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Abstract

In this paper a two-dimensional Brownian motion (modeling the endowment of two compa-

nies), absorbed at the boundary of the positive quadrant, with controlled drift, is considered.

The volatilities of the Brownian motions are different. We control the drifts of these processes

and allow that both drifts add up to the maximal value of one. Our target is to choose the

strategy in a way, s.t. the probability that both companies survive is maximized. It turns out

that the state space of the problem is divided into two sets. In one set the first company gets

the full drift, and in the other set the second one. We describe some topological properties of

these sets and their separating curve.

1 Introduction

In this paper we investigate the following problem: Given is a two dimensional stochastic process,

“living” in the positive quadrant. The individual components of the process are independent Brown-

ian motions, with different volatilities and controllable non negative drift. The total drift should add

up to one. The aim of the control is to maximize the probability that the two-dimensional process

stays in the positive quadrant, in the following denoted by G, forever. (At least) two economic

interpretations are possible: The first one, given by McKean and Shepp in [14], is that a government

can influence the drift of the wealth of the companies by a certain tax policy, but the total amount

of “support” is bounded by the condition that the sum of the drifts is one. The aim is that both

companies should survive. On the other hand, formulating the model a bit different (see section 2),

one could also imagine two collaborating companies, again with the aim that both of them survive.

Collaborating companies were considered in Actuarial Mathematics recently, also with different ob-

jectives, e.g., to maximize expected discounted dividends until ruin, see. e.g. [11] and [13]. For our

problem described above, we show that G is separated into two connected sets, where on the one set
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one has to give the full support to one company, and on the complement full support is provided for

the other one. The sets are separated by a C1-curve.

Let us note that, for the case of equal volatilities, it was shown in [14] - by guessing explicitly the

value function of the problem - that this separating curve is just the first median, i.e., the optimal

strategy is, what they called a push-bottom strategy. This means that full support is given to the

weaker company. The authors also mention that the case of different volatilities is open. It is clear

that global results on the structure of the solution depend crucially on the boundary conditions of

the problem. And indeed, if one replaces the homogeneous boundary data (implied by the “ruin-type

problem”) on the finite part of our domain by different ones, our results would not be true any more,

see [14] and [9]. Let us finally mention a result, proved in [10], namely that in the case that one of the

volatilities appearing in the problem is small one finds, using methods from singular perturbation

theory: There exists a function approximating the value function of the problem arbitrary well,

and this function is provided explicitly. It turns out that this approximating value function, resp.

the corresponding ε-optimal strategy, has the properties, which we shall prove in the present paper

for the optimal strategy (allowing also general positive volatilities, and not necessarily small ones).

Finally, let us mention that one can find some results for the case of correlated Brownian motions,

in [12].

Our problem can be seen as a two-phase problem, and the structure of the Hamilton-Jabobi-

Bellman (HJB) equation (see section 3) is similar to the one considered in [3]; the difference being

that in their case the min-operator applies to two second order elliptic operators, where in our case

the max operator applies to elliptic operators with second and first order ingredients, with identical

second order ones. In [3] regularity results for their problem were proved. In general it seems that

there are not a lot of results in the literature where two different operators appear in the formulation

of the FBP, see section 4.3 of [6]. Moreover, there exists a vast literature concerning regularity and

local results for free boundary problems, see e.g. [4] or [16] and the references therein. Results on

more global or topological properties seem to be not so numerous. One example would be [7]. Our

paper is intended to be a contribution in this direction.

2 The model

We consider the following two-dimensional controlled ruin problem. Let us denote the wealth of

two companies by (Xt)t≥0, resp. (Yt)t≥0, and the corresponding two dimensional state process by

(Zt)t≥0, i.e.

Zt =

(
Xt

Yt

)
=

(
x+

∫ t
0
us ds+B

(1)
t

y +
∫ t
0
(1− us) ds+ σB

(2)
t

)
. (1)

Here (x, y) =: z denotes the initial endowment of the companies, B(1), B(2) are independent standard

Brownian motions, and ut is our control processes. We will write G for the positive quadrant, i.e.

G := {(x, y)|x > 0, y > 0}, and σ denotes a positive constant. Moreover, we define the ruin time

τ = inf{t < 0|Zt /∈ G}, i.e. the first time at which one of the two companies is ruined. Finally, we

define the set of admissible strategies u as

Ux,y := {u|ut = û(Zt) for a Borel measurable function û(z); 0 ≤ ut ≤ 1}. (2)

Our aim is to maximize the target functional, given by

J(x, y, u) = Px,y (τ =∞)→ max, (3)

where

τ1 := inf{t > 0|Xt = 0},

2



τ2 := inf{t > 0|Yt = 0}, (4)

τ := τ1 ∧ τ2,

i.e. the probability that both companies survive should be maximized. The value function of the

problem is given by

V (x, y) := sup
u∈U

J(x, y, u). (5)

Note that, writing the drift vector as
(
1/2+ût
1/2−ût

)
, models two collaborating companies with transfer

payments û, with the goal that both survive. This is the second interpretation mentioned in the

introduction.

3 Preliminary results

Let us start with the definition of an anisotropic Laplacian ∆(σ) := ∂2

∂x2 + σ2 ∂2

∂y2 . The HJB equation

corresponding to our problem then reads

LV := max{Vx, Vy}+
1

2
∆(σ)V = 0.

As in [9], Theorem 3.1, Proposition 3.1 and Proposition 3.2, we find

Theorem 3.1 There exists a bounded solution V ∈ C(G) ∩ C2(G) of the system

LV = 0,

V (x, 0) = 0,

V (0, y) = 0,

lim
x→∞,y→∞

V (x, y) = 1.

Proposition 3.1 The function V (x, y) constructed in Theorem 3.1 is the value function of our

problem (5).

Proposition 3.2 The value function V (x, y) fulfills V ∈ C2(G \ {(0, 0)}).

Indeed, the only differences, in comparison to the proofs of the paper mentioned, are: Use in the

proof of Theorem 3.1 the functions

w(x) =
(
1− e−2x

) (
1− e−

2y

σ2

)
v(x) = 1− e−x − e−

y

σ2 ,

and the in the proof of Proposition 3.1 the process

Rτ2t = 1− e−
2
σ2
Y
τ2
t .

The following result (originally) by Hartman and Wintner will be crucial for our paper. So, for

convenience of the reader, we state it explicitly.

Theorem 3.2 Let u ∈W 2,2
loc (Ω) be a non constant solution of

2∑
i,j=1

aijuxi xj +

2∑
i=1

biuxi = 0,

where the aij are Lipschitz, symmetric in i, j and fulfill a uniform ellipticity condition. The bi are

bounded, i, j = 1, 2.
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For every x0 ∈ Ω, there exists an integer n ≥ 1 and a homogeneous harmonic polynomial Hn, of

degree n, such that u satisfies, as x→ x0,

u(x) = u(x0) +Hn(J(x− x0)) +O(|x− x0|n),

Du(x) = DHn(J(x− x0)) +O(|x− x0|n−1).

Here, D denotes the gradient, and J is the matrix

J =
√
a(x0)−1,

with a(x0) the matrix aij, evaluated at x0.

Moreover, we have

(i) The interior critical points (the zeroes of the gradient of u) are isolated.

(ii) Every interior critical point x0 has a finite multiplicity, that is, for every x in a neighbourhood

of x0,

c1 |x− x0|m ≤ |Du(x)| ≤ c2 |x− x0|m,

where c1, c2 are positive constants, m = n− 1 and n is the integer appearing above.

(iii) If x0 is an interior critical point of multiplicity m, then, in a neighbourhood of x0, the level line

{x ∈ Ω|u(x) = u(x0)} is made of m+ 1 simple arcs intersecting at x0.

Proof. See [1], Theorem H.-W., Remark 1.1+Remark 1.2.

4 Main result

Let us start this section with the definition of some functions and sets, which we shall need.

Definition 4.1

D(x, y) := Vx(x, y)− Vy(x, y),

G∗ := G \ {(0, 0)},

P := {(x, y) ∈ G∗| D(x, y) > 0}, R := {(x, y) ∈ G∗| D(x, y) ≥ 0},

N := {(x, y) ∈ G∗| D(x, y) < 0}, S := {(x, y) ∈ G∗| D(x, y) ≤ 0},

C := R ∩N,

where the closure of N is taken in G∗. Note that these sets have the following interpretations: In

the set R (N) full drift is given to the X-company (Y -company). R(N) is chosen w.l.o.g.. One could

have taken P (S) as well. (The optimal strategy is not always unique in stochastic control problems.)

The set C is the set, where the strategy is changed. More precisely, for each point z ∈ C one finds

both types of strategy in each neighbourhood of z. Note that the following topological notions are

understood in the trace topology of G∗, w.r.t. R2, with the sole exception of the second assertion in

point c) of the following theorem.

Our main theorem reads now as follows:

Theorem 4.1 One has

a) P and N are simply connected sets.

b) {(x, y) ∈ G∗| D(x, y) = 0} ⊂ N , as well as {(x, y) ∈ G∗| D(x, y) = 0} ⊂ P , hence C = {(x, y) ∈
G∗| D(x, y) = 0}.
c) C is a C1-curve in G∗, and Ĉ := C ∪ {(0, 0)} is a connected set in the topology of R2.

In Figure 1 one can find a plot of the typical situation, where its topological features are proved in

Theorem 4.1. We start the proof of the Theorem with several helpful lemmas.
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Figure 1: plot of a typical situation

Lemma 4.1 On the boundary of G∗ we have

{(0, y)|y > 0} ⊂ P,

{(x, 0)|x > 0} ⊂ N.

Proof. We only show the second relation, the first one works analogously. Using the strategy

u ≡ 1/2, we get for the target functional

J(x, ε, 1/2) = P (τ1 =∞) P (τ2 =∞) =
(
1− e−x

) (
(1− e−

ε
σ2

)
.

Moreover, we clearly have J(x, 0, u) = 0, for all admissible u, hence V (x, 0) = 0. As V is regular

enough by Proposition 3.2, and since we have V ≥ J , we conclude

Vy(x, 0) ≥ Jy(x, 0, 1/2),

hence

Vy(x, 0) ≥ (1− e−x)
1

σ2
> 0 = Vx(x, 0),

finishing our proof. tu
The next result concerns the behavior of the function D(x, y) for large values of (x, y). We defer

its proof to the Appendix.

Lemma 4.2 Let P1, resp. N1, be the connected component of P , resp. N , including {(0, y)|y > 0},
resp. {(x, 0)|x > 0}. Then one has

lim
(x,y)→∞

(x,y)/∈P1∪N1

D(x, y) = 0.

By (x, y)→∞ we mean x2 + y2 →∞. Let us remark that, since P , resp. N , are locally path wise

connected, their connected components and connected path components are the same, see, e.g. [15],

Theorem 25.5.
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Before we show the simple connectedness of P and N , we need a preparatory result, the proof

of which we defer to the Appendix. It is basically a consequence of forming the proper derivative of

the HJB equation and known PDE regularity results.

Lemma 4.3 On all simply connected open sets M ⊂ G∗ the function D(x, y) is a distributional

solution of
1

2
∆(σ)D + 1RDx + 1NDy = 0, on M

where 1 denotes the indicator function. Moreover, we have, if M is bounded, D ∈ W 2,p
loc (M), 1 <

p <∞.

Our next lemma shows, that the sets N and P are (pathwise) connected, i.e. we have

Lemma 4.4 One has G∗ = P1 ∪N1 ∪ {(x, y) ∈ G∗| D(x, y) = 0}, which obviously implies N1 = N

and P1 = P .

Proof. Let z ∈ G∗. We distinguish several cases.

Case A: D(z) < 0.

Let N̂ be the connected component of N , with z ∈ N̂ .

Case A.1. N̂ ∩N1 = ∅.
In this case we have D/∂N̂ = 0, where ∂N̂ denotes the boundary of N̂ , and D fulfills Dy+ 1

2∆(σ)D = 0

on N̂ . Now, the set N̂ could be unbounded, but we can control the behavior of D on it by Lemma

4.2, i.e.

lim
z→∞
z∈N̂

D(x, y) = 0.

It allows, to apply the comparison principle in the form of [17], Theorem 10.3, resp. the Remark

before Lemma 10.2. This yields D/N̂ ≡ 0, hence D(z) = 0, a contradiction. So Case A.1 is not

possible.

Case A.2. N̂ ∩N1 6= ∅.
By definition this implies N̂ = N1, hence z ∈ N1. Summing up we have in Case A: z ∈ N1.

Case B: D(z) > 0.

Analogously one gets here z ∈ P1, which proves the Lemma. tu
Finally, we have

Proposition 4.1 The sets N and P are simply connected.

Proof. We give the proof only for N and argue by contradiction. So assume there exists a closed

curve γ ⊂ N , and in the interior of γ there exists a point z0 with D(z0) ≥ 0.

Now, in the interior of the curve γ the PDE of Lemma 4.3 holds, and on γ, D is strictly negative.

Moreover, D(z0) is nonnegative, yielding a maximum in the interior, contradicting the maximum

principle, see e.g. [8], Theorem 9.5. tu
We turn now to the set C, where the strategy is changed. Here our first result is

Proposition 4.2 We have {(x, y) ∈ G∗| D(x, y) = 0} ⊂ N , as well as {(x, y) ∈ G∗| D(x, y) = 0} ⊂
P , which implies

C = {(x, y) ∈ G∗| D(x, y) = 0}.

Proof. We show only the first and last assertion and argue by contradiction. Assuming the first

claim is false, gives the existence of a circle B := B(z; ε), with D(z) = 0 and D/B ≥ 0. On B we

have by Lemma 4.3 a W 2,p
loc solution of

1

2
∆(σ)D +Dx = 0.
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This leaves three possibilities for the vicinity of z:

1.) a C1-curve through z, separating the part with positive D from the part with negative D (the

regular case, where the gradient of D at z does not vanish).

This follows from the regularity results in section 3 and the implicit function theorem.

2.) a finite number of curves intersecting at z, which form asymptotically neighbouring sectors,

where the sign of D alternates

3.) a constant function D

The cases 2 and 3 follow from the Hartman-Wintner Theorem, see Theorem 3.2.

Obviously, the cases 1 and 2 are not possible, which leaves us with D/B ≡ 0.

Now, let M be the connected component of {D = 0}, with z ∈ M , and consider its boundary

∂M . Let ẑ ∈ ∂M , and U a small neighbourhood of ẑ. In U we have again

1

2
∆(σ)D + 1R∩UDx + 1N∩UDy = 0,

s.t. we can again apply Theorem 3.2 from above. Now, one easily checks that each of the three

possibilities above is incompatible with our construction. Indeed, D cannot be constant in the

vicinity of ẑ, nor is it possible that a C1-curve through ẑ separates an area where D is positive from

an area, where D is negative. Finally, a finite number of sectors, as described by the Hartman-

Wintner result is also impossible. This yields a contradiction and concludes the proof of the first

assertion.

The last assertion is easy. Indeed, obviously

R ∩N ⊂ R ∩ S = {(x, y) ∈ G∗| D(x, y) = 0}

holds. Moreover, {(x, y) ∈ G∗| D(x, y) = 0} ⊂ R and (by the first assertion) {(x, y) ∈ G∗| D(x, y) =

0} ⊂ N , hence {(x, y) ∈ G∗| D(x, y) = 0} ⊂ R ∩N = C, finishing the proof. tu
Our next result shows, that C is described by a C1-curve.

Proposition 4.3 The set C is given by a C1-curve, i.e. for each point z on C, we can describe the

set C locally by a C1-functions, either c(x) or c(y).

Proof. Let z be arbitrary on C, then we can again apply the “Hartman-Wintner” theorem. By the

very definition of C, possibility 3.) is excluded. Now assume possibility 2.) is true. Then we would

have asymptotically 2k, k = 2, 3, 4..., n sectors in the vicinity of z, where the sign of D alternates.

We stick to the case k = 2, the other cases work analogously. So let the ”sectors” S2 and S4 belong

to N . Let k1 be a continuous curve connecting S2 and {(x, 0)|x > 0}, and k2 a continuous curve

connecting S4 and {(x, 0)|x > 0}. Then either a continuous connection (lying entirely in P ) from

S1 to {(0, y)|y > 0} or from S3 to {(0, y)|y > 0} is prohibited by the sets k1, k2 and {(x, 0)|x > 0}.
This contradicts the path connectedness of P , hence we have a contradiction.

Therefore we remain with possibility 1.), which proves the proposition. tu
So far our results concerned the set G∗, since we do not know a better regularity result at the

origin. In our last proposition we show that, if we affix the origin to the curve C, we get a connected

set in the topology of R2.

Proposition 4.4 Let Ĉ := C ∪ {0}, then Ĉ is connected in the topology of R2.

Proof. Let L := {(0, y)|y > 0}, and P̂ := P \ L. The set P̂ is open in R2. Moreover, it is

path-connected, hence connected. Indeed, let z1, z2 ∈ P̂ . Then there exists a continuous path in

P , connecting z1 with z2. We can easily - due to the continuity of D - deform this path to a path

connecting the points and lying entirely in P̂ . Summing up we have

P̂ is an open and connected set in R2. (6)
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Now, by Proposition 4.2, S = {D ≤ 0} is connected. Indeed, Proposition 4.2 implies S = N , and

the closure of the connected set N is connected.

Let T := Gc. Then by, e.g., [2], Ex. 1.3, S ∪ T is connected, since S and T have a non empty

intersection. As P̂ = (S ∪ T )c, we get by (the only) Theorem of [5],

∂P̂ is connected . (7)

Our next claim is

{0} ∈ C. (8)

Indeed, if this is not the case, there will exist a circle B := B(0; ε) in R2, s.t. B ∩ C = ∅. W.l.o.g.

this would imply B ∩R = ∅, an obvious contradiction. Hence, (8) is true.

By the definition of C, we have C ∩ L = ∅, which gives

Ĉ ∩ L = {0}. (9)

Moreover, we have

C ∩ L = ∅. (10)

Indeed, assuming that this is false, would give the existence of a y0 > 0, s.t. (0, y0) ∈ C. As

D(0, y0) > 0, and D is continuous, this is not possible. Hence, we get the validity of (10).

After this preliminary considerations, we finally show the connectedness of Ĉ and argue again by

contradiction. So assume we have Ĉ = C1 ∪ C2, with

C1 ∩ C2 = ∅,

C2 ∩ C1 = ∅. (11)

W.l.o.g. we assume {0} ∈ C1, and {0} /∈ C2, which provides by (9),

C2 ∩ L = ∅. (12)

In addition we have Ĉ = C = C1 ∪ C2, which yields by (10),

C2 ∩ L = ∅. (13)

Finally, we get for the boundary of P̂ , ∂P̂ = Ĉ ∪ L = C2 ∪ (C1 ∪ L), as well as

C2 ∩ (C1 ∪ L) =
(
C2 ∩ C1

)
∪
(
C2 ∩ L

)
= ∅,

C2 ∩ (C1 ∪ L) = C2 ∩
(
C1 ∪ L

)
=
(
C2 ∩ C1

)
∪
(
C2 ∩ L

)
= ∅,

where we have used (11),(12) and (13). This would give a non connected set ∂P̂ , contradicting (7)

and concluding the proof. tu
Now we have all the requisites for the

Proof of Theorem 4.1. This is just a consequence of the Propositions 4.1,4.2,4.3 and 4.4. tu

5 Appendix

The first aim of this Appendix is, to show Lemma 4.2. In order to do this, we need some auxiliary

results and start with

Lemma 5.1 One has

lim
y→∞

V (x, y) = 1− e−2x, unif. for x ≥ 0,

lim
x→∞

V (x, y) = 1− e−
2y

σ2 , unif. for y ≥ 0.
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Proof. We show only the first relation: Let ũ ≡ 1− ε, then we find for the corresponding stopping

times, P(τ1 = ∞) = 1 − e−2(1−ε)x, and P(τ2 = ∞) = 1 − e−
2ε
σ2
y. Moreover, we define the function

g(x, ε) by

g(x, ε) := (1− e−2x)− (1− e−2(1−ε)x) = e−2(1−ε)x − e−2x,

and calculate its maximum over R+, for fixed ε. This gives 0 ≤ g(x, ε) ≤ 2ε
e , for ε small enough.

Hence, ∣∣J(x, y, ũ)− (1− e−2x)
∣∣ =

∣∣P(τ1 =∞)P(τ2 =∞)− (1− e−2x)
∣∣

=
∣∣∣(1− e−2(1−ε)x

)(
1− e−

2ε
σ2
y
)
−
(
1− e−2x

)∣∣∣
≤ 2ε

e
+ e−

2ε
σ2
y.

Choosing y large enough, and noting that one clearly has V (x, y) ≤ 1 − e−2x, proves the Lemma.

tu
By the next lemma, we want to control the derivatives of V , for large (x, y), away from the

boundary. We find

Lemma 5.2 One has

lim
y→∞

∣∣∣∣Vx − 2e−2x
∣∣∣∣
∞ = 0, uniformly for x ≥ x0, lim

x→∞
||Vx||∞ = 0, uniformly for y ≥ y0,

lim
x→∞

∣∣∣∣∣∣∣∣Vy − 2

σ2
e−

2y

σ2

∣∣∣∣∣∣∣∣
∞

= 0, uniformly for y ≥ y0, lim
y→∞

||Vy||∞ = 0, uniformly for x ≥ x0,

lim
y→∞

∣∣∣∣Vxx + 4e−2x
∣∣∣∣
∞ = 0, uniformly for x ≥ x0, lim

x→∞
||Vxx||∞ = 0, uniformly for y ≥ y0,

lim
x→∞

∣∣∣∣∣∣∣∣Vyy +
4

σ4
e−

2y

σ2

∣∣∣∣∣∣∣∣
∞

= 0, uniformly for y ≥ y0, lim
y→∞

||Vyy||∞ = 0, uniformly for x ≥ x0,

lim
y→∞

||Vxy||∞ = 0, uniformly for x ≥ x0, lim
x→∞

||Vxy||∞ = 0, uniformly for y ≥ y0,

where x0, y0 > 0 are arbitrary.

Proof. Let Ṽ := V − (1 − e−2x − e−
2y

σ2 ). By Lemma 5.1 we have lim(x,y)→∞ Ṽ (x, y) = 0. We

consider now the function Ṽ on the circle B := B(x0, y0; 1/2 ∧ x0 ∧ y0), for (x0, y0) ∈ G, and find

obviously ∣∣∣∣∣∣Ṽ (x, y)
∣∣∣∣∣∣
L∞(B)

≤ ε, (14)

for arbitrary small ε, and ||(x0, y0)|| large enough. A simple calculation reveals that Ṽ fulfills

F (x, y, Ṽ ,DṼ ,D2Ṽ ) := max

(
Ṽx −

2

σ2
e−

2y

σ2 , Ṽy − 2e−2x
)

+
1

2
∆σṼ = 0. (15)

We now want to apply Theorem 3.1 of [19] and check the conditions. The conditions (F0)and (F1)

are obviously fulfilled. For (F2), we note that F (x, y, Ṽ ,DṼ ,D2Ṽ ) is non increasing w.r.t. Ṽ .

We check the Lipschitz property in Ṽ , DṼ :∣∣∣F (x, y, Ṽ ,DṼ ,D2Ṽ )− F (x, y, ̂̃V , D̂Ṽ ,D2Ṽ )
∣∣∣ =∣∣∣∣max

(
Ṽx −

2

σ2
e−

2y

σ2 , Ṽy − 2e−2x
)
−max

(̂̃Vx − 2

σ2
e−

2y

σ2 , ̂̃Vy − 2e−2x
)∣∣∣∣ =∣∣∣max

(
Ṽx, Ṽy + r(x, y)

)
−max

(̂̃Vx, ̂̃Vy + r(x, y)
)∣∣∣ =∣∣∣Ṽx + max

(
0, Ṽy − Ṽx + r(x, y)

)
− ̂̃Vx −max

(
0, ̂̃Vy − ̂̃Vx + r(x, y)

)∣∣∣ ≤∣∣∣Ṽx − ̂̃Vx∣∣∣+
∣∣∣max

(
0, Ṽy − Ṽx + r(x, y)

)
−max

(
0, Ṽy − Ṽx + d+ r(x, y)

)∣∣∣ , (16)
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where r(x, y) := 2
σ2 e
− 2y

σ2 − 2e−2x, and d := ̂̃Vy − Ṽy − ̂̃Vx + Ṽx holds. In order to estimate the r.h.s.

of (16) we distinguish several cases.

Case 1: Ṽy − Ṽx + r(x, y) ≥ 0, Ṽy − Ṽx + d+ r(x, y) ≥ 0.

Here one finds

r.h.s. of (16) ≤ 2
∣∣∣Ṽx − ̂̃Vx∣∣∣+

∣∣∣Ṽy − ̂̃Vy∣∣∣ .
Case 2: Ṽy − Ṽx + r(x, y) ≤ 0, Ṽy − Ṽx + d+ r(x, y) ≤ 0.

We get

r.h.s. of (16) ≤
∣∣∣Ṽx − ̂̃Vx∣∣∣ .

Case 3: Ṽy − Ṽx + r(x, y) ≥ 0, Ṽy − Ṽx + d+ r(x, y) ≤ 0.

We have

r.h.s. of (16) ≤ 2
∣∣∣Ṽx − ̂̃Vx∣∣∣+

∣∣∣Ṽy − ̂̃Vy∣∣∣ .
Case 4: Ṽy − Ṽx + r(x, y) ≤ 0, Ṽy − Ṽx + d+ r(x, y) ≥ 0.

One has finally

r.h.s. of (16) ≤ 2
∣∣∣Ṽx − ̂̃Vx∣∣∣+

∣∣∣Ṽy − ̂̃Vy∣∣∣ .
Hence, condition (F2) is fulfilled with K = 2.

For (F3) we observe

|F (x, y, 0, 0, 0)| =
∣∣∣∣max

(
− 2

σ2
e−

2y

σ2 ,−2e−2x
)∣∣∣∣ ≤ K1(x, y),

with limy→∞K1(x, y) = 0, uniformly in x, limx→∞K1(x, y) = 0, uniformly in y, hence

lim(x,y)→∞K1(x, y) = 0. (Note that in the following K1 is a generic function which may vary from

place to place.)

Concerning (F4), we have to find an estimate for
∣∣∣∣∣∣max

(
Ṽx − 2

σ2 e
− 2y

σ2 , Ṽy − 2e−2x
)

+ 1
2∆σṼ

∣∣∣∣∣∣
Cα(B)

,

or - since (Ṽ , DṼ ,D2Ṽ ) is fixed - an estimate for
∣∣∣∣∣∣max

(
− 2
σ2 e
− 2y

σ2 , A− 2e−2x
)

+ 1
2∆σṼ

∣∣∣∣∣∣
Cα(B)

, with

A := Ṽy − Ṽx.

We assume now a large value of y0 and distinguish several cases. Moreover, we estimate in the

following the Lipschitz norm || · ||0,1, which is bigger than the Hölder norm, since the radius of our

circle is smaller than 1/2.

Case 1: A ≤ 0.

One gets ∣∣∣∣∣∣∣∣max

(
− 2

σ2
e−

2y

σ2 , A− 2e−2x
)

+
1

2
∆σṼ

∣∣∣∣∣∣∣∣
0,1

≤ K1(y0),

with limy0→∞K1(y0) = 0.

Case 2: A > 0.

Here we find - using the definition s(x, y) := max
(
− 2
σ2 e
− 2y

σ2 , A− 2e−2x
)

-∣∣∣∣∣∣∣∣max

(
− 2

σ2
e−

2y

σ2 , A− 2e−2x
)

+
1

2
∆σṼ

∣∣∣∣∣∣∣∣
0,1

≤ sup
(x,y)∈B

(|sx(x, y)|+ |sy(x, y)|) . (17)

One checks that the r.h.s. of (17) has the upper bound K1(y0) + 2A ≤ K1(y0) + 2
(∣∣∣Ṽx∣∣∣+

∣∣∣Ṽy∣∣∣),

with limy0→∞K1(y0) = 0.

As the same considerations hold with large x0 as well, we find that the condition (F4) is fulfilled

with K = 2 and K1 with limy→∞K1(x, y) = 0, uniformly in x, limx→∞K1(x, y) = 0, uniformly in

y, hence lim(x,y)→∞K1(x, y) = 0. So all the conditions are fulfilled, and we can now apply Theorem

3.1 of [19], to get ∣∣∣∣∣∣Ṽ ∣∣∣∣∣∣(0)
2,α;B

≤ N(n, ν,K, α,R0)ε+K1(x, y),
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where ε stems from inequality (14), andK1 fulfills limy→∞K1(x, y) = 0, uniformly in x, limx→∞K1(x, y) =

0, uniformly in y, hence lim(x,y)→∞K1(x, y) = 0. Because of the definition of the norm we use in

[19], we get the assertion of our lemma, but only away from the boundary tu
Proof of Lemma 4.2: We start with the definition

u(x) := sup {y0 > 0|D(x, y) < 0, ∀y ∈ [0, y0]} ,

for x > 0.

Claim 1: limx→∞ u(x) =∞.

Let us remark that one obviously has {(x, z)|z ∈ [0, u(x))} ⊂ N1.

Now assume Claim 1 is false. Then we can find a sequence xn →∞, s.t.

yn := u(xn) ∈ [0,M ] (18)

for some constant M > 0, and we have

D(xn, yn) = 0 (19)

By (18) we get the existence of a subsequence xnk with limk→∞ ynk = γ ∈ [0,M ].

We now distinguish two cases:

Case A: γ > 0.

For k large enough, we find ynk ∈ [γ/2, 3γ/2] and D(xnk , ynk) = 0. But Lemma 5.2 implies

lim
x→∞

|D +
2

σ2
e−2y/σ

2

| = 0,

uniformly for y ≥ y0. Choosing y0 = γ/2 gives a contradiction.

Case B: γ = 0.

This means we have xnk →∞, ynk → 0, s.t. D(xnk , ynk) = 0.

We proceed with

Claim 2: For all x0 > 0, y0 > 0 there exists δ(x0, y0) > 0 s.t.

Vy(x, y) ≥ δ > 0

for all x ≥ x0, y ∈ [0, y0]

We show now Claim 2: For shorter notation we introduce the points A,B by A := (x, y), B :=

(x, y + ε) for small ε > 0.

For the starting point A we use the optimal strategy for the problem (5), i.e. u∗t . For B we take

ûBt :=

{
u∗t (Z

B
t − (0, ε)), t ≤ τA

u∗t , t > τA,

where τA denotes the ruin time for the starting point A. This means that until the ruin time of

the process started in A, we use the same strategy for B, so that the two paths move parallel with

distance ε. After τA we take the optimal strategy for the path started in B.

V (x, y + ε) ≥ J(x, y + ε, û) = V (x, y) + P(H)E

[∫ ∞
0

V (z, ε) dFH(z)

]
,

where H := {τA < ∞, ZAτA = (z, 0), z > 0}, i.e. the set where the ruin of the process started in A

happens at the x−axis. Furthermore dFH denotes the conditioned distribution of the hitting place

at the x−axis. Finally we get

lim
ε→0

V (x, y + ε)− V (x, y)

ε
= P(H) lim

ε→0

1

ε
E

[∫ ∞
0

V (z, ε) dFH(z)

]

11



≥ P(H)E

[∫ ∞
0

lim inf
ε→0

V (z, ε)

ε
dFH(z)

]
≥ P(H)E

[∫ ∞
0

1− e−z

σ2
dFH(z)

]
≥ P(H)E

[∫ ∞
x0

dFH(z)

]
C(σ, x0)

= C(σ, x0)P (H ∩ {XτA ≥ x0/2})) = C(σ, x0, y0),

where the C denote some positive constants. Here we have used Fatou’s Lemma in the first inequality

and the last formula in the proof of Lemma 4.1 in the second one. Finally the last probability in

this chain can certainly be estimated below by a constant C(x0, y0); take, e.g., the probability that

the process with drift (1, 1) hits the x−axis at values larger than x0/2. This proves Claim 2.

We proceed with

Claim 3: For all x ≥ x0 we have uniformly

Vx(x, δ)→ 0

for δ → 0

We show now Claim 3: Again we introduce the points A,B by A := (x, δ), B := (x− ε, δ) for small

ε > 0. For the starting point A we use the optimal strategy, i.e. u∗t . For B we take

ûBt := u∗t (Z
B
t + (ε, 0)),

i.e. the strategy which is optimal for A. Again, the two paths move parallel with distance ε, but

since the path started in B is ruined earlier, this definition is already sufficient. Let τB denote the

ruin time for the starting point B. This yields

V (x− ε, δ) ≥ J(x− ε, δ, û) = P(K) := P({τB =∞}).

Let now L := {τB < ∞} ∩ {XB,û = 0}, i.e. the set where the path started in B hits the y− axis

first. Moreover, let dFL be the conditional distribution for a hitting place z on the y−axis. We get

V (x, δ) = P(K) + P(L)

∫ ∞
0

V (ε, z) dFL(z).

Summarizing, we conclude

lim
ε→0

V (x, δ)− V (x− ε, δ)
ε

= P(L)

∫ ∞
0

lim
ε→0

V (ε, z)

z
dFL(z) ≤ 2P(L)

∫ ∞
0

dFL(z) = 2P(L)

Here the last inequality follows from the fact that the value function is dominated by (1− e−2x)(1−
e−2y), the target functional for the drift (1, 1).

Finally, we note that P(L) ≤ P(τ1 < τ2), with τ1 := inf{t|x/2 + B
(1)
t = 0}, and τ2 := inf{t|δ +

t+B
(2)
t = 0}. Clearly, P(τ1 < τ2)→ 0, for δ → 0, uniformly for x ≥ x0. This proves Claim 3. Claim

2 and Claim 3 provide a contradiction to D(xnk , ynk) = 0 in Case B, s.t. Claim 1 is proved.

Defining

v(y) := sup {x0 > 0|D(x, y) > 0, ∀x ∈ [0, x0]} ,

for y > 0, analogous considerations give

lim
y→∞

v(y) =∞. (20)

Finally, one finds

lim
(x,y)→∞

(x,y)/∈P1∪N1

D(x, y) = lim
x→∞,y→∞

D(x, y) = 0,

12



where for the first equality we have used Claim 1, resp. (20), and for the second Lemma 5.2. tu
Proof of Lemma 4.3. We start with a slight rewriting of the basic PDE, i.e.

1

2
Vxx +

σ2

2
Vyy + Vy + (Vx − Vy)+ = 0.

Noting that the distributional derivation of the function z+ is 1{z≥0}, and that distributional deriva-

tives are interchangeable, see, e.g. [18], 6.12(4), we find, by differentiating first w.r.t. x, then w.r.t.

y and subtracting the corresponding equations,

1

2
∆(σ)D + 1RDx + 1NDy = 0.

For the regularity statement, we note that the gradient of D on M is bounded by Proposition 3.2.

As the same holds for the indicator function, we can use [16], Theorem 1.1. tu
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