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Isonormal Gaussian process

A Gaussian space is a (complete) probability space together with a
Hilbert space of centered real valued Gaussian random variables
defined on it. We speak about Gaussian spaces by means of a
coordinate space.

Let (Ω,F ,P) be a complete probability space, H a Hilbert space,
and W : H → L2[(Ω,F ,P);R] a linear isometry. Then W is called
isonormal Gaussian process if W (h) is a centered Gaussian random
variable for all h ∈ H.
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Example

Given a d-dimensional Brownian motion (Wt)t≥0 on its natural
filtration (Ft)t≥0, then

W (h) :=
d∑

k=1

∫ ∞
0

hk(s)dW k
s

is an isonormal Gaussian process for h ∈ H := L2(R≥0;Rd).
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Notation

In the sequel we shall apply the following classes of functions on Rn

C∞0 (Rn) ⊂ C∞b (Rn) ⊂ C∞p (Rn),

which denote the functions with compact support, with bounded
derivatives of all orders and with derivatives of all orders of
polynomial growth.
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Smooth random variables

Let W be an isonormal Gaussian process. We introduce random
variables of the form

F := f (W (h1), . . . ,W (hn))

for hi ∈ H (mind the probabilistic notation, which would be bad
style in analysis). If f belongs to one of the above classes of
functions, the associated random variables are denoted by

S0 ⊂ Sb ⊂ Sp

and we speak of smooth random variables. The polynomials of
elements W (h) are denoted by P.
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Generation property

The algebra P is dense in L2(Ω,FH ,P), where FH denotes the
completed σ-algebra generated by the random variables W (h) for
h ∈ H.
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Proof

Notice that it is sufficient to prove that every random variable F ,
which is orthogonal to all exp(W (h)) for h ∈ H, vanishes. Choose
now an ONB (ei )i≥1, then the entire function

(λ1, . . . , λn) 7→ E (F exp(
n∑

i=1

λiW (ei )))

vanishes, which in turn means that
E (F | σ̄(W (e1), . . . ,W (en))) = 0 by uniqueness of the Fourier
transform, hence F = 0.

Therefore polynomials of Gaussians qualify as smooth test
functions, since they lie in all Lp for p <∞ and are dense.
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The representation of a smooth random variable is unique in the
following sense: let

F = f (W (h1), . . . ,W (hn))

= g(W (g1), . . . ,W (gm)),

and denote the linear space 〈h1, . . . , hn, g1, . . . , gn〉 with
orthonormal basis (ei )1≤i≤k and representations

hi =
k∑

l=1

ailel

gj =
k∑

l=1

bjlel .

Then the functions f ◦ A and g ◦ B coincide.
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Notation

Notice the following natural isomorphisms

L2[(Ω,F ,P);H] = L2(Ω,F ,P)⊗ H

(ω 7→ F (ω)h) 7→ F ⊗ h .

If we are additionally given a concrete representation
H = L2[(T ,B, µ);G ], then

L2[(Ω× T ,F ⊗ B,P ⊗ µ);G ] = L2(Ω,F ,P)⊗ H

((ω, t) 7→ F (ω)h(t)) 7→ F ⊗ h .
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The Malliavin Derivative

For F ∈ Sp we denote the Malliavin derivative by
DF ∈ L2[(Ω,F ,P);H] defined via

DF =
n∑

i=1

∂

∂xi
f (W (h1), . . . ,W (hn))⊗ hi

for F = f (W (h1), . . . ,W (hn)). The definition does not depend on
the particular representation of the smooth random variable F .

If we are given a concrete representation H = L2(T ,B, µ), then we
identify

L2(Ω,F ,P)⊗ H = L2(Ω× T ,F ⊗ B,P ⊗ µ)

and we obtain a measurable process (DtF )t∈T as Malliavin
derivative.



Malliavin Calculus: Analysis on Gaussian spaces

Integration by parts 1

Let F be a smooth random variable and h ∈ H, then

E (〈DF , h〉) = E (FW (h)).
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Integration by parts 2

Let F ,G be smooth random variables, then for h ∈ H

E (G 〈DF , h〉) + E (F 〈DG , h〉) = E (FG W (h)).
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Proof

The equation in question can be normalized such that ||h|| = 1.
Additionally there are by a transformation of variables orthonormal
elements ei such that

F = f (W (e1), ...,W (en))

with f ∈ C∞p (Rn) and h = e1. Then

E (〈DF , h〉) =

∫
Rn

∂f

∂x1
(x)

1√
(2π)n

exp(−||x ||
2

2
)dx

i.p.
=

∫
Rn

f (x)x1
1√

(2π)n
exp(−||x ||

2

2
)dx

= E (F W (e1)) = E (FW (h)).
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Proof

The second integration by parts formula follows from the Leibnitz
rule

D(FG ) = FDG + GDF

for F ,G ∈ Sp.
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The Malliavin derivative is closable

We have already defined

D : Sp ⊂ Lq[(Ω,F ,P)]→ Lq[(Ω,F ,P);H]

for q ≥ 1. This linear operator is closable by integration by parts:
given a sequence of smooth functionals Fn → 0 in Lq and
DFn → G in Lq[(Ω,F ,P);H] as n→∞, then

E (〈G , h〉H F ) = lim
n→∞

E (〈DFn, h〉F ) =

= lim
n→∞

E (−Fn 〈DF , h〉) + lim
n→∞

E (FnF W (h)) = 0

for F ∈ Sp. Notice that Sp ⊂ ∩q≥1Lq. So G = 0 and therefore D
is closeable. We denote the closure on each space by D1,q,
respectively.
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Operator norms

Given q ≥ 1, then we denote by

||F ||1,q := (E (|F |q) + E (||DF ||qH))
1
q

the operator norm for any F ∈ Sp. By closeability we know that
the closure of this space is a Banach space, denoted by D1,q and a
Hilbert space for q = 2. We have the continuous inclusion

D1,q ↪→ Lq[(Ω,F ,P)]

which has as image the maximal domain of definition of D1,q in
Lq, where we shall write – by slight abuse of notation – D for the
Malliavin derivative.
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Higher Derivatives

By tensoring the whole procedure we can define Malliavin
derivative for smooth functionals with values in V , an additionally
given Hilbert space,

Sp ⊗ V ⊂ Lp[(Ω,F ,P)]⊗ V ,

where we take the algebraic tensor products. We define the
Malliavin derivative on this space by D ⊗ id , and proceed as before
showing that the operator is closable.

Consequently we can define higher derivatives via iteration

DkF = DDk−1F

for smooth functionals F ∈ Lq[(Ω,F ,P)]⊗ V . Closing the spaces
we get Malliavin derivatives Dk for elements of Lq[(Ω,F ,P);V ] to
Lq[(Ω,F ,P);V ⊗ H⊗k ] by induction.
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Operator norms

We define the norms

||F ||k,q := (E (|F |q) +
k∑

j=1

E (||D jF ||qV⊗H⊗j ))
1
q

for k ≥ 1 and q ≥ 1. The respective closed spaces Dk,q(V ) are
Banach spaces (Hilbert spaces), the maximal domains of Dk in
Lq(Ω,F ,P;V ). The Fréchet space ∩p≥1 ∩k≥1 Dk,p(V ) is denoted
by D∞(V ).
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Monotonicity

We see immediately the monotonicity

||F ||k,p ≤ ||F ||j ,q

for p ≤ q and k ≤ j by norm inequalities of the type

||f ||p ≤ ||f ||q

for 1 ≤ p ≤ q for f ∈ ∩p≥1Lp[Ω,F ,P].
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Chain rule

Let φ ∈ C 1
b (Rn) be given, such that the partial derivatives are

bounded and fix p ≥ 1. If F ∈ D1,p(Rn), then φ(F ) ∈ D1,p and

D(φ(F )) =
n∑

i=1

∂φ

∂xi
(F )DF i

Hence D∞ is an C∞-algebra.
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Proof

The proof is done by approximating F i by smooth variables F i
n and

φ by φ ∗ψε, where ψε is a Dirac sequence of smooth functions. For
the approximating terms the formula is satisfied, then we obtain

||
n∑

i=1

∂φ

∂xi
(F )DF i − D((φ ∗ ψε) ◦ F i

n)||p → 0

as ε→ 0 and n→∞, so by closedness we obtain the result since
(φ ∗ ψε) ◦ F i

n → φ ◦ F in Lp as ε→ 0 and n→∞.
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Malliavin derivative as directional derivative

Consider the standard example h 7→
∑d

k=1

∫∞
0 hk(s)dW k

s with
Hilbert space H = L2(R≥0;Rd). Assume Ω = C (R≥0;Rd), then
we can define the Cameron-Martin directions

h 7→ (t 7→
∫ t

0
hsds),

which embeds H ↪→ C (R≥0;Rd). If we consider a smooth random
variable F = f (Wt), then

〈DF , h〉 = f ′(Wt)

∫ ∞
0

1[0,t](s)h(s)ds =
d

dε
|ε=0f (Wt+ε

∫ t

0
h(s)ds),

so the Malliavin derivative evaluated in direction h appears as
directional derivative in a Cameron-Martin direction, which are the
only directions where directional derivatives make sense for
P-almost surely defined random variables.
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Malliavin derivative as directional derivative

Taking the previous consideration seriously we can replace h by a
predictable strategy a such that the stochastic exponential of∑d

k=1

∫ t
0 aks dW

k
s is a closed martingale, then we obtain

E (〈DF , a〉) = E

(
d

dε
|ε=0F (.+ ε

∫ .

0
asds)

)
=

d

dε
|ε=0E

(
F (.+ ε

∫ .

0
asds)

)
=

d

dε
|ε=0E

(
F (.) exp(ε

d∑
k=1

∫ ∞
0

aks dW
k
s −

ε2

2

∫ ∞
0
|as |2ds)

)

= E (F (.)
d∑

k=1

∫ t

0
aks dW

k
s )

for smooth bounded random variables F .
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The adjoint

The adjoint operator δ : dom1,2(δ) ⊂ Lp(Ω)⊗ H → L2(Ω) is a
closed densely defined operator. We concentrate here on the case
p = 2. By definition u ∈ dom1,2(δ) if and only if F 7→ E (〈DF , u〉)
for F ∈ D1,2 is a bounded linear functional on L2(Ω).

If u ∈ dom1,2(δ), we have the following fundamental “integration
by parts formula”

E (〈DF , u〉) = E (F δ(u))

for F ∈ D1,2. δ is called the Skorohod integral or divergence
operator or simply adjoint operator.
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We obtain immediately H ⊂ dom1,2(δ), the deterministic
strategies, with δ(1⊗ h) = δ(h) = W (h).

A smooth elementary process is given by

u =
n∑

j=1

Fj ⊗ hj

with Fj ∈ Sp and hj ∈ H. We shall denote the set of such
processes by the (algebraic) tensor product Sp ⊗ H. By integration
by parts we can conclude that Sp ⊗ H ⊂ dom1,2(δ) and

δ(u) =
n∑

j=1

Fj W (hj)−
n∑

j=1

〈DFj , hj〉H ,
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since for all G ∈ Sp

E (〈u,DG 〉H) =
n∑

j=1

E (Fj 〈hj ,DG 〉H)

=
n∑

j=1

E (〈hj ,D(FjG )〉H)− E (G 〈hj ,DFj〉H)

=
n∑

j=1

E (Fj W (hj)G )− E (G 〈hj ,DFj〉H).
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Skorohod meets Ito

Given an isonormal Gaussian process W and define a sub-σ-algebra
FG ⊂ FH by means of a closed subspace G ⊂ H. If F ∈ D1,2 is
FG -measurable, then

〈h,DF 〉H = 0

P-almost surely, for all h ⊥ G .
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Skorohod meets Ito

The almost sure identity holds for smooth random variables
F = f (W (h1), . . . ,W (hn)), but every F ∈ D1,2 can be
approximated by smooth random variables in L2 such that also the
derivatives are approximated (closedness!), hence the result follows.
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Skorohod meets Ito

Given a d-dimensional Brownian motion (Wt)t≥0 on its natural
filtration (Ft)t≥0, then

W (h) :=
d∑

k=1

∫ ∞
0

hk(s)dW k
s

is an isonormal Gaussian process for h ∈ H := L2(R≥0;Rd). Define
Ht ⊂ H those functions with support in [0, t] for t ≥ 0 and denote
Ft := FHt . Hence for Ft-measurable F ∈ D1,2 we obtain that
1[0,t]DF = DF almost surely.
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Skorohod meets Ito

Consequently for a simple, predictable strategy

u(s) =
n∑

j=1

Fj ⊗ hj

with hj = 1]tj ,tj+1]ek , for 0 = t0 < t1 < · · · < tn+1 and

Fj ∈ L2[(Ω,Ftj ,P)] for j = 1, . . . , n, and ek ∈ Rd a canonical basis
vector, that

δ(u) =
n∑

j=1

Fj W (hj)−
n∑

j=1

〈DFj , hj〉H

=
n∑

j=1

Fj(W
k
j+1 −W k

j ).
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Skorohod meets Ito

Given a predictable strategy u ∈ L2pred(Ω× R≥0;Rd), then

δ(u) =
d∑

k=1

∫ ∞
0

uk(s)dW k
s .
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Skorohod meets Ito

The Skorohod integral is a closed operator, the Ito integral is
continuous on the space of predictable strategies. Both operators
coincide on the dense subspace of simple predictable strategies,
hence – by the fact that δ is closed – we obtain that they conincide
on L2pred(Ω× R≥0;Rd).
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The Clark-Ocone formula

Let FH = F and let F ∈ D1,2, then

F = E (F ) +
d∑

i=1

∫ ∞
0

E (D i
tF | Ft)dW

i
t .
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Proof

By martingale representation we know that any G ∈ L2 has a
representation

G = E (G ) +
d∑

i=1

∫ ∞
0

φitdW
i
t ,

hence

E (FG ) = E (F )E (G ) + E

(
d∑

i=1

∫ ∞
0

D i
tF φ

i
tdt

)
,

which yields the result.


