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The market: Let (Ω,F ,P) be a complete probability space and (Wt,Ft)t∈[0,∞) anm-dimensional brownian

motion. The prices of the bond and the d tradable stocks at time t ∈ [0, T ] are modelled by

P0(t) = p0 exp

(∫ t

0

r(s)ds

)
,

Pi(t) = pi exp

(∫ t

0

(
bi(s)−

1

2

m∑
j=1

σ2
ij(s)

)
ds+

m∑
j=1

∫ t

0

σij(s)dWj(s)

)
, i = 1, . . . , d,

where r, b = (b1, . . . , bd)
′ and σ = (σij) i=1,...,d

j=1,...,m
are progressively measurable with respect to (Ft) and

uniformly bounded. Further σσ′ is assumed to be uniformly positive definite. These price processes are

the unique solutions to the SDEs

dP0(t) = P0(t)r(t)dt, P0(0) = p0

dPi(t) = Pi(t)

(
bi(t)dt+

m∑
j=1

σij(t)dWj(t)

)
, Pi(0) = pi, i = 1, . . . , d.

In this market the investor can take two actions: They can rebalance their holdings and consume money.

Requirements/Assumptions: We operate under the following assumptions. Note that assumptions 6-8

are out of convenience and can be unrealistic.

1. The investor has no knowledge of future prices (progressive measurability of processes).

2. A single investor’s actions have no effect on the market (small investor hypothesis).

3. At time t = 0 the investor has a fixed initial capital x > 0.

4. Money not invested in stocks has to be invested in bonds.

5. The investor acts in a self-financing way (see below).

6. The securities are perfectly divisible.

7. Negative positions in securities are possible.

8. There are no transaction costs.

Basic definitions: A trading strategy φ is an Rd+1-valued progressively measurable process satisfying

P-a.s. ∫ T

0

|φ0(t)|dt < ∞ and

∫ T

0

(φi(t) · Pi(t))
2dt < ∞, i = 1, . . . , d.

The value x :=
∑d

i=0 φi(0) · pi is called the initial value of φ.

For x > 0 we then define X(t) :=
∑d

i=0 φi(t)Pi(t), the wealth process corresponding to φ with initial wealth

x.

A non-negative progressively measurable process c with
∫ T

0
c(t)dt < ∞ P-a.s. is called a consumption

process.

The pair (φ, c) is called self-financing, if for all t ∈ [0, T ] we have

X(t) = x+
d∑

i=0

∫ t

0

φi(s)dPi(s)−
∫ t

0

c(s)ds,

i.e. the current wealth is given by the initial wealth plus the gains and losses in investments minus the

consumption. Note that the integrability conditions imposed on the trading strategy and the consumption



process in conjunction with the boundedness of r, b and σ ensure the existence of the integrals on the

right-hand side.

Definition (self-financing portfolio process): Let (φ, c) be a self-financing pair consisting of a trading

strategy and a consumption process with corresponding wealth process X(t) > 0 P-a.s. for all t ∈ [0, T ].

Then the Rd-valued process

π(t) := (π1(t), ..., πd(t))
′, t ∈ [0, T ] with πi(t) =

φi(t) · Pi(t)

X(t)
is called a self-financing portfolio process corresponding to the pair (φ, c).

The wealth equation: Let (φ, c) be a self-financing pair consisting of a trading strategy and a consump-

tion process. Deriving the wealth process from the definition above w.r.t. t, yields

dX(t) =
d∑

i=0

φi(t)dPi(t)− c(t)dt.

The portfolio description and the definition above lead to a stochastic differential equation for the wealth

process, the wealth equation:

dX(t) = [r(t)X(t)− c(t)]dt+X(t)π(t)′((b(t)− r(t)1)dt+ σ(t)dW (t)), X(0) = x.

We know that b, r, σ are uniformly bounded and that the consumption process c is almost surely integrable

on [0, T ]. Therefore, we only need the following condition on the self-financing portfolio process π to ensure

the existence of unique a solution to the wealth equation:∫ T

0

π2
i (t)dt < ∞ P-a.s..

This condition implies that if there is no consumption (c(t) = 0 for all t ∈ [0, T ]), then the wealth process

is strictly positive (X(t) > 0 for all t ∈ [0, T ]). This means that there is no risk of ruin for an investor.

Definition (alternative definition of a self-financing portfolio process): The progressively mea-

surable Rd-valued process π(t) is called a self-financing portfolio process corresponding to the consumption

process c(t) if the corresponding wealth equation possesses a unique solution X(t) = Xπ,c(t) with∫ T

0

(X(t) · πi(t))
2dt < ∞ P-a.s. for i = 1, ..., d.

This condition on the portfolio process and the wealth process is equivalent to the condition on the trading

strategy and the prices in the definition of the trading strategy.

The last condition allows ruin for an investor. It allows the wealth process to be zero or even negative for

some t ∈ [0, T ]. This will be relevant in connection with the replication approach to option pricing.

Definition (admissible): A self-financing pair (φ, c) or (π, c) consisting of a trading strategy φ or a

portfolio process π and a consumption process c will be called admissible for the initial wealth x > 0, if

the corresponding wealth process satisfies

X(t) ≥ 0 P-a.s. for all t ∈ [0, T ].

The set of admissible pairs (π, c) will be denoted by A(x).
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We now look at special case d = m where the dimension of the underlying Brownian motion equals the
number of stocks. Prices are the only source of information available to investors, which is modeled by
the Brownian filtration (Ft)t∈[0,T ].
We are interested in the set of all final wealths X(T ) attainable from an initial capital x. The key result
is that every such final wealth can be generated given a sufficiently large initial capital.

We now define a process H(t) = Z(t) γ(t) which is positive, continuous and progressively measurable
with respect to the Brownian filtration.
The process H(t) is interpreted as a discounting process and satisfies:

dH(t) = −H(t)
(
r(t) dt+ θ(t)′dW (t)

)
, H(0) = 1,

Theorem 2.63 (Completeness of the Market)
(1) Let (π, c) be an self-financing pair admissible for an initial wealth x ≥ 0. Then the corresponding
wealth process X(t) satisfies

E
(
H(t)X(t) +

∫ t

0
H(s)c(s) ds

)
≤ x, for all t ∈ [0, T ].

(2) Let B ≥ 0 be an FT -measurable random variable and c(t) t ∈ [0, T ] a consumption process satisfying

x := E

(
H(T )B +

∫ T

0
H(s)c(s) ds

)
< ∞.

Then there exists a portfolio process π(t) t ∈ [0, T ] such that (π, c) ∈ A(x) and the corresponding wealth
process X(t) satisfies X(T ) = B a.s. P.

Implications of the Theorem
The process H(t) acts as a stochastic discount factor determining the initial wealth at time t=0 which is
necessary to be able to attain future aims.
Part (1) sets limits on attainable goals given an initial capital x ≥ 0. Part (2) says that each desired final
wealth at time t = T can be attained exactly by trading according to an appropriate self financing pair
and sufficient initial capital.

Proof idea of Theorem 2.63
(1) Let (π, c) ∈ A(x)
Using the differential equations for X(t) (wealth equation) and H(t) when applying the product rule gives:

H(t)X(t) +
∫ t

0
H(s)c(s) ds = x+

∫ t

0
H(s)X(s)

(
π(s)′σ(s) − θ(s)′)dW (s).

The left hand side is not negative and the right hand side is a local-martingale. Therefore it is a super-
martingale and the inequality follows.

(2) Define

X(t) = H(t)−1E

(∫ T

t

H(s)c(s) ds+H(T )B

∣∣∣∣∣Ft

)
.

Then X(T ) = B and X(0) = x P-a.s. Set

M(t) := H(t)X(t) +
∫ t

0
H(s)c(s) ds = x+

∫ t

0
ψ(s)′dW (s). a.s. P for all t ∈ [0, T ].

The last equality follows from the Martingale Representation Theorem for some ψ(t) which is progressively
measurable and Rd-valued with

∫ T

0 ||ψ(t)||2dt < ∞. The following two lemmas yield that, by comparing
the two different representations from part (1) and (2), X(t) defined as above is the wealth process
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corresponding to

π(t) =

σ
−1(t)

(
ψ(t)

H(t)X(t) + θ(t)
)
, X(t) > 0,

0, otherwise.

Thus (π, c) ∈ A(x) and X(T ) = B P-a.s. □

Lemma 2.64
X(t) and π(t) as in the proof of part (2) of the Theorem 2.63 satisfy∫ T

0
(πi(t)X(t))2

dt < ∞ P-almost surely, i = 1, . . . , d

Proof idea
We have

||π(t)X(t)|| ≤
∥∥∥∥(σ(t)−1)′ Ψ(t)

H(t) +
(
σ(t)−1)′

θ(t)X(T )
∥∥∥∥

≤
∥∥∥∥(σ(t)−1)′ ψ(t)

H(t)

∥∥∥∥︸ ︷︷ ︸
α(t)

+
∥∥∥(σ(t)−1)′

θ(t)X(t)
∥∥∥︸ ︷︷ ︸

β(t)

.

As σ(t)σ(t)′ is uniformly positive definite and H(t) is continuous and strict positive on [0, T ], it follows
that ∫ T

0
α2(t) dt < ∞

for P-almost all ω ∈ Ω. As σ(t)σ(t)′ is uniformly positive definite, b and r are uniformly bounded and
X(t) is continuous on [0, T ], this yields ∫ T

0
β2(t) dt < ∞.

for P-almost all ω ∈ Ω.
With this and the relation (a+ b)2 ≤ 2(a2 + b2), we arrive at∫ T

0
∥π(t)X(t)∥2 ≤ 2

(∫ T

0
α2(t) dt+

∫ T

0
β2(t) dt

)
< ∞

for P-almost all ω ∈ Ω. □

Lemma 2.65
Let π(t), X(t), c(t) be as in the proof of part (2) of Theorem 2.63. If X(t) solves the SDE

d(H(t)X(t)) = H(t)X(t) (π(t)′σ(t) − θ(t)′) dW (t) −H(t)c(t) dt
X(0) = x

then X(t) is the wealth process corresponding to (π, c) with X(t) = x.

Proof idea

Let X̃(t) := X(t)H(t). First assume that X(t) > 0 P-almost surely. Then we have

dX̃(t) = Ψ(t)′ dW (t) −H(t)c(t) dt.
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By the product rule, we have

dX(t) = (X(t) [r(t) + π(t)′(b(t) − r(t) · 1)] − c(t)) dt+X(t)π(t)′σ(t) dW (t).

Hence, X(t) solves the wealth equation corresponding to (π, c, ) and due to X(t) ≥ 0 and Lemma 2.64,
we also have (π, c) ∈ A(x).

If we now assume, that for some (t0, ω0) ∈ [0, T ] × Ω, X(t) attains the value of zero, then due to
H(t) > 0, c(t) ≥ 0 for all t ∈ [0, T ] and B ≥ 0, we get

c(t, ω0) = 0 for all t ≥ t0,

B(ω0) = 0.

Consequently, X(t, ω0) retains the value of zero on [t0, T ]. This implies

Ψ(t, ω0) = 0, π(t, ω0) = 0 for all t ∈ [t0, T ].

In this case, we have dX(t) = 0 for all t ≥ t0. Due to X(t) = 0, π(t) = 0, c(t) = 0 this then also coincides
with the right-hand side of the wealth equation. □

Remark 2.66
(1) 1/H(t) is the wealth process corresponding to the pair

(π(t), c(t)) =
(
σ−1(t)′θ(t), 0

)
with an initial wealth of x := 1/H(0) = 1 and a final wealth of B := 1/H(T ).

(2) Further it can be shown that the portfolio process π constructed in the proof of part (2) of The-
orem 2.63 is the unique (up to indistinguishably with respect to P) portfolio process with (π, c) ∈ A(x)
and X(t) = B P-almost surely.
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1 Introduction to optimal portfolios

In the continuous-time market model, the situation is that for a fixed initial capital x > 0, we

want to find an admissible self-financing pair of portfolio and consumption process which yields

a payment stream which should be as profitable as possible. The problem can now be splitted

into a choice problem - which security should be bought, a problem of volume - how many units,

and a time component - what to do at t ∈ [0, T ].

To evaluate a payment stream, we first define the concept of a utility function.

Definition: (Utility function)

(i) U is a utility function :⇔ U ∈ C1((0,∞);R), U strictly concave and

U ′(0) := limx→0 U
′(x) = ∞, U ′(∞) := limx→∞ U ′(x) = 0.

(ii) If U ∈ C(([0, T ]× (0,∞));R) and for all t ∈ [0, T ] the function U(t, .) is a utility function,

then U is also considered to be a utility function.

The functional J , to measure the utility of a payment stream, is now given by

J(x;π, c) := E
[ ∫ T

0
U1(t, c(t))dt+ U2(X(T ))

]
.

Here, U1 and U2 are utility functions defined like in (ii) and (i), respectively. Since a higher value

for J is considered as good for the investor, the continuous-time portfolio problem is given by:

max
(π,c)∈A′(x)

J(x;π, c), with (1)

A′(x) = {(π, c) ∈ A(x) : E
[ ∫ T

0
U1(t, c(t))

−dt+ U2(X(T ))−
]
< ∞}

2 Martingale Method

Main Idea of the Martingale Method

The key idea of the martingale approach is to decompose the original dynamic optimization

problem into two simpler parts:

• Static optimization problem: Determine the optimal terminal wealth B∗ by solving a

static maximization problem over all attainable terminal wealth.

• Representation problem: Find a portfolio process π∗ with corresponding wealth process

Xπ∗
(T ) = B∗.

Motivation of the Static Optimization Problem

We first simplify the dynamic portfolio optimization problem. We assume there is no consump-

tion (c = 0) and consider utility only from the terminal wealth (U1 = 0). Hence, the investor

just trades a self-financing portfolio (π, 0) with initial wealth x > 0. The simplified version of

our portfolio problem now looks like this:

max
(π,0)∈A′(x)

E
[
U2(X

π(T ))
]
.

1 WS 2025/2026
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Note, that we are still maximizing over a class of stochastic processes. Our next step is to change

that so that time-dependence disappears and we end up with a static problem.

By market completeness, we know that every attainable terminal wealth B can be generated

by some self-financing portfolio process. Therefore we can write our maximization problem as

max
B∈B(x)

E
[
U2(B)

]
,

where B(x) denotes the set of all final wealth achievable from initial capital x.

Solving the Static Optimization Problem

We apply the Lagrange method to solve the static optimization problem

max
B∈B(x)

E[U2(B)] subject to E[H(T )B] = x.

To do that, we define the Lagrangian function as

L(B, y) = E
[
U2(B)

]
− y
(
E[H(T )B]− x

)
,

where y > 0 is the Lagrange multiplier. By differentiating with respect to B, setting the deriva-

tive equal to zero and because U ′
2 can be inverted, we obtain

B = (U ′
2)

−1
(
yH(T )

)
.

Now by differentiating with respect to y, setting the derivative zero and plugging in the result

for B we get

0 = x− E
[
H(T ) (U ′

2)
−1
(
y H(T )

)]︸ ︷︷ ︸
=:χ(y)

.

If this equation is uniquely solvable for y, then we have found a possible candidate for the

optimal final wealth. We define

I2 := (U ′
2)

−1 and Y (x) := χ−1(x)

and obtain the possible candidate for the optimal terminal wealth:

B∗ = I2
(
Y (x) ·H(T )

)
> 0.

The fact that this B∗ is indeed optimal will be proven later.

Back to the General Optimization Problem

After solving the simplified model without consumption, we now return to the general case with

consumption (c ̸= 0) and utility from both consumption and terminal wealth (U1 ̸= 0). Analogue

2 WS 2025/2026
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to the static case, we define for y ∈ (0,∞):

I2(y) := (U ′
2)

−1(y)

I1(t, y) := (U ′
1(t, y))

−1(y)

χ(y) := E
[∫ T

0
H(t) I1(t, yH(t)) dt+H(T ) I2(yH(T ))

]
.

The function χ(y) satisfies the following properties which ensure the existence of its inverse

function Y (x) = χ−1(x):

• χ is continuous and strictly decreasing on (0,∞),

• χ(0) = ∞, χ(∞) = 0.

Lemma: Let U be a utility function, y > 0, x < ∞ and set I := (U ′)−1. Then

U(I(y)) ≥ U(x) + y(I(y)− x). (2)

Theorem: (Optimal consumption and optimal wealth) Let x > 0 and χ(y) < ∞ for all

y > 0. Set Y (x) := χ−1(x) and look at the portfolio problem (1). For

B∗ := I2(Y (x) ·H(T )) ”optimal terminal wealth”

c∗(t) := I1(t, Y (x) ·H(t)) ”optimal consumption”

exists a self-financing portfolio process (π∗(t))t∈[0,T ] such that (π∗, c∗) ∈ A′(x) solves the portfolio

problem (1) and the corresponding wealth process fulfills

Xx,π∗,c∗(T ) = B∗ P− a.s.

Proof: (idea)

(i) Existence of π∗: Since I1, I2 > 0 and by definition of B∗, c∗, it follows that

E
[ ∫ T

0
H(t)c(t)dt+H(T )B∗

]
Def.
= χ(Y (x)) = χ(χ−1(x)) = x.

Now, the existence of a corresponding portfolio process π∗ satisfying (π∗, c∗) ∈ A′(x) is

given by Theorem 2.63 as well as Xx,π∗,c∗(T ) = B∗ P− a.s.

(ii) w.t.s. (π∗, c∗) ∈ A′(x): We use (2) for U1(t, c
∗(t)) and U2(B

∗) with x = 1, respectively, the

fact that a ≥ b ≥ 0 ⇒ a− ≤ b, the triangle inequality and linearity to obtain

E
[ ∫ T

0
U1(t, c

∗(t))−dt+ U2(B
∗)
]

≤ E
[ ∫ T

0
|U1(t, 1)|+ Y (x)H(t)(c∗(t) + 1) + |U2(1))|+ Y (x)H(T )(B∗ + 1)

]
= |U2(1))|︸ ︷︷ ︸

<∞ by def.

+

∫ T

0
|U1(t, 1)|dt︸ ︷︷ ︸

<∞ , cont. integrand

+Y (x)
(
x+ E[H(T )] +

∫ T

0
E[H(t)]dt︸ ︷︷ ︸

<∞, H∈L1([0,T ])

)
< ∞

3 WS 2025/2026



Stochastic control theory Lena Hofstätter, Lara Lapinski, Christoph Koller

(iii) show optimality: Consider an arbitrary (π, c) ∈ A′(x) and use (2) for U1(t, c
∗(t)) with

x = c(t) as well as U2(B
∗) with x = Xx,π,c. With this, the definition of J(x, π, c) and

Theorem 2.63, we get:

J(x, π∗, c∗) = E
[ ∫ T

0
U1(t, c

∗(t))dt+ U2(B
∗)
]

≥ J(x, π, c) + Y (x)
(
E
[ ∫ T

0
H(t)c∗(t)dt+H(T )B∗

]
︸ ︷︷ ︸

=x

−E
[ ∫ T

0
H(t)c(t)dt+H(T )Xx,π,c

])
︸ ︷︷ ︸

≥0

.

■

Example: Logarithmic Utility

We consider the special case U1(t, x) = U2(x) = ln(x), for which I1(t, y) = I2(y) =
1
y .

This leads to

χ(y) = E
[∫ T

0
H(t)

1

yH(t)
dt+H(T )

1

yH(T )

]
=

1

y
(T + 1), Y (x) = χ−1(x) =

T + 1

x
.

Now for the optimal consumption and the optimal wealth, we get

c∗(t) = I1(t, Y (x)H(t)) =
x

T + 1

1

H(t)
, B∗ = I2(Y (x)H(T )) =

x

T + 1

1

H(T )
.

In this special case we can even calculate the portfolio process explicitly which then leads to the

following generalization.

Solution to the representation problem

Theorem: (solution of representation problem of the continuous-time portfolio problem) Let

x > 0 and χ(y) < ∞ for all y > 0. Let c∗ and B∗ be the optimal consumption and the optimal

terminal wealth like before. Suppose there exists a continuously differentiable function

f ∈ C1,2([0, T ]× Rd), f(0, .., 0) = x,

such that for all t ∈ [0, T ]

1

H(t)
E
[∫ T

t
H(s)c∗(s) ds+H(T )B∗ | Ft

]
= f(t,W1(t), . . . ,Wd(t)).

Then the optimal portfolio process is given by

π∗(t) =
1

Xx,π∗,c∗(t)
σ−1(t)∇xf(t,W1(t), ...,Wd(t)), t ∈ [0, T ].

4 WS 2025/2026
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Proof:(idea)

(1) Applying the multi-dimensional Itó-Formula to

1

H(t)
E
[∫ T

t
H(s)c∗(s) ds+H(T )B∗ | Ft

]
= f(t,W1(t), . . . ,Wd(t)).

leads to

f(t,W1(t), . . . ,Wd(t)) = f(0, .., 0) +
d∑

i=1

∫ t

0
fxi(s,W1(s), . . . ,Wd(s)) dWi(s)

+

∫ t

0

(
ft(s,W1(s), . . . ,Wd(s)) +

1

2

d∑
i=1

fxixi(s,W1(s), . . . ,Wd(s))

)
ds.

(2) We also know

Xx,π∗,c∗(t) =
1

H(t)
E
[∫ T

t
H(s)c∗(s) ds+H(T )B∗ | Ft

]
= x+

∫ t

0
Xx,π∗,c∗(s)π∗(s)′σ(s) dW (s)

+

∫ t

0

((
r(s) + π∗(s)′(b(s)− r(s)1)

)
Xx,π∗,c∗(s)− c(s)

)
ds,

where the last equation holds because (π∗, c∗) is an admissible, self-financing pair and

therefore fulfills the wealth equation holds (integrating from 0 to t gives the expression).

(3) If we compare the integrands of the stochastic integrals of both representations we get the

wanted result

π∗(t) =
1

Xx,π∗,c∗(t)
σ−1(t)∇W f(t,W (t)).

■

Corollary:(solution of the pure consumption and the pure terminal wealth maximization

problem)

(1) For the optimal terminal wealth B∗ of

max
(π,0)∈A′(x)

E
[
U2(X

x,π(T ))
]
,

we get B∗ = I2
(
Y (x)H(T )

)
, where in the definition of χ(y) we set I1(t, y) ≡ 0.

(2) For the optimal consumption process c∗(t) of

max
(π,c)∈A′(x)

E
[∫ T

0
U1(t, c(t)) dt

]
,

we get c∗(t) = I1
(
t, Y (x)H(t)

)
, where in the definition of χ(y) we set I2(y) ≡ 0.
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This section will apply the martingale method for portfolio optimisation in the com-
plete market, as introduced in the preceding section. In this section, we shall consider a
portfolio problem in which the only financial instruments permitted for trade are option
on stocks, as opposed to the original stocks.

General assumptions:
We use same notations as in Chapter 2, Section 3. The assumptions of of Theorem 2.63
on complete market are satisfied. Further we restrict ourselves in this case of constant
market coefficients r, b, σ

Description of the market model:
Consider a market where a bond, d stocks and d options on these stocks are traded.We
assume the price process of options is given by

f (i)(t, P1(t), ..., Pd(t)), i = 1, ..., d, f ∈ C1,2.

Let
φ(t) = (φ0(t), φ1(t), ..., φd(t),

i.e ∫ t

0

φ0(s) dP (s),∫ t

0

φi(s) df
(i)(s, P1(s), ..., Pd(s)),

be an admissible trading strategy in bond and options and we assume φ(t) is Ft-progressively
measurable.

Motivation: In this section we want find the solution of the following problem

max
φ

E[U(X(T ))], (1)

where U is the utility function and X(t) is the wealth process, given by

X(t) = φ0(t)P0(t) +
d∑

i=1

φi(t)f
i(t, P1(t), ..., Pd(t)).

Option pricing:
Starting from the option’s final payoff B, we determine its price by constructing a portfo-
lio strategy whose terminal wealth replicates this payoff. The minimal initial cost of this
replication strategy then yields the option price.

Portfolio optimization with stocks:
In portfolio optimization, we invest an initial wealth x according to a portfolio process
π⋆(t) to achieve a terminal wealth that maximizes utility; to do this, we first determine
the optimal terminal payoff B∗ and then look for a replication strategy for B∗.

Portfolio optimization with options:
In portfolio optimization with options, starting from an initial capital x, one first deter-
mines an optimal payoff B and then replicates it using a strategy in bonds and options,
achieving the optimal terminal wealth X(T ) Stocks are not held directly but are repre-
sented through the bond-and-option strategy.



Optimal Option Portfolios Denis Rudat, Artem Shulzhenko

Theorem 5.11 Let the Delta matrix Ψ(t) = (Ψij(t)), i, j = 1, . . . , d with

Ψij(t) = f (i)
pj
(t, P1(t), . . . , Pd(t)) (2)

be regular for all t ∈ [0, T ). Then the option portfolio problem (1) has an explicit solution:

1. Optimal terminal wealth B∗ coincides with terminal wealth of corresponding stock
portfolio problem.

2. Let ξ(t) = (ξ0(t), . . . , ξd(t)) be optimal trading strategy for stocks, then optimal
trading strategy for options is given by

ϕ0(t) =
X(t)−

∑d
i=1 ϕi(t)f

(i)(t, P1(t), . . . , Pd(t))

P0(t)
(3)

ϕ(t) = (Ψ(t)′)−1 · ξ(t) (4)

Proof idea:
By Proposition 3.19, we have

f (i)(t, P1(t), . . . , Pd(t)) =
d∑

j=0

Ψij(t) · Pj(t), i = 1, . . . , d (5)

with

Ψi0 =
f (i)(t, P1(t), . . . , Pd(t))−

∑d
j=1Ψij(t) · Pj(t)

P0(t)
(6)

Furthermore by same proposition each row in Ψ is self-financing strategy, so

df (i)(t, P1(t), . . . , Pd(t)) =
d∑

j=0

Ψij(t) · dPj(t), (7)

Now let ϕ be an admissible and self-financing strategy in bond and options, then

dX(t) = ϕ0(t) · P0(t) +
d∑

i=1

ϕi(t)df
(i)(t, P1(t), . . . , Pd(t)) (8)

Using (6) and (7), we obtain

dX(t) =

(
ϕ0(t) +

d∑
i=1

ϕi(t)Ψi0(t)

)
dP0(t) +

d∑
j=1

(
d∑

i=1

ϕi(t)Ψij(t)

)
dPj(t) (9)

= ξ0(t)dP0(t) +
d∑

j=1

ξj(t)dPj(t) (10)

Hence ξ(t) is self-financing strategy for bond and stocks, and admissibility of ϕ(t)
(since Ψ is replicating strategy) implies admissibility of ξ(t) for their respective problems.

To prove second point, we consider optimal trading strategy of stock portfolio problem,
which implies X(T ) = B∗ a.s. and wealth process has form of (10). To obtain trading
strategy in bond and options admitting same wealth process X(t), we make ansatz that
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its wealth process has form (8). Repeating our steps we again arrive at (9). Comparing
coefficients of dPi-terms between (9) and (10) yield the desired form of last d components
of ϕ(t), and regularity of Ψ asserts correctness of (4). Comparison between bond part of
the strategy gives us

ξ0(t) = ϕ0(t) +
d∑

i=1

ϕi(t) ·Ψi0(t) (11)

We have

ξ0(t) =
X(t)−

∑d
i=1 ξi(t)Pi(t)

P0(t)
=

X(t)−
∑d

i=1

(∑d
j=1 ϕj(t)Ψji(t)

)
Pi(t)

P0(t)
(12)

Solving (11) for ϕ0(t) and substituting ξ0(t) with (12) we get

ϕ0(t) =
X(t)−

∑d
i=0

∑d
j=1 ϕj(t)Ψji(t)Pi(t)

P0(t)

=
X(t)−

∑d
j=1 ϕj(t)

∑d
i=0 Ψji(t)Pi(t)

P0(t)

(5)
=

X(t)−
∑d

j=1 ϕj(t)f
(i)(t, P1(t), . . . , Pd(t))

P0(t)

This shows ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕd(t)) is self-financing. To show it is admissible it
is enough to show stochastic integrals

d∑
i=1

∫ t

0

ϕi(s)df
(i)(s, P1(s), . . . , Pd(s))

are well-defined. But this follows by substituting df -term with (7), then using our derived
relation between ϕi(t) and ξi(t). Admissibility of ξ(t) in stock portfolio problem then
implies admissibility of ϕ(t) in option portfolio problem.

We have also shown that following option strategy ϕ(t) leads to the same utility as
by using ξ(t) in stock portfolio problem. We also cannot obtain higher utility in option
portfolio problem, since that would induce the existence of stock strategy ζ(t) yielding
higher expected utility than ξ(t), which contradicts optimality of ξ(t).

Remark 5.12. (1) Under given assumptions, the optimal final wealth only depends
on utility functions, but not on the choice of tradeable securities.

(2) Optimal strategy depends heavily on traded options via delta matrix (more preci-
sely, replication strategy for options).

Example:(Logarithmic utility) Let U(x) = ln(x) and we consider the Black-Scholes
model with d = 1. We known from the previous section, example ”logarithmic utility”

ξ1(t) =
π∗(t) ·X(t)

P1(t)
=

b− r

σ2
· X(t)

P1(t)

The optimal trading strategy is given in dependece of Ψ1 as

φ1(t) =
b− r

σ2
· X(t)

Ψ1(t) · P1(t)
.
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We define the optimal portfolio process

πopt(t) :=
φ(t) · f (1)(t, P1(t))

X(t)

and we obtain by using φ1(t)

πopt(t) = πstock(t) ·
f (1)(t, P1(t))

f
(1)
p1 (t, P1(t)) · P1(t)

.

Proposition
We consider the Black-Scholes model with d = 1 and let U(x) = ln(x), then we have

(1) πopt(t) = πstock(t) for all t ∈ [0, T ] ⇔ f (1)(t, P1(t)) = k ·P1(t) for a const. k ∈ R\{0}.

(2) For a European call option we have πopt(t) < πstock(t) for all t ∈ [0, T ].

Proof.
For (1) we use the relation between πopt and πstock from the above Example.
For (2) we know in the Black-Scholes-Model, the European call option is given by
f (1)(t, P1(t)) = Φ(d1(t)) · P1(t)− Φ(d2(t)) · e−r(T−t) ·K and we have the factor

f (1)(t, P1(t))

f
(1)
p1 (t, P1(t)) · P1(t)

< 1

from the relation between πopt and πstock. We get the following inequality:

f (1)(t, P1(t)) = Φ(d1(t))·P1(t)−Φ(d2(t))·e−r(T−t)·K < Φ(d1(t))·P1(t) = f (1)
p1

(t, P1(t))·P1(t).

Remark:
(1) In the Black–Scholes model,πopt(t) is constant if and only if the contingent claim’s
payoff is simply a multiple of the stock price (the degenerate case).
(2) If a European call option is used in the option portfolio problem, the optimal invest-
ment in the risky asset is always smaller than in the corresponding pure stock portfolio
problem.

Example We now look at European call and mar-
ket coefficients r = 0, b = 0.05, σ = 0.25, T =
1, K = 100, P0(0) = 1. Figure 5.4 shows part of the
wealth which is optimally invested in the stock or
option problem respectively. More precisely, πopt(0)
bold line and πstock(0) dotted line, are given as func-
tions of the underlying stock price P1(0). We see:

• The deeper option is in the money (i.e.
P1(0) > K), the closer πopt(0) gets to optimal
stock portfolio component πstock(0).

• The more option is out of the money (P1(0) <
K), the smaller πopt(0) gets.
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ASYMPTOTIC RUIN PROBABILITIES AND OPTIMAL INVESTMENT

by J. Gaier, P. Grandits and W. Schachermayer

1 Model Setup

The surplus process of an insurance company is given by

R(t, x) = x+ ct−
N(t)∑
i=1

Xi,

where x ≥ 0 is the initial capital, c ∈ R the premium rate, N(t) a Poisson process with intensity
λ, and Xi ≥ 0 are i.i.d. claim sizes with distribution function F . The claim number process
N(t) is independent of the claim sizes.

The company invests in a risky asset described by a geometric Brownian motion S(t):

dS(t) = S(t)(a dt+ b dW (t)),

where a, b ∈ R and W (t) is a standard Brownian motion independent of R. Let F = (Ft)t≥0 be
the filtration generated by R and S, and write Et[·] := E[· | Ft].

We denote by Wa,b the Wiener process with drift a and volatility b, and by K = (K(t))t≥0

an investment strategy. The wealth process is

Y (t, x,K) = R(t, x) + (K ·Wa,b)(t),

where (K ·Wa,b) denotes the stochastic integral.
The ruin probability is

Ψ(x,K) = P[Y (t, x,K) < 0 for some t ≥ 0 ],

and the time of ruin is
τ(x,K) = inf{t ≥ 0 : Y (t, x,K) < 0}.

The class of admissible strategies is

K = {K : K is predictable and adapted to F and

∫ t

0

K(s)2ds < ∞ a.s. for all t ≥ 0}.

The minimal ruin probability is

Ψ∗(x) = inf
K∈K

Ψ(x,K).

Define
h(r) := E[erX ]− 1, r ≥ 0.

Assume that h(r) < ∞ for all r < r∞ for some r∞ ∈ (0,∞], and limr→∞ h(r) = ∞. The
function h is continuous, increasing and convex, with h(0) = 0.

Remark 1. The above model extends the classical Cramér–Lundberg model by allowing invest-
ment in a risky asset. In the classical case, the safety loading condition c > λE[X] yields

Ψ(x) ≤ e−vx,

where v > 0 solves λh(r) = cr.

1



2 Main Statement

Theorem 1. Assume b ̸= 0. Then
Ψ∗(x) ≤ e−r̂x,

where r̂ < ∞ is the positive solution of

λh(r) = cr +
a2

2b2
.

If E[X] < c/λ and a ̸= 0, then r̂ > v, where v is the classical Lundberg exponent. Even without
E[X] < c/λ, we have r̂ > 0.

3 Proof of the Main Statement

For x, r ≥ 0 and K ∈ K, define

M(t, x,K, r) := e−r Y (t,x,K).

Lemma 1. Let a ̸= 0, b ̸= 0. There exists a unique 0 < r̂ < r∞ satisfying

λh(r̂) =
a2

2b2
+ cr̂.

For this r̂ and the constant strategy

K̂(t) ≡ a

b2r̂
,

the process M(t, x, K̂, r̂) is a martingale with respect to F.

Proof. Since h is continuous, increasing and convex, the stated equation has a unique solution.
Define

f(K, r) := λh(r)− (Ka+ c)r + 1
2
K2b2r2.

Then f(K̂, r̂) = 0. For arbitrary t ≥ 0,

E[M(t, 0, K̂, r̂)] = e−r̂(c+K̂a)teλth(r̂)e(r̂
2K̂2b2/2)t = ef(K̂,r̂)t = 1.

Since Y (t, x, K̂) has stationary independent increments,

Et[M(T, x, K̂, r̂)] = e−r̂Y (t,x,K̂)E[e−r̂Y (T−t,0,K̂)] = M(t, x, K̂, r̂).

Thus M is an F-martingale.

Remark 2. For any r < r̂, there exist two constant strategies

K1,2(r) =
a

b2r
±
√

∆(r),

where

∆(r) =
2

b2r2

(
a2

2b2
+ cr − λh(r)

)
≥ 0.

At r = r̂, ∆(r̂) = 0, so K1(r̂) = K2(r̂) = K̂.
We introduce the stopped processes

M̃(t, x,K, r) := M(t ∧ τ(x,K), x,K, r), Ỹ (t, x,K) := Y (t ∧ τ(x,K), x,K).
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Theorem 2. Let a ̸= 0, b ̸= 0. For the constant strategy K̂(t) = a/(b2r̂),

Ψ(x, K̂) ≤ e−r̂x, x ≥ 0.

Proof. Since M(t, x, K̂, r̂) is a nonnegative martingale, the stopped process M̃ is a martingale
as well. Hence,

e−r̂x = M̃(0, x, K̂, r̂) = E[M̃(t, x, K̂, r̂)].

Splitting over the event of ruin before time t,

e−r̂x ≥ E[M̃(t, x, K̂, r̂)1{τ<t}].

Letting t → ∞ and using monotone convergence,

e−r̂x ≥ E[M̃(τ, x, K̂, r̂) | τ < ∞] · P(τ < ∞).

Thus

Ψ(x, K̂) ≤ e−r̂x

E[M̃(τ, x, K̂, r̂) | τ < ∞]
.

At ruin, Y (τ) < 0, hence M̃(τ, x, K̂, r̂) = e−r̂Y (τ) ≥ 1, yielding the claim.

The main theorem follows immediately. In the classical case, the Lundberg exponent v
solves

h(r) =
c

λ
r.

With investment, the corresponding exponent r̂ solves

h(r) =
c

λ
r +

a2

2λb2
.

The right-hand side is strictly larger when a ̸= 0, implying r̂ > v by convexity of h.

Example. If X is exponentially distributed with parameter θ, then

h(r) =
θr

1− θr
, r ∈ [0, 1/θ).

Solving h(r) = c
λ
r yields the classical exponent

ν =
ρ

(ρ+ 1)θ
, ρ =

c

λθ
− 1.

With investment, the exponent becomes

r̂ = ν +

√(
ν + a2/(2b2c)

2

)2

+
a2

2b2c

(
1

θ
− ν

)
− ν + a2/(2b2c)

2

 ,

which is strictly larger than ν when a ̸= 0.
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Handout: Asymptotic Ruin Probabilities and Optimal

Investment - 2nd part

by Jonathan Demming, Nina Radostits & Kathrin Schrank

In this abstract we introduce the surprising result of asymptotic optimality of the constant investment
strategy.

Asymptotic optimality meaning:

- Mostly a theoretical concept.

- For large inputs the strategy performs at worst a constant factor worse than any other possible
strategy.

- “There is no more dramatic improvement possible.”

Constant investment strategy:

- Holding a fixed quantity in the risky asset, independent of the current reserve.

We need the following assumption of the exponential tail distribution of the claim sizes:

Definition 1. Let 0 < r < r∞ be given. We say that X has a uniform exponential moment in the tail
distribution for r, if the following condition holds true:

sup
y≥0

E
[
e−r(y−X) | X > y

]
< ∞. (1)

Theorem 2. Assume that X has a uniform exponential moment in the tail distribution for r̂. Then for
each K ∈ K, the process

(
M̃(t, x,K, r̂)

)
is a uniformly integrable submartingale.

Proof. The main steps are:
Using Ito’s Lemma to the process M and rewriting it leads us to

dM(t, x,K, r)

M(t−, x,K, r)
=

(
−(c+K(t)a)r +

1

2
r2b2K(t)2 + λh(r)

)
dt

− rbK(t) dW (t) +
(
erXN(t) − 1

)
dN(t)− λE

[
erXN(t) − 1

]
dt.

(2)

Therefore we can express the stopped process M̃(t, x,K, r̂) as

M̃(t, x,K, r̂)− M̃(0, x,K, r̂)

=

∫ t∧τ

0

M(s−, x,K, r̂)f
(
K(s), r̂

)
ds︸ ︷︷ ︸

≥0

−rb

∫ t∧τ

0

M(s−, x,K, r̂)K(s) dW (s)︸ ︷︷ ︸
local martingale

+

∫ t∧τ

0

M(s−, x,K, r̂)
(
er̂XN(s) − 1

)
dN(s)− E

[
er̂X − 1

] ∫ t∧τ

0

M(s−, x,K, r̂)λ ds︸ ︷︷ ︸
martingale

.

(3)

Hence M̃(t, x,K, r̂) is a local submartingale.
Now we show that it is a true uniformly integrable submartingale, we use Assumption (1) and notation
M̃∗ := supt≥0 |M̃(t)|. Then

E
[
M̃∗] ≤ E

[
M̃(τ, x,K, r̂) | τ < ∞, Y (τ−) > 0

]
(4)

1



since M(τ, x,K, r̂) equals 1 on {τ < ∞, Y (τ−) = 0} and M(τ, x,K, r̂) ≥ 1 on {τ < ∞, Y (τ−) > 0}.
LetH(dt, dy) denote the joint probability distribution of τ and Y (τ−) conditioned on ruin occurs (through
a jump). Then

E
[
M̃∗] ≤ E

[
M̃(τ, x,K, r̂) | τ < ∞, Y (τ−) > 0

]
=

∫ ∞

0

∫ ∞

0

H(dt, dy)

∫ ∞

y

e−r̂(y−z) dF (z)∫∞
y

dF (u)

≤ sup
y≥0

∫ ∞

y

e−r̂(y−z) dF (z)∫∞
y

dF (u)
< ∞,

(5)

by assumption (1). Dominated Convergence then implies that M̃(t, x,K, r̂) is a uniformly integrable
submartingale.

Lemma 3. If X has a uniform exponential moment in the tail distribution for r̂, then for arbitrary
K ∈ K and x ∈ R+, the stopped wealth process (Ỹ (t, x,K))t≥0 converges almost surely on {τ = ∞} to ∞
for t → ∞. In other words, either ruin occurs, or the insurer becomes infinitely rich.

Proof. From Theorem 2 we know that M̃(t, x,K, r̂) is a uniformly integrable submartingale. If we now
apply Doob’s Supermartingale Convergence Theorem to −M̃ , the a.s existence of limt→∞ M̃(t, x,K, r̂)
follows. As a result, also the stopped wealth process Ỹ (t, x,K) converges a.s for t → ∞.

As X is a positive random variable, there must exist d > 0 such that P[X > d] > 0. Defining the
events En := {Xn > d} implies p := P[Ec

n] < 1, and the events {Ej}∞j=1 are mutually independent.
Therefore, using the continuity of measures and the independence of the defined events we get

P

 ∞⋃
k=1

⋂
n≥k

Ec
n

 cont. of meas.
= lim

k→∞
P

⋂
n≥k

Ec
n

 Ec
n are indep.

= lim
k→∞

∏
n≥k

P[Ec
n]︸ ︷︷ ︸

p

= lim
k→∞

(
lim

N→∞
pN−k+1

)
︸ ︷︷ ︸
=0, since 0≤p<1

= 0.

(6)

Hence, P
[⋂∞

k=1

⋃
n≥k En

]
= 1−P

 ∞⋃
k=1

⋂
n≥k

Ec
n


︸ ︷︷ ︸

=0

= 1. This means that, almost surely, a jump larger than

d occurs infinitely often.

In contrast to this, the stochastic integral K · Wa,b is a.s. continuous. As a result the stochastic in-
tegral K ·Wa,b cannot compensate the jumps of the compound Poisson process, which are greater than d
and occur infinitely often a.s.. All in all, the stopped wealth process cannot converge to a nonzero finite
value with positive probability.

Theorem 4. Assume that X has a uniform exponential moment in the tail distribution for r̂. Then the
ruin probability satisfies, for every admissible process K ∈ K,

Ψ(x,K) ≥ Ce−r̂x, (7)

where

C = inf
y≥0

∫∞
y

dF (u)∫∞
y

e−r̂(y−z)dF (z)
=

1

supy≥0 E[e−r̂(y−X)|X > y]
> 0. (8)

Proof. We use again that M̃(t, x,K, r̂) is a uniformly integrable submartingale (Theorem 2). Applying
Doob’s Optional Sampling Theorem it follows that (using τ as a shorthand notation for τ(x,K))

e−r̂x = e−r̂Ŷ (0,x,K) = M̃(0, x,K, r̂) ≤ E[M̃(τ, x,K, r̂)]. (9)

Then,

E[M̃(τ, x,K, r̂)] = E[M̃(τ, x,K, r̂)|τ < ∞]P[τ < ∞] + E[ lim
t→∞

M̃(t, x,K, r̂)|τ = ∞]︸ ︷︷ ︸
=0 (Lemma 5)

P[τ = ∞]

= E[M̃(τ, x,K, r̂)|τ < ∞]P[τ < ∞]. (10)
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Plugging this into (9), we get

e−r̂x ≤ E[M̃(τ, x,K, r̂)] = E[M̃(τ, x,K, r̂)|τ < ∞]P[τ < ∞]︸ ︷︷ ︸
Ψ(x,K)

. (11)

This is equivalent to

Ψ(x,K) ≥ e−r̂x

E[M̃(τ, x,K, r̂)|τ < ∞]
(12)

Using E
[
M̃∗] ≤ E

[
M̃(τ, x,K, r̂) | τ < ∞, Y (τ−) > 0

]
≤ supy≥0

∫∞
y

e−r̂(y−z) dF (z)∫ ∞
y

dF (u)

obtained in (4) and (5) and

sup
y≥0

∫ ∞

y

e−r̂(y−z) dF (z)∫∞
y

dF (u)
= sup

y≥0
E[e−r̂(y−X)|X > y] (13)

we get

Ψ(x,K) ≥ e−r̂x

E[M̃(τ, x,K, r̂)|τ < ∞]

(13)

≥ e−r̂x 1

sup
y≥0

E[e−r̂(y−X)|X > y]︸ ︷︷ ︸
=:C

= Ce−r̂x. (14)

For C holds

C =
1

supy≥0 E[e−r̂(y−X)|X > y]
=

1

supy≥0

∫∞
y

e−r̂(y−z) dF (z)∫ ∞
y

dF (u)

= inf
y≥0

∫∞
y

dF (u)∫∞
y

e−r̂(y−z)dF (z)
> 0. (15)

Hence, the statement is proven.
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