Malliavin Calculus:
 Analysis on Gaussian spaces

Josef Teichmann

ETH Zürich

Oxford 2011

Isonormal Gaussian process

A Gaussian space is a (complete) probability space together with a Hilbert space of centered real valued Gaussian random variables defined on it. We speak about Gaussian spaces by means of a coordinate space.

Let (Ω, \mathcal{F}, P) be a complete probability space, H a Hilbert space, and $W: H \rightarrow L^{2}[(\Omega, \mathcal{F}, P) ; \mathbb{R}]$ a linear isometry. Then W is called isonormal Gaussian process if $W(h)$ is a centered Gaussian random variable for all $h \in H$.

Example

Given a d-dimensional Brownian motion $\left(W_{t}\right)_{t \geq 0}$ on its natural filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$, then

$$
W(h):=\sum_{k=1}^{d} \int_{0}^{\infty} h^{k}(s) d W_{s}^{k}
$$

is an isonormal Gaussian process for $h \in H:=L^{2}\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$.

Notation

In the sequel we shall apply the following classes of functions on \mathbb{R}^{n}

$$
C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset C_{b}^{\infty}\left(\mathbb{R}^{n}\right) \subset C_{p}^{\infty}\left(\mathbb{R}^{n}\right)
$$

which denote the functions with compact support, with bounded derivatives of all orders and with derivatives of all orders of polynomial growth.

Smooth random variables

Let W be an isonormal Gaussian process. We introduce random variables of the form

$$
F:=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)
$$

for $h_{i} \in H$ (mind the probabilistic notation, which would be bad style in analysis). If f belongs to one of the above classes of functions, the associated random variables are denoted by

$$
\mathcal{S}_{0} \subset \mathcal{S}_{b} \subset \mathcal{S}_{p}
$$

and we speak of smooth random variables. The polynomials of elements $W(h)$ are denoted by \mathcal{P}.

Generation property

The algebra \mathcal{P} is dense in $L^{2}\left(\Omega, \mathcal{F}_{H}, P\right)$, where \mathcal{F}_{H} denotes the completed σ-algebra generated by the random variables $W(h)$ for $h \in H$.

Proof

Notice that it is sufficient to prove that every random variable F, which is orthogonal to all $\exp (W(h))$ for $h \in H$, vanishes. Choose now an ONB $\left(e_{i}\right)_{i \geq 1}$, then the entire function

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto E\left(F \exp \left(\sum_{i=1}^{n} \lambda_{i} W\left(e_{i}\right)\right)\right)
$$

vanishes, which in turn means that $E\left(F \mid \bar{\sigma}\left(W\left(e_{1}\right), \ldots, W\left(e_{n}\right)\right)\right)=0$ by uniqueness of the Fourier transform, hence $F=0$.

Therefore polynomials of Gaussians qualify as smooth test functions, since they lie in all L^{p} for $p<\infty$ and are dense.

The representation of a smooth random variable is unique in the following sense: let

$$
\begin{aligned}
F & =f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right) \\
& =g\left(W\left(g_{1}\right), \ldots, W\left(g_{m}\right)\right)
\end{aligned}
$$

and denote the linear space $\left\langle h_{1}, \ldots, h_{n}, g_{1}, \ldots, g_{n}\right\rangle$ with orthonormal basis $\left(e_{i}\right)_{1 \leq i \leq k}$ and representations

$$
\begin{aligned}
& h_{i}=\sum_{l=1}^{k} a_{i l} e_{l} \\
& g_{j}=\sum_{l=1}^{k} b_{j l} e_{l}
\end{aligned}
$$

Then the functions $f \circ A$ and $g \circ B$ coincide.

Notation

Notice the following natural isomorphisms

$$
\begin{aligned}
L^{2}[(\Omega, \mathcal{F}, P) ; H] & =L^{2}(\Omega, \mathcal{F}, P) \otimes H \\
(\omega \mapsto F(\omega) h) & \mapsto F \otimes h .
\end{aligned}
$$

If we are additionally given a concrete representation $H=L^{2}[(T, \mathcal{B}, \mu) ; G]$, then

$$
\begin{aligned}
L^{2}[(\Omega \times T, \mathcal{F} \otimes \mathcal{B}, P \otimes \mu) ; G] & =L^{2}(\Omega, \mathcal{F}, P) \otimes H \\
((\omega, t) & \mapsto F(\omega) h(t))
\end{aligned}>F \otimes h . \quad .
$$

The Malliavin Derivative

For $F \in \mathcal{S}_{p}$ we denote the Malliavin derivative by $D F \in L^{2}[(\Omega, \mathcal{F}, P) ; H]$ defined via

$$
D F=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right) \otimes h_{i}
$$

for $F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)$. The definition does not depend on the particular representation of the smooth random variable F.
If we are given a concrete representation $H=L^{2}(T, \mathcal{B}, \mu)$, then we identify

$$
L^{2}(\Omega, \mathcal{F}, P) \otimes H=L^{2}(\Omega \times T, \mathcal{F} \otimes \mathcal{B}, P \otimes \mu)
$$

and we obtain a measurable process $\left(D_{t} F\right)_{t \in T}$ as Malliavin derivative.

Integration by parts 1

Let F be a smooth random variable and $h \in H$, then

$$
E(\langle D F, h\rangle)=E(F W(h)) .
$$

Integration by parts 2

Let F, G be smooth random variables, then for $h \in H$

$$
E(G\langle D F, h\rangle)+E(F\langle D G, h\rangle)=E(F G W(h))
$$

Proof

The equation in question can be normalized such that $\|h\|=1$. Additionally there are by a transformation of variables orthonormal elements e_{i} such that

$$
F=f\left(W\left(e_{1}\right), \ldots, W\left(e_{n}\right)\right)
$$

with $f \in C_{p}^{\infty}\left(\mathbb{R}^{n}\right)$ and $h=e_{1}$. Then

$$
\begin{aligned}
E(\langle D F, h\rangle) & =\int_{\mathbb{R}^{n}} \frac{\partial f}{\partial x_{1}}(x) \frac{1}{\sqrt{(2 \pi)^{n}}} \exp \left(-\frac{\|x\|^{2}}{2}\right) d x \\
& \stackrel{\text { i.p. }}{=} \int_{\mathbb{R}^{n}} f(x) x_{1} \frac{1}{\sqrt{(2 \pi)^{n}}} \exp \left(-\frac{\|x\|^{2}}{2}\right) d x \\
& =E\left(F W\left(e_{1}\right)\right)=E(F W(h)) .
\end{aligned}
$$

Proof

The second integration by parts formula follows from the Leibnitz rule

$$
D(F G)=F D G+G D F
$$

for $F, G \in \mathcal{S}_{p}$.

The Malliavin derivative is closable

We have already defined

$$
D: \mathcal{S}_{p} \subset L^{q}[(\Omega, \mathcal{F}, P)] \rightarrow L^{q}[(\Omega, \mathcal{F}, P) ; H]
$$

for $q \geq 1$. This linear operator is closable by integration by parts: given a sequence of smooth functionals $F_{n} \rightarrow 0$ in L^{q} and $D F_{n} \rightarrow G$ in $L^{q}[(\Omega, \mathcal{F}, P) ; H]$ as $n \rightarrow \infty$, then

$$
\begin{aligned}
E\left(\langle G, h\rangle_{H} F\right) & =\lim _{n \rightarrow \infty} E\left(\left\langle D F_{n}, h\right\rangle F\right)= \\
& =\lim _{n \rightarrow \infty} E\left(-F_{n}\langle D F, h\rangle\right)+\lim _{n \rightarrow \infty} E\left(F_{n} F W(h)\right)=0
\end{aligned}
$$

for $F \in \mathcal{S}_{p}$. Notice that $\mathcal{S}_{p} \subset \cap_{q \geq 1} L^{q}$. So $G=0$ and therefore D is closeable. We denote the closure on each space by $\mathcal{D}^{1, q}$, respectively.

Operator norms

Given $q \geq 1$, then we denote by

$$
\|F\|_{1, q}:=\left(E\left(|F|^{q}\right)+E\left(\|D F\|_{H}^{q}\right)\right)^{\frac{1}{q}}
$$

the operator norm for any $F \in \mathcal{S}_{p}$. By closeability we know that the closure of this space is a Banach space, denoted by $\mathcal{D}^{1, q}$ and a Hilbert space for $q=2$. We have the continuous inclusion

$$
\mathcal{D}^{1, q} \hookrightarrow L^{q}[(\Omega, \mathcal{F}, P)]
$$

which has as image the maximal domain of definition of $\mathcal{D}^{1, q}$ in L^{q}, where we shall write - by slight abuse of notation - D for the Malliavin derivative.

Higher Derivatives

By tensoring the whole procedure we can define Malliavin derivative for smooth functionals with values in V, an additionally given Hilbert space,

$$
\mathcal{S}_{p} \otimes V \subset L^{p}[(\Omega, \mathcal{F}, P)] \otimes V
$$

where we take the algebraic tensor products. We define the Malliavin derivative on this space by $D \otimes i d$, and proceed as before showing that the operator is closable.

Consequently we can define higher derivatives via iteration

$$
D^{k} F=D D^{k-1} F
$$

for smooth functionals $F \in L^{q}[(\Omega, \mathcal{F}, P)] \otimes V$. Closing the spaces we get Malliavin derivatives D^{k} for elements of $L^{q}[(\Omega, \mathcal{F}, P) ; V]$ to $L^{q}\left[(\Omega, \mathcal{F}, P) ; V \otimes H^{\otimes k}\right]$ by induction.

Operator norms

We define the norms

$$
\|F\|_{k, q}:=\left(E\left(|F|^{q}\right)+\sum_{j=1}^{k} E\left(\left\|D^{j} F\right\|_{V \otimes H^{\otimes j}}^{q}\right)\right)^{\frac{1}{q}}
$$

for $k \geq 1$ and $q \geq 1$. The respective closed spaces $\mathcal{D}^{k, q}(V)$ are Banach spaces (Hilbert spaces), the maximal domains of D^{k} in $L^{q}(\Omega, \mathcal{F}, P ; V)$. The Fréchet space $\cap_{p \geq 1} \cap_{k \geq 1} \mathcal{D}^{k, p}(V)$ is denoted by $\mathcal{D}^{\infty}(V)$.

Monotonicity

We see immediately the monotonicity

$$
\|F\|_{k, p} \leq\|F\|_{j, q}
$$

for $p \leq q$ and $k \leq j$ by norm inequalities of the type

$$
\|f\|_{p} \leq\|f\|_{q}
$$

for $1 \leq p \leq q$ for $f \in \cap_{p \geq 1} L^{p}[\Omega, \mathcal{F}, P]$.

Chain rule

Let $\phi \in C_{b}^{1}\left(\mathbb{R}^{n}\right)$ be given, such that the partial derivatives are bounded and fix $p \geq 1$. If $F \in \mathcal{D}^{1, p}\left(\mathbb{R}^{n}\right)$, then $\phi(F) \in \mathcal{D}^{1, p}$ and

$$
D(\phi(F))=\sum_{i=1}^{n} \frac{\partial \phi}{\partial x_{i}}(F) D F^{i}
$$

Hence D^{∞} is an C^{∞}-algebra.

Proof

The proof is done by approximating F^{i} by smooth variables F_{n}^{i} and ϕ by $\phi * \psi_{\epsilon}$, where ψ_{ϵ} is a Dirac sequence of smooth functions. For the approximating terms the formula is satisfied, then we obtain

$$
\left\|\sum_{i=1}^{n} \frac{\partial \phi}{\partial x_{i}}(F) D F^{i}-D\left(\left(\phi * \psi_{\epsilon}\right) \circ F_{n}^{i}\right)\right\|_{p} \rightarrow 0
$$

as $\epsilon \rightarrow 0$ and $n \rightarrow \infty$, so by closedness we obtain the result since $\left(\phi * \psi_{\epsilon}\right) \circ F_{n}^{i} \rightarrow \phi \circ F$ in L^{p} as $\epsilon \rightarrow 0$ and $n \rightarrow \infty$.

Malliavin derivative as directional derivative

Consider the standard example $h \mapsto \sum_{k=1}^{d} \int_{0}^{\infty} h^{k}(s) d W_{s}^{k}$ with Hilbert space $H=L^{2}\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$. Assume $\Omega=C\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$, then we can define the Cameron-Martin directions

$$
h \mapsto\left(t \mapsto \int_{0}^{t} h_{s} d s\right)
$$

which embeds $H \hookrightarrow C\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$. If we consider a smooth random variable $F=f\left(W_{t}\right)$, then

$$
\langle D F, h\rangle=f^{\prime}\left(W_{t}\right) \int_{0}^{\infty} 1_{[0, t]}(s) h(s) d s=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f\left(W_{t}+\epsilon \int_{0}^{t} h(s) d s\right)
$$

so the Malliavin derivative evaluated in direction h appears as directional derivative in a Cameron-Martin direction, which are the only directions where directional derivatives make sense for P-almost surely defined random variables.

Malliavin derivative as directional derivative

Taking the previous consideration seriously we can replace h by a predictable strategy a such that the stochastic exponential of $\sum_{k=1}^{d} \int_{0}^{t} a_{s}^{k} d W_{s}^{k}$ is a closed martingale, then we obtain

$$
\begin{aligned}
E(\langle D F, a\rangle) & =E\left(\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} F\left(.+\epsilon \int_{0} a_{s} d s\right)\right) \\
& =\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} E\left(F\left(.+\epsilon \int_{0} a_{s} d s\right)\right) \\
& =\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} E\left(F(.) \exp \left(\epsilon \sum_{k=1}^{d} \int_{0}^{\infty} a_{s}^{k} d W_{s}^{k}-\frac{\epsilon^{2}}{2} \int_{0}^{\infty}\left|a_{s}\right|^{2} d s\right)\right) \\
& =E\left(F(.) \sum_{k=1}^{d} \int_{0}^{t} a_{s}^{k} d W_{s}^{k}\right)
\end{aligned}
$$

for smooth bounded random variables F.

The adjoint

The adjoint operator $\delta: \operatorname{dom}_{1,2}(\delta) \subset L^{p}(\Omega) \otimes H \rightarrow L^{2}(\Omega)$ is a closed densely defined operator. We concentrate here on the case $p=2$. By definition $u \in \operatorname{dom}_{1,2}(\delta)$ if and only if $F \mapsto E(\langle D F, u\rangle)$ for $F \in \mathcal{D}^{1,2}$ is a bounded linear functional on $L^{2}(\Omega)$.

If $u \in \operatorname{dom}_{1,2}(\delta)$, we have the following fundamental "integration by parts formula"

$$
E(\langle D F, u\rangle)=E(F \delta(u))
$$

for $F \in \mathcal{D}^{1,2}$. δ is called the Skorohod integral or divergence operator or simply adjoint operator.

We obtain immediately $H \subset \operatorname{dom}_{1,2}(\delta)$, the deterministic strategies, with $\delta(1 \otimes h)=\delta(h)=W(h)$.

A smooth elementary process is given by

$$
u=\sum_{j=1}^{n} F_{j} \otimes h_{j}
$$

with $F_{j} \in \mathcal{S}_{p}$ and $h_{j} \in H$. We shall denote the set of such processes by the (algebraic) tensor product $\mathcal{S}_{p} \otimes H$. By integration by parts we can conclude that $\mathcal{S}_{p} \otimes H \subset \operatorname{dom}_{1,2}(\delta)$ and

$$
\delta(u)=\sum_{j=1}^{n} F_{j} W\left(h_{j}\right)-\sum_{j=1}^{n}\left\langle D F_{j}, h_{j}\right\rangle_{H},
$$

since for all $G \in \mathcal{S}_{p}$

$$
\begin{aligned}
E\left(\langle u, D G\rangle_{H}\right) & =\sum_{j=1}^{n} E\left(F_{j}\left\langle h_{j}, D G\right\rangle_{H}\right) \\
& =\sum_{j=1}^{n} E\left(\left\langle h_{j}, D\left(F_{j} G\right)\right\rangle_{H}\right)-E\left(G\left\langle h_{j}, D F_{j}\right\rangle_{H}\right) \\
& =\sum_{j=1}^{n} E\left(F_{j} W\left(h_{j}\right) G\right)-E\left(G\left\langle h_{j}, D F_{j}\right\rangle_{H}\right)
\end{aligned}
$$

Skorohod meets Ito

Given an isonormal Gaussian process W and define a sub- σ-algebra $\mathcal{F}_{G} \subset \mathcal{F}_{H}$ by means of a closed subspace $G \subset H$. If $F \in \mathcal{D}^{1,2}$ is \mathcal{F}_{G}-measurable, then

$$
\langle h, D F\rangle_{H}=0
$$

P-almost surely, for all $h \perp G$.

Skorohod meets Ito

The almost sure identity holds for smooth random variables $F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)$, but every $F \in \mathcal{D}^{1,2}$ can be approximated by smooth random variables in L^{2} such that also the derivatives are approximated (closedness!), hence the result follows.

Skorohod meets Ito

Given a d-dimensional Brownian motion $\left(W_{t}\right)_{t \geq 0}$ on its natural filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$, then

$$
W(h):=\sum_{k=1}^{d} \int_{0}^{\infty} h^{k}(s) d W_{s}^{k}
$$

is an isonormal Gaussian process for $h \in H:=L^{2}\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$. Define $H_{t} \subset H$ those functions with support in $[0, t]$ for $t \geq 0$ and denote $\mathcal{F}_{t}:=\mathcal{F}_{H_{t}}$. Hence for \mathcal{F}_{t}-measurable $F \in \mathcal{D}^{1,2}$ we obtain that $1_{[0, t]} D F=D F$ almost surely.

Skorohod meets Ito

Consequently for a simple, predictable strategy

$$
u(s)=\sum_{j=1}^{n} F_{j} \otimes h_{j}
$$

with $h_{j}=1_{\left.] t_{j}, t_{j+1}\right]} e_{k}$, for $0=t_{0}<t_{1}<\cdots<t_{n+1}$ and $F_{j} \in L^{2}\left[\left(\Omega, \mathcal{F}_{t_{j}}, P\right)\right]$ for $j=1, \ldots, n$, and $e_{k} \in \mathbb{R}^{d}$ a canonical basis vector, that

$$
\begin{aligned}
\delta(u) & =\sum_{j=1}^{n} F_{j} W\left(h_{j}\right)-\sum_{j=1}^{n}\left\langle D F_{j}, h_{j}\right\rangle_{H} \\
& =\sum_{j=1}^{n} F_{j}\left(W_{j+1}^{k}-W_{j}^{k}\right)
\end{aligned}
$$

Skorohod meets Ito

Given a predictable strategy $u \in L_{\text {pred }}^{2}\left(\Omega \times \mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$, then

$$
\delta(u)=\sum_{k=1}^{d} \int_{0}^{\infty} u^{k}(s) d W_{s}^{k} .
$$

Skorohod meets Ito

The Skorohod integral is a closed operator, the Ito integral is continuous on the space of predictable strategies. Both operators coincide on the dense subspace of simple predictable strategies, hence - by the fact that δ is closed - we obtain that they conincide on $L_{\text {pred }}^{2}\left(\Omega \times \mathbb{R}_{\geq 0} ; \mathbb{R}^{d}\right)$.

The Clark-Ocone formula

Let $\mathcal{F}_{H}=\mathcal{F}$ and let $F \in \mathcal{D}^{1,2}$, then

$$
F=E(F)+\sum_{i=1}^{d} \int_{0}^{\infty} E\left(D_{t}^{i} F \mid \mathcal{F}_{t}\right) d W_{t}^{i}
$$

Proof

By martingale representation we know that any $G \in L^{2}$ has a representation

$$
G=E(G)+\sum_{i=1}^{d} \int_{0}^{\infty} \phi_{t}^{i} d W_{t}^{i}
$$

hence

$$
E(F G)=E(F) E(G)+E\left(\sum_{i=1}^{d} \int_{0}^{\infty} D_{t}^{i} F \phi_{t}^{i} d t\right)
$$

which yields the result.

