Non-linear (PI)DEs and affine processes

Josef Teichmann
(joint work with Christa Cuchiero and Georg Grafendorfer)

ETH Zürich

Autumn 2016
(1) Introduction: non-linear PIDEs in Finance
(2) Numerical methods for (non-) linear PIDEs
(3) Branching from an affine point of view
(4) Beyond generalized Riccati equations

Why non-linear PIDEs?

Credit valuation problems, utility optimization problems, super-hedging problems, American option problems lead to non-linear PIDEs.

Pricing of American Options

For instance the pricing of an American Option with payoff $g: D \rightarrow \mathbb{R}$ and time horizon $T>0$ with respect to a Markovian model X on state space D leads to a value function $v: D \times[0, T] \rightarrow \mathbb{R}$ satisfying

$$
\left(\partial_{t}+\mathcal{L}\right) v(x, t)=1_{\{v(x, t)<g(x)\}} 1_{\left\{\left(\partial_{t}+\mathcal{L}\right) v(x, t)>0\right\}} \mathcal{L} g(x)
$$

with boundary condition $v(x, T)=g(x)$ for $x \in D$. Here \mathcal{L} denotes the generator of the Markov process X.

In other words: $\left(v\left(X_{t}, t\right)\right)_{0 \leq t \leq T}$ is the minimal super-martingale above $g\left(X_{t}\right)_{0 \leq t \leq T}$.

Linear PIDEs of the form

$$
\left(\partial_{t}+\mathcal{L}\right) u(x, t)=0
$$

with boundary condition $u(x, T)=g(x)$ allow for (Q)MC algorithms, i.e. for every $x \in D$ the value function has a stochastic representation of the form

$$
u(x, t)=\mathbb{E}_{(x, t)}\left[g\left(X_{T}\right)\right]
$$

This expectation can be approximated by pseudo- or quasi-random samples of the Markov process X through

$$
\frac{1}{N} \sum_{i=1}^{N} g\left(X_{T}^{(i)}\right)
$$

This is a robust, universal and almost dimension-free method to approximate the solution u if the increments of the Markov process X can be simulated with low complexity, even though slow, i.e. with rate of convergence $1 / \sqrt{N}$ which bounds the error in a probabilistic sense.

Alternatives are finite difference or finite element methods with higher convergence rates bounding the error in a deterministic way, however, their complexity depends heavily on dimension.

Non-linear PIDEs of the form

$$
\left(\partial_{t}+\mathcal{L}\right) u(x, t)+F(u(t, x))-u(t, x)=0
$$

with boundary condition $u(x, T)=g(x)$ allow for branching Markov process representations for certain types of non-linearities F.

Generically it holds true that

$$
\begin{aligned}
u(t, x) & =\mathbb{E}_{(x, t)}\left[\exp (-(T-t)) g\left(X_{T}\right)\right]+ \\
& +\int_{t}^{T} \mathbb{E}_{(x, t)}\left[\exp (-(s-t)) F\left(u\left(s, X_{s}\right)\right)\right] d s
\end{aligned}
$$

by the previous representation property. However, this is not a stochastic representation but rather a fixed point equation. Inserting the equation into itself leads towards a backwards algorithm or - under certain assumptions on F - towards a branching tree representation.

Assume that F is of the form

$$
F(u)=\sum_{k=0}^{M} p_{k} u^{k}
$$

with $p_{k} \geq 0$ and $\sum p_{k}=1$, then the previous fixed point equation

$$
\begin{aligned}
u(t, x) & =\mathbb{E}_{(x, t)}\left[\exp (-(T-t)) g\left(X_{T}\right)\right]+ \\
& +\int_{t}^{T} \mathbb{E}_{(x, t)}\left[\exp (-(s-t)) \sum_{k=0}^{M} p_{k}\left(u\left(s, X_{s}\right)\right)^{k}\right] d s
\end{aligned}
$$

leads to the short time asymptotics

$$
\begin{aligned}
u(t, x) & =\exp (-(T-t)) \mathbb{E}_{(x, t)}\left[g\left(X_{T}\right)\right]+ \\
& +(1-\exp (-(T-t))) \sum_{k=0}^{M} p_{k} \prod_{j=1}^{k} \mathbb{E}_{(x, t)}\left[u\left(T, X_{T}^{(j)}\right)\right]+o((T-t))
\end{aligned}
$$

where $X^{(j)}$ denote independent copies of the Markov process X. We can now concatenate the short time asymptotics, since the expansion does not depend on u anymore.

This leads to a branching Markov process representation, i.e. a Markov process whose state space at time t is an integer number k of individuals in state $\left(x^{1}, \ldots, x^{k}\right) \in D^{k}$. The particles move independently subject to the Markov process X and they die at an exponential time with parameter 1 each after giving birth to a I individuals with probability p_{l} (which is called branching).

The number of particles in a measurable subset $A \subset D$ is an integer-measure-valued, self-exciting affine process. Let us denote the overall number of particles at time T by N_{T}.

Forward stochastic representation for semi-linear PIDEs

A similar consideration as before leads to the following stochastic representation formula

$$
u(x, t)=\mathbb{E}_{(x, t)}\left[\prod_{j=1}^{N_{T}} g\left(X_{T}^{(j)}\right) \times \prod_{k=0}^{M}\left(\frac{a_{k}}{p_{k}}\right)^{\#\{\text { branchings of type } k\}}\right]
$$

for equations with generic non-linearity

$$
F(u)=\sum_{k=0}^{M} a_{k} u^{k}-u
$$

and auxiliary branching mechanism $p_{0}, \ldots, p_{M}>0, \sum p_{k}=1$ governing the underlying branching process.

This is a stochastic representation by a Markov process, infinite dimensional though, which can be simulated forward such as in the linear case. The result goes back to Henry-Labordere-Touzi-Wang, but roots in works of Dynkin, McKean, LeJan, Sznithman, etc.

At this point several questions arise:

- The distribution of individuals corresponds to an integer-measure-valued affine process: how is it possible that the branching measure can be replaced by a signed measure?
- Is the previous construction passing from measures to signed measures generic for affine processes on general state spaces?
- What is the relation of the auxiliary process and the functional solving the equation?

An illustrative example

To demonstrate the essential structure let us assume for a moment $\mathcal{L}=0$, then we are dealing with a branching process with just constant state.

We consider a Cole-Hopf transform together with time reversal $u_{t}=\exp \left(\psi_{T-t}\right)$, then

$$
\partial_{t} \psi_{t} \exp \left(\psi_{t}\right)=\sum_{k=0}^{M} p_{k} \exp \left(k \psi_{t}\right)-\exp \left(\psi_{t}\right)
$$

with initial value $\psi_{0}=\log g$. Let us denote by ν the law which takes the value $k-1$ (one ancestor dies!) with probability p_{k}, for $k=1, \ldots, m$, then

$$
\partial \psi_{t}=\mathcal{R}\left(\psi_{t}\right)
$$

with

$$
\mathcal{R}(f):=\int(\exp (f \xi)-1) \nu(d \xi)
$$

This is a generalized Riccati equation for a one-dimensional self-exciting affine (actually linear) process, namely the number of individuals at a certain point in time in the branching process picture..

What are affine processes?

- stochastically continuous, time homogenous Markov processes N with state space \mathcal{M} (usually a cone which is not necessarily pointed).
- the Fourier-Laplace transform of the marginal distribution of N is of exponential affine form

$$
\mathbb{E}_{(n, 0)}\left[\exp \left(\left\langle N_{t}, f\right\rangle\right)\right]=\exp (\phi(t, f)+\langle\psi(t, f), n\rangle)
$$

where the functions ϕ and ψ satisfy so called generalized Riccati equations

$$
\partial_{t} \phi_{t}=\mathcal{F}\left(\psi_{t}\right) \text { and } \partial_{t} \psi_{t}=\mathcal{R}\left(\psi_{t}\right)
$$

with $\phi(0, f)=0$ and $\psi(0, f)=f$.

The vector fields \mathcal{F} and \mathcal{R} are of Lévy-Khintchine form. The classification of the specific form is fully understood on symmetric cones, $\mathbb{R}^{m} \times \mathbb{R}^{n}$, etc, leading to the so called admissibility conditions, BUT the Lévy measures are of course never signed. This can be found in the works of Cuchiero, Duffie, Filipovic, Keller-Ressel, Mayerhofer, Schachermayer, etc.

As often in mathematics it is fruitful to turn a point of view around:

- affine processes gained importance since their marginal distribution is known up to the solution of two ODEs, the generalized Riccati equations. Often the solutions are explicitly known.
- one can also apply affine processes to represent stochastically the solution of non-linear ODEs, which means in particular that one obtain (Q)MC algorithms for the solution of non-linear ODEs of the generalized Riccati type.

The fact that in the Henry-Labordere-Touzi-Wang representation signed Lévy measures appear must have a meaning in the world of affine processes. The result of Henry-Labordere-Touzi-Wong suggests that there are more ODE types than generalized Riccati ones, which allow for representations.

A general result on non-linear ODEs

Consider a state space $\mathcal{M} \subset \mathbb{R}^{d}$ and four vectors of Lévy measures $\nu_{+}^{r e}, \nu_{-}^{r e}, \nu_{+}^{i m}, \nu_{-}^{i m}$ corresponding to the characteristic vector fields $\mathcal{R}_{ \pm}^{r / i}$. Only $\nu_{+}^{r e}$ is a generic Lévy measure of finite variation, all the others are assumed to be of finite activity. We assume the constant part \mathcal{F} to vanish here since it is not important for the argument to come.

Assume furthermore that the sum over all measures

$$
\nu=\nu_{+}^{r e}+\nu_{-}^{r e}+\nu_{+}^{i m}+\nu_{-}^{i m}
$$

satisfies the admissibility conditions and describes a self-exciting pure jump affine (actually linear) process N taking values in \mathcal{M}. Then one can construct a second affine process \widetilde{N}, actually a pure jump linear process, with state space $\mathcal{M} \times \mathbb{Z}^{2 d}$ and corresponding Lévy measures $\widetilde{\nu}$ again being decomposable in four measures, too.

$$
\widetilde{\nu}=\widetilde{\nu}_{+}^{r e}+\widetilde{\nu}_{-}^{r e}+\widetilde{\nu}_{+}^{i m}+\widetilde{\nu}_{-}^{i m}
$$

Fix $i=1, \ldots, d$: coordinate i of the measure $\widetilde{\nu}_{+}^{r e}$ corresponds to the push forward along $\mathcal{M} \ni m \mapsto(m, 0,0) \in \mathcal{M} \times \mathbb{Z}^{2 d}$ of coordinate i of $\nu_{+}^{\text {re }}$; coordinate i of the measure $\widetilde{\nu}_{-}^{\text {re }}$ corresponds to the push forward along $\mathcal{M} \ni m \mapsto\left(m, e_{i}, 0\right) \in \mathcal{M} \times \mathbb{Z}^{2 d}$ of coordinate i of $\nu_{-}^{\text {re }}$; coordinate i of the measure $\widetilde{\nu}_{+}^{i m}$ corresponds to the push forward along $\mathcal{M} \ni m \mapsto\left(m, 0, e_{i}\right) \in \mathcal{M} \times \mathbb{Z}^{2 d}$ of coordinate i of $\nu_{+}^{i m}$; whereas coordinate i of the measure $\widetilde{\nu}_{-}^{i m}$ corresponds to the push forward along $\mathcal{M} \ni m \mapsto\left(m, e_{i}, e_{i}\right) \in \mathcal{M} \times \mathbb{Z}^{2 d}$ of coordinate i of $\nu_{-}^{i m}$. All other jump measures necessary to fully specify the affine process \widetilde{N} vanish.

Theorem

The non-trivial components of the ψ function of \widetilde{N} started at $(f, i \pi, \ldots, i \pi, i \pi / 2, \ldots, i \pi / 2)$ actually solve

$$
\begin{align*}
\partial \psi_{t} & =\mathcal{R}_{+}^{r e}\left(\psi_{t}\right)-\mathcal{R}_{i}^{r e}\left(\psi_{t}\right)+\mathrm{i} \mathcal{R}_{+}^{i m}\left(\psi_{t}\right)-\mathrm{i} \mathcal{R}_{-}^{i m}\left(\psi_{t}\right) \tag{1}\\
& =\int\left(\exp \left(\left\langle\psi_{t}, \xi\right\rangle\right)-1\right) \eta(d \xi)=\mathcal{R}\left(\psi_{t}\right) \tag{2}
\end{align*}
$$

where $\eta=\nu_{+}^{r e}-\nu_{-}^{r e}+\mathrm{i} \nu_{+}^{i m}-\mathrm{i} \nu_{-}^{i m}$ is a complex measure.
In other words loosely speaking we have stochastic representations for non-linear ODEs with vector fields being Fourier-Laplace transforms of finite complex-valued measures on a certain state space.

Notice that we can also add an additive noise W to the equation

$$
d \psi_{t}=\mathcal{R}\left(\psi_{t}\right) d t+d W_{t}
$$

which finally leads to the stochastic representation

$$
\begin{align*}
& \exp \left(\psi^{i}(t, f)\right)= \tag{3}\\
& =\mathbb{E}_{\left(e_{i}, 0\right)}\left[\exp \left(\left\langle\widetilde{N}_{t},(f, \mathrm{i} \pi, \mathrm{i} \pi / 2)\right\rangle\right) \exp \left(\int_{0}^{t}\left\langle N_{s}, d W_{s}\right\rangle\right) \mid \sigma(W)_{t}\right] \tag{4}
\end{align*}
$$

