Equilibria in Incomplete Stochastic Continuous-time Markets:

EXISTENCE AND UNIQUENESS UNDER "SMALLNESS"

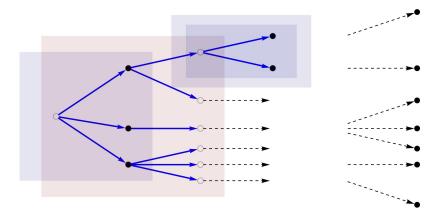
Constantinos Kardaras

Department of Statistics London School of Economics

with Hao Xing (LSE) and Gordan Žitković (UT Austin)

Mathematical Finance beyond classical models ETH, Zurich September 2015

STOCHASTIC FINANCE ECONOMIES



Agents. Information. Preferences. Endowments. Assets.

FINANCIAL EQUILIBRIUM: DISCRETE TIME

- ▶ WALRAS 1874,
- ► ARROW-DEBREU '54, MCKENZIE '59,
- ▶ RADNER '72 extends the classical ARROW-DEBREU model.
- ▶ HART '75 gives a non-existence example.
- ► DUFFIE-SHAFER '85, '86 show that an equilibrium exists for *generic* endowments
- ► CASS, DRÈZE, GEANAKOPLOS, MAGILL, MAS-COLELL, POLEMARCHAKIS, STIEGLITZ, and others.

FINANCIAL EQUILIBRIUM: CONTINUOUS TIME

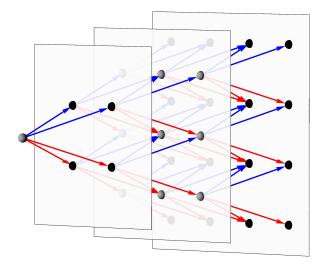
Complete Markets

- ► Merton '73
- ► Duffie-Zame '89, Araujo-Monteiro '89,
- ► KARATZAS-LAKNER-LEHOCZKY-SHREVE '91.

Incomplete Markets

 BASAK, CHERIDITO, CHRISTENSEN, CHOI, CUOCO, HE, HUGONNIER, KUPPER, LARSEN, MUNK, ZHAO, ŽITKOVIĆ.

AN INCOMPLETE, SHORT-LIVED-ASSET MODEL



Our Problem

Setup: $\{\mathcal{F}_t\}_{t\in[0,T]}$ generated by two independent BMs B and W.

Price: $dS_t^{\lambda} = \lambda_t dt + 1 dB_t + 0 dW_t$.

Agents' preferences: $\mathbb{U}^{i}(X) = -\delta^{i} \log \mathbb{E} \left[\exp(-X/\delta^{i}) \right], X \in \mathbb{L}^{0},$ endowments: $E^{i} \in \mathbb{L}^{\infty}(\mathcal{F}_{T}), i = 1, \dots, I.$

Demand:
$$\widehat{\pi}^{\lambda,i} := \operatorname{argmax}_{\pi \in \mathcal{A}^{\lambda}} \mathbb{U}^{i} \left(\int_{0}^{T} \pi_{u} \, dS_{u}^{\lambda} + E^{i} \right).$$

Question: Is there an equilibrium market price of risk λ ? That is, does there exist a process λ such that the clearing condition $\sum_{i=1}^{I} \hat{\pi}^{\lambda,i} = 0$ holds?

Answer: Yes, when endowments are close to Pareto-optimality.

RISK-AWARE PARAMETRISATION

Upon defining the risk-(tolerance-)denominated quantities

$$G^{i} = \frac{1}{\delta^{i}}E^{i}$$
, and $\widehat{\rho}^{\lambda,i} = \frac{1}{\delta^{i}}\widehat{\pi}^{\lambda,i}$,

the market clearing condition becomes

$$\sum_{i} \alpha^{i} \widehat{\rho}^{\lambda,i} = 0, \quad \text{where} \quad \alpha^{i} = \frac{\delta^{i}}{\sum_{j} \delta^{j}}.$$

The risk-denominated certainty equivalent processes are

$$Y_t^{i,\lambda} = -\log \mathbb{E}_t \left[\exp\left(-\int_t^T \widehat{\rho}_u^{\lambda,i} dS_u^{\lambda} - G^i \right) \right], \quad t \in [0,T].$$

BSDE CHARACTERISATION OF EQUILIBRIUM

Define the aggregator

$$A[\mathbf{x}] = \sum_{i} \alpha^{i} x^{i}$$
, for $\mathbf{x} = (x^{i})_{i}$.

Theorem. A process $\lambda \in \text{bmo}$ is an equilibrium *if and only if*

$$\lambda = A[\boldsymbol{\mu}],$$

for some solution $(\boldsymbol{\mu}, \boldsymbol{\nu}, \boldsymbol{Y}) \in \text{bmo} \times \text{bmo} \times S^{\infty}$ of the following *nonlinear (quadratic)* and *fully-coupled* BSDE system:

$$\begin{cases} dY_t^i = \mu_t^i dB_t + \nu_t^i dW_t + \frac{1}{2} \left((\nu_t^i)^2 - A[\boldsymbol{\mu}_t]^2 + 2A[\boldsymbol{\mu}_t] \mu_t^i \right) dt, \\ Y_T^i = G^i, \quad i = 1, \dots, I, \end{cases}$$

where $\boldsymbol{\mu} = (\mu^i)_i$, $\boldsymbol{\nu} = (\nu^i)_i$ and $\boldsymbol{Y} = (Y^i)_i$.

NONLINEAR SYSTEMS OF BSDES

- ▶ [Darling 95], [Blache 05, 06]: Harmonic maps.
- ▶ [Tang 03]: Riccati systems,
- ▶ [Tevzadze 08]: existence when terminal condition is small.
- ▶ [Delarue 02], [Cheridito-Nam 14]: generator f + z g, where both f and g are Lipschitz.
- ▶ [Hu-Tang 14]: diagonally quadratic, small-time existence.

Applications:

- ▶ [Bensoussan-Frehse 90], [El Karoui-Hamadène 03]: stochastic differential games.
- [Frei-dos Reis 11], [Frei 14]: relative performance.
 Counterexample: bounded terminal condition, no solution.
- ▶ [Cheridito-Horst-Kupper-Pirvu 12]: equilibrium pricing.
- ▶ [Kramkov-Pulido 14]: price impact problem.

EXISTENCE AND UNIQUENESS "WITH CHEATING"

Theorem 0a. An equilibrium exists and is unique if $(G^i)_i$ is an (unconstrained) Pareto-optimal allocation. Then $\lambda \equiv 0$. Note: $(G^i)_i$ is Pareto-optimal if and only if

$$G^i - G^j \in \mathbb{R}$$
, for all i, j .

Definition. $(G^i)_i$ is **pre-Pareto** if there exists an equilibrium $\lambda \in \text{bmo such that the allocation}$

$$\widetilde{G}^{i} = G^{i} + \int_{0}^{T} \widehat{\rho}_{t}^{i,\lambda} dS_{t}^{\lambda}, \ i = 1, \dots, I, \text{ is Pareto optimal.}$$

Obviously ...

Theorem 0b. An equilibrium exists if $(G^i)_i$ is pre-Pareto. However, ...

EXISTENCE AND UNIQUENESS "WITH CHEATING" II

Proposition. The following statements are equivalent:

- 1. $(G^i)_i$ is pre-Pareto.
- 2. There exists an equilibrium $\lambda \in$ bmo such that

$$\widehat{\mathbb{Q}}^{\lambda,i} = \widehat{\mathbb{Q}}^{\lambda,j}, \quad \text{ for all } i,j,$$

where $\widehat{\mathbb{Q}}^{\lambda,i}$, $i = 1, \dots, I$ denote the "dual optimizers". 3. For λ, ν defined by

$$\exp(-\sum_{i} \alpha^{i} G^{i}) \propto \mathcal{E} \left(-\int_{0}^{\cdot} \lambda_{t} dB_{t} - \int_{0}^{\cdot} \nu_{t} dW_{t}\right)_{T},$$

there exist $(y^i)_i \in \mathbb{R}^I$ and $(\varphi^i)_i \in \text{bmo}^I$ such that

$$G^{i} - G^{j} = y^{i} - y^{j} + \int_{0}^{T} (\varphi_{t}^{i} - \varphi_{t}^{j}) dS_{t}^{\lambda}, \quad \text{for all } i, j.$$

In each of these cases, λ as above is the unique equilibrium.

CERTAINTY EQUIVALENTS AND BMO

Let $G \in \mathbb{L}^{\infty}$. Define

$$X_t^G = -\log \mathbb{E}_t[\exp(-G)], \quad t \in [0, T],$$

and note the dynamics

$$dX_t^G = m_t^G dB_t + n_t^G dW_t + \frac{(m_t^G)^2 + (n_t^G)^2}{2} dt, \quad X_T^G = G.$$

Define also the bmo²-norm:

$$\left\| (m,n) \right\|_{\mathrm{bmo}^{2}(\widetilde{\mathbb{P}})} = \left\| \operatorname{ess\,sup}_{\tau} \mathbb{E}_{\tau}^{\widetilde{\mathbb{P}}} \left[\int_{\tau}^{T} (m_{t}^{2} + n_{t}^{2}) dt \right] \right\|_{\mathbb{L}^{\infty}}^{1/2}.$$

The General "Smallness" Result

For an allocation $(G^i)_i$, with $G^i \in \mathbb{L}^{\infty}$ for i = 1, ..., I, we define its **distance to Pareto optimality** $H((G^i)_i)$ via

$$H((G^{i})_{i}) := \inf_{G \in \mathbb{L}^{\infty}} \max_{i} \left| \left| \left(m^{G^{i}} - m^{G}, n^{G^{i}} - n^{G} \right) \right| \right|_{\mathrm{bmo}^{2}(\mathbb{P}^{G})},$$

where $d\mathbb{P}^G/d\mathbb{P} \propto \exp(-G)$ for $G \in \mathbb{L}^{\infty}$.

Theorem. An equilibrium $\lambda \in \text{bmo exists}$ and is unique if

$$H((G^i)_i) < \frac{3}{2} - \sqrt{2} \approx 0.0858.$$

NB: A similar result with "distance-to-Pareto" replaced by "distance-topre-Pareto" holds (mutadis mutandis), with a different proof technique.

COROLLARIES

Corollary 1. A unique equilibrium exists if

 $(1/\delta^i)||E^i||_{\mathbb{L}^{\infty}}$ is sufficiently small for each *i*.

Corollary 2. A unique equilibrium exists if

there are sufficiently many sufficiently homogeneous agents, i.e., if $I \ge I(||\sum_i E^i||_{\mathbb{L}^{\infty}}, \min_i \delta^i, \chi^E)$, where the **endowment heterogeneity index** $\chi^E \in [0, 1]$ is defined via

$$\chi^E = \max_{i,j} \frac{||E^i - E^j||_{\mathbb{L}^{\infty}}}{||E^i||_{\mathbb{L}^{\infty}} + ||E^j||_{\mathbb{L}^{\infty}}}$$

Corollary 3. (Small time existence and uniqueness.) A unique equilibrium exists if

$$T < T^* = \frac{(3/2 - \sqrt{2})^2}{\max_i \left(||D^b(G^i)||_{\mathcal{S}^{\infty}}^2 + ||D^w(G^i)||_{\mathcal{S}^{\infty}}^2 \right)},$$

provided all E^i have bounded Malliavin derivatives.

▶ Movie

FUTURE WORK

- 1. General global existence and uniqueness (?)
- 2. Sensitivity analysis around Pareto optimality.
- 3. Long-lived securities.
- 4. Endowments depending also on prices.

The End

Thanks for your attention!

P.S. Preprint available on the arXiv.