . . . , Xd)
T be a square-integrable [0,∞)d-valued random vector.

Then Cov(Xi, Xj) ≥ −E[Xi]E[Xj ] for all i, j ∈ {1, . . . , d} with i ̸= j.

Let Σ = (Σi,j)i,j∈{1,...,d} be a positive semidefinite matrix with real entries.

(d) For all i, j ∈ {1, . . . , d},

Σi,i ≥ 0 and |Σi,j | ≤
√

Σi,iΣj,j .

(e) Let A be a matrix of size d × k with real entries. Then Σ′ := ATΣA is
positive semidefinite.

(f) Assume that Σ satisfies Σ = AΣ′AT with a matrix A of size d× k and a
quadratic matrix Σ′ of size k, both with real entries. If ATA is invertible,
then Σ′ is positive semidefinite.

Remark 7.37. To see that the invertibility of ATA in Lemma 7.36(f) is necessary,
let all entries of A be zero. Then Σ = AΣ′AT is the zero matrix and gives no
information about the entries of Σ′, in particular Σ′ = −Ik is possible.

Proof of Lemma 7.36. (a) Note that Cov(X,X) is symmetric and of size d with
real entries. Consider X and v ∈ Rd as column vectors. Then

vTCov(X,X) v = vT E
[
(X − E[X])(X − E[X])T

]
v

= E
[
vT(X − E[X]) (X − E[X])Tv︸ ︷︷ ︸

= vT(X−E[X])

]
≥ 0.
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(b) Let Σ = LLT be the Cholesky decomposition of Σ, where L is a lower
triangular matrix of size d with real entries. Let Y = (Y1, . . . , Yd)

T be any square-
integrable random vector with independent components satisfying Var(Yi) = 1 for
all i ∈ {1, . . . , d} (like Y having a d-dimensional standard normal distribution).
Then Cov(Y, Y ) = Id is the identity matrix of size d and X := LY satisfies

Cov(X,X) = E
[
(LY − E[LY ])(LY − E[LY ])T

]
= LE

[
(Y − E[Y ])(Y − E[Y ])T

]
LT = LCov(Y, Y )LT = Σ.

(c) Cov(Xi, Xj) = E[XiXj ]−E[Xi]E[Xj ] ≥ −E[Xi]E[Xj ] because XiXj ≥ 0.
(d) Let X = (X1, . . . , Xd) be a random vector according to (b). Then

Σi,i = Var(Xi) ≥ 0 and, by the Cauchy–Schwarz inequality,

|Σi,j | =
∣∣Cov(Xi, Xj)

∣∣ = ∣∣E[(Xi − E[Xi])(Xj − E[Xj ])
]∣∣

≤
√
E[(Xi − E[Xi])2]

√
E[(Xj − E[Xj ])2] =

√
Σi,iΣj,j .

(e) Since ΣT = Σ, the matrix Σ′ is symmetric, too. Furthermore, vTΣ′v =
(Av)TΣ(Av) ≥ 0 for every v ∈ Rk. Hence Σ′ is positive semidefinite.

(f) Note that AΣ′AT = Σ implies ATAΣ′ATA = ATΣA. Since ATA is invertible
with symmetric inverse, this implies Σ′ = BTΣB with B := A(ATA)−1. Hence (f)
follows from part (e).

Remark 7.38. While the Cholesky decomposition used in the proof of Lemma
7.36(b) always gives a lower triangular matrix L with non-negative diagonal
entries, the example (

1 −1
−1 2

)
=

(
1 0
−1 1

)(
1 −1
0 1

)
shows that L can have negative off-diagonal entries. Hence, if Y has independent
gamma distributed components, the X = LY as is the proof of Lemma 7.36(b)
cannot always be used to model default cause intensities, because the components
of X might attain negative values. Therefore, we need a more sophisticated
approach.

Theorem 7.39. 46 Let Σ = (Σi,j)i,j∈{1,...,d} be a positive semidefinite matrix.
Then there exist an integer k ∈ {1, . . . , d} and independent random variables
J2, . . . , Jd, X1,1, . . . , X1,k, where J2, . . . , Jd take values in {0, 1} and X1,1, . . . ,
X1,k are non-negative and square-integrable, and random matrices AJ2 , . . . , AJd

with non-negative entries, where AJi is σ(Ji)-measurable for every i ∈ {2, . . . , d},
such that their sizes are non-decreasing and compatible such that the product
Xd := AJd . . . AJ2X1 with X1 := (X1,1, . . . , X1,k)

T is well defined and satisfies
Cov(Xd, Xd) = Σ. In addition, E[AJ2 ] , . . . ,E[AJd ] are sub-stochastic matrices
(meaning that the entries in every row sum to at most 1).

46 This theorem is true, but the proof given here is probably incomplete. Time-permitting,
the full proof will be copied into these lecture notes.
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Remark 7.40 (Non-uniqueness of the representation). Without further condi-
tions, the representation in Theorem 7.39 is not unique. Already for Σ = Id,
where Id denotes the identity matrix of size d ≥ 2, there exist several solutions:
Take k = d and deterministic AJl = Pil,jl with il, jl ∈ {1, . . . , d} for l ∈ {2, . . . , d},
where Pi,j denotes the matrix permuting rows i and j, with Pi,j = Id if i = j.

Proof of Theorem 7.39. We give a constructive, inductive proof of Theorem 7.39,
where in each induction step several cases have to be considered.

Case 1: If d = 1, then take k = 1 and any non-negative random variable X1,1

with Var(X1,1) = Σ.
Case 2: If d ≥ 2 and Σ is a diagonal matrix with all diagonal elements

different from zero, take k = d and independent and non-negative X1,1, . . . , Xd,d

with Var(Xi,i) = Σi,i for all i ∈ {1, . . . , d}. Furthermore, take degenerate random
variables J2 = · · · = Jd ≡ 0 and deterministic AJ2 = · · · = AJd = Id.

Case 3: Suppose there exist different i, j ∈ {1, . . . , d} with Σi,i ≥ Σj,j and
|Σi,j | =

√
Σi,iΣj,j (according the Lemma 7.36(d) this certainly happens if Σ has

a diagonal entry which is zero). Define the permutation matrix

P =

{
Pd−1,iPd,j if i ̸= d and j ̸= d− 1,

Pd−1,dPd,iPd−1,j if i = d or j = d− 1,

which moves row i to row d− 1 and row j to row d, taking care of special cases.
Then P−1 = PT, and Σ′ := PΣPT satisfies Σ = PTΣ′P as well as Σ′

d−1,d−1 ≥ Σ′
d,d

and Σ′
d−1,d = fΣ′

d−1,d−1 with factor

f :=


0 if Σ′

d−1,d−1 = 0,√
Σ′
d,d/Σ

′
d−1,d−1 if Σ′

d−1,d−1 > 0 and Σ′
d−1,d ≥ 0,

−
√
Σ′
d,d/Σ

′
d−1,d−1 if Σ′

d−1,d−1 > 0 and Σ′
d−1,d < 0.

Note that f ∈ [−1, 1] and Σ′
d,d = f2Σ′

d−1,d−1. We can partition Σ′ as

Σ′ =

(
Σ′′ v
vT Σ′

d,d

)
with column vector v = (v1, . . . , vd−2,Σ

′
d−1,d)

T. Let u = (u1, . . . , ud−2,Σ
′
d−1,d−1)

T

denote the last column vector of Σ′′. If d = 2, then v = fu. To prove by
contradiction that v = fu also for d ≥ 3, assume that there exists an i ∈
{1, . . . , d − 2} with vi ̸= fui. Define x = −(Σ′

i,i + 1)/(2fui − 2vi) and z =

(0, . . . , 0, 1, 0, . . . , 0, fx,−x)T ∈ Rd with the 1 in position i. Then

(Σ′z)j =


Σ′
i,j + (fuj − vj)x for j ∈ {1, . . . , d− 2},

ui for j = d− 1,

vi for j = d,

and zTΣ′z = Σ′
i,i + 2(fui − vi)x = −1, which is impossible for the positive

semidefinite matrix Σ′. Due to v = fu and Σ′
d,d = f2Σ′

d−1,d−1, it follows that

Σ′ =

(
Id−1

wT

)
Σ′′ (Id−1 w

)
,
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where w = (0, . . . , 0, f)T ∈ Rd−1.
Case 3(a): Suppose that f ≥ 0. Define Jd ≡ 0 and note that

Σ = AJdΣ
′′AT

Jd
with AJd := PT

(
Id−1

wT

)
.

Furthermore, note that AJd is a deterministic sub-stochastic matrix of size
d× (d− 1), which is stochastic if and only if f = 1. To verify that Σ′′ is positive
semidefinite, note that Σ′′ is symmetric and that

AT
Jd
AJd =

(
Id−1 w

)
PPT︸ ︷︷ ︸
= Id

(
Id−1

wT

)
=

(
Id−2 0
0 1 + f2

)
,

hence AT
Jd
AJd is an invertible diagonal matrix. Hence, Σ′′ is positive semidefinite

by Lemma 7.36(f) and the problem is reduced by one dimension and one risk
factor.

Case 3(b): Suppose that f < 0.
Case 4: Take an i ∈ {1, . . . , d} in the following order of priorities:

(a) All off–diagonal entries of Σ in row i are zero.

(b) All entries of Σ in row i are non-negative and the diagonal entry of every
column j ∈ {1, . . . , d} \ {i} with Σi,j > 0 satisfies Σj,j ≤ Σi,i.

(c) For every j ∈ {1, . . . , d} \ {i} the diagonal entry satisfies Σj,j ≤ Σi,i.

By symmetry of Σ, the same is true for column i. We use the permutation
matrix P = Pd,i to exchange rows d and i (hence P−1 = PT = P ) and represent
Σ = PΣ′P with Σ′ := PΣP . Note that P is a stochastic matrix and that Σ′ is
positive semidefinite by Lemma 7.36(f). Now the last row and the last column of
Σ′ have the property (a), (b) or (c), respectively. We write

Σ′ =

(
B w
wT c

)
=

(
B cu− cv

cuT − cvT c

)
with real square matrix B of size d− 1, constant c ∈ (0,∞), and column vector
w = (w1, . . . , wd−1)

T ∈ Rd−1 decomposed componentwise into u = max{w/c, 0}
and v = max{0,−w/c} in [0,∞)d−1. The matrix B is positive semidefinite by
Lemma 7.36(e).

Case 4(a) Here w = 0 and Σ′ has block-diagonal form, hence the problem
can be reduced by one dimension. Applying the theorem to the matrix B of size
d− 1 yields k′ ∈ {1, . . . , d− 1}, independent random variables J2, . . . , Jd−1 and
X1,1, . . . , X1,k′ , and matrices A′

J2
, . . . , A′

Jd−1
. Define Jd ≡ 0 and k = k′ + 1 as

well as AJd = P , and take any independent, non-negative random variable X1,k

with Var(X1,k) = c. Furthermore, define

AJl =

(
A′

Jl
0

0 1

)
, l ∈ {2, . . . , d− 1}. (7.38)
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Cases 4(b) and 4(c): Define the diagonal matrix D̃ = diag(D̃1,1, . . . , D̃d−1,d−1)
with D̃j,j = 1− uj for every j ∈ {1, . . . , d− 1}. Note that |wj | ≤

√
cΣj,j ≤ c by

Lemma 7.36(d) and the choice of i satisfying (b) or (c), respectively. Since the
case of equality without the absolute value was treated already, we have that
uj ∈ [0, 1) for every j ∈ {1, . . . , d− 1}, hence D̃ is invertible. Define

A =

(
D̃ u
0 1

)
and note that A−1 =

(
D̃−1 −D̃−1u
0 1

)
and that A is a stochastic matrix. Hence we have the representation Σ′ = AΣ′′AT

with

Σ′′ = A−1Σ′(A−1)T

=

(
D̃−1 −D̃−1u
0 1

)(
B cu− cv

cuT − cvT c

)(
D̃−1 0

−uTD̃−1 1

)
=

(
D̃−1(B − cuuT + cuvT) −cD̃−1v

cuT − cvT c

)(
D̃−1 0

−uTD̃−1 1

)
.

Defining B̃ := D̃−1(B − cuuT + cuvT + cvuT)D̃−1 and using that D̃v = v, hence
D̃−1v = v, it follows that

Σ′′ =

(
B̃ −cv

−cvT c

)
.

By Lemma 7.36(f), the matrix Σ′′ is positive semidefinite. By Lemma 7.36(e),
the matrix B̃ is positive semidefinite, too.

Case 4(b): Here v = 0 and Σ′′ has block-diagonal form, hence the problem
can be reduced by one dimension. Applying the theorem to the matrix B̃ of
size d− 1 yields k′ ∈ {1, . . . , d− 1}, independent random variables J2, . . . , Jd−1

and X1,1, . . . , X1,k′ , and matrices A′
J2
, . . . , A′

Jd−1
. Define Jd ≡ 0 and k = k′ + 1

as well as the deterministic AJd = PA, and take any independent, non-negative
random variable X1,k with Var(X1,k) = c. Furthermore, define by AJ2 , . . . , AJd−1

by (7.38).
Case 4(c): It remains to treat case (c) by introducing scenarios. Let Y =

(Y1, . . . , Yd) be a square-integrable random vector and define ed = E[Yd]. Let J
be {0, 1}-valued with p := P[J = 1] = c/(c+ e2d) ∈ (0, 1). Consider

AJ =

(
C̃ fJv
0 f(1− J)

)
,

where C̃ denotes any invertible matrix of size d− 1 with non-negative entries and
f := 1/(1− p) = (c+ e2d)/e

2
d so that E[f(1− J)] = 1. For

Σ′′′ :=

(
C̃−1(B̃ − cvvT)(C̃T)−1 0

0 0

)
,
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which is symmetric because (CT)−1 = (C−1)T, it follows that

AJΣ
′′′AT

J =

(
C̃ fJv
0 f(1− J)

)(
C̃−1(B̃ − cvvT)(C̃T)−1 0

0 0

)
AT

J

=

(
(B̃ − cvvT)(C̃T)−1 0

0 0

)(
C̃T 0
fJvT f(1− J)

)
=

(
B̃ − cvvT 0

0 0

)
.

Then

Cov(AJ E[Y ] , AJ E[Y ]) = Cov

((
v
−1

)
J,

(
v
−1

)
J

)
e2df

2

=

(
v
−1

)(
vT −1

)
e2df

2Var(J) =

(
cvvT −cv
−cvT c

)
,

because Var(J) = p(1− p) and e2df
2Var(J) = e2dfp = c. Therefore,

E
[
AJΣ

′′′AT
J

]
+Cov

(
AJ E[Y ] , AJ E[Y ]

)
= Σ′′.

Note that

E[AJ ] =

(
C̃ fpv
0 f(1− p)

)
=

(
C̃ cv/e2d
0 1

)
,

which can be turned into an invertible stochastic matrix by a proper choice of C̃
if all components of cv/e2d are less than 1.

Since Σ′′ is positive semidefinite and

(
Id−1 v

)( B̃ −cv
−cvT c

)
︸ ︷︷ ︸

=Σ′′

(
Id−1

vT

)
=

(
B̃ − cvvT 0

)(Id−1

vT

)
= B̃ − cvvT,

it follows from Lemma 7.36(e) and (f), that the matrices B̃ − cvvT and Σ̃ :=
C̃−1(B̃ − cvvT)(C̃T)−1 of size d − 1 are also positive semidefinite, hence we
can reduce the problem by one dimension. Applying the theorem to Σ̃ yields
k′ ∈ {1, . . . , d−1}, independent random variables J2, . . . , Jd−1 and X1,1, . . . , X1,k′ ,
and matrices A′

J2
, . . . , A′

Jd−1
. Define Jd = J and k = k′+1 as well as the random

matrix AJd = PAAJ , and take any independent, non-negative random variable
X1,k with E[X1,k] = ed and Var(X1,k) = c. Furthermore, define by AJ2 , . . . , AJd−1

by (7.38).

7.5 Expectations, Variances and Covariances for Defaults

To illustrate the above assumptions, we calculate the expectations, variances and
covariances of various default numbers and losses. The first three subsections
apply Subsection 3.6.1 to the current model. Note that the results of Subsections
7.5.1, 7.5.2 and 7.5.3 are actually special cases of the results of Subsection 7.5.4,
see Remark 7.46.
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7.5.1 Expectation of Default Numbers

Let us start with the number of defaults

Ni =
∑
g∈Gi

Ng =
∑
g∈Gi

C∑
c=0

Nc,g (7.39)

of obligor i ∈ {1, . . . ,m}. First note that by the conditional independence
specified in Assumptions 7.20 and 7.25, as well as by the conditional Poisson
distribution, see (7.27) and (7.31) in Assumptions 7.19 and 7.24, respectively, it
follows with the Poisson summation property (3.5) that

L(Ni|J,R1, . . . , RK)
a.s.
= L

( ∑
g∈Gi

(
N0,g +

C∑
c=1

Nc,g

)∣∣∣∣J,R1, . . . , RK

)
a.s.
= Poisson(Λi) .

(7.40)

where

Λi :=
∑
g∈Gi

λg

(
w0,g,J a

J
0,0 +

C∑
c=1

wc,g,JΛc

)
(7.41)

is the conditional default intensity of obligor i, hence

E[Ni |J,R1, . . . , RK ] = Λi (7.42)

by (3.3). By inserting a conditional expectation given J,R1, . . . , RK , using (7.42)
and the normalization (7.37) given in Assumption 7.30,

E[Ni] = E[Λi] =
∑
g∈Gi

λg E
[
w0,g,J a

J
0,0 +

C∑
c=1

wc,g,JΛc

]
=

∑
g∈Gi

λg. (7.43)

Therefore, the expected number of defaults of obligor i is the sum of the default
intensities of the risk groups, to which i belongs.

Remark 7.41 (Defaults with zero loss). Note that (7.43) gives the expected
number of defaults of obligor i ∈ {1, . . . ,m}, but not every default has to lead to
a credit loss, due to a sufficiently high collateral or deductable (in case of credit
insurance). A corresponding remark applies to the results of Subsections 7.5.2
and 7.5.3 below.

Example 7.42. Consider a credit risk model with m = 2 obligors and the three
risk groups {1}, {2} and {1, 2}. Assume that the one-year default intensities
λi = E[Ni] > 0 for obligors i ∈ {1, 2} are known. To calibrate the model, we
can take any λg ∈ [0,min{λ1, λ2}] for g = {1, 2} and define for the remaining
one-obligor risk groups λ{i} = λi − λg, where i ∈ {1, 2}. Then (7.43) is satisfied,
which shows that default intensities of risk groups with several obligors can in
general not be derived from individual default intensities.
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Remark 7.43. Suppose that in a credit risk model with m ≥ 2 obligors, the
individual default intensities λi = E[Ni] of all obligors i ∈ {1, . . . ,m} and the
default intensities λg of all groups g ∈ G with at least two obligors were derived
by statistical estimates and expert opinions. Assuming that all one-obligor risk
groups {i} with i ∈ {1, . . . ,m} belong to G, we can then define

λ{i} = λi −
∑
g∈Gi
g ̸={i}

λg, i ∈ {1, . . . ,m},

provided that this results in λ{i} ≥ 0 for every i ∈ {1, . . . ,m}. Otherwise the
statistical estimates and expert opinions are inconsistent.

7.5.2 Variance of Default Numbers

To calculate the variance of the number Ni of defaults of obligor i ∈ {1, . . . ,m},
first note that Var(Ni |J,R1, . . . , RK)

a.s.
= Λi by (7.40), (3.3) and (3.4). Using

(3.66) from Lemma 3.50 and (7.42), we obtain

Var(Ni) = E
[
Var(Ni |J,R1, . . . , RK)︸ ︷︷ ︸

a.s.
= Λi

]
+Var

(
E[Ni |J,R1, . . . , RK ]︸ ︷︷ ︸

a.s.
= Λi

)
, (7.44)

which corresponds to (3.67). Using (7.43) and again (3.66) from Lemma 3.50,
equation (7.44) turns into

Var(Ni) = E[Ni] + E
[
Var(Λi |J)

]
+Var

(
E[Λi |J ]

)
. (7.45)

Note that Var(Ni) ≥ E[Ni], because variances are non-negative. Using Assump-
tion 7.21 about the structure of the default cause intensities, it follows from (7.41)
that

Λi =
∑
g∈Gi

λg

( C∑
c=0

wc,g,J a
J
c,0 +

K∑
k=1

Rk

C∑
c=1

wc,g,J a
J
c,k

)
.

Using Assumption 7.26 about the independence of J,R1, . . . , RK ,

E[Λi |J ] =
∑
g∈Gi

λg

( C∑
c=0

wc,g,J a
J
c,0 +

K∑
k=1

E[Rk]
C∑
c=1

wc,g,J a
J
c,k

)
(7.46)

and

Var(Λi |J) =
K∑
k=1

Var(Rk)

(∑
g∈Gi

λg

C∑
c=1

wc,g,J a
J
c,k

)2

, (7.47)

where E[Rk] and Var(Rk) are specified by Assumption 7.29.
If there is just one scenario, then J and therefore E[Λi |J ] are constant, hence

the last term Var(E[Λi |J ]) in (7.45) is zero and Var(Λi |J) from (7.47) coincides
with the term E[Var(Λi |J)] in (7.45).
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For the general case, note that Var(E[Λi |J ]) = E
[(
E[Λi |J ]

)2]− (E[Λi])
2 with

E[Λi] given by (7.43) and

E
[(
E[Λi |J ]

)2]
=

∑
j∈J

(∑
g∈Gi

λg

( C∑
c=0

wc,g,j a
j
c,0 +

K∑
k=1

E[Rk]
C∑
c=1

wc,g,j a
j
c,k

))2

P[J = j] .

Taking the expectation of (7.47) shows that

E
[
Var(Λi |J)

]
=

K∑
k=1

Var(Rk)
∑
j∈J

(∑
g∈Gi

λg

C∑
c=1

wc,g,j a
j
c,k

)2

P[J = j] .

7.5.3 Covariances of Default Numbers

For obligors i, i′ ∈ {1, . . . ,m} with i ≠ i′ we can calculate the covariance of Ni

and Ni′ . By (3.65) from Lemma 3.50,

Cov(Ni, Ni′) = Cov
(
E[Ni |J ] ,E[Ni′ |J ]

)
+ E

[
Cov(Ni, Ni′ |J)

]
(7.48)

Using (7.39), the linearity of conditional covariance in both arguments, Assump-
tion 7.20 and (3.65) from Lemma 3.50, we obtain

Cov(Ni, Ni′ |J) =
∑

g∈Gi∩Gl

Var(N0,g |J)︸ ︷︷ ︸
=λgw0,g,Ja

J
0,0 by Assumption 7.19 and (3.4)

+
∑
g∈Gi

∑
h∈Gi′

C∑
c,d=1

(
E
[
Cov(Nc,g, Nd,h |J,R1, . . . , RK)︸ ︷︷ ︸
a.s.
= Var(Nc,g |J,Λc)

a.s.
= λgwc,g,JΛc for (c,g)=(d,h)

∣∣J]
+Cov

(
E[Nc,g |J,R1, . . . , RK ]︸ ︷︷ ︸

a.s.
= λgwc,g,JΛc

,E[Nd,h |J,R1, . . . , RK ]︸ ︷︷ ︸
a.s.
= λhwd,h,JΛd

∣∣J)),
where we used Assumption 7.24, (3.3) and (3.4) to calculate the conditional
expectations and the conditional variance. The conditional covariance of Nc,g and
Nd,h given J,R1, . . . , RK vanishes if (g, k) ̸= (h, l) due to conditional independence
formulated in Assumption 7.25. Therefore,

Cov(Ni, Ni′ |J) =
∑

g∈Gi∩Gi′

λg

(
w0,g,J a

J
0,0 +

C∑
c=1

wc,g,J E[Λc |J ]︸ ︷︷ ︸
E[ · ] = 1 by (7.37)

)

+
∑
g∈Gi

λg
∑
h∈Gi′

λh

C∑
c,d=1

wc,g,Jwd,h,J Cov(Λc,Λd |J) ,

(7.49)
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where the remaining covariance is given by (7.34). Substituting (7.34) into (7.49),
and the result into (7.48) yields

Cov(Ni, Ni′) = Cov(E[Ni |J ] ,E[Ni′ |J ]) +
∑

g∈Gi∩Gi′

λg

+
∑
g∈Gi

λg
∑
h∈Gi′

λh

K∑
k=1

Var(Rk)
C∑

c,d=1

E
[
wc,g,Jwd,h,J a

J
c,ka

J
d,k

]
,

(7.50)

and it follows from (7.42) and (7.46) that

E[Ni |J ] = E[Λi |J ] =
∑
g∈Gi

λg

( C∑
c=0

wc,g,J a
J
c,0 +

K∑
k=1

E[Rk]
C∑
c=1

wc,g,J a
J
c,k

)

and similarly for E[Ni′ |J ].
If there is just one scenario, then E[Ni |J ] and E[Ni′ |J ] are deterministic

and the covariance in (7.50) vanishes. Furthermore, there is no need to take the
expectation on the right hand side of (7.50) and (omitting the J) we obtain

Cov(Ni, Ni′) =
∑

g∈Gi∩Gi′

λg

+
K∑
k=1

Var(Rk)

(∑
g∈Gi

λg

C∑
c=1

wc,gac,k

)( ∑
h∈Gi′

λh

C∑
d=1

wd,had,k

)
.

(7.51)

Remark 7.44. In the classical CreditRisk+ model (cf. Remark 7.6) with only
one-element risk groups, the expectation in (7.43), the variance from Subsection
7.5.2, and the covariance given in (7.51) simplify to E[Ni] = λi,

Var(Ni) = λi + λ2i

K∑
k=1

w2
k,iVar(Rk)

and

Cov(Ni, Ni′) = λiλj

K∑
k=1

wk,iwk,i′ Var(Rk)

for all i, i′ ∈ {1, . . . ,m} with i ̸= i′, where we used the abbreviations λi := λ{i}
and wk,i := wk,{i} and corresponding ones for the index i′. Note that in the
extended version, as shown by (7.50), contributions to the covariance can also
come from the risk groups in Gi ∩Gi′ and from the scenarios
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7.5.4 Default Losses

47 In this subsection, we assume that every Nd
0-valued stochastic loss vector Lc,g,i,j,1

attributed to obligor i ∈ g of risk group g ∈ G in scenario j ∈ J due to default
cause c ∈ {0, . . . , C}, as introduced in Subsection 7.2.4, satisfies E[∥Lc,g,i,j,1∥] <∞
and, when calculating variances and covariances, E[∥Lc,g,i,j,1∥2] <∞.

Let us start with the calculation of the conditional expected loss vector
attributed to obligor i ∈ {1, . . . ,m} given the scenario J and the risk factors
R1, . . . , RK .

Li =
C∑
c=0

∑
g∈Gi

Lc,g,i,J

By (7.16) and (7.18),

E[Li |J,R1, . . . , RK ]
a.s.
=

∑
g∈Gi

(
E[L0,g,i,J |J ] +

C∑
c=1

E[Lc,g,i,J |J,R1, . . . , RK ]

)
,

(7.52)
where we used Assumptions 7.11, 7.20, and (7.30) to simplify the conditional
expectations. By Assumptions 7.11 and 7.19, the loss L0,g,i,J defined in (7.15)
has a compound Poisson distribution and (4.106) implies that

E[L0,g,i,J |J ] = E[N0,g,J |J ]E[L0,g,i,J,1 |J ] . (7.53)

By Assumptions 7.11 and 7.24, the loss Lg,i,k due to risk factor k ∈ {1, . . . ,K}
has a conditional compound Poisson distribution given Λk, hence by (4.104)

E[Lg,i,k |Λk ]
a.s.
= λgwg,kΛk E[Lg,i,k,1] . (7.54)

Substitution of (7.53) and (7.54) into (7.52) yields

E[Li |Λ1, . . . ,ΛK ]
a.s.
=

∑
g∈Gi

λg

(
wg,0 E[Lg,i,0,1] +

K∑
k=1

wg,kΛk E[Lg,i,k,1]

)
. (7.55)

Since E[Λk] = 1 by Assumption 7.29, we obtain

E[Li] =
∑
g∈Gi

λg

K∑
k=0

wg,k E[Lg,i,k,1] . (7.56)

Using (7.9) and (7.20), we get for the expected credit loss in the entire portfolio

E[L] =
m∑
i=1

E[Li] =
∑
g∈G

λg

K∑
k=0

wg,k E[Lg,k,1]︸ ︷︷ ︸
=
∑

ν∈N νqsg,k,ν

. (7.57)

47 This section has to be adapted to the new notation and the generalized setting.
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Due to (7.2), the sums over the risks k ∈ {0, . . . ,K} in (7.56) and (7.57) are
actually convex combinations.

The next step is to calculate the conditional covariance of the losses due to
obligors i, j ∈ {1, . . . ,m} given the risk factors Λ1, . . . ,ΛK . Considering i = j,
this calculation will give the conditional variance. We first rewrite Li and Lj

using (7.16) and (7.18). We then note that, conditioned on the risk factors
Λ1, . . . ,ΛK , the family of random vectors

{
(Lg,i′,k)i′∈g | g ∈ G, k ∈ {0, . . . ,K}

}
is independent by Assumptions 7.11, 7.20, and 7.25, hence

Cov(Li, Lj |Λ1, . . . ,ΛK)

a.s.
=

∑
g∈Gi

∑
h∈Gj

K∑
k,l=0

Cov(Lg,i,k, Lh,j,l |Λ1, . . . ,ΛK)

a.s.
=

∑
g∈Gi∩Gj

(
Cov(Lg,i,0, Lg,j,0) +

K∑
k=1

Cov(Lg,i,k, Lg,j,k |Λk)

)
,

(7.58)

where we used Assumptions 7.11, 7.20 and (7.30) to simplify the conditional
covariances. By Assumptions 7.11 and 7.19, the loss vector (Lg,i,0, Lg,j,0) with
components defined in (7.15) has a compound Poisson distribution and (4.107)
implies that

Cov(Lg,i,0, Lg,j,0) = λgwg,0 E[Lg,i,0,1Lg,j,0,1] . (7.59)

By Assumptions 7.11 and 7.24, the loss vector (Lg,i,k, Lg,j,k) due to risk factor
k ∈ {1, . . . ,K} has a conditional compound Poisson distribution given Λk, hence
by (4.105)

Cov(Lg,i,k, Lg,j,k |Λk)
a.s.
= λgwg,kΛk E[Lg,i,k,1Lg,j,k,1] . (7.60)

Substitution of (7.59) and (7.60) into (7.58) yields

Cov(Li, Lj |Λ1, . . . ,ΛK)

a.s.
=

∑
g∈Gi∩Gj

λg

(
wg,0 E[Lg,i,0,1Lg,j,0,1] +

K∑
k=1

wg,kΛk E[Lg,i,k,1Lg,j,k,1]

)
.

(7.61)

To calculate the covariance of the credit losses due to obligors i, j ∈ {1, . . . ,m},
we use (3.65), substitute (7.61) and (7.55), and use Assumption 7.29 to obtain

Cov(Li, Lj) = E[Cov(Li, Lj |Λ1, . . . ,ΛK)]

+ Cov(E[Li |Λ1, . . . ,ΛK ],E[Li |Λ1, . . . ,ΛK ])

=
∑

g∈Gi∩Gj

λg

K∑
k=0

wg,k E[Lg,i,k,1Lg,j,k,1]

+

K∑
k=1

( ∑
g∈Gi

λgwg,k E[Lg,i,k,1]

)( ∑
g∈Gj

λgwg,k E[Lg,j,k,1]

) =σ2
k︷ ︸︸ ︷

Var(Λk) .

(7.62)

139



For i = j this result simplifies to

Var(Li) =
∑
g∈Gi

λg

K∑
k=0

wg,k E
[
L2
g,i,k,1

]
+

K∑
k=1

( ∑
g∈Gi

λgwg,k E[Lg,i,k,1]

)2

σ2k. (7.63)

Remark 7.45. In the classical CreditRisk+ model (cf. Remarks 7.6 and 7.44)
with only one-element risk groups, the results (7.56), (7.63) and (7.62) simplify
to

E[Li] = λi

K∑
k=0

wi,k E[Li,k,1] , (7.64)

Var(Li) = λi

K∑
k=0

wi,k E
[
L2
i,k,1

]
+ λ2i

K∑
k=1

σ2kw
2
i,k

(
E[Li,k,1]

)2
(7.65)

and

Cov(Li, Lj) = λiλj

K∑
k=1

σ2kwi,kwj,k E[Li,k,1]E[Lj,k,1] . (7.66)

for all i, j ∈ {1, . . . ,m} with i ̸= j, where we used the abbreviations λi := λ{i}
and wi,k := w{i},k as well as Li,k,1 := L{i},i,k,1 and corresponding ones for the
index j.

Remark 7.46. To see that the results of Subsections 7.5.1, 7.5.2 and 7.5.3 are
actually special cases of the results of Subsection 7.5.4, define Lg,i,k,n = 1 for
all risk groups g ∈ G, risks k ∈ {0, 1, . . . ,K}, obligors i ∈ g, and defaults n ∈ N.
Then (7.39) and (7.15)–(7.18) imply Ni = Li for all obligors i ∈ {1, . . . ,m}.
Comparison shows that the expectation in (7.56) simplifies to (7.43), the variance
in (7.63) simplifies to (??), and the covariance in (7.62) simplifies to (7.50).

7.5.5 Default Numbers with Non-Zero Loss

48 The default numbers considered in Subsections 7.5.1, 7.5.2 and 7.5.3 include
defaults which lead to a loss of zero. This can actually happen in practice, for
example, when the collateral is sufficient to cover the outstanding amount. The
results of the previous subsection can be used to calculate the expectations,
variances and covariances of the default numbers with non-zero loss. This is
accomplished by using the Bernoulli random variables L′

g,i,k,n := 1N(Lg,i,k,n)
instead Lg,i,k,n.

Define for every obligor i ∈ {1, . . . ,m} the number L′
i of defaults with non-zero

loss via (7.15), (7.16), and (7.18) using the just introduced L′
g,i,k,n. The results

(7.56), (7.63) and (7.62) applied to L′
i and L

′
j can easily be rewritten using

E
[
(L′

g,i,k,1)
2
]
= E

[
L′
g,i,k,1

]
= P[Lg,i,k,1 > 0]

and
E
[
L′
g,i,k,1L

′
g,j,k,1

]
= P[Lg,i,k,1 > 0, Lg,j,k,1 > 0]

48 This section has to be adapted to the new notation and the generalized setting.
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for all obligors i, j ∈ {1, . . . ,m}, risks k ∈ {0, . . . ,K} and groups g ∈ Gi and
g ∈ Gi ∩Gj , respectively.

7.6 Probability-Generating Function of the Biased Loss Vector

Fix a γ = (γ1, . . . , γK) ∈ [0,∞)K such that 0 < E
[
Rγ1

1 . . . R
γK
K

]
< ∞. In this

section, using multi-index notation, we calculate the coefficients of the probability-
generating function of the portfolio loss vector L under the Rγ1

1 . . . R
γK
K -biased

probability measure, given according to Definition 2.11, which we denote by Pγ

for short. The corresponding expectation operator is denoted by Eγ . Hence we
want to calculate, for all s ∈ Cd with ∥s∥∞ ≤ 1,

φL,γ(s) :=
∑
ν∈Nd

0

Pγ [L = ν] sν = Eγ [s
L] =

E
[
E[Rγ1

1 . . . R
γK
K sL |J ]

]
E
[
Rγ1

1 . . . R
γK
K

] (7.67)

of the Nd
0-valued total loss vector L given by (7.14). For γ = (0, . . . , 0), we will

obtain the usual probability-generating function φL of L. Let

L′ =
C∑
c=1

∑
g∈G

Lc,g (7.68)

denote the non-ideosycratic Nd
0-valued portfolio loss vector. By Assumptions 7.11

and 7.20, the random vectors (L0,g)g∈G given by (7.11) and the random vector
(L′, R1, . . . , RK) are conditionally independent given J . Since

L = L′ +
∑
g∈G

L0,g ,

it therefore follows that

E
[
Rγ1

1 . . . R
γK
K sL

∣∣J] = E
[
Rγ1

1 . . . R
γK
K sL

′ ∣∣J] ∏
g∈G

E
[
sL0,g

∣∣J]. (7.69)

By Assumptions 7.11, 7.19 and (4.77), it follows for the compound Poisson sum
L0,g,j , defined in (7.10), of idiosyncratic loss vectors of group g ∈ G in scenario
j ∈ J , that

E
[
sL0,g

∣∣J = j
]
= exp

(
λgw0,g,j a

j
0,0(φL0,g,j,1(s)− 1)

)
. (7.70)

Conditioning on J,R1, . . . , RK , the sector default numbers (Nc,g)c∈{1,...,C},g∈G
are independent by Assumption 7.25, hence the random sums (Lc,g)c∈{1,...,C},g∈G
in (7.68), given by (7.10) and (7.11), are also conditionally independent due to
Assumption 7.11. Therefore, we obtain

E
[
Rγ1

1 . . . R
γK
K sL

′ ∣∣J,R1, . . . , RK

]
a.s.
= Rγ1

1 . . . R
γK
K

C∏
c=1

∏
g∈G

E
[
sLc,g

∣∣J,R1, . . . , RK

] (7.71)
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Due to Assumption 7.11, (7.31) in Assumption 7.24, the result (??) and Assump-
tion 7.21, it follows that, for every default cause c ∈ {1, . . . , C} and every group
g ∈ G,

E
[
sLc,g

∣∣J = j, R1, . . . , RK

]
a.s.
= E

[
sLc,g

∣∣J = j,Λc

]
a.s.
= exp

(
λgwc,g,jΛc(φLc,g,j,1(s)− 1)

)
= exp

(
λgwc,g,j

(
ajc,0 +

K∑
k=1

ajc,kRk

)
(φLc,g,j,1(s)− 1)

)
.

(7.72)

Substitution of (7.70), (7.71) and (7.72) into (7.69) and rearrangement leads to

E
[
Rγ1

1 . . . R
γK
K sL |J = j, R1, . . . , RK

]
a.s.
= exp

(∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,0(φLc,g,j,1(s)− 1)

)

×
K∏
k=1

Rγk
k exp

(
Rk

∑
g∈G

λg

C∑
c=1

wc,g,j a
j
c,k(φLc,g,j,1(s)− 1)

)
.

(7.73)

For every scenario j ∈ J and risk k ∈ {0, . . . ,K} let

φj,k(s) =
∑

ν∈Sj,k∪{0}

qj,k,ν s
ν =

{
λ̄−1
j,k

∑
ν∈Sj,k

λj,k,ν s
ν if λ̄j,k > 0,

1 if λ̄j,k = 0,
(7.74)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1, denote the probability-generating function
of the distribution Qj,k = (qj,k,ν)ν∈Nd

0
defined in (7.7) and (7.8), respectively, with

the set Sj,k defined in (7.5). Recall that, for all default causes c ∈ {0, . . . , C},
groups g ∈ G and scenarios j ∈ J ,

φLc,g,j,1(s) =
∑
ν∈Nd

0

sν P[Lc,g,j,1 = ν]︸ ︷︷ ︸
= qsc,g,j,ν by (7.20)

,

hence
φLc,g,j,1(s)− 1 =

∑
ν∈Nd

0\{0}

sνqsc,g,j,ν − (1− qsc,g,j,0)

and rearrangement of the exponents on the right-hand side of (7.73) leads to∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,k(φLc,g,j,1(s)− 1)

=
∑

ν∈Sj,k

sν
∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,k q

s
c,g,j,ν︸ ︷︷ ︸

=λj,k,ν by (7.4)

−
∑
g∈G

λg

C∑
c=0

wc,g,j a
j
c,k(1− qsc,g,j,0)︸ ︷︷ ︸

= λ̄j,k by (7.6)

= λ̄j,k(φj,k(s)− 1) by (7.74)

(7.75)
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for every risk k ∈ {0, . . . ,K} with the set Sj,k defined in (7.5). Substituting
(7.75) into of (7.73), using (7.1) in the case k ∈ {1, . . . ,K}, taking the conditional
expectation given J , and using the independence of J,R1, . . . , RK , it follows that

E
[
Rγ1

1 . . . R
γK
K sL

∣∣J = j
]
= exp

(
λ̄j,0(φj,0(s)− 1)

)
×

K∏
k=1

E
[
Rγk

k exp
(
λ̄j,k(φj,k(s)− 1)Rk

)∣∣J = j
]
,
(7.76)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1.
To proceed further, we need to make an assumption on the distribution of

the risk factors R1, . . . , RK .

7.6.1 Risk Factors with a Gamma Distribution

Since Rk ∼ Gamma(αk, βk) for every k ∈ {1, . . . ,K} by Assumption 7.29, and
since Rk is independent of J , it follows from (4.58) that

E
[
Rγk

k exp
(
λ̄J,k(φJ,k(s)− 1)Rk

)∣∣J = j
]

= E
[
Rγk

k

](
1− λ̄j,k

φj,k(s)− 1

βk

)−(αk+γk)

.
(7.77)

Substituting (7.77) into (7.76), we obtain

E
[
Rγ1

1 . . . R
γK
K sL |J = j

]
= exp

(
λ̄j,0(φj,0(s)− 1)

)
×

K∏
k=1

E
[
Rγk

k

](
1− λ̄j,k

φj,k(s)− 1

βk

)−(αk+γk)

.
(7.78)

Transferring everything into a common exponential, we finally get for the
probability-generating function under the Rγ1

1 . . . R
γK
K -biased probability mea-

sure, defined in (7.67),

φL,γ(s) =
1

E
[
Rγ1

1 . . . R
γK
K

] ∑
j∈J

E
[
Rγ1

1 . . . R
γK
K sL |J = j

]
P[J = j]

=
∑
j∈J

exp

(
λ̄j,0(φj,0(s)− 1)

−
K∑
k=1

(αk + γk) log

(
1− λ̄j,k

φj,k(s)− 1

βk

))
P[J = j] ,

(7.79)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1.

7.7 Algorithm for Risk Factors with a Gamma Distribution

Formula (7.79) is the probability-generating function of the accumulated Nd
0-

valued loss vector in the credit portfolio under the Rγ1
1 . . . RγK

K -biased probability
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measure. From the definition (4.1) we know that the coefficients of the power
series of (7.79) provide the desired distribution on Nd

0. We are aiming for an
algorithm that works well for small (and even zero) variances of the risk factors,
so we will rewrite our main formulas in terms of the expectations ek = E[Rk] and
variances σ2k = Var(Rk) for all k ∈ {1, . . . ,K} using the formulas

αk =
e2k
σ2k

and βk =
ek
σ2k
,

derived from (4.55) and (4.56).

Remark 7.47 (Historical remark). The computation of these coefficients, how-
ever, can lead to numerical instabilities even in the one-period case with (γ1, . . . ,
γK) = 0, cf. [25]. Therefore, this section describes an algorithm, basically due
to G. Giese [25], for which Haaf, Reiß, Schoenmakers [28] proved the numerical
stability. Apparently these authors didn’t notice the relation to Panjer’s recursion,
see Theorem 5.16, which was pointed out in [22, Section 5.5]. The algebraic step
of putting everything into a common exponential to pass from (7.78) to (7.79)
reflects the fact that the negative binomial distribution is a compound Poisson
distribution, where the severity distribution is a logarithmic one, see Example
4.40. Since Panjer’s recursion is numerically stable for the Poisson as well as
the logarithmic distribution, see Examples 5.21 and 5.25, respectively, numerical
stability is guaranteed. The idea for the multi-period extension relies on the
multivariate extension of Panjer’s algorithm given by Sundt [51].

7.7.1 Expansion of the Logarithm by Panjer’s Recursion

To calculate the coefficients of the power series of (7.79), we first treat the
logarithmic term. For this purpose, fix a scenario j ∈ J and a risk factor
k ∈ {1, . . . ,K}. Define

pj,k =
λ̄j,k

βk + λ̄j,k
=

λ̄j,kσ
2
k

ek + λ̄j,kσ
2
k

∈ [0, 1) (7.80)

with rate parameter βk > 0, expectation ek > 0 and variance σ2k from Assumption
7.29 and λ̄j,k ≥ 0 from (7.6). Note that the right-hand side of (7.80) works fine
for the degenerate case σ2k = 0.

We consider a random variable Mj,k ∼ Log(pj,k). Let (Yj,k,n)n∈N be an i.i.d.
sequence of Nd

0-valued random vectors, independent of Mj,k, with probability-
generating function φj,k defined in (7.74). Then by Example 4.4, in particular
(4.6), and (4.75), the probability-generating function

φ̃j,k(s) =
∑
ν∈Nd

0

bj,k,ν s
ν , s ∈ Cd, ∥s∥∞ ≤ 1,

of the Nd
0-valued random sum

Sj,k :=

Mj,k∑
n=1

Yj,k,n
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is given by

φ̃j,k(s) = φj,k(s)
c(pj,kφj,k(s))

c(pj,k)
, s ∈ Cd, ∥s∥∞ ≤ 1, (7.81)

and its coefficients (bj,k,ν)ν∈Nd
0
can be computed in a numerically stable way

by Panjer’s recursion for the logarithmic distribution, see Example 5.25. More
explicitly, using (4.6) and (5.26), the initial value is

bj,k,0 = qj,k,0
c(pj,k qj,k,0)

c(pj,k)
, (7.82)

and, using (5.27), the recursion formula is, for every ν ∈ Nd
0 \ {0},

bj,k,ν =
1

1− pj,k qj,k,0

(
qj,k,ν
c(pj,k)

+
pj,k
νi

∑
n∈Sj,k

n<ν, ni<νi

(νi − ni)qj,k,n bj,k,ν−n

)
, (7.83)

where i ∈ {1, . . . , d} is chosen such that νi ̸= 0, and with pj,k given by (7.80),
(qj,k,ν)ν∈Nd

0
given by (7.7), and Sj,k defined in (7.5). Note that γk does not enter

into this recursion. If pj,k = 0, then (7.82) and (7.83) simplify dramatically to
bj,k,ν = qj,k,ν for all ν ∈ Nd

0. To calculate the function c from (4.5) in a numerically
stable way, see the corresponding comment in Example 4.4.

Rearranging and using (7.80) shows that

1− λ̄j,k
φj,k(s)− 1

βk
=
βk + λ̄j,k

βk

(
1−

λ̄j,k

βk + λ̄j,k
φj,k(s)

)
=

1

1− pj,k

(
1− pj,kφj,k(s)

)
,

hence using (4.5) and (7.81) the logarithmic term in (7.79) can be rewritten as

− log

(
1− λ̄j,k

φj,k(s)− 1

βk

)
= − log

(
1− pj,kφj,k(s)

)
+ log(1− pj,k)

= pj,kφj,k(s)c(pj,kφj,k(s))− pj,k c(pj,k)

= pj,k c(pj,k)
(
φ̃j,k(s)− 1

)
.

(7.84)

Substituting (7.84) into (7.79) gives

φL,γ(s) =
∑
j∈J

exp

(
λ̄j,0(φj,0(s)− 1)

+

K∑
k=1

(αk + γk)pj,k c(pj,k)
(
φ̃j,k(s)− 1

))
P[J = j] ,

(7.85)

at least for all s ∈ Cd with ∥s∥∞ ≤ 1.
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7.7.2 Expansion of the Exponential by Panjer’s Recursion

To calculate the coefficients of the power series of (7.85), we first rewrite the
argument of the exponential function. Define

λj = λ̄j,0 +
K∑
k=1

λ̄j,k
e2k + γkσ

2
k

ek + λ̄j,kσ
2
k︸ ︷︷ ︸

=(αk+γk)pj,k

c(pj,k), j ∈ J , (7.86)

with the shape parameter αk > 0 expectation ek > 0 and variance σ2k given in
Assumption 7.29, Poisson intensity λ̄j,0 ≥ 0 given in (7.6), parameter pj,k ∈ [0, 1)
of the logarithmic distribution given in (7.80), and function c defined in (4.5).
Note that only non-negative terms are added in (7.86) and that its right-hand
side even works in the degenerate case σ2k = 0, both facts guarantee numerical
stability. For every j ∈ J with λj > 0, we define

φ̃j(s) =
1

λj

(
λ̄j,0φj,0(s) +

K∑
k=1

λ̄j,k
e2k + γkσ

2
k

ek + λ̄j,kσ
2
k

c(pj,k)φ̃j,k(s)

)
,

at least for all s ∈ Cd with ∥s∥∞ ≤ 1. Note that the coefficients of the power
series

φ̃j(s) =
∑
ν∈N0

cj,ν s
ν , s ∈ Cd, ∥s∥∞ ≤ 1,

are given as convex combinations of the corresponding coefficients of φj,0 and
φ̃j,1, . . . , φ̃j,K , which is a numerically stable operation. More explicitly,

cj,ν =
1

λj

(
λ̄j,0qj,0,ν +

K∑
k=1

bj,k,ν λ̄j,k
e2k + γkσ

2
k

ek + λ̄j,kσ
2
k

c(pj,k)

)
, ν ∈ Nd

0, (7.87)

with (qj,0,ν)ν∈Nd
0
given by (7.7) or (7.8) and (bj,k,ν)ν∈Nd

0
given by (7.82) and (7.83).

For every j ∈ J with λj = 0, we define φ̃j(s) = 1 for all s ∈ Cd and

cj,ν =

{
1 for ν = 0 ∈ Nd

0,

0 for ν ∈ Nd
0 \ {0}.

(7.88)

In every case, φ̃j is again a probability-generating function, and (7.85) can be
written as

φL,γ(s) =
∑
j∈J

exp
(
λj(φ̃j(s)− 1)

)
P[J = j] . (7.89)

Fix a scenario j ∈ J , let Mj ∼ Poisson(λj) and consider an independent
sequence (Yj,n)n∈N of i.i.d. random variables, each one with probability-generating
function φ̃j . Then by Example 4.3 and (4.75), the probability-generating function
ψj of the distribution of the random sum

Sj :=

Mj∑
n=1

Yj,n
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is given by

ψj(s) = exp
(
λj(φ̃j(s)− 1)

)
, s ∈ Cd, ∥s∥∞ ≤ 1,

and its coefficients, let’s call them (dj,ν)ν∈Nd
0
, can be computed in a numerically

stable way by Panjer’s recursion for the Poisson distribution, see Example 5.21.
Explicitly, (5.21) implies for the initial value

dj,0 = exp
(
λj(cj,0 − 1)

)
(7.90)

(in case of numerical underflow, see Remark 5.23 for a remedy) and the recursion
formula (5.22) turns, for every ν = (ν1, . . . , νd) ∈ Nd

0 \ {0}, into

dj,ν =
λj
νi

∑
n∈Nd

0
0<n≤ν

nicj,ndj,ν−n, (7.91)

where i ∈ {1, . . . , d} is chosen such that νi ≠ 0, with λj given by (7.86) and the
coefficients (cj,ν)ν∈Nd

0
given by (7.87) and (7.88), respectively. See Remark 5.19

to omit terms in (7.91) with value zero.
The weighted probability-generating function (7.89) simplifies to

φL,γ(s) =
∑
j∈J

ψj(s)P[J = j] , s ∈ Cd, ∥s∥∞ ≤ 1,

and the coefficients of this power series are convex combinations of the correspond-
ing coefficients of (ψj)j∈J . These operations are numerically stable. Explicitly,
the coefficients in (7.67) are determined by

Pγ [L = ν] =
∑
j∈J

dj,ν P[J = j] , ν ∈ Nd
0,

with (dj,ν)ν∈N0 given by (7.90) and (7.91).

Exercise 7.48 (Implementation of the algorithm). Assume that there are m ∈ N
obligors, where obligor i ∈ {1, . . . ,m} has default probability pi = 1/(20 + i)
within one period, and that there is the idiosyncratic cause and C = 3 additional
default causes. Assume that the loss given default of obligor i ∈ {1, . . . ,m} due
to cause c ∈ {0, . . . , C} has the distribution Bin(i+ c, i/(2i+ 2c)) and that all
susceptibilities are equal to 1/(C+1). Let Λ1, . . . ,ΛC be default cause intensities
with E[Λc] = 1 and Λc ≥ 1/3c for all c ∈ {1, . . . , C}. Assume the there are only
one-element risk groups and that there are two scenarios J = {0, 1}. Extending
Example 7.33, let J be J -valued and consider the (C + 1)× (K + 1)-matrix

AJ =


1 0 0 0 0
∗ J 0 0 0
∗ 0 1− J ∗ 0
∗ 0 0 ∗ ∗

 ,

where ∗ denotes non-zero, deterministic entries.
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(a) With the given constraints, set up a flexible model satisfying Assumptions
7.29 and 7.30 such that Cov(Λ1,Λ2) < 0 and Cov(Λ2,Λ3) > 0.

(b) Calculate the expectations, variances and covariances of the default cause
intensities Λ1,Λ2,Λ3 (see Remark 7.27) in your model.

(c) Calculate the expected total credit portfolio loss. Does the result depend
on your specific choice of the dependence structure?

(d) Calculate the distribution of the total credit portfolio loss numerically for
an m ≥ 50 of your choice for your specific dependence structure.

7.8 Algorithm for Risk Factors with a Tempered Stable Distri-
bution

7.9 Special Cases

49 In order to test the algorithm, its implementation and its numerical stability,
it is helpful to consider special cases of the parameters, where the corresponding
distribution of the total loss L given in (7.14) can be calculated directly. In this
section we assume that all group losses are multiples of some C ∈ N, meaning
that we have

Lg,k,n = C L′
g,k,n.

with an N0-valued L′
g,k,n for every loss n ∈ N of risk group g ∈ G due to risk

k ∈ {0, . . . ,K}. We adopt the notation from (7.10), (7.12) and (7.14). In this
section, we will not attribute the group loss to its individual members.

7.9.1 Pure Poisson Case

50 We only consider the degenerate case σ21 = · · · = σ2K = 0, for which the
algorithm described in Section 7.7 works and for which Λk ≡ 1 almost surely for
all k ∈ {1, . . . ,K}. In this case the family{

Ng,k

∣∣ g ∈ G, k ∈ {0, . . . ,K}
}

consists of independent, Poisson distributed random variables.

Bernoulli Loss Distribution Assume that every L′
g,k,n is a Bernoulli random

variable, i.e.,
p := P

[
L′
g,k,n = 1

]
= 1− P

[
L′
g,k,n = 0

]
with p ∈ [0, 1] for all g ∈ G, k ∈ {0, . . . ,K} and n ∈ N. Then, by (7.4), (??) and
(7.6), λk,ν = 0 for every ν ∈ N \ {C}, νk ∈ {0, C} and λ̄k = λk,C for every risk
k ∈ {0, . . . ,K}. By (??),

L′
g,k :=

Ng,k∑
n=1

L′
g,k,n ∼ Poisson(pλgwg,k) .

49 This section has to be adapted to the new notation and the generalized setting.
50 This section has to be adapted to the new notation and the generalized setting.
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By the Poisson summation property (3.5), we obtain for

L′ :=
∑
g∈G

K∑
k=0

L′
g,k (7.92)

that L′ ∼ Poisson(pλ) with

λ :=
∑
g∈G

λg

K∑
k=0

wg,k︸ ︷︷ ︸
=1 by (7.2)

. (7.93)

Therefore, the distribution of L = C L′ satisfies

P(L = l) =

{
(pλ)n

n! e−pλ if n := l/C ∈ N0,

0 otherwise.

Logarithmic Loss Distribution Assume that every L′
g,k,n ∼ Log(q) with

q ∈ (0, 1). According to Example 4.40, the compound Poisson sum L′
g,k has the

distribution NegBin(αg,k, p) with parameters p := 1− q and

αg,k := −
λgwg,k

log p
≥ 0.

By Lemma 4.37, the sum L′ defined in (7.92) has distribution NegBin(α, p) with
α := −λ/ log p and λ given by (7.93). Therefore, L = C L′ satisfies

P(L = l) =

{(
α+n−1

n

)
pαqn if n := l/C ∈ N0,

0 otherwise.
(7.94)

General Loss Distributions Let Qs
g,k = (qsg,k,ν)ν∈N0 be a general distribution

for the i.i.d. group losses (Lg,k,n)n∈N, depending on the group g ∈ G and the
risk k ∈ {0, . . . ,K}. Then every Lg,k ∼ CPoisson

(
λgwg,k, Q

s
g,k

)
has a compound

Poisson distribution. By (4.77), its generating function is

φLg,k
(s) = exp

(
λgwg,k

( ∑
ν∈N0

qsg,k,νs
ν

︸ ︷︷ ︸
=φLg,k,1

(s)

−1

))
. (7.95)

Assume that the sum λ of all weighted intensities, given by (7.93), is strictly
positive. Define the probability distribution Q = (qν)ν∈N0 by

qν =
1

λ

∑
g∈G

K∑
k=0

λgwg,k q
s
g,k,ν , ν ∈ N0.
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Due to independence, the generating function φL of the total loss L is the product
of the individual functions from (7.95), hence

φL(s) =
∏
g∈G

K∏
k=0

φLg,k
(s) = exp

(
λ

( ∑
ν∈N0

qνs
ν − 1

))
,

in particular L ∼ CPoisson(λ,Q) has a compound Poisson distribution. Hence,
the distribution of L can be calculated by the Panjer recursion formula (5.22),
i.e.

P[L = l] =
λ

l

l∑
ν=1

ν qν P[L = l − ν], l ∈ N,

starting from
P[L = 0] = φL(0) = eλ(q0−1) .

7.9.2 Case of Negative Binomial Distribution

51 Here we assume absence of idiosyncratic risk, meaning that λ0,ν = 0 for all
ν ∈ N and λ̄0 = 0, see (7.4) and (7.6).

Bernoulli Loss Distribution Assume that L′
g,k,n is a Bernoulli random vari-

able with risk-dependent distribution, i.e.,

pk := P
[
L′
g,k,n = 1

]
= 1− P

[
L′
g,k,n = 0

]
with pk ∈ [0, 1] for all g ∈ G, k ∈ {1, . . . ,K} and n ∈ N. Then, by (7.4) and
(7.6), λk,ν = 0 for every ν ∈ N \ {C} and λ̄k = λk,C for every risk k ∈ {1, . . . ,K}.
Furthermore, assume that there exist a non-empty I ⊆ {1, . . . ,K} and p ∈ (0, 1)
such that σ2kλ̄k = (1− p)/p for all k ∈ I and λ̄k = 0 for all k ∈ {1, . . . ,K} \ I. By
(??) this means νk = C for all k ∈ I and νk = 0 for all k ∈ {1, . . . ,K} \ I. Define

α =
∑
k∈I

1

σ2k
.

Then (??) simplifies to

E
[
sL

]
=

(
1 +

1− p

p
(1− sC)

)−α
=

( p

1− qsC

)α

with q := 1− p, which by (4.65) means that L′ := L/C ∼ NegBin(α, p), hence L
has the distribution given by (7.94).

51 This section has to be adapted to the new notation and the generalized setting.
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General Loss Distributions We assume that the i. i. d. losses (Lg,k,n)n∈N
have the same distribution Q = (qν)ν∈N0 for every group g ∈ G and every risk
k ∈ {1, . . . ,K}. Since L(Ng,k|Λk)

a.s.
= Poisson(λgwg,kΛk) by Assumption 7.24,

and since (Ng,k)g∈G are conditionally independent given Λk by Assumption (7.25),
Lemma 3.2 for sums of independent Poisson random variables implies that

L(N(k)|Λk)
a.s.
= Poisson

(
λ(k)Λk

)
for every k ∈ {1, . . . ,K}, where

N(k) :=
∑
g∈G

Ng,k and λ(k) :=
∑
g∈G

λgwg,k .

Here N(k) is the number of defaults in the portfolio caused by risk k ∈ {1, . . . ,K}.
Since Λk ∼ Gamma(αk, βk) with αk = βk = 1/σ2k by Assumption 7.29, hence

λ(k)Λk ∼ Gamma(αk, βk/λ(k)),

we get for the unconditional distribution that

N(k) ∼ NegBin(αk, pk) with pk :=
βk/λ(k)

1 + βk/λ(k)
=

1

1 + λ(k)σ
2
k

,

where we use the notation from (4.61). Assuming that λ(k)σ
2
k and, therefore,

p := pk are the same for every risk k ∈ {1, . . . ,K}, then we get for the total
number N :=

∑K
k=1N(k) of defaults caused by all the independent risk factors

that
N ∼ NegBin(α, p) with α := α1 + · · ·+ αK ,

see Lemma 4.37. Therefore we have a compound negative binomial distribution
for the loss L given in (7.14), meaning that

L =
∑
g∈G

K∑
k=1

Ng,k∑
n=1

Lg,k,n
d
=

N∑
n=1

Xn ∼ CNegBin(α, p,Q)

with an i.i.d. sequence (Xn)n∈N with Xn ∼ Q. Therefore, the distribution of L
can be calculated by the Panjer recursion formula (5.24)

P[L = l] =
1

1− (1− p)q0

1− p

l

l∑
ν=1

(αν + l − ν)qν P[L = l − ν], l ∈ N,

starting from

P[L = 0] = φN (q0) =
( p

1− (1− p)q0

)α
,

see (5.23).

Exercise 7.49. Consider a logarithmic distribution for the idiosyncratic losses
and a Bernoulli distribution for the losses due to the risks k ∈ {1, . . . ,K},
everything in multiples of C ∈ N. By combining the above results and putting
appropriate conditions on the parameters, show that the portfolio loss L has a
distribution given by (7.94).
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8 Risk Measures and Risk Contributions

Knowing the distribution of the portfolio loss L given in (7.14), we can calculate
risk measures ρ(L). The quantity ρ(L) can be interpreted as the amount of
money that has to be added to the portfolio risk L to make it “acceptable.” For
expected shortfall as risk measure, we will also calculate risk contributions in the
context of extended CreditRisk+. These contributions indicate the conditional
expected loss caused by individual obligors, given a large portfolio loss occurs.

When comparing some of the following definitions with the literature, note
that our losses have a positive sign.

8.1 Quantiles and Value-at-Risk

Definition 8.1 (Lower and upper quantile). For a real-valued random variable
X and a level δ ∈ (0, 1), define the lower δ-quantile of X by

qδ(X) = min{x ∈ R | P[X ≤ x] ≥ δ} (8.1)

and the upper δ-quantile of X by

qδ(X) = inf{x ∈ R | P[X ≤ x] > δ}. (8.2)

Since the distribution function R ∋ x 7→ FX(x) := P[X ≤ x] of X is right-
continuous, the minimum defining the lower quantile exists. Note that the
quantiles depend on X only via the distribution function FX . If we don’t specify
lower/upper in the following, we always refer to the lower quantile. Obviously,
we always have that qδ(X) ≤ qδ(X).

Exercise 8.2. Give an example were qδ(X) < qδ(X).

The lower quantile is the smallest threshold such that qδ(X) − X is non-
negative with probability at least δ. In financial risk management, the lower
quantile qδ(X) of a loss variable X is called Value-at-Risk (VaR) at level 1− δ
and used as a tool to quantify risk. Rewriting (8.1) as

qδ(X) = min{x ∈ R | P[X > x] ≤ 1− δ},

we see that qδ(X) is the smallest threshold which is exceeded by the loss X with
probability at most 1− δ.

Exercise 8.3. Give an example where (0, 1) ∋ δ 7→ qδ(X) is discontinuous.

The following example shows that small variations of X can lead to substantial
jumps of the quantile qδ(X), the subsequent lemma gives a condition, when this
does not happen.

Example 8.4 (Downward jump of lower quantile). Consider the unit interval
Ω = [0, 1] equipped with Borel σ-algebra B([0, 1]). Let P denote the Lebesgue–
Borel measure restricted to B([0, 1]). Given a level δ ∈ (0, 1) and n ∈ N, define
δn = max{0, δ − 1/n} and the Bernoulli random variables Xn = 1[δn,1] and
X = 1[δ,1]. Then Xn ↘ X pointwise as n → ∞, qδ(Xn) = 1 for all n ∈ N but
qδ(X) = 0 by (8.1).

152



Exercise 8.5 (Upward jump of upper quantile). Modify Example 8.4 such that
Xn ↗ X pointwise as n→ ∞, qδ(Xn) = 0 for all n ∈ N but qδ(X) = 1.

Lemma 8.6 (Convergence properties of quantiles). Fix a level δ ∈ (0, 1). Let
(Xn)n∈N be a sequence of real-valued random variables converging to X in proba-
bility, i.e.,

lim
n→∞

P[|X −Xn| ≥ ε] = 0 for every ε > 0. (8.3)

(a) The lower δ-quantiles satisfy

lim inf
n→∞

qδ(Xn) ≥ qδ(X).

(b) The upper δ-quantiles satisfy

lim sup
n→∞

qδ(Xn) ≤ qδ(X).

(c) If the distribution of X satisfies P[X ≤ x] > δ for all x > qδ(X), which is
equivalent to qδ(X) = qδ(X), then

lim
n→∞

qδ(Xn) = qδ(X) and lim
n→∞

qδ(Xn) = qδ(X).

Proof. (a) If x < y < qδ(X), then {Xn ≤ x} ⊆ {X ≤ y} ∪ {X −Xn ≥ y − x},
hence

P[Xn ≤ x] ≤ P[X ≤ y] + P[ |X −Xn| ≥ y − x]︸ ︷︷ ︸
→ 0 as n → ∞ by (8.3)

,

and therefore
lim sup
n→∞

P[Xn ≤ x] ≤ γ := P[X ≤ y] < δ

by the definition of qδ(X) in (8.1). Therefore P[Xn ≤ x] ≤ (δ + γ)/2 < δ for all
sufficiently large n ∈ N, hence qδ(Xn) ≥ x for these n and lim infn→∞ qδ(Xn) ≥ x.
Since x < qδ(X) was arbitrary, the lower bound in (a) follows.

(b) The proof is very similar to the one for part (a). If x > y > qδ(X), then

P[Xn ≤ x] ≥ P[X ≤ y]− P[ |X −Xn| ≥ x− y]︸ ︷︷ ︸
→ 0 as n → ∞ by (8.3)

,

hence
lim inf
n→∞

P[Xn ≤ x] ≥ γ := P[X ≤ y] > δ

by the definition of qδ(X) in (8.2). Therefore P[Xn ≤ x] ≥ (δ + γ)/2 > δ for all
sufficiently large n ∈ N, hence qδ(Xn) ≤ x for these n and lim supn→∞ qδ(Xn) ≤ x.
Since x > qδ(X) was arbitrary, the upper bound in (b) follows.

(c) follows from (a) and (b) because qδ(Xn) ≤ qδ(Xn) for all n ∈ N.

If we have an estimate for the Kolmogorov–Smirnov distance of two distribu-
tions, then we get bounds for the quantiles of these distributions.
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Lemma 8.7 (Quantiles and Kolmogorov–Smirnov metric). Let X and Y be
real-valued random variables and abbreviate the Kolmogorov–Smirnov distance of
their distributions by d := dKS(L(X),L(Y )). Then the lower quantiles of X and
Y satisfy

(a) qδ−d(X) ≤ qδ(Y ) for every level δ ∈ (d, 1) and

(b) qδ(Y ) ≤ qδ+d(X) for every level δ ∈ (0, 1− d).

Proof. (a) Given a level δ ∈ (d, 1), we use the definition (8.1) of the lower quantile
and insert the term P[X ≤ qδ(Y )], hence

δ ≤ P[Y ≤ qδ(Y )]

≤ P[X ≤ qδ(Y )] +
∣∣P[Y ≤ qδ(Y )]− P[X ≤ qδ(Y )]

∣∣.
Due to dKS(L(X),L(Y )) = supx∈R

∣∣P[X ≤ x]− P[Y ≤ x]
∣∣ by (3.13), this implies

δ ≤ P[X ≤ qδ(Y )] + d,

hence P[X ≤ qδ(Y )] ≥ δ − d, therefore qδ−d(X) ≤ qδ(Y ) by (8.1).
(b) Note that the assumptions of the lemma are symmetric in X and Y .

Applying (a) with X and Y interchanged and δ′ := δ+d yields qδ′−d(Y ) ≤ qδ′(X),
which proves part (b).

Exercise 8.8. In the setting of Lemma 8.7 show the following:

(a) There is a non-trivial example (i.e. one with L(X) ̸= L(Y )) such that
qδ−d(X) = qδ(Y ) = qδ+d(X) for at least for one level δ.

(b) There is an example with qδ−d(X) < qδ(Y ) < qδ+d(X) for at least for one
level δ.

(c) Formulate and prove a version of Lemma 8.7 for upper quantiles.

Contrary to its widespread use, VaR is not suitable as a risk measure for two
economic reasons. First of all, it does not take into account the size of losses,
which occur with probability at most 1− δ, meaning that it disregards risks with
high effects but low probability. Secondly, VaR is not subadditive in general, i.e.,
it can happen that VaR(X)+VaR(Y ) < VaR(X +Y ) for loss variables X and Y ,
meaning that diversification might seem to increase risk52 when it is measured
with VaR, see Example 8.9. Due to these deficiencies, we do not pursue the topic
of Value-at-Risk in more detail.

52 When it comes to catastrophe risks in connection with limited liability, then diversification
can actually increase the risk: Think of two companies with independent risks X and Y ,
respectively, which cause insolvency. Then the probability of both companies going bankrupt
is considerable smaller than one company having risk X + Y ; see Example 8.9 to work out a
numerical example.

154



Example 8.9 (VaR is not subadditive). Consider a loan of 100 Euro with
default probability p = 0.8%, which leads to a VaR at level 1% of zero. On
the other hand, if we consider two independent loans of 50 Euro each with the
same default probability p = 0.8%, then the probability of at least one default is
2p− p2 > 1.59% and thus the VaR at level 1% equals 50 Euro. This means we
would prefer the 100 Euro loan as the safer investment, which contradicts the
idea of diversification.

8.1.1 Calculation and Smoothing of Lower Quantiles in Extended
CreditRisk+

Remark 8.10 (Calculation of quantiles in extended CreditRisk+). Given a level
δ ∈ (0, 1), the lower quantile qδ(L) of the credit portfolio loss L as given in
(7.14) can be calculated in extended CreditRisk+ by adding up the probabilities
P[L = l ] for l = 0, 1, 2 . . . until the sum reaches or exceeds δ, see (8.1).

However, this means that qδ(L) as a function of δ, when multiplied by the
basic loss unit E, will jump by this quantity E. Since the basic loss unit represents
a compromise between precision and computation time, it might not be desirable
to have it clearly visible in the output of the extended CreditRisk+ model, hence
some smoothing of the quantile might be desirable. If stochastic rounding (see
Subsection 6.1 for a discussion of this discretisation procedure) has been applied
to the individual losses, then somehow “reversing” this step is a legitimate wish.

Remark 8.11 (Smoothing of lower quantiles in extended CreditRisk+). Let
L denote the N0-valued loss and let U be an independent real-valued random
variable, bounded below by −1 and such that E[U ] = 0. Define the smoothed
loss Ls by

Ls = L+ 1{L>0}U. (8.4)

Then Ls takes values in [0,∞) and by independence

E[Ls] = E[L] + P[L > 0]E[U ] = E[L] ,

hence the smoothing doesn’t change the expectation. Let (pn)n∈N0 denote the
probability mass function of the N0-valued loss L and let U be uniformly dis-
tributed on the interval [−1

2 ,
1
2 ]. Then the artificially introduced smoothing error

|L− Ls| is bounded by 1
2 and the distribution function of Ls is given by

FLs(x) =


0 for x < 0,

p0 for x ∈ [0, 12),∑n−1
k=0 pk + pn(x− n+ 1

2) for x ∈ [n− 1
2 , n+ 1

2) with n ∈ N.

Note that FLs is continuous on [0,∞) and has flat parts on [0, 12) and whenever
there is an n ∈ N with pn = 0. For a level δ ∈ (0, 1) the smoothed lower quantile
qδ(Ls) is given by qδ(Ls) = 0 if qδ(L) = 0 and

qδ(Ls) = qδ(L) +
1

2
− P[L ≤ qδ(L)]− δ

P[L = qδ(L)]
(8.5)
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if qδ(L) > 0. Note that the smoothed lower quantile jumps at δ = p0 if p0 > 0,
and that it jumps whenever qδ(L) jumps by at least 2. Furthermore, besides the
possible atom of size p0 in zero, the distribution of Ls has a piecewise constant
density which can never be continuous unless we are in the degenerate case p0 = 1.

Remark 8.12 (More general smoothing). For a more general smoothing of the
lower quantile, we can consider the smoothed loss in (8.4), where U = V1 − V2
with independent V1, V2 ∼ Beta(α, β). Of course, then the formula (8.5) for
the smoothed quantile qδ(Ls) will be more complicated, but at least in the case
α = β = 1, which means that V1, V2 are uniformly distributed on the unit interval,
it can be done explicitly and Ls has a continuous density on (0,∞).

8.2 Expected Shortfall

8.2.1 Definition and Representations of Expected Shortfall

Definition 8.13 (Expected shortfall). Let X be a real-valued random variable.
Then the expected shortfall of the loss variable X at level δ ∈ (0, 1) is defined as

ESδ[X] =
E
[
X1{X>qδ(X)}

]
+ qδ(X)(P[X ≤ qδ(X)]− δ)

1− δ
(8.6)

with the understanding that ESδ[X] := ∞ if E[X1{X>qδ(X)}] = ∞. (Note that
the random variable X1{X>qδ(X)} is bounded below by min{0, qδ(X)}.)

Remark 8.14 (Simple case of expected shortfall). If P[X ≤ qδ(X)] = δ, in
particular if the distribution function R ∋ x 7→ P[X ≤ x] of X is also left-
continuous at x = qδ(X), then (8.6) simplifies to

ESδ[X] = E[X |X > qδ(X)] . (8.7)

When expected shortfall is taken as a risk measure, then (contrary to VaR)
the sizes of large losses exceeding the threshold qδ(X) are clearly taken into
account by this conditional average. The additional term in (8.6) is necessary
to prove the sub-additivity of expected shortfall in Theorem 8.20 below. The
representation (8.7) justifies the name conditional value-at-risk, which is also
used in the literature.

Remark 8.15 (Alternative representation of expected shortfall). Using the
identity X = (X − qδ(X)) + qδ(X), it follows that

E
[
X1{X>qδ(X)}

]
= E

[
(X − qδ(X))+

]
+ qδ(X)P[X > qδ(X)] ,

hence we obtain from (8.6) the alternative representation

ESδ[X] = qδ(X) +
E[(X − qδ(X))+]

1− δ
(8.8)

of expected shortfall, which clearly shows that ESδ[X] ≥ qδ(X). See Theorem
8.20(g) below for the special property of qδ(X) in (8.8).
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Exercise 8.16. Give an example with P[X ≤ qδ(X)] = δ, where the distribution
function of X is discontinuous at qδ(X).

Exercise 8.17. Show that expected shortfall is law determined (sometime called
law invariant in the literature) by representing ESδ[X] in terms of the distribution
function FX of X.

Remark 8.18 (Representation of expected shortfall with a density). Let X be a
real-valued random variable. On the underlying probability space (Ω,A,P) define
fX : Ω → [0,∞) by

fX =
1{X>qδ(X)} + βX1{X=qδ(X)}

1− δ
, (8.9)

where the constant βX is given by

βX =

{P[X≤qδ(X)]−δ
P[X=qδ(X)] if P[X = qδ(X)] > 0,

0 otherwise.
(8.10)

It follows from the definition of the lower δ-quantile of X in (8.1) that βX ∈ [0, 1],
hence fX is bounded by 1/(1− δ). Note that

E[fX ] =
1

1− δ

(
P[X > qδ(X)] + βX P[X = qδ(X)]︸ ︷︷ ︸

=P[X≤qδ(X)]− δ

)
= 1, (8.11)

hence fX is a probability density. By the definition of expected shortfall in (8.6),

E[XfX ] =
E[X1{X>qδ(X)}] + qδ(X)βX P[X = qδ(X)]

1− δ
= ESδ[X]. (8.12)

Therefore, expected shortfall at level δ can be see as the expectation of X taken
with respect to a probability measure QX which has density fX relative to P.
This density raises the probability of the unfavourable event {X > qδ(X)} by the
factor 1/(1− δ).

8.2.2 Calculation of Expected Shortfall in Extended CreditRisk+

Remark 8.19. Since the credit portfolio loss L, given in (7.14), is a discrete
random variable, we have to apply the more complicated definition (8.6). As
mentioned in Remark 8.10, the lower quantile qδ(L) and P[L ≤ qδ(L)] can be
calculated using the extended CreditRisk+ algorithm. Furthermore, note that

E
[
L1{L>qδ(L)}

]
= E[L]− E

[
L1{L≤qδ(L)}

]
(8.13)

with E[L] given by (7.57) and

E
[
L1{L≤qδ(L)}

]
=

qδ(L)∑
l=1

l P[L = l] .

If E[L] = ∞, then ESδ[L] = ∞. If E[L] <∞, then the expected shortfall ESδ[L]
from (8.6) can be computed numerically using the first terms of the distribution
of L. Note that the differences in (8.6) and (8.13) can lead to cancellation effects,
in particular when E[L] ≈ E[L1{L≤qδ(L)}] for large quantiles.
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8.2.3 Theoretical Properties of Expected Shortfall

The following lemma lists important properties of expected shortfall. We will
need some additional notation. For a level δ ∈ (0, 1), let Fδ denote the set of all
probability densities on the probability space (Ω,A,P) bounded by 1/(1− δ). For
a real-valued random variable X, since we do not impose a general integrability
condition, we also define the restricted set

Fδ,X := { f ∈ Fδ | E[X+f ] <∞ or E[X−f ] <∞}, (8.14)

where X± := max{±X, 0} so that X = X+ −X−. For a density f ∈ Fδ,X , the
expectation E[Xf ] = E[X+f ]−E[X−f ] is a well-defined value in [−∞,∞]. Note
that fX given in (8.9) is in Fδ and that X−fX is a random variable bounded
above by |qδ(X)|/(1− δ), hence E[X−fX ] <∞ and therefore fX ∈ Fδ,X .

Theorem 8.20. Expected shortfall at level δ ∈ (0, 1) has, for all real-valued
random variables X and Y , the following properties:

(a) Positive homogeneity: If α > 0, then ESδ[αX] = αESδ[X].

(b) Translation (or cash) invariance: If a ∈ R, then ESδ[X + a] = ESδ[X] + a.

(c) Scenario representation:

(i) ESδ[X] = supf∈Fδ,X
E[Xf ],

(ii) if 53 E[X+] <∞, then ESδ[X] = supf∈Fδ
E[Xf ].

(d) Sub-additivity: ESδ[X + Y ] ≤ ESδ[X] + ESδ[Y ].

(e) Monotonicity: If X ≤ Y , then ESδ[X] ≤ ESδ[Y ].

(f) Convexity: If α ∈ (0, 1), then

ESδ[αX + (1− α)Y ] ≤ αESδ[X] + (1− α) ESδ[Y ].

(g) Minimization property:

ESδ[X] = min
q∈R

(
q +

E[(X − q)+]

1− δ

)
,

and the minimum is attained if and only if q ∈ [qδ(X), qδ(X)].

(h) Bounds: For every q ∈ R,

qδ(X) ≤ ESδ[X] ≤ q +
E[(X − q)+]

1− δ
,

where the lower bound is an equality if and only if P[X ≤ qδ(X)] = 1, and
the upper bound is an equality if and only if q ∈ [qδ(X), qδ(X)].

53 If you offer the St. Petersburg lottery, then E[X+] = ∞.
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(i) Quantile representation:

ESδ[X] =
1

1− δ

∫
[δ,1)

qu(X) du. (8.15)

(j) Fatou property: Let (Xn)n∈N be bounded below, i.e., there exists a constant
a ∈ [0,∞) such that Xn ≥ −a for all n ∈ N. Then X := lim infn→∞Xn

satisfies
ESδ[X] ≤ lim inf

n→∞
ESδ[Xn]. (8.16)

(k) Let (Xn)n∈N be bounded below and converging in probability to a random
variable X. Then (8.16) holds, too.

Corollary 8.21. For every real-valued random variable X, the map

(0, 1) ∋ δ 7→ ESδ[X] ∈ R ∪ {∞}

is continuous and non-decreasing.

Proof of Corollary 8.21. Continuity follows from the quantile representation in
part (i). For δ ≤ δ′ we have Fδ,X ⊆ Fδ′,X which implies ESδ[X] ≤ ESδ′ [X] by
the scenario representation (c).

Remark 8.22. A coherent risk measure is defined by monotonicity (e), positive
homogeneity (a), translation invariance (b) and sub-additivity (d), see Artzner,
Delbaen, Eber and Heath [3]. A convex risk measure is defined by monotonicity
(e), translation invariance (b) and convexity (f), see Föllmer and Schied [21]. Note
that risk measures are often defined for random variables representing the profit
and loss, while in our notation losses have a positive sign. For more details on
expected shortfall, see Acerbi and Tasche [1]. The minimization property (g) can
be found in Rockafellar and Uryasev [43].

Remark 8.23. We excluded the cases α = 0 in (a) and (f), and α = 1 in (f) to
avoid expression of the form 0 · ∞.

Remark 8.24. Concerning the properties in Theorem 8.20, some comments
might be useful:

(a) If all losses are scaled (by converting them to a different currency, for
example), then the risk and the needed capital scales in the same way.

(b) If a constant loss is added, the corresponding amount of capital is needed
in addition to make the risk acceptable.

(c) If probabilities of events can be raised by at most the factor 1/(1 − δ),
then ESδ[X] is the worst expected loss possible.

(d), (f) Diversification does not increase the risk, regardless of any dependence
between X and Y .

(e) Smaller losses need less capital.
(g) For an economic interpretation in the case P[X ≤ qδ(X)] = δ, assume that

you can choose an amount q and enter into a special stop-loss insurance contract:
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Whenever your loss X is above qδ(X), you must pay q plus the fair insurance
premium E[(X − q)+] multiplied with the security loading factor 1

1−δ and receive
in return the (possibly smaller, maybe higher) amount X to cover your losses.
Which q is optimal for you and how much do you lose given the loss X exceeds
qδ(X)? If q is too high, your pay too much in the case qδ(X) < X < q; if q
is too small, your premium part E[(X − q)+] /(1− δ) is too high. The optimal
compromise is given by q ∈ [qδ(X), qδ(X)].

(i) The quantile representation implies that the expected shortfall varies
continuously with the level δ, contrary to the quantile function (0, 1) ∋ δ 7→
qδ(X), which can jump, see Exercise 8.3. For discrete distributions like the loss
distribution in the extended CreditRisk+ model, the quantile function has to
jump unless the loss is degenerate. The quantile representation also justifies the
name average value-at-risk for expected shortfall.

(k) implies the Fatou property discussed in Delbaen [14].

Proof of Theorem 8.20. (a) follows from the homogeneity of the expectation in
(8.6) and the observation that qδ(αX) = αqδ(X), see (8.1).

(b) holds because of the translation invariance of the expectation in (8.6) and
the observation that qδ(X + a) = qδ(X) + a, see (8.1).

(c) Remark 8.18, in particular (8.12), shows that equality holds for fX ∈ Fδ,X .
Therefore, the supremum is an upper estimate and (i) holds in the case ESδ[X] =
∞. If ESδ[X] < ∞, then necessarily E[X+] < ∞, hence Fδ,X = Fδ by (8.14).
Consider f ∈ Fδ with E[Xf ] > −∞. We have E[f − fX ] = 0, hence

E[Xf ]− E[XfX ] = E[(X − qδ(X))(f − fX)]

= E[(X − qδ(X)︸ ︷︷ ︸
> 0

)(f − fX︸ ︷︷ ︸
≤ 0

)1{X>qδ(X)}]

+ E[(X − qδ(X)︸ ︷︷ ︸
< 0

)(f − fX︸ ︷︷ ︸
≥ 0

)1{X<qδ(X)}] ≤ 0,

which means that the supremum is identical with E[XfX ].
(d) It suffices to consider the case where ESδ[X] <∞ and ESδ[Y ] <∞. Then

E[X+], E[Y +] and E[(X + Y )+] are finite and with the representation from (c),
part (ii), we get that

ESδ[X + Y ] = sup
f∈Fδ

E[(X + Y )f ]

≤ sup
f∈Fδ

E[Xf ] + sup
f∈Fδ

E[Y f ] = ESδ[X] + ESδ[Y ].

(e) Note that ESδ[X] ≤ ESδ[X − Y ] + ESδ[Y ] by subadditivity (d). For Z :=
X − Y ≤ 0, we have ESδ[Z] ≤ 0 according to (8.6) because E

[
Z1{Z>qδ(Z)}

]
≤ 0

and qδ(Z) ≤ 0 for a non-positive random variable as well as P[Z ≤ qδ(Z)] ≥ δ by
the definition of the lower quantile in (8.1).

(f) follows from (d) and (a).
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(g) By the alternative representation (8.8), we have equality for q = qδ(X).
Note that, for every q ∈ R,

X − qδ(X) = (q − qδ(X)) + (X − q). (8.17)

Consider the case q > qδ(X). Then the inequality

(X − qδ(X))+ ≤ (q − qδ(X))1{X>qδ(X)} + (X − q)+ (8.18)

is an equality on the event {X ≤ qδ(X)}, because all terms in (8.18) are zero. It
is also an equality on {X ≥ q} since it reduces to (8.17), because the positive
parts ( · )+ are superfluous and the indicator function attains 1. On the remaining
event {qδ(X) < X < q} there is strict inequality in (8.18) because it arises from
(8.17) using X − q < 0 = (X − q)+. Adding qδ(X)(1− δ) to both sides of (8.18)
and taking expectations, it follows that

ESδ[X](1− δ) = qδ(X)(1− δ) + E
[
(X − qδ(X))+

]
by (8.8)

≤ qδ(X)(1− δ) + (q − qδ(X)︸ ︷︷ ︸
> 0

)P[X > qδ(X)]︸ ︷︷ ︸
≤ 1−δ by (8.1)

+ E
[
(X − q)+

]
≤ q(1− δ) + E

[
(X − q)+

]
with equality if and only if P[qδ(X) < X < q ] = 0 and P[X ≤ qδ(X)] = δ, which
by (8.1) and (8.2) is equivalent to qδ(X) < q ≤ qδ(X).

Finally, consider the case q < qδ(X). Then the inequality54

(X − qδ(X))+ ≤ (q − qδ(X))1{X≥qδ(X)} + (X − q)+ (8.19)

is an equality on {X ≤ q}, because all terms in (8.19) are zero, and also an
equality on {X ≥ qδ(X)}, because it agrees with (8.17). On the remaining event
{q < X < qδ(X)} there is strict inequality in (8.19), because X − q > 0 and the
other two terms are zero. In a similar way as above, using the expectation of
(8.19) for the first inequality, it follows that

ESδ[X](1− δ) = qδ(X)(1− δ) + E
[
(X − qδ(X))+

]
by (8.8)

≤ qδ(X)(1− δ) + (q − qδ(X)︸ ︷︷ ︸
< 0

)P[X ≥ qδ(X)]︸ ︷︷ ︸
≥ 1−δ by (8.1)

+ E
[
(X − q)+

]
≤ q(1− δ) + E

[
(X − q)+

]
with equality if and only if P[q < X < qδ(X)] = 0 and P[X < qδ(X)] = δ. By
the minimizing property of the lower quantile qδ(X) defined in (8.1), these two
conditions cannot be satisfied simultaneously for q < qδ(X), hence equality is
impossible.

(h) The lower bound together with the discussion of equality follows directly
from the alternative representation (8.8), the upper bound follows from (g).

54 Note that (8.18) differs from (8.19) in an important point for estimates afterwards.
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(i) By extending the probability space if necessary, we may assume the
existence of a random variable U on (Ω,A,P) which is uniformly distributed on
(0, 1), meaning that P[U ≤ u] = u for all u ∈ [0, 1]. Let qU (X) denote the random
quantile Ω ∋ ω 7→ qU(ω)(X). For every x ∈ R and u ∈ (0, 1) we have

qu(X) ≤ x =⇒ P[X ≤ x] ≥ u and qu(X) > x =⇒ P[X ≤ x] < u

by the definition of the lower quantile in (8.1), hence both implication are in fact
equivalences and {qU (X) ≤ x} = {U ≤ P[X ≤ x]}. Therefore,

P[qU (X) ≤ x] = P[U ≤ P[X ≤ x]] = P[X ≤ x]

for all x ∈ R, meaning that qU (X) and X have the same distribution.
Define δ′ = P[X ≤ qδ(X)]. Note that δ′ ≥ δ and qu(X) = qδ(X) for every

u ∈ [δ, δ′]. Using the second of the above equivalences for x = qδ(X) shows that
{qU (X) > qδ(X)} = {U > δ′}. Therefore,∫

[δ,1)
qu(X) du =

∫
(δ′,1)

qu(X) du+

∫
[δ,δ′]

qu(X) du

= E
[
qU (X)1{U>δ′}

]
+ qδ(X)(δ′ − δ)

= E
[
X1{X>qδ(X)}

]
+ qδ(X)(P[X ≤ qδ(X)]− δ).

Division by 1− δ gives the right-hand side of (8.6), which is the result (8.15).
(j) By translation invariance from (b), we may assume without loss of generality

that every Xn is non-negative. Using the density fX from (8.9), the representation
of expected shortfall with the density fX given in (8.12), Fatou’s lemma for
(XnfX)n∈N and the scenario representation from (c), we get

ESδ[X] = E[XfX ] ≤ lim inf
n→∞

E[XnfX ]︸ ︷︷ ︸
≤ESδ[Xn]

.

(k) By passing to a subsequence if necessary, we may assume that the sequence
(ESδ[Xn])n∈N converges to the limit inferior in (8.16). By passing to a further
subsequence if necessary, we may assume that (Xn)n∈N converges almost surely
to X. Now, (8.16) follows from (j).

If we have an estimate for the Wasserstein distance of two distributions, see
Definition 3.14, then we get bounds for the expected shortfall of these distributions.

Lemma 8.25 (Expected shortfall and Wasserstein distance). Let X and Y be
real-valued, integrable random variables and denote the Wasserstein distance of
their distributions by dW(L(X),L(Y )). Then the expected shortfall of X and Y
satisfies, for every level δ ∈ (0, 1),

∣∣ESδ[X]− ESδ[Y ]
∣∣ ≤ dW(L(X),L(Y ))

1− δ
. (8.20)
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Proof. Let (ai)i∈I and (bi)i∈I be non-empty collections of real numbers, which
are bounded below. Define

a = inf
i∈I

ai, b = inf
i∈I

bi and c = sup
i∈I

|ai − bi|.

Then ai ≤ bi + c for every i ∈ I, hence a ≤ b + c. Similarly b ≤ a + c, hence
|a − b| ≤ c. Using this observation, the integrability of X and Y , and the
minimization property from Theorem 8.20(g), it follows that∣∣ESδ[X]− ESδ[Y ]

∣∣ ≤ 1

1− δ
sup
q∈R

∣∣E[(X − q)+
]
− E

[
(Y − q)+

]∣∣.
For every q ∈ R, the function R ∋ x 7→ fq(x) := (x− q)+ is Lipschitz continuous
with constant 1, hence (8.20) follows directly from the lower bound (3.17).

8.3 Contributions to Expected Shortfall

8.3.1 Definition and Representation with a Density

If the risk and the necessary risk capital for a portfolio loss are calculated
with expected shortfall, the question about the risk contributions of individual
components of the portfolio arises. Let L0(P) = L0(Ω,A,P) denote the vector
space of all random variables X: Ω → R on the probability space (Ω,A,P). Let
L−
1 (P) denote the set of all those X ∈ L0(P), for which the negative part X− :=

max{0,−X} is P-integrable. Since (αX)− = αX− and (X + Y )− ≤ X− + Y −

for all α ∈ [0,∞) and X,Y ∈ L0(P), it follows that L−
1 (P) is a convex cone. Let

L1(P) denote the vector space of all P-integrable X ∈ L0(P).
Then, if Z ∈ L0(P) denotes a portfolio loss and X1, . . . , Xn ∈ L−

1 (P) with
X1 + · · ·+Xn = Z denote the losses of the n subportfolios, we can ask how to
allocate the risk capital ESδ[Z] to the n subportfolios in a fair and risk-adequate
way.

Definition 8.26 (Allocation of risk capital by expected shortfall). For a portfolio
loss Z ∈ L0(P) and a level δ ∈ (0, 1), consider a subportfolio loss X ∈ L0(P)
with55 X1{Z≥qδ(Z)} ∈ L−

1 (P). Then the expected shortfall contribution of the
subportfolio loss X to Z at level δ is defined by

ESδ[X,Z] =
E[X1{Z>qδ(Z)}] + βZ E[X1{Z=qδ(Z)}]

1− δ
(8.21)

with βZ as in (8.10), i. e.

βZ :=

{P[Z≤qδ(Z)]−δ
P[Z=qδ(Z)] if P[Z = qδ(Z)] > 0,

0 otherwise.
(8.22)

55 We are quite general here to state the consistency property in Theorem 8.30(a) below
without any integrability assumptions on Z.
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Remark 8.27. Note that ESδ[X,Z] = ∞ is possible and that the condition
X1{Z≥qδ(Z)} ∈ L−

1 (P) is certainly satisfied for all X ∈ L−
1 (P).

Remark 8.28 (Simple case of expected shortfall contribution). If P[Z ≤ qδ(Z)] =
δ, then βZ = 0 by (8.22), and (8.21) simplifies to

ESδ[X,Z] = E[X |Z > qδ(Z)]

simultaneously for all X ∈ L0(P) with X1{Z≥qδ(Z)} ∈ L−
1 (P), cf. Remark 8.14.

Therefore, ESδ[X,Z] is the conditional expectation of the subportfolio loss X
given a large portfolio loss Z occurs. This allocation principle was already
presented in [50].

Remark 8.29 (Representation of expected shortfall contributions with a Z-ad-
justed probability measure). With the density fZ defined as in (8.9), we get in
the setting of Definition 8.26 the representation ESδ[X,Z] = E[XfZ ].

8.3.2 Theoretical Properties

Allocation of risk capital by the expected shortfall principle has a number of good
properties. For an axiomatic approach to risk capital allocation, see Kalkbrener
[32].

Theorem 8.30 (Properties of expected shortfall contributions). For each level
δ ∈ (0, 1), the expected shortfall contributions have, for all X,Y ∈ L−

1 (P) and
Z ∈ L0(P), the following properties:

(a) Consistency with expected shortfall: ESδ[Z,Z] = ESδ[Z].

(b) Diversification: ESδ[X,Z] ≤ ESδ[X,X].

(c) Linearity: For all α, β > 0,

ESδ[αX + βY,Z] = αESδ[X,Z] + β ESδ[Y, Z].

If X,Y ∈ L1(P), then the equality holds for all α, β ∈ R.

(d) Translation (or cash) invariance: If a ∈ R, then

ESδ[X + a, Z] = ESδ[X,Z] + a.

(e) Monotonicity: If X ≤ Y , then ESδ[X,Z] ≤ ESδ[Y,Z].

(f) Independence: If X and Z are independent, then ESδ[X,Z] = E[X].

(g) Invariance of portfolio scale: ESδ[X,αZ] = ESδ[X,Z] for all α > 0.

(h) Subportfolio continuity: If Y ∈ L1(P), then∣∣ESδ[X,Z]− ESδ[Y,Z]
∣∣ ≤ ESδ[|X − Y |, Z] ≤ E[|X − Y |]

1− δ
.
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(i) Portfolio continuity: Suppose that X ∈ L1(P). If P[Z ≤ qδ(Z)] = δ or if
X is almost surely constant on {Z = qδ(Z)}, then capital allocation for X
by expected shortfall at level δ is continuous at Z, i.e., for every sequence
(Zn)n∈N in L0(P) converging to Z in probability,

lim
n→∞

ESδ[X,Zn] = ESδ[X,Z]. (8.23)

(j) Representation of expected shortfall contribution by directional derivative:
If capital allocation for X ∈ L1(P) by expected shortfall is continuous at
Z ∈ L1(P) as specified in part (i), then

ESδ[X,Z] = lim
ε→0

ESδ[Z + εX]− ESδ[Z]

ε
. (8.24)

Remark 8.31 (Discussion of the allocation properties). Let us expand on some
of the given item titles in Theorem 8.30:

• Property (b) shows that X considered as a subportfolio of any other port-
folio Z does not need more risk capital than on its own, meaning that
diversification never increases the risk capital.

• The independence in (f) can be satisfied, when X and also −X are contained
in Z. Think of an financial option’s payoff X together with its hedge
delivering −X, or of an insurance riskX, which is transfered to a reinsurance
company.

• For item (i) think of a reinsurance company operating with one-year con-
tracts. During the renewal phase, the company plans to have the portfolio
risk Z, and determines the individual contribution of a reinsurance con-
tract with risk X accordingly with ESδ[X,Z]. At the end of the renewal
phase, the company ends up with a portfolio risk Zn, which is close but
not identical to the planned Z. In this case, the limit relation (8.23) gives
a connection between the true contribution ESδ[X,Zn] and the planned
ESδ[X,Z]. The proof of (i) is due to the author.

Example 8.32 (A counterexample to (8.23) and (8.24)). To see that the con-
tinuity in part (i) and the representation as directional derivative from part (j)
don’t hold for all Z, consider on Ω = {0, 1} with P[{0}] = δ the random variables
given by X(ω) = ω and Z(ω) = 0 for all ω ∈ Ω. Define Zε = εX. Then Zε → Z
pointwise as ε→ 0. Furthermore, ESδ[X,Z] = E[X] = 1− δ by independence, see
(f), ESδ[X,Zε] = ESδ[X,X] = ESδ[X] = 1 for all ε > 0 by scale invariance (g),
consistency (a), and Remark 8.14 using qδ(X) = 0. Therefore, (8.23) is violated.
Since ESδ[Z] = 0 and ESδ[Z + εX] = εESδ[X] = ε, the directional derivative in
(8.24) equals 1 ̸= 1− δ = ESδ[X,Z], hence (8.24) is violated.

Proof of Theorem 8.30. (a) By Remark 8.29 and (8.12),

ESδ[Z,Z] = E[ZfZ ] = ESδ[Z].
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(b) By Remark 8.29, the scenario representation from Theorem 8.20(c), and
finally item (a),

ESδ[X,Z] = E[XfZ ] ≤ sup
f∈Fδ

E[Xf ] = ESδ[X] = ESδ[X,X].

(c), (d) follow from Remark 8.29 and the linearity of the expectation.
(e) follows from Remark 8.29 and ESδ[X,Z] = E[XfZ ] ≤ E[YfZ ] = ESδ[Y,Z].
(f) By Remark 8.29, ESδ[X,Z] = E[XfZ ] = E[X]E[fZ ] = E[X].
(g) Since qδ(αZ) = αqδ(Z), the definition (8.9) implies fαZ = fZ . Hence, by

Remark 8.29,

ESδ[X,αZ] = E[XfαZ ] = E[XfZ ] = ESδ[X,Z].

(h) For the first inequality use linearity (c) and monotonicity (e), for the
second one use Remark 8.29 and the upper bound 1/(1− δ) for the density fZ .

(i) Since the proof is longer, let us first reduce the problem. Given X ∈ L1(P)
and ε > 0, there exists by the dominated convergence theorem a constant M
such that the bounded random variable Xε := X1{|X|≤M} satisfies E[|X −Xε|] =
E
[
|X|1{|X|>M}

]
≤ ε. By the subportfolio continuity (h), it therefore suffices to

prove (8.23) for all bounded X ∈ L1(P).
To simplify the notation for the quantiles, define q = qδ(Z) and qn = qδ(Zn).

Without loss of generality we may assume that E[X1{Z=q}] = 0, because in the
case P[Z = q] > 0 we could, using cash invariance (d), switch to X ′ := X − a
with a := E[X |Z = q]. This simplifies (8.21). By linearity (c), we may restrict
our attention to those X ∈ L1(P) which are bounded by 1− δ.

For ε > 0, we now set up η > 0 and nε ∈ N. By the right-continuity of the
distribution function of |Z − q|, there exists η > 0 such that

P[0 < |Z − q| < 2η] ≤ ε. (8.25)

Define the abbreviations q− = q − 2η and q+ = q + 2η. Since (Zn)n∈N converges
to Z in probability, there exists nε ∈ N such that

P[ |Z − Zn| ≥ η] ≤ ε for all n ≥ nε (8.26)

and, by Lemma 8.6(a),

qn ≥ q − η for all n ≥ nε. (8.27)

We will show below by considering the cases qn ≤ q + η and qn > q + η that∣∣ESδ[X,Zn]− ESδ[X,Z]
∣∣ ≤ 6ε (8.28)

for every n ≥ nε. Since ε > 0 is arbitrary, (8.28) implies the desired result (8.23).
Note that E[|1A − 1B|] = P[A ∩Bc] + P[Ac ∩B] for all A,B ∈ A.
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Case I: The proof of (8.28) for the case qn > q + η is the easier one and
doesn’t use the additional assumptions given in (i). Note that

(1− βZn)E
[
1{Zn=qn}

]
= δ − P[Zn < qn]

≤ P[Z ≤ q]− P[Zn < qn]

≤ P[Z ≤ q, Zn ≥ qn] ≤ ε

(8.29)

by (8.22) and (8.26). By partitioning {Zn ≥ qn}, we obtain

1− δ ≤ P[Zn ≥ qn] = P[Z > q, Zn ≥ qn︸ ︷︷ ︸
=:A

] + P[
=:B︷ ︸︸ ︷

Z ≤ q, Zn ≥ qn]︸ ︷︷ ︸
≤ ε by (8.26)

,

hence P[A] ≥ 1− δ − ε. Partitioning {Z > q} yields

1− δ ≥ P[Z > q] = P[A] + P[Z > q, Zn < qn︸ ︷︷ ︸
=:C

],

thus P[C] ≤ ε. Finally, using (8.21), E[X1{Z=q}] = 0, and ∥X∥∞ ≤ 1− δ,∣∣ESδ[X,Zn]− ESδ[X,Z]
∣∣

≤ (1− βZn)E
[
1{Zn=qn}

]︸ ︷︷ ︸
≤ ε by (8.29)

+ E
[
|1{Zn≥qn} − 1{Z>q}|

]︸ ︷︷ ︸
=P[B] +P[C]

≤ 3ε,

which proves (8.28) for the case qn > q + η.
Case II: We will now prove estimate (8.28) in the case qn ≤ q + η for the two

different assumptions given in Theorem 8.30(i). Define E = {Z > q, Zn ≤ qn}
and F = {Z ≤ q, Zn > qn}. Note that

P[E] = P[q < Z < q+, Zn ≤ qn]︸ ︷︷ ︸
≤ ε by (8.25)

+P[Z ≥ q+, Zn ≤ qn]︸ ︷︷ ︸
≤ ε by (8.26)

≤ 2ε. (8.30)

Case II(a): Let the assumption P[Z ≤ q] = δ be satisfied. By partitioning
{Zn ≤ qn}, we obtain

δ ≤ P[Zn ≤ qn] = P[Z ≤ q, Zn ≤ qn︸ ︷︷ ︸
=:D

] + P[E] ,

hence P[D] ≥ δ − 2ε by (8.30). Partitioning {Z ≤ q} yields

δ = P[Z ≤ q] = P[D] + P[F ],

thus P[D] ≤ δ and P[F ] ≤ 2ε. Furthermore, using (8.30)

βZn E
[
1{Zn=qn}

]
= P[Zn ≤ qn]− δ = P[D] + P[E]− δ ≤ 2ε. (8.31)
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Finally, using (8.21), E[X1{Z=q}] = 0, and ∥X∥∞ ≤ 1− δ,∣∣ESδ[X,Zn]− ESδ[X,Z]
∣∣ ≤ βZn E

[
1{Zn=qn}

]︸ ︷︷ ︸
≤ 2ε by (8.31)

+ E
[
|1{Zn>qn} − 1{Z>q}|

]︸ ︷︷ ︸
=P[E] +P[F ]≤ 4ε using (8.30)

≤ 6ε,

which proves (8.28) for the Case II(a).
Case II(b): Let now X be a. s. constant on {Z = q}. Then E[X1{Z=q}] = 0

implies E[|X|1{Z=q,Zn=qn}] = 0 and E[|X|1{Z=q,Zn>qn}] = 0. Therefore,

E
[
|X|1{Zn=qn}

]
1− δ

=
E
[
|X|1{Z ̸=q,Zn=qn}

]
1− δ

≤ P[Z ̸= q, Zn = qn]

≤ P[0 < |Z − q| < 2η]︸ ︷︷ ︸
≤ ε by (8.25)

+ P[ |Z − q| ≥ 2η, Zn = qn]︸ ︷︷ ︸
≤ ε by (8.26) and (8.27)

≤ 2ε

(8.32)

and

E[|X|1F ]

1− δ
≤ P[Z < q, Zn > qn]

= P
[
q− < Z < q, Zn > qn

]︸ ︷︷ ︸
≤ ε by (8.25)

+ P
[
Z ≤ q−, Zn > qn

]︸ ︷︷ ︸
≤ ε by (8.26) and (8.27)

≤ 2ε. (8.33)

Using (8.21), βZn ∈ [0, 1], E[X1{Z=q}] = 0, and ∥X∥∞ ≤ 1− δ,

∣∣ESδ[X,Zn]− ESδ[X,Z]
∣∣ ≤ E

[
|X|1{Zn=qn}

]
1− δ︸ ︷︷ ︸

≤ 2ε by (8.32)

+
E
[
|X|1E

]
1− δ︸ ︷︷ ︸

≤ 2ε by (8.30)

+
E
[
|X|1F

]
1− δ︸ ︷︷ ︸

≤ 2ε by (8.33)

≤ 6ε,

which proves (8.28) for the Case II(b).
(j) Let ε > 0. By consistency (a), diversification (b) and linearity (c),

ESδ[Z + εX] = ESδ[Z + εX,Z + εX] ≥ ESδ[Z + εX,Z] = ESδ[Z] + εESδ[X,Z],

hence
ESδ[Z + εX]− ESδ[Z]

ε
≥ ESδ[X,Z].

Similarly,

ESδ[Z] = ESδ[Z,Z] ≥ ESδ[Z,Z + εX] = ESδ[Z + εX]− εESδ[X,Z + εX],

hence

ESδ[X,Z + εX] ≥ ESδ[Z + εX]− ESδ[Z]

ε
.

Since capital allocation for X by expected shortfall is assumed to be continuous
at Z,

ESδ[X,Z] = lim
ε↘0

ESδ[Z + εX]− ESδ[Z]

ε
.

If ε ↗ 0, apply this result for ε′ = −ε and X ′ = −X and use −ESδ[X
′, Z] =

ESδ[X,Z] to obtain (8.24).
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8.3.3 Calculation of Contributions in Extended CreditRisk+

56 Let us now apply the idea of risk capital allocation by expected shortfall to the
credit portfolio loss L given by (7.14). We also want to calculate this allocation
within the extended CreditRisk+ model. If E[L] <∞, then the definition (8.21)
gives

ESδ[Lg,i,k, L] =
E
[
Lg,i,k1{L>qδ(L)}

]
+ βL E

[
Lg,i,k1{L=qδ(L)}

]
1− δ

(8.34)

as contribution attributed to obligor i ∈ {1, . . . ,m} due to group g ∈ Gi and
risk k ∈ {0, . . . ,K} to the expected shortfall ESδ[L]. Since L has a discrete
distribution, P[L = qδ(L)] = 0 is impossible due to the definition of qδ(L) in (8.1).
Note that, by consistency and linearity of the allocation given in Theorem 8.30(a)
and (c),

ESδ[L] = ESδ[L,L] =
m∑
i=1

∑
g∈Gi

K∑
k=0

ESδ[Lg,i,k, L].

Since
E
[
Lg,i,k1{L>qδ(L)}

]
= E[Lg,i,k]︸ ︷︷ ︸

=λgwg,k E[Lg,i,k,1]

−E
[
Lg,i,k1{L≤qδ(L)}

]
,

we need to compute E[Lg,i,k1{L=l}] for l ∈ {0, 1, . . . , qδ(L)}. This can be done
adapting a lemma by Tasche [54, Section 3.4], which is in turn a generalization
of a formula given in [50, Slide 9].

Lemma 8.33. For every obligor i ∈ {1, . . . ,m}, every group g ∈ Gi and total
loss l ∈ N0,

E[Lg,i,01{L=l}] = λgwg,0

l∑
ν=1

E
[
Lg,i,0,11{Lg,0,1=ν}

]
P[L = l − ν] (8.35)

and, for every risk k ∈ {1, . . . ,K},

E[Lg,i,k1{L=l}] = λgwg,k

l∑
ν=1

E[Lg,i,k,11{Lg,k,1=ν}]E[Λk1{L=l−ν}]. (8.36)

Remark 8.34. The algorithm presented in Section 7.7 calculates in a numerically
stable way the quantities P[L = l − ν] and E[Λk1{L=l−ν}] used in the above lemma.
Note that the coefficients (bk,l)l∈N0 , which originate from the expansion of the
logarithm and are given by (??), (??) and (??), are the same for both expressions.
For E[Λk1{L=l−ν}] the coefficients (cl)∈N0 given by (??) and (??) and well as the
coefficients (dn)n∈N0 given by (??) and (??) have to be recalculated.

56 This section has to be adapted to the new notation and the generalized setting.
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Remark 8.35. For every obligor i ∈ {1, . . . ,m}, every group g ∈ Gi, every risk
k ∈ {0, . . . ,K} and every group loss ν ∈ N0, we get from Assumption 7.11

E[Lg,i,k,11{Lg,k,1=ν}] =
∑

µ=(µj)j∈g∈Ng
0

∥µ∥1=ν

µi P[Lg,j,k,1 = µj for all j ∈ g]︸ ︷︷ ︸
= qg,k,µ by (7.19)

, (8.37)

which can be calculated directly from the input data in a numerically stable way,
because only non-negative numbers are multiplied and added.

(a) In the case g = {i}, which is in particular the case in the classical Credit-
Risk+ model (cf. Remarks 7.6 and 7.44), the result (8.37) simplifies to

E[Lg,i,k,11{Lg,k,1=ν}] = ν qg,k,ν . (8.38)

(b) If the group loss ν is attributed in a deterministic way to its members as
described in Example 7.13, then

E[Lg,i,k,11{Lg,k,1=ν}] = hg,i,k(ν)q
s
g,k,ν . (8.39)

(c) Note that by the linearity of the expectation,

νqsg,k,ν = E[Lg,k,11{Lg,k,1=ν}] =
∑
i∈g

E[Lg,i,k,11{Lg,k,1=ν}]. (8.40)

If (Lg,i,k,1)i∈g are exchangeable (in particular when they are i.i.d.), then all
expectations on the right-hand side of (8.40) are equal and

E[Lg,i,k,11{Lg,k,1=ν}] =
ν

|g|
qsg,k,ν for all i ∈ g. (8.41)

Proof of Lemma 8.33. Fix a risk k ∈ {0, . . . ,K}, an obligor i ∈ {1, . . . ,m} and

a group g ∈ Gi which contains i. Recall that Lg,k =
∑Ng,k

n=1 Lg,k,n by (7.10) and
note that Lg,k = 0 if Ng,k = 0. Furthermore, if L = l, then no single loss can
exceed l, in particular it suffices to consider l ≥ 1. Define M = L− Lg,k as the
sum of all losses coming not from group g due to risk k. For every µ ∈ N and
n ∈ {1, . . . , µ} define

Mµ,n =

µ∑
r=1
r ̸=n

Lg,k,r

as the sum of the first µ losses of group g due to risk k, omitting the nth loss.
Then

E
[
Lg,i,k1{L=l}

]
=

∞∑
µ=1

E
[ µ∑
n=1

Lg,i,k,n1{L=l,Ng,k=µ}

]

=

∞∑
µ=1

µ∑
n=1

l∑
ν=1

E
[
Lg,i,k,n1{L=l,Ng,k=µ︸ ︷︷ ︸

= {M+Mµ,n+Lg,k,n=l,Ng,k=µ}

,Lg,k,n=ν}
]
.

(8.42)
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It follows from Assumption 7.11 that the random vector (Lg,i,k,n)i∈g together
with the sum Lg,k,n of its components given in (7.9) is independent jointly from
M , Mµ,n and Ng,k, hence

E
[
Lg,i,k,n1{M+Mµ,n+Lg,k,n=l,Ng,k=µ,Lg,k,n=ν}

]
= E

[
Lg,i,k,n1{Lg,k,n=ν}

]
P[M +Mµ,n = l − ν, Ng,k = µ] . (8.43)

By Assumption 7.11, the loss vectors (Lg,i,k,n)i∈g and (Lg,i,k,1)i∈g have the same
distribution, hence we can replace n by 1 in the expectation on the right-hand
side of (8.43). The same assumption implies that Mµ,n is independent from
(M,Ng,k) and that Mµ,1, . . . ,Mµ,µ are identically distributed, hence, for every
n ∈ {1, . . . , µ},

P[M +Mµ,n = l − ν, Ng,k = µ] = P[M +Mµ,µ = l − ν, Ng,k = µ] . (8.44)

Consider now the case k ∈ {1, . . . ,K}. By the conditional independence from
Assumption 7.25 and the conditional Poisson distribution from Assumption 7.24,

P[M +Mµ,µ = l − ν, Ng,k = µ]

= E
[
P[M +Mµ,µ = l − ν |Λ1, . . . ,Λm]P[Ng,k = µ|Λk ]

]
=
λgwg,k

µ
E
[
Λk P[M +Mµ,µ = l − ν, Ng,k = µ− 1︸ ︷︷ ︸

= {L=l−ν,Ng,k=µ−1}

|Λk]
]
,

(8.45)

where we used

P[Ng,k = µ|Λk ]
a.s.
=

(λgwg,kΛk)
µ

µ!
exp(−λgwg,kΛk)

a.s.
=

λgwg,kΛk

µ
P[Ng,k = µ− 1 |Λk ] .

Substituting (8.43), (8.44) and (8.45) into (8.42) and noting that the sum over
n ∈ {1, . . . , µ} cancels with the denominator µ, we obtain

E
[
Lg,i,k1{L=l}

]
= λgwg,k

∞∑
µ=1

l∑
ν=1

E
[
Lg,i,k,11{Lg,k,1=ν}

]
E
[
Λk1{L=l−ν,Ng,k=µ−1}

]
= λgwg,k

l∑
ν=1

E
[
Lg,i,k,11{Lg,k,1=ν}

]
E
[
Λk1{L=l−ν}

]
.

For the case k = 0 the calculation in the last paragraph is easier and left as an
exercise.

Remark 8.36. As we constructed Ni,k as conditionally Poisson distributed
random variable, we have that P(Ni,k ≥ n) > 0 for every n ∈ N. Hence it is
possible that the risk contributions become greater than the maximal exposure.

171



9 Application to Operational Risk

9.1 The Regulatory Framework

The quantification of operational risk of financial institutions gained importance
due to the regulatory prescriptions in column 1 of the Basel II accord for capital
requirements [7]. A profound introduction to the mathematical modelling of
operational risk can be found in McNeil, Frey and Embrechts [39, Chap. 10].

Operational losses occur frequently with low impact, but there are also rare
events with high impact such that their arrival can cause serious trouble for a
financial institution. Famous events that are subject of operational risk are the
bankruptcy of the British Barings Bank in 1995 and the terror attacks on the
World Trade Center in New York City on September 11th, 2001.

Another characteristic that distinguishes operational risk from credit or market
risk is that there is no chance for profit. Operational risk comes along with any
process of a bank’s business despite of all efforts to avoid malfunctions.

The Basel committee allows three approaches with increasing complexity to
quantify a bank’s operational risk, namely

• the basic indicator approach (BIA),

• the standardized approach (SA),

• the advanced measurement approach (AMA).

The basic indicator approach and the standardized approach provide exact
formulae how to calculate the regulatory capital. In the advanced measurement
approach, the risk capital is determined by an internal risk measurement system
that needs to fulfill various criteria. For exact definitions of these approaches and
the criteria for an advanced measurement approach, consult the Basel committee’s
final document [7].

In these lecture notes we will focus on the mathematical and numerical
machinery to model and aggregate operational risk for an advanced measurement
approach. We therefore adopt the extended CreditRisk+ methodology from
Section 7 to this new kind of risk. The application of this methodology to the
problem of operational risk seems even more appropriate than the application to
credit risk: the modelling error caused by the approximation of a sum of Bernoulli
random variables by a Poisson random variable (cf. Theorem 3.23) is not an issue
for operational risk modelling, because the a priori use of Poisson distributions
in the setting of operational loss occurrences is more natural.

In the standardized approach eight business lines are defined:

(1) Corporate finance (5) Payment & settlement

(2) Trading & sales (6) Agency services (9.1)

(3) Retail banking (7) Asset management

(4) Commercial banking (8) Retail brokerage

172

http://en.wikipedia.org/wiki/Barings_Bank
http://en.wikipedia.org/wiki/September_11,_2001_attacks
http://en.wikipedia.org/wiki/World_Trade_Center


These business lines are supposed to serve as categories for an advanced mea-
surement approach as well. Furthermore, seven loss event types have to be
distinguished in an advanced measurement approach [7, p. 147]:

(1) Internal fraud,

(2) External fraud,

(3) Employment practices & workplace safety,

(4) Clients, products & business practice,

(5) Damage to physical assets,

(6) Business disruption & system failures,

(7) Execution, delivery & process management.

For an exact definition and the subcategories, we refer to the Basel committee’s
final document [7, Annex 9]. A bank that once has proceeded to an advanced
approach will not be allowed to revert to a simpler one without supervisory
approval—unless it does not fulfil the necessary criteria anymore and is therefore
forced to revert to a simpler approach in at least some of its operations.

Nonetheless, the motivation for an advanced measurement approach is obvious.
The formulae prescribed in the basic indicator and the standardized approach
use externally given values that can in general hardly reflect the very structure
of the respective financial institution. Internal models are potentially capable of
detecting risk and allocating risk capital where it is really required. An advanced
measurement approach can therefore lead to reduced risk capital requirements.
But the regulatory capital can not be reduced arbitrarily as an initial floor of
75% of the risk capital required by the standardized approach is dictated [8, p. 6].

9.2 Characteristics of Operational Risk Data

Whereas credit loss data of various kind and market data for nearly any desirable
security and rate is available for a long time horizon, there is only little data
available on operational risk. The estimation of frequent losses can probably
be managed using internal data, but for rare events causing high losses often
external data has to be used. Another difficulty of the statistical analysis of the
available data is a reporting bias coming from the increasing awareness of the
importance of collecting operational risk data.

Moscadelli [41] did an in-depth statistical analysis of operational loss data and
found several characteristics. In his analysis, estimated severity distributions are
heavy-tailed. Light- and medium-tailed distributions as the Gumbel distribution
or the lognormal distribution model the body of the severity distribution fairly
well but fail to fit the tails of the loss severities. The modelling of operational
risk therefore calls for the application of extreme value theory, cf. [16, 20] and
[39, Chap. 7].
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Moscadelli [41] even found that six business lines (among the eight mentioned
before) yield estimations of distributions with infinite mean. This fact has to
be considered if one wants to calculate risk measures (one would have problems
explaining expected shortfall with infinite mean of severities). In this case one
will have to use quantile-based risk measures such as value-at-risk. As long as
the data allows us, we will use coherent risk measures such as expected shortfall
in order to calculate risk contributions as a basis for the allocation of risk capital
to business lines as well as to operational loss event types.

9.3 Application of the Extended CreditRisk+ Methodology

57 We want to keep the notation in full generality for the case that one wants
to model more than the eight business lines and seven event types mentioned in
the Basel committee’s final paper. For the application to operational risk, we
basically have to reinterpret the notation used in Section 7:

• The number m of obligors turns into the number of business lines, m = 8
for the ones given in (9.1) is an appropriate choice.

• The basic loss unit E stays the same. The Basel committee allows the
negligence of operational losses below 10 000 Euro when reporting for
internal data collection [7, p. 149], which motivates the choice E = 10 000.

• The number K of non-idiosyncratic risk factors turns into the number of
loss types; K = 7 for the types given above is a possible choice, but a finer
subdivision is possible.

• The numbers σ2k > 0 denote the relative variance of occurrences of losses of
type k ∈ {1, . . . ,K}.

• The collection G contains the subsets of all business lines which can incur
a loss due to the same event.

For every group g ∈ G of business lines, we need

• the (one year) intensity λg ≥ 0 for being hit by an operational loss event,

• the conditional probability wg,0 ∈ [0, 1] for an idiosyncratic operational
loss event not to belong to the types in {1, . . . ,K}, of course wg,0 = 0 is a
possible choice,

• the conditional probabilities wg,k ∈ [0, 1] for an operational loss event to be
of type k ∈ {1, . . . ,K},

• the multivariate probability distribution Qg,k = (qg,k,µ)µ∈Ng
0
on Ng

0 de-
scribing the severity of the stochastic losses of the business lines i ∈ g in
multiples of the basic loss unit E in case an operational loss event of type
k ∈ {0, . . . ,K} hits the group g of business lines.

57 This section has to be adapted to the new notation and the generalized setting.
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The stochastic losses (within a year) get the following interpretation:

• Lg,k given by (7.10) is the operational loss of the group g ∈ G of business
lines due to common losses of type k ∈ {0, . . . ,K},

• Li,k given by (7.16) is the operational loss of business line i ∈ {1, . . . ,m}
due to loss type k ∈ {0, . . . ,K},

• Li given in (7.18) is the total operational loss of business line i ∈ {1, . . . ,m},
and

• L given by (7.14) is the total operational loss of the bank.

With the extended CreditRisk+ methodology it is therefore possible to quan-
tify operational risk consistent with the Basel committee’s requirements for an
advanced measurement approach. The probability-generating function of the
total operational loss can be evaluated in a numerically stable way and in the
case of finite-mean severity distributions, we can use expected shortfall and even
achieve a risk capital allocation to business lines as well as operational loss event
types. Our approach does not need any Monte Carlo simulations and therefore
proposes a quick analysis of the bank’s operational risk situation without the
stochastic simulation error.
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List of Abbreviated Distributions and Operations

• Beta(α, β), beta distribution, see Definition 2.6

• BetaBin(α, β,m), beta-binomial distribution, see (2.36)

• Bin(1, p), Bernoulli distribution

• Bin(m, p), binomial distribution, see (2.9)

• CLog(p,Q) := Compound(Log(p), Q), compound logarithmic distribution

• CNegBin(α, p,Q), compound negative binomial distribution, see page 68

• Compound(L(N), Q), general compound distribution, see (4.70)

• Convex((pi, Qi)i∈{1,...,k}), convex combination of distributions, see Example
4.9

• ∗, convolution, see Remark 5.1

• CPanjer(a, b, k,Q), compound Panjer distribution, see Theorem 5.16

• CPoisson(λ,Q), compound Poisson distribution, see page 68

• Dirichlet(α1, . . . , αd), see Definition 4.26

• DirichletMultinomial(α1, . . . , αd,m), see Definition 4.30
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• Gamma(α, β), gamma distribution, see Subsection 4.4

• Log(p), univariate logarithmic distribution, see Example 4.4

• MBin(m, p1, . . . , pd), multivariate binomial distribution, see (4.94)

• MLog(p1, . . . , pd), multivariate logarithmic distribution, see Definition 4.49

• MPoisson(G, (λg)g∈G,m), multivariate Poisson distribution, see Definition
3.42

• Multinomial(1, p1, . . . , pd), multivariate Bernoulli distribution, see Example
4.5

• Multinomial(m, p1, . . . , pd), multinomial distribution, see Example 4.19

• NegBin(α, p), negative binomial distribution, see (4.61)

• NegMult(α, p1, . . . , pd), negative multinomial distribution, see Definition
4.52

• Panjer(a, b, k), Panjer distribution, see Definition 5.9

• Poisson(λ), Poisson distribution, see Definition 3.1

Reading Assignments, Summer 2023

1. Week (March 2): Until Lemma 2.12

2. Week (March 9): Until Remark 3.15

3. Week (March 16): Until Exercise 3.33

4. Week (March 23): Until the end of Subsection 3.4.2

5. Week (March 30): Only exercise presentations

6. Week (April 6): Until the end of Subsection 3.6.3

7. Week (April 27): Subsection 8.1 until Example 8.9, Subsection 8.2 until
Theorem 8.20(g) with proofs; Remark 8.19 was omitted.

8. Week (May 4): Remaining part of Subsection 8.2, Section 4 until Example
4.5

9. Week (May 11): Continuation of Section 4 until Example 4.25

10. Week (May 18): Until the end of Subsection 4.5

11. Week (May 25): Until Definition 4.52

12. Week (June 1): Until Exercise 4.62

13. Week (June 8): Until Remark 5.19

14. Week (June 15): Until Theorem 5.30 (without proof)

15. Week (June 22): Proof of Theorem 5.30, Subsection 6.1
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Reading Assignments, Summer 2025

1. Week (March 5): Until Lemma 2.12

2. Week (March 12): Lecture online via Zoom, until Remark 3.15

3. Week (March 19): Until Exercise 3.22, discussion of Exercises 2.2 and 2.3

4. Week (March 26): Until Exercise 3.35, discussion of Exercises 2.4 and 2.5

5. Week (April 2): Until Lemma 3.41, discussion of Exercises 2.7, 2.8, 2.9

6. Week (April 9): No lecture

7. Week (April 30): Subsections 3.5 and 3.6

8. Week (May 7): Start of Section 8 until Example 8.9, discussion of Exercise
2.10 (and discussion about internships and job applications)

9. Week (May 14): Subsections 8.2.1 and 8.2.3, discussion of Exercise 3.13

10. Week (May 21): Subsection 8.3 until the proof of Theorem 8.30(h), Section
4 until Remark 4.10

11. Week (May 28): Example 4.11 until Lemma 4.29, discussion of Exercises
3.19 and 3.20(a)

12. Week (June 4): Definition 4.30 until Example 4.39, discussion of the
remaining items of Exercise 3.20

13. Week (June 11): Footnote of Example 4.39 until the end of Section 4
(omitting Subsubsection 4.7.3), discussion of Exercise 3.21

14. Week (June 18): Section 5 until the statement of Theorem 5.30(a), discussion
of Exercises 3.30 and 3.31

15. Week (June 25):

Recent Changes

March 2021

• Remark 5.10 added for clarity.

April 2021

• Exercise 3.44, which proves Lemma 3.43, is given under additional assump-
tions. The full proof is added as Exercise 4.33.

• Remark 3.51 is added.

• Lemma 4.15 is added.
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• Subsection 4.2 is introduced, Examples 4.24 and 4.25 as well as Definition
4.26, Remark 4.27, Exercise 4.28, Lemma 4.29, Definition 4.30 and Exercise
4.31 are added.

• Subsection 4.3 extended, Example 4.32 shifted to it.

• List of abbreviated distributions started.

May 2021

• Example 4.9 is added.

• Subsection 5.1 is new, consisting mainly of material contained previously
in Subsection 5.2. Remark 5.1, Algorithm 5.2 and Example 5.3 are revised,
Exercise 5.4 is added.

• Remark 5.31 and Exercise 5.33 are added.

• Section 6 is added, starting with stochastic rounding which was previously
contained in Subsection 7.2.

May 2022

• Subsection 4.2 is subdivided.

• Exercise 4.50(b) with more explicit covariance matrix.

• Corollary 4.61 and Exercise 4.62 are added.

May 2023

• Theorem 5.6(a) with proof is added.

• Remark 5.7(c) and corresponding entries in Table 5.1 are added.

• Remark 5.17 is added.

March 2025

• Subsection 3.2 is extended by two calibration methods.

• Subsubsection 3.4.1 is revised for a better coverage of bounds for biased
Poisson approximations.

April 2025

• Exercise 2.1 and its application (2.28) are added.
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decomposition, 129
with random matrix, 43

Cox process, 70
CPoisson(λ,Q), see
compound Poisson distribution
credit guarantee, 113, 123
credit risk model

actuarial, 5
asset value, 5
intensity-based, 5
reduced form, 5
structural, 5

Credit Suisse First Boston, 111
CreditRisk+, see also extended

CreditRisk+, 111, 115
historical remark, 144

D
decomposition

Cholesky, 129
covariance matrix, 129

deductable, 134
default cause intensities
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E
E[· ], see expectation
equation

Blackwell–Girshick, 67
Wald, 67

Erlang distribution, see also
gamma distribution, 62
Euler, 85, 97
event types

operational risk, 173
exercise, 151

Bernoulli model
revisited, 84

beta-binomial distribution, 13
factorial moments, 13

binomial distribution
factorial moments, 7

characterization of Poisson(λ), 34
comparison of bounds, 32
complete cancellation, 88
compound Poisson distribution, 79
computation of conditional

expectation, 8
construction of general
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Kolmogorov–Smirnov distance
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multinomial distribution, 55
multivariate beta function, 11
multivariate binomial distribution,

78
multivariate logarithmic

distribution, 74
multivariate Poisson distribution,

39
negative binomial distribution, 66
negative multinomial distribution,

76
normal approximation, 33
Panjer(a, b, 0) class, 89
Poisson approximation, 33
quantile function, 152
Stein equation, 35
summation property of

compound distributions, 71
compound negative binomial
distribution, 80

multinomial distribution, 56
multivariate binomial
distribution, 78

negative multinomial
distribution, 76

total variation metric, 23
variational characterization, 32

total variation norm, 24
truncation, 89
upper quantile, 153
variance of sum, 10
Wasserstein metric, 21
characterization of convergence,
25

scaling property, 24
expectation, see also
conditional expectation

Bernoulli distribution, 6
multivariate, 48
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subportfolio continuity, 164
translation invariance, 164

convexity, 158
definition, 156
estimate with Wasserstein distance,

162
Fatou property, 159
in extended CreditRisk+, 157
minimization property, 158, 163
economic interpretation, 159
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quantile representation, 159
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expected shortfall, 157
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group loss distribution, 116
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negative correlation of default
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normalization of default causes, 127
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probabilistic assumptions, 120
quantile calculation, 155
quantile smoothing, 155
risk factor, 113
risk group, 114
assumption, 114

stochastic losses, 114
susceptibility, 114
value-at-risk, 155
smoothing, 155

extended logarithmic distribution, see
logarithmic distribution, extended
extended negative binomial distribution,

see negative binomial
distribution, extended

extended Panjer recursion, see

Panjer recursion
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logarithmic distribution, extended
ExtNegBin(α, k, p), see negative

binomial distribution,
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F
factorial moment

beta-binomial distribution, 13
binomial distribution, 7
calculating moments
multivariate, 53
univariate, 13

logarithmic distribution
multivariate, 74
univariate, 52
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negative multinomial distribution,

76
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uniform Bernoulli mixture, 11
via generating function, 51

factorial moment generating function,
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Fatou property
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formal power series, 85
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function
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functional equation
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convex combination, 50
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composition, 67
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factorial moment, 46, 51
independence, 53
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multivariate, 74
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derivatives, 66
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multivariate, 75
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generating function, 55
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weak convergence
and Wasserstein metric, 23, 25

weighted convolution
extended logarithmic distribution,
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extended negative binomial

distribution, 101

X

Y

Z
Zorn’s lemma, 24
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