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Abstract

We consider the following problem: The drift of the wealth process of two companies, mod-

elled by a two dimensional Brownian motion, is controllable in a way, s.t. the total drift adds

up to a constant. The aim is to maximize the probability that both companies survive. We

assume that the volatility of one company is small w.r.t. the other one and use methods from

singular perturbation theory to construct a formal approximation of the value function. More-

over, we validate this formal result by explicitly constructing a strategy, which provides a target

functional, approximating the value function uniformly on the whole state space.

1 Introduction

In this paper we consider the following two-dimensional controlled ruin problem. Let us denote the

wealth of two companies by (Xt)t≥0, resp. (Yt)t≥0, and the corresponding two dimensional state

process by (Zt)t≥0, i.e.

Zt =

(
Xt

Yt

)
=

(
x+

∫ t
0
u
(1)
s ds+B

(1)
t

y +
∫ t
0
u
(2)
s ds+ εB

(2)
t

)
. (1)

Here (x, y) =: z denotes the initial endowment of the companies, B(1), B(2) are independent standard

Brownian motions, and u(1), u(2) are our control processes. We will write G for the positive quadrant,

i.e. G := {(x, y)|x > 0, y > 0}, and ε denotes a small positive constant. Moreover, we define the ruin

time τ = inf{t < 0|Zt /∈ G}, i.e. the first time at which one of the two companies is ruined. Finally,

we define the set of admissible strategies u as

Ux,y := {u|ut = û(Zt) for a Borel measurable function û(z); 0 ≤ u(1), u(2) ≤ 1, u(1) + u(2) = 1}. (2)

∗email: pgrand@fam.tuwien.ac.at, tel. +43-1-58801-10512, fax +43-1-5880110599

1



Our aim is to maximize the target functional, given by

J(x, y, u) = Px,y (τ =∞)→ max, (3)

i.e. the probability that both companies survive should be maximized.

Let us mention two interpretations of this problem. The first one, given in [10], is that a gov-

ernment can influence the drift of the companies by a certain tax policy, but the total amount of

“support” is bounded by the condition that the sum of the drifts is one.

A second interpretation would be the following. Writing the drift vector as
(
1/2+ût
1/2−ût

)
, one could

imagine two collaborating companies with the goal that both want to survive. Collaborating compa-

nies were considered in insurance mathematics, e.g., in the paper [6], where the goal is to maximize

dividends.

In [10] the problem is solved for the case ε = 1. The authors show that it is optimal to give the

whole drift to the company, which has a smaller endowment at the moment considered. It is also

mentioned there that the case of different volatilities is open. For convenience, we set in our paper

one of the two volatilities equal to one and consider the case, where the second company faces a

small volatility in comparison to the first one.

The goal of our paper is to find an admissible strategy, which produces a target functional, which

is a uniform approximation of the value function V (x, y) in G := R+
0 ×R+

0 . Our method will be the

following:

A) Find an approximation for V (x, y), say Ṽ (x, y) by formal methods of singular perturbation theory.

B) Show the validity of the approximation, i.e.∣∣∣V (x, y)− Ṽ (x, y)
∣∣∣ = o(1),

for ε→ 0, uniformly in G.

C) for point B) we shall need a kind of Alexandrov-Bakelman-Pucci (ABP) estimate for the difference

considered above. In comparison to standard results (see e.g. the monograph [5]), we have to deal

with two special features: Firstly, we have an unbounded domain and secondly, we need some control

over the constant on the r.h.s. of the ABP-estimate; more precisely, we have to control its dependence

on ε. The reason for this is that we want to conclude from the smallness of the inhomogeneity of a

PDE for D := Ṽ − V , that point B) above is indeed true. A result of this kind is proved in [7], and

we shall use it.

D) It turns out that one can easily find a strategy ũ, which produces Ṽ (x, y) as target functional.

Unfortunately ũ is not an admissible strategy. So, in a final step we construct an admissible strategy

û with corresponding target functional V̂ (x, y), which fulfills∣∣∣V̂ (x, y)− Ṽ (x, y)
∣∣∣ = o(1),

for ε→ 0, uniformly in G, which, together with point B), gives the final result∣∣∣V̂ (x, y)− V (x, y)
∣∣∣ = o(1),

for ε→ 0, uniformly in G.

The schedule of the paper will be the following: In section 2 we give a preliminary result, which

can be taken from [8]. In that paper a similar problem is considered. More precisely, we have the

same state process there as in the present paper, but the target functional is different. Namely, the

goal in [8] is, to maximize the expectation of the number of surviving companies. This produces the

same Hamilton-Jacobi-Bellman (HJB) equation, but with non-homogeneous boundary conditions.

In section 3 we deal with the formal approximation of point A). Finally, we formulate in section 4

the ABP estimate of point C) and apply it, in order to get the points B) and D) above.
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Let us finally mention two further papers considering 2-dimensional problems in risk theory,

namely [1] and [2], where the first one considers an optimal dividend problem for two collaborating

companies, and the second one considers a two-dimensional ruin problem in a Cramer-Lundberg

setting

2 A preliminary result

Let V (x, y) := supu∈Ux,y J(x, y, u) be the value function of our problem. Then the following propo-

sition shows that V (x, y) is a classical solution of the HJB-equation of the problem.

Proposition 2.1 V (x, y) is the unique classical - i.e. V ∈ C(G), Vxx, Vxy, Vyy ∈ C2(G) - solution

of the problem

LV := max{Vx, Vy}+
1

2
∆(ε)V = 0,

V (x, 0) = 0,

V (0, y) = 0,

lim
x→∞,y→∞

V (x, y) = 1,

where, we have used the notation ∆(ε) := ∂2

∂x2 + ε2 ∂2

∂y2 . Additionally, we have Vxx, Vxy, Vyy ∈
C
(
G \ {(0, 0)}

)
.

Proof. The proof works analogously to the proof of Theorem 3.1, Proposition 3.1 and Proposition

3.2 of [8], with w = (1− e−2x)(1− e−
2y

ε2 ) instead of w = 2− e−2x − e−2y, and v = 1− e−x − e−y/ε2

instead of v = 2 − e−x − e−y there. The fact that we have ε = 1 there, does not cause any harm,

and the homogeneous boundary conditions at {(x, 0)|x ≥ 0} and {(0, y)|y ≥ 0} in our case make life

sometimes even easier. tu

3 Heuristics - a formal approximation

Let us first consider the case ε = 0. In this case the strategy u :=
(
1
0

)
is clearly optimal. It leads to

the target functional

V (0)(x, y) := J

(
x, y,

(
1

0

))
=

{
1− e−2x, x ≥ 0, y > 0,

0, x ≥ 0, y = 0.

By the Barles/Bertham procedure (see e.g. [4], Chapter VII), one can show that V (0) will be an

approximation of V (x, y) in compact subsets of G. But since V (0)(x, y) is discontinuous at the

positive x-axis, it can never be a uniform approximation of our continuous value function on G. It

is one goal of this paper, to provide such a uniform approximation.

Taking a look at the case ε = 1, where an explicit solution is given in [10], we expect that G

splits into two simply connected regions P and N , with

P :=
{

(x, y) ∈ G|Vx(x, y) ≥ Vy(x, y)
}
,

N :=
{

(x, y) ∈ G|Vx(x, y) < Vy(x, y)
}
. (4)

This means that we assign the full drift of one in region P to the X-company, and in region N to

the Y -company. Since ε is small - hence, the risk for the second company to be ruined is small - we

expect that the region N is very thin. The separation curve, starting from the origin, is denoted by

C, i.e.

C :=
{

(x, y) ∈ G|Vx(x, y) = Vy(x, y)
}
. (5)
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Moreover, we expect that V has in region N a layer behavior, i.e. we expect the existence of a “fast

variable”. To find this variable, we use methods from singular perturbation theory (see e.g. [3]).

Starting from the ansatz z := y
εα , we want to find the significant degeneration (see again [3] for this

concept) of the PDE in region N . Denoting V in region N by V (N), we get the following PDE in

region N

V (N)
y +

1

2
∆(ε)V (N) = 0.

Transforming to the variables (x, z), yields

ε−αV (N)
z +

1

2
V (N)
xx +

ε2−2α

2
V (N)
zz = 0,

which gives the significant degeneration for α = 2, hence

V (N)
z +

1

2
V (N)
zz = 0.

Solving this equation, we arrive at V (N)(x, z) = C(x) + D(x)e−2z, therefore - using the boundary

condition V (N)(x, 0) = 0 -

V (N)(x, z) = D(x)
(
1− e−2z

)
= D(x)

(
1− e−

2y

ε2

)
. (6)

Employing the “boundary condition” at x =∞, we find additionally

D(∞) = 1. (7)

We now assume that the curve C is described by the function φ(x), x ∈ [0,∞).

Since we have to change the strategy at this curve, we find the condition

V (N)
x (x, φ(x)) = V (N)

y (x, φ(x)). (8)

Using (6) and the scaled function φ̃(x) = φ(x)
ε2 , gives finally

D′(x)

D(x)
=

2

ε2
e−2φ̃(x)

1− e−2φ̃(x)
. (9)

We now try to construct an approximation in region P and consider the so called “reduced equation”

(i.e. setting ε = 0)

V (P )
x +

1

2
V (P )
xx = 0,

which gives, using the boundary condition V (P )(0, y) = 0,

V (P )(x, y) = F (y)
(
1− e−2x

)
. (10)

The boundary condition V (P )(x,∞) = 1− e−2x additionally provides

F (∞) = 1. (11)

Analogously as in (8), we impose

V (P )
x (x, φ(x)) = V (P )

y (x, φ(x)). (12)

Hence, we find, using (10),
F ′(φ(x))

F (φ(x))
=

2e−2x

1− e−2x
. (13)

Clearly, we should have V (P )(x, φ(x)) = V (N)(x, φ(x)), giving

D(x)
(

1− e−2φ̃(x)
)

= F (φ(x))
(
1− e−2x

)
. (14)
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Our final “matching condition” is V
(P )
x (x, φ(x)) = V

(N)
x (x, φ(x)), which means together with (8) and

(12), that we want continuous partial derivatives over the curve C. This gives finally

D′(x)

F (φ(x))
=

2e−2x

1− e−2φ̃(x)
. (15)

We now want to calculate the functions φ(x), D(x), F (y) from the matching conditions (9),(13),(14)

and (15).

We start with the derivation of (14) w.r.t. x, giving

D′(x)
(

1− e−2φ̃(x)
)

+ 2D(x)e−2φ̃(x)φ̃′(x) = F ′(φ(x))φ′(x)
(
1− e−2x

)
+ 2F (φ(x))e−2x.

Using (15), (14) and (13), and dividing this equation by F (φ(x)), provides - after some elementary

calculations -
e−2xε2

1− e−2x
=

e−2φ̃(x)

1− e−2φ̃(x)
, (16)

and finally the formula for the separation curve

φ̃(x) =
1

2
ln

(
1 +

e2x − 1

ε2

)
. (17)

It remains to determine the functions D(x) and F (y). Plugging (17) (resp. (16)) into (9), yields

D′(x)

D(x)
=

2e−2x

1− e−2x
.

Integrating this ODE, using the condition (7), gives

D(x) = 1− e−2x. (18)

Finally, we have by (14) and (18)

F (φ(x)) =
D(x)

(
1− e−2φ̃(x)

)
1− e−2x

= 1− e−2φ̃(x).

Since φ(x) is bijective from R+
0 to R+

0 , we get

F (y) = 1− e−
2y

ε2 . (19)

So, summarizing the results of our heuristic procedure, we find the approximations

Ṽ (x, y) = V (P )(x, y) = V (N)(x, y) =
(
1− e−2x

) (
1− e−

2y

ε2

)
,

φ(x) =
ε2

2
ln

(
1 +

e2x − 1

ε2

)
, (20)

and we note again that on the separation curve (x, φ(x) we have Ṽx = Ṽy. In figure 1 one can find a

plot of the separation curve.

As we want to show finally that Ṽ is a uniform approximation of the value function V in G, we

prove as a preparatory result that Ṽ produces a small residuum in the sense of Lp, p = 1, 2, if we

plug it into the operator L.

Lemma 3.1 We have

LṼ (x, y) = max
{
Ṽx, Ṽy

}
+

1

2
∆(ε)Ṽ =: R(x, y),

with

||R(x, y)||Lp(G) ≤ Cε
2 (− ln ε) , p = 1, 2,

for small ε, and a positive constant C, not depending on ε, and R ∈ L∞(G).
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Figure 1: plot of the separation curve (x, φ(x))

Proof. An elementary calculation provides

LṼ (x, y) = 1{y≥φ(x)}
2

ε2
(
e−2x − 1

)
e−

2y

ε2 + 1{y<φ(x)}2e
−2x

(
e−

2y

ε2 − 1
)
, (21)

where 1 denotes the indicator function. As R ∈ L∞(G) is obvious, let us now calculate an upper

estimate for the Lp-norm in question. Fixing x first, one gets∫ ∞
0

|R(x, y)|p dy = 2pe−2px
∫ φ(x)

0

∣∣∣1− e− 2y

ε2

∣∣∣p dy +
2p

ε2p
(
1− e−2x

)p ∫ ∞
φ(x)

e−
2py

ε2 dy. (22)

We denote the first integral by J1 and the second one by J2 and start with J1: Changing to the

integration variable w = 1− e−
2y

ε2 , we find

J1 =
ε2

2

∫ 1−e−2φ̃(x)

0

wp

1− w
dw ≤ ε2

2

∫ 1−e−2φ̃(x)

0

dw

1− w
= ε2φ̃(x). (23)

The second integral J2 can be calculated explicitly, giving, if we use (17),

J2 =
ε2

2p

(
ε2

ε2 + e2x − 1

)p
. (24)

So by (22),(23) and (24) one gets∫ ∞
0

∫ ∞
0

|R(x, y)|p dx dy ≤ 2pε2
∫ ∞
0

e−2pxφ̃(x) dx+ ε2
2p

2p

∫ ∞
0

(
1− e−2x

)p
(ε2 + e2x − 1)

p dx. (25)

Denote the integrals above by K1, respectively K2.

We deal with K1 first and start with the following upper bound for φ̃

φ̃(x) =
1

2
ln

(
ε2 + e2x − 1

ε2

)
=

1

2
ln
(
ε2 + e2x − 1

)
− ln ε ≤ 1

2
ln
(
e2x
)
− ln ε = x− ln ε,
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where we have used ε < 1. This gives for K1 the following estimate

K1 ≤
∫ ∞
0

e−2px(x− ln ε) dx ≤ −const. ln ε, (26)

for some positive constant. For K2, which can be explicitly calculated for p = 1, 2, one easily finds

K2 ≤
1

2
. (27)

By (25), (26) and (27) we end up with ||R(x, y)||Lp(G) ≤ const.ε2 (− ln ε), p = 1, 2, which concludes

the proof. tu

4 Validation of the formal approximation

We start this section with the formulation of the ABP-result, we have mentioned in the introduction.

Its proof is a direct consequence of Theorem 2.1 of [7], if we set G = R+ ×R+, ρ = k = 1 there.

Theorem 4.1 Consider the following inhomogeneous linear elliptic PDE

KD(x, y) := a1(x, y)Dx + a2(x, y)Dy +
1

2
∆(ε)D + f(x, y) = 0,

on G, with

D(x, 0) = D(0, y) = 0, x, y ≥ 0,

lim
x→∞,y→∞

D(x, y) = 0.

Moreover, we assume that the ai are Borel measurable and

a1 + a2 = 1, 0 ≤ ai ≤ 1, i = 1, 2,

f(x, y) ∈ L∞(G) ∩ L1(G) ∩ L1(G).

Then the boundary value problem for D above has a unique solution in W 2,2
loc (G)∩C(G), which fulfills

||D||L∞(G) ≤
C

ε

(√
ε(− ln ε)||f ||L2(G) + ||f ||L1(G)

)
,

for some positive constant C, not depending on ε.

The aim of the rest of this section is twofold. Firstly, we want to prove that the formal approxi-

mation Ṽ , provided in (20), is indeed a valid approximation of the value function V (x, y) in G. One

can easily give a strategy, which produces Ṽ (x, y) as target functional. Unfortunately, this strategy

is not admissible. The second aim of this section is, to provide an admissible strategy, which gives a

target functional, approximating the value function V (x, y) uniformly in G.

Proposition 4.1 Let V (x, y) be the value function of problem (1)-(3), and let Ṽ (x, y) the formal

approximation given in (20). Then we have

||Ṽ (x, y)− V (x, y)||L∞(G) ≤ C(−ε ln ε),

for some positive constant C, not depending on ε.

Proof. By Proposition 2.1 we have

LV = max{Vx, Vy}+
1

2
∆(ε)V = 0.
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Hence, using the vector ν := (−1, 1), we can write the full BVP as

Vx + (Vν)
+

+
1

2
∆(ε)V = 0,

V (x, 0) = 0,

V (0, y) = 0,

lim
x→∞,y→∞

V (x, y) = 1, (28)

where Vν := Vy − Vx. On the other hand, we have by Lemma 3.1

Ṽx +
(
Ṽν

)+
+

1

2
∆(ε)Ṽ + f(x, y) = 0,

Ṽ (x, 0) = 0,

Ṽ (0, y) = 0,

lim
x→∞,y→∞

Ṽ (x, y) = 1, (29)

with f(x, y) = −R(x, y). Moreover, we know by Lemma 3.1 that

f ∈ L∞(G) ∩ Lp(G),

||f ||Lp(G) ≤ C(−ε2 ln ε), (30)

with p = 1, 2.

Let now D(x, y) := Ṽ (x, y)− V (x, y). Subtracting (29) from (28), we get

Dx +
(
Ṽν

)+
− (Vν)

+
+

1

2
∆(ε)D + f(x, y) = 0,

D(x, 0) = D(0, y) = 0,

lim
x→∞,y→∞

D(x, y) = 0. (31)

We now consider 4 cases:

Case 1: (x, y) ∈ {Ṽν ≥ 0, Vν ≥ 0}. We have
(
Ṽν

)+
− (Vν)

+
= Dν .

Case 2: (x, y) ∈ {Ṽν < 0, Vν < 0}. This gives
(
Ṽν

)+
− (Vν)

+
= 0.

Case 3: (x, y) ∈ {Ṽν ≥ 0, Vν < 0}. We find(
Ṽν

)+
− (Vν)

+
=
(
Ṽν

)
=

Ṽν

Ṽν − Vν

(
Ṽν − Vν

)
=: b(x, y)Dν .

Case 4: (x, y) ∈ {Ṽν < 0, Vν ≥ 0}. This finally yields(
Ṽν

)+
− (Vν)

+
= −Vν =

−Vν
Ṽν − Vν

(
Ṽν − Vν

)
=: b(x, y)Dν .

Hence, if we define

b(x, y) :=


1 in Case 1,

0 in Case 2,
Ṽν

Ṽν−Vν
in Case 3,

Vν
Vν−Ṽν

in Case 4,

we can write the PDE in (31) as

Dx + b(x, y)Dν +
1

2
∆(ε)D + f(x, y) = 0. (32)
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One easily checks that one has b(x, y) ∈ [0, 1], for all (x, y). Finally, defining a1(x, y) := 1 − b(x, y)

and a2(x, y) := b(x, y), yields

a1(x, y)Dx + a2(x, y)Dy +
1

2
∆(ε)D + f(x, y) = 0,

D(x, 0) = D(0, y) = 0,

lim
x→∞,y→∞

D(x, y) = 0, (33)

with

a1(x, y) + a2(x, y) ≡ 1, a1(x, y) ∈ [0, 1], a1(x, y) ∈ [0, 1].

Hence, together with (30), an application of Theorem 4.1 proves our proposition. tu
Proposition 4.1 shows that we can approximate the value function V by our formal approximation

Ṽ . It is easy to see that Ṽ (x, y) can be seen as the target functional, if we use the strategy u =
(
1
1

)
,

which is unfortunately not admissible, since the total drift exceeds one. Of course, it would be

interesting to find an admissible strategy, which produces a target functional, approximating the

value function.

We consider the following strategy

û :=

(
1II(x, y)

1I(x, y)

)
, (34)

with

I := {(x, y) ∈ G |y < φ(x), x > 0} ,

II := {(x, y) ∈ G |y ≥ φ(x), x > 0} , (35)

where φ(x) is the separation curve, defined in (20). Let now H(x, y) be the solution of the BVP

LLH := 1IIHx + 1IHy +
1

2
∆(ε)H + f(x, y) = 0,

H(x, 0) = H(0, y) = 0,

lim
x→∞,y→∞

H(x, y) = 0, (36)

with f(x, y) = −R(, x, y), and R defined in Lemma 3.1. By Theorem 4.1, this solution is unique and

an element of W 2,2
loc (G). Moreover, we have

|||H(x, y)||L∞(G) ≤ C(−ε ln ε), (37)

for some positive constant C, not depending on ε. Consider now V̂ (x, y) := Ṽ (x, y)−H(x, y). Since

Ṽ solves by construction LLṼ + f = 0, V̂ is the unique solution of

LLV̂ = 0,

V̂ (x, 0) = V̂ (0, y) = 0,

lim
x→∞,y→∞

V̂ (x, y) = 1. (38)

The next lemma shows that V̂ (x, y) can be interpreted as the survival probability of Xt and Yt, if

we use the admissible strategy û.

Lemma 4.1 One has

V̂ (x, y) = Px,y
(
Zt ∈ G,∀t ∈ R+

0

)
= Px,y(τ =∞).
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Proof. In this proof we denote by Zt the state process, if we use the strategy û. Let

τn := inf {t > 0 |Zt /∈ (1/n, n)× (1/n, n)} ,

n large enough, s.t. we have (x, y) ∈ (1/n, n)× (1/n, n). Ito-Krylov’s formula, see e.g. [9], gives

V̂ (Zt∧τn) = V̂ (x, y) +

∫ t∧τn

0

∇V̂ (Zs)diag(1, ε2) dBs +

∫ t∧τn

0

LLV̂ (Zs) ds, (39)

where Bt denotes (B
(1)
t , B

(2)
t ).

We have, a.s., τn → τ , for n→∞, hence τn∧t→ τ ∧t. Now, since V̂ , Zt, as well as the stochastic

integral are continuous, we get - employing that the last integral in (39) vanishes by assumption -

V̂ (Zt∧τ ) = V̂ (x, y) +

∫ t∧τ

0

∇V̂ (Zs)diag(1, ε2) dBs. (40)

Hence, V̂ (Zt∧τ ) is a bounded local martingale, hence a true martingale, even uniformly integrable.

Therefore

Ex,y

[
V̂ (Zt∧τ )

]
= V̂ (x, y) (41)

holds. Now, one easily checks by Ito’s Lemma (see also Proposition 3.1 [8]) that −e−2Xt∧τ is a local

supermartingale, bounded above and below. Therefore, this process is a true supermartingale, hence

limt→∞−e−2Xt∧τ exists a.s., and limt→∞Xt∧τ exists a.s. as well. Clearly, on the set {τ =∞} this

limit can not be finite, and we get

lim
t→∞

Xt =∞,

lim
t→∞

Yt =∞, (42)

on {τ = ∞}, since the same considerations hold for the process Yt as well. All together, V̂/∂G = 0,

the third equation of (38) and (42) gives, after t→∞ in (41),

Ex,y

[
V̂ (Zτ )

]
= Px,y(τ =∞) = V̂ (x, y),

which finishes the proof. tu
Our final theorem asserts that the strategy û leads indeed to a uniform approximation of the

value function of the problem.

Theorem 4.2 The target functional, which we get by using the strategy û =
(
1II
1I

)
, with the sets

I and II defined in (35), i.e. V̂ (x, y) = Px,y
(
τ û =∞

)
is a uniform approximation of the value

function V (x, y) for the problem (1)-(3):∣∣∣∣∣∣V (x, y)− V̂ (x, y)
∣∣∣∣∣∣
L∞(G)

≤ C(−ε ln ε),

for some positive, ε-independent constant C.

Proof. An application of Proposition 4.1 and (37) yields∣∣∣∣∣∣V (x, y)− V̂ (x, y)
∣∣∣∣∣∣
L∞(G)

≤
∣∣∣∣∣∣V (x, y)− Ṽ (x, y)

∣∣∣∣∣∣
L∞(G)

+
∣∣∣∣∣∣Ṽ (x, y)− V̂ (x, y)

∣∣∣∣∣∣
L∞(G)

≤ C(−ε ln ε),

concluding our proof. tu
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