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Model-independent framework

Model-independent framework:
X: path-space, S: canonical process on X
Ψ: set of claims ψ available for buy-and-hold trading
M: martingale measures consistent w/ the market price of ψ’s
Φ: a given derivative, robust pricing: supQ∈M EQ [Φ]
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Model-independent framework

Model-independent framework:
X: path-space, S: canonical process on X
Ψ: set of claims ψ available for buy-and-hold trading
M: martingale measures consistent w/ the market price of ψ’s
Φ: a given derivative, robust pricing: supQ∈M EQ [Φ]

A central problem in model-independent finance is to prove:

sup
Q∈M
EQ [Φ] = inf

{
c ∈ R :

Φ can be hedged pathwise
starting with initial capital c

}
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Model-independent framework

Model-independent framework:
X: path-space, S: canonical process on X
Ψ: set of claims ψ available for buy-and-hold trading
M: martingale measures consistent w/ the market price of ψ’s
Φ: a given derivative, robust pricing: supQ∈M EQ [Φ]

A central problem in model-independent finance is to prove:

sup
Q∈M
EQ [Φ] = inf

{
c ∈ R :

Φ can be hedged pathwise
starting with initial capital c

}

Note: M clearly depends on the underlying filtration, as does
the set of available trading strategies.

Question: What can be said about the relation between the
super-hedging price and the choice of filtration? In particular,
when passing from F to G ⊇ F?
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Insider information

Uninformed agent F ⊆ G Informed agent
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Insider information

Uninformed agent F ⊆ G Informed agent

How do things change?

sup
Q∈M
EQ [Φ] = inf

{
c ∈ R :

Φ can be semi-s.-hedged
starting with initial capital c

}
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Uninformed agent F ⊆ G Informed agent

How do things change?

sup
Q∈M
EQ [Φ] = inf

{
c ∈ R :

Φ can be semi-s.-hedged
starting with initial capital c

}

Informed agent has more trading strategies

Informed agent has less pricing measures: M(G) ⊆ M(F), so

sup
Q∈M(G)

EQ [Φ] ≤ sup
Q∈M(F)

EQ [Φ]
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Insider information

Uninformed agent F ⊆ G Informed agent

How do things change?

sup
Q∈M
EQ [Φ] = inf

{
c ∈ R :

Φ can be semi-s.-hedged
starting with initial capital c

}

Informed agent has more trading strategies

Informed agent has less pricing measures: M(G) ⊆ M(F), so

sup
Q∈M(G)

EQ [Φ] ≤ sup
Q∈M(F)

EQ [Φ]

Question: Which measures inM(F) are still relevant for
pricing for the informed agent?
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Setup

(Ω,F,F ): Filtered measurable space with F = (Ft )0≤t≤T

right-continuous.

↪→ Later we will consider other filtrations.

S = (St )0≤t≤T : càdlàg F-adapted discounted price process of
an asset available for dynamic trading. We assume S0 = 0.
(Everything works the same for multiple assets.)

A risk-free asset with price ≡ 1 available for dynamic trading.

Ψ = {ψ1, . . . , ψn} a set of FT -measurable payoffs available for
buy-and-hold trading. Today’s price of ψi is zero for each i.
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Martingale measures

Calibrated martingale measures:

M(F) =

Q ∈ P :
S is an F-martingale, EQ [S2

T ] < ∞,

EQ [ψ | F0] = 0, EQ [ψ2] < ∞ for all ψ ∈ Ψ
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Martingale measures

Calibrated martingale measures:

M(F) =

Q ∈ P :
S is an F-martingale, EQ [S2

T ] < ∞,

EQ [ψ | F0] = 0, EQ [ψ2] < ∞ for all ψ ∈ Ψ


We want to studyM(F) w.r.to F

M(F) is “huge”

↪→ Can we reduce to the study of a special subset?
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Martingale measures

Calibrated martingale measures:

M(F) =

Q ∈ P :
S is an F-martingale, EQ [S2

T ] < ∞,

EQ [ψ | F0] = 0, EQ [ψ2] < ∞ for all ψ ∈ Ψ


We want to studyM(F) w.r.to F

M(F) is “huge”

↪→ Can we reduce to the study of a special subset?

↪→ For example, if P is endowed with a topology s.t.
M(F) is compact, then

M(F) = conv(extM(F)),

where extM(F) is the set of all extreme points inM(F).
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Extreme points

Extreme points: Q ∈ M(F) is called an extreme point if

Q = λQ1 + (1 − λ)Q2

for Q i
∈ M(F), λ ∈ (0, 1)

=⇒ Q1 = Q2 = Q
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Extreme points

Extreme points: Q ∈ M(F) is called an extreme point if

Q = λQ1 + (1 − λ)Q2

for Q i
∈ M(F), λ ∈ (0, 1)

=⇒ Q1 = Q2 = Q

Consider an FT -measurable payoff Φ and endow P with a
topology such that

M(F) is compact and Q 7→ EQ [Φ] is continuous.

Then sup
Q ∈M(F)

EQ [Φ] = sup
Q ∈ extM(F)

EQ [Φ].
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Extreme points

Extreme points: Q ∈ M(F) is called an extreme point if

Q = λQ1 + (1 − λ)Q2

for Q i
∈ M(F), λ ∈ (0, 1)

=⇒ Q1 = Q2 = Q

Consider an FT -measurable payoff Φ and endow P with a
topology such that

M(F) is compact and Q 7→ EQ [Φ] is continuous.

Then sup
Q ∈M(F)

EQ [Φ] = sup
Q ∈ extM(F)

EQ [Φ].

Note: The notion of extreme point is purely algebraic,
independent of any topology we may put on the space of
probability measures.
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Examples

Example (Discrete time and bounded prices)

. Ω = [a, b]T , S is the coordinate process,

. each ω 7→ ψi(ω) is continuous,

. F is generated by S

Then M(F) is weakly compact.
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Examples

Example (Discrete time and bounded prices)

. Ω = [a, b]T , S is the coordinate process,

. each ω 7→ ψi(ω) is continuous,

. F is generated by S

Then M(F) is weakly compact.

Example (Continuous time and bounded volatility)

. Ω = C0[0,T ], S is the coordinate process,

. ω 7→ ψi(ω) bounded and continuous, F generated by S

. P =
{
Q : EQ

[
X sups≤u≤t |Su − Ss |

p
]
≤ Cp σ

p (t − s)p/2 EQ [X ]
}
,

for all 0 ≤ s < t ≤ T , X ≥ 0 Fs-measurable, p ≥ 1.

Then M(F) is weakly compact.
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Examples

Example (Jakubowski topology)

. Ω = D0([0,T ], [−1, 1]) with Jakubowski’s S-topology,

. S is the coordinate process, ψi suitable continuity conditions,

. F is generated by S

Then M(F) is sequentially S-compact. Cf. Jakubowski (1997) and
Guo, Tan, Touzi (2015).
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Semi-static completeness and the
Jacod-Yor theorem
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The classical Jacod-Yor theorem

Suppose Ψ = ∅ (no static claims).

For Q ∈ M(F), by the classical Jacod-Yor (1977) theorem:

Q ∈ extM(F) ⇐⇒ L2(FT ) = {x + (H · S)T : H ∈ L2(S)}︸                                             ︷︷                                             ︸
classical completeness (in L2)

This result can be generalized to the semi-static case.
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Generalization of the Jacod-Yor theorem

Definition

For Q ∈ M(F), we say that semi-static completeness holds if
any X ∈ L2(FT ) can be represented as

X = x + a1ψ1 + · · ·+ anψn + (H · S)T

for some x, a1, . . . , an ∈ R and H ∈ L2(S).

Notation:
SSC(F) = {Q ∈ M(F) : semi-static completeness holds}
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Generalization of the Jacod-Yor theorem

Definition

For Q ∈ M(F), we say that semi-static completeness holds if
any X ∈ L2(FT ) can be represented as

X = x + a1ψ1 + · · ·+ anψn + (H · S)T

for some x, a1, . . . , an ∈ R and H ∈ L2(S).

Notation:
SSC(F) = {Q ∈ M(F) : semi-static completeness holds}

Theorem (semi-static Jacod-Yor theorem)
The extreme martingale measures are exactly the semi-statically
complete models, i.e.

extM(F) = SSC(F).
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Generalization of the Jacod-Yor theorem

About the proof.

The proof is very close to the classical case . . .

. . . but uses duality for random variables (L1 – L∞) instead of
processes (H1 – BMO):
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Generalization of the Jacod-Yor theorem

About the proof.

The proof is very close to the classical case . . .

. . . but uses duality for random variables (L1 – L∞) instead of
processes (H1 – BMO):

1.Fix Q ∈ extM(F) and show that this set is dense in L1(FT ){
x +
∑

iaiψi + (H · S)T : x, ai ∈ R, H ∈ L2(S)
}
.
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Generalization of the Jacod-Yor theorem

About the proof.

The proof is very close to the classical case . . .

. . . but uses duality for random variables (L1 – L∞) instead of
processes (H1 – BMO):

1.Fix Q ∈ extM(F) and show that this set is dense in L1(FT ){
x +
∑

iaiψi + (H · S)T : x, ai ∈ R, H ∈ L2(S)
}
.

2.Prove it is dense and closed in L2(FT ) using Hahn-Banach and
a result by Yor (see also Delbaen/Schachermayer, 1999):

Theorem (Yor (1978))

Let Hn ∈ L(S) be such that Hn · S is a martingale for each n, and
suppose limn(Hn · S)T = X in L1 for some r.v. X. Then there is
H ∈ L(S) such that H · S is a martingale with (H · S)T = X.
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Generalization of the Jacod-Yor theorem

Remarks.

Infinitely many ψi ’s would allow to treat the case of a fixed (by
the market) marginal law ST ∼ µ

But the arguments we use in the above proof break down in
this case – for the moment we are only able to deal with
finitely many ψi ’s
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Generalization of the Jacod-Yor theorem

Can we say more?

Already in the classical case (Ψ = ∅), completeness is a
strong property, but yet we do not have “control” on the
complete models. For instance, completeness holds if
F = FS , and S is a strong solution to an SDE of the form

dSt = σ(t ; Su : u ≤ t)dWt , (Wt )t BM, σ > 0.
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Can we say more?

Already in the classical case (Ψ = ∅), completeness is a
strong property, but yet we do not have “control” on the
complete models. For instance, completeness holds if
F = FS , and S is a strong solution to an SDE of the form

dSt = σ(t ; Su : u ≤ t)dWt , (Wt )t BM, σ > 0.

Should we expect some additional structure in the semi-static
case? – We shall see an interesting consequence of SSC
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Generalization of the Jacod-Yor theorem

Can we say more?

Already in the classical case (Ψ = ∅), completeness is a
strong property, but yet we do not have “control” on the
complete models. For instance, completeness holds if
F = FS , and S is a strong solution to an SDE of the form

dSt = σ(t ; Su : u ≤ t)dWt , (Wt )t BM, σ > 0.

Should we expect some additional structure in the semi-static
case? – We shall see an interesting consequence of SSC

Notation: For any martingale N, denote

S(N) =
{
H · N : H ∈ L2(N)

}
.

This is a closed subspace ofH2 (stable subspace generated by N).
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A curious consequence of semi-static completeness

For simplicity let Ψ = {ψ}, and fix Q ∈ SSC(F)

Let K · S be the orthogonal projection of EQ [ψ | Ft ] onto S(S),
and define

Mt = EQ [ψ | Ft ] − (K · S)t

Note: MT is the part of ψ which is not replicable by trading on S
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A curious consequence of semi-static completeness

For simplicity let Ψ = {ψ}, and fix Q ∈ SSC(F)

Let K · S be the orthogonal projection of EQ [ψ | Ft ] onto S(S),
and define

Mt = EQ [ψ | Ft ] − (K · S)t

Note: MT is the part of ψ which is not replicable by trading on S

Then H ·M ⊥ S(S) for any H ∈ L2(M)
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A curious consequence of semi-static completeness

For simplicity let Ψ = {ψ}, and fix Q ∈ SSC(F)

Let K · S be the orthogonal projection of EQ [ψ | Ft ] onto S(S),
and define

Mt = EQ [ψ | Ft ] − (K · S)t

Note: MT is the part of ψ which is not replicable by trading on S

Then H ·M ⊥ S(S) for any H ∈ L2(M)

By semi-static completeness,

H2 = span{1} ⊕ span{M} ⊕ S(S)
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A curious consequence of semi-static completeness

For simplicity let Ψ = {ψ}, and fix Q ∈ SSC(F)

Let K · S be the orthogonal projection of EQ [ψ | Ft ] onto S(S),
and define

Mt = EQ [ψ | Ft ] − (K · S)t

Note: MT is the part of ψ which is not replicable by trading on S

Then H ·M ⊥ S(S) for any H ∈ L2(M)

By semi-static completeness,

H2 = span{1} ⊕ span{M} ⊕ S(S)

Consequently,
S(M) = span{M},

which is one-dimensional!
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A curious consequence of semi-static completeness

We will use the following result on ψ:

Lemma
Let N be a square-integrable martingale null at zero. The following
are equivalent:

(i) S(N) = span{N}

(ii) N = NT 1B×[t∗,T ] for some t∗ ∈ (0,T ] and some atom B of Ft∗−
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A curious consequence of semi-static completeness

We will use the following result on ψ:

Lemma
Let N be a square-integrable martingale null at zero. The following
are equivalent:

(i) S(N) = span{N}

(ii) N = NT 1B×[t∗,T ] for some t∗ ∈ (0,T ] and some atom B of Ft∗−

And the following one on S, when S is continuous:

Lemma
Let N be a continuous local martingale, and let B be an atom of
Ft∗− for some t∗ ∈ (0,T ]. Then Nt = N0 on B for all t < t∗.
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
= Q(B)1B + (H · S)t∗1B
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
= Q(B)1B + (H · S)t∗1B
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
= Q(B)1B + (H · S)t∗1B

= Q(B)1B
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
= Q(B)1B + (H · S)t∗1B

= Q(B)1B ⇒ Q(B) = 1.
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A curious consequence of semi-static completeness

Recall: Ψ = {ψ}, Q ∈ SSC(F). Now, for S continuous we have

M = MT 1B×[t∗,T ] and St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[

Q(B) + aMT + (H · S)T | Ft∗−

]
= Q(B)1B + (H · S)t∗1B

= Q(B)1B ⇒ Q(B) = 1.

0 t∗ T

St

0 t∗ T

Mt
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Semi-static completeness and
filtration structure
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Atomic tree

Fix Q ∈ M(F)

For A ∈ FT , denote by t(A) the first time A becomes
measurable,

t(A) = inf{t ∈ [0,T ] : A ∈ Ft }.

Definition
An atomic tree is a finite collection T of events in FT s.t.:

(i) every A ∈ T is a non-null atom of Ft(A);

(ii) ∀ A ,A ′ ∈ T s.t. t(A) < t(A ′), either A ⊇ A ′ or A ∩ A ′ = ∅;

(iii) ∀ A ,A ′ ∈ T such that A ) A ′, Q(A \ A ′) > 0;

(iv) the leaves form a partition of Ω (up to nullsets), and A is an
atom of Ft(A ′)− whenever A ′ is a child of A .

leaf: A ∈ T s.t. there is no A ′ ∈ T s.t. A ′ ( A ; dim T: # leaves
child: A ′ is a child of A if A ,A ′ ∈ T satisfy A ′ ( A and there is no

A ′′ ∈ T such that A ′ ( A ′′ ( A
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Atomic tree

Ω

A5

A4

A3

A2

A1

0 t(A1) t(A2) t(A4) T
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Atomic tree

Remarks.

σ(T) is well-defined. It can be described as σ(T) = Fζ(T),
where the stopping time ζ(T) is the “end” of the tree:

ζ(T) =
∑

A∈T is a leaf

t(A)1A .

Note that dim T = dim L2(σ(T)).
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Atomic tree

Remarks.

σ(T) is well-defined. It can be described as σ(T) = Fζ(T),
where the stopping time ζ(T) is the “end” of the tree:

ζ(T) =
∑

A∈T is a leaf

t(A)1A .

Note that dim T = dim L2(σ(T)).

Definition

We say that S is complete on A × [t ,T ] for given t ∈ [0,T ] and
A ∈ Ft if any X ∈ L2(FT ) can be dynamically replicated there:

X = x + (H · S)T on A

for some x ∈ R and some H ∈ L2(S) with H = 0 on [[0, t]].
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Semi-static completeness for continuous price processes

Recall: Q ∈ M(F) is fixed.

Theorem

Let S be continuous. Then Q ∈ SSC(F) IFF ∃ an atomic tree T s.t.

1.
{
EQ [ψi | σ(T)] : i = 1, ..., n

}
has dim T − 1 lin. indep. elements,

2. S is complete on A × [t(A),T ] for each leaf A ∈ T .

In this case, S is constant on [[0, ζ(T)]] and

L2(FT ) = span{1,Ψ}+ S(S) = L2(σ(T)) ⊕ S(S).

Remark: ψi = EQ [ψi | σ(T)] + (Hi · S)T︸    ︷︷    ︸
orthog. proj.

, i = 1, . . . , n .
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Semi-static completeness for continuous price processes

Ω

0 t1 t2 t3 T

The filtration F under Q ∈ SSC(F). Each set of lines emanating from the
leaves of T corresponds to a dynamically complete stock price model.
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Semi-static completeness for continuous price processes

Example (Semi-statically complete continuous model)

One static claim ψ = 〈S,S〉T − K with zero value at t = 0.

Pick t∗ ∈ (0,T), σ1, σ2 > 0 with σ1 , σ2.

Set Q = λQ1 + (1 − λ)Q2 where

St = σiWt−t∗1{t≥t∗} under Q i ,

where W is Brownian motion, and λ is determined by calibration:

0 = EQ [ψ | F0] = λσ2
1(T − t∗) + (1 − λ)σ2

2(T − t∗) − K .

Define Ai = {∂+〈S,S〉t∗ = σ2
i } and set T = {Ω,A1,A2}.

T is an atomic tree with dim T = 2 and

EQ [ψ | σ(T)] = σ2
1(T − t∗)1A1 + σ2

2(T − t∗)1A2 − K . 0.

By the theorem, Q ∈ SSC(F).
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Semi-static completeness for continuous price processes

Ω

A1

A2

0 t∗ T

The leaves A1,A2 correspond to Bachelier models with volatilities
σ1 > σ2. Thus the “variance swap” ψ = 〈S〉T is priced differently under
the two models, and can be used to hedge against A1 or A2.
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Semi-static completeness for continuous price processes

Example (Semi-statically complete jump model, but no atomic tree)

ψ = [S,S]T − K

St =


−t t < θ ∧ t∗

1 − θ + f(θ)Wt−θ t ≥ θ, θ < t∗

−t∗ + 1A1σ1Wt−t∗ + 1A2σ2Wt−t∗ t ≥ t∗, t∗ ≤ θ

with θ ∼ Exp(1), W , t∗, σ1, σ2 > 0 as above, f(t) : [0, t∗)→ R+.

Conclusion: When the asset is allowed to jump, we do not have
anymore the tree structure.
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Pricing by informed investors
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Setup

G = (Gt )0≤t≤T : right-continuous filtration (of the informed
agent) with

Ft ⊆ Gt , 0 ≤ t ≤ T .

Access to the same trading instruments: risk-free asset, S, Ψ
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Setup

G = (Gt )0≤t≤T : right-continuous filtration (of the informed
agent) with

Ft ⊆ Gt , 0 ≤ t ≤ T .

Access to the same trading instruments: risk-free asset, S, Ψ

Consider a payoff Φ. The robust super-hedging price of the
informed agent:

sup
Q∈M(G)

EQ [Φ]

As before, we want to study extM(G) ≡ SSC(G).
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Setup

G = (Gt )0≤t≤T : right-continuous filtration (of the informed
agent) with

Ft ⊆ Gt , 0 ≤ t ≤ T .

Access to the same trading instruments: risk-free asset, S, Ψ

Consider a payoff Φ. The robust super-hedging price of the
informed agent:

sup
Q∈M(G)

EQ [Φ]

As before, we want to study extM(G) ≡ SSC(G).

Question: How are SSC(G) and SSC(F) related?
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Progressive filtration enlargement

Specification of G: Progressive enlargement of F with H

Gt =
⋂
u>t

Fu ∨Hu.

Smallest right-continuous filtration that contains both F and H.

H generated by a collection of single-jump processes X1[[τ,T ]],
where X is a non-negative bounded random variable and τ is
a random time (that is, [0,T ] ∪ {∞}-valued random variable).
(W.l.g., suppose τ = ∞ on {X = 0}.)

Remark: special cases are the classical progressive
enlargement with a random time and initial enlargement with a
random variable.



Introduction Setup SSC and Jacod-Yor theorem SSC and filtration structure Insider pricing Conclusions

Progressive filtration enlargement

Specification of G: Progressive enlargement of F with H

Gt =
⋂
u>t

Fu ∨Hu.

Smallest right-continuous filtration that contains both F and H.

H generated by a collection of single-jump processes X1[[τ,T ]],
where X is a non-negative bounded random variable and τ is
a random time (that is, [0,T ] ∪ {∞}-valued random variable).
(W.l.g., suppose τ = ∞ on {X = 0}.)

Remark: special cases are the classical progressive
enlargement with a random time and initial enlargement with a
random variable.

For this kind of filtration enlargement there are clear-cut
results between SSC(G) and SSC(F).
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Progressive filtration enlargement

Let σ be the first time S starts to move: σ = inf{t ∈ [0,T ] : St , 0}.

Theorem
Let S be continuous and H generated by Xk 1[[τk ,T ]], k = 1, . . . , p.
Assume τk > σ on {0 < τk < ∞} for all k . Then

SSC(G) = {Q ∈ SSC(F) : F = G under Q }
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Progressive filtration enlargement

Let σ be the first time S starts to move: σ = inf{t ∈ [0,T ] : St , 0}.

Theorem
Let S be continuous and H generated by Xk 1[[τk ,T ]], k = 1, . . . , p.
Assume τk > σ on {0 < τk < ∞} for all k . Then

SSC(G) = {Q ∈ SSC(F) : F = G under Q }

In the proof we use an extension of the classical Jeulin-Yor theorem.

Fix Q ∈ SSC(G)

Let Z be the Azéma supermartingale: Zt = Q(τ > t | Ft )

Let A be is the dual predictable projection of X1[[τ,∞[[

Theorem (Jeulin-Yor (1978))

The following process is a G-martingale w.r.to Q:

Mt = X1{τ≤t} −

∫ t∧τ

0

1
Zs−

dAs .
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Progressive filtration enlargement

Sketch of the proof of “⊆” (for p = 1, X ≡ 1)

Fix Q ∈ SSC(G)

Consider the process Mt = 1{τ≤t} −
∫ t∧τ

0
1

Zs−
dAs (1)
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Progressive filtration enlargement

Sketch of the proof of “⊆” (for p = 1, X ≡ 1)

Fix Q ∈ SSC(G)

Consider the process Mt = 1{τ≤t} −
∫ t∧τ

0
1

Zs−
dAs (1)

By semi-static completeness,

M = M0 + V + H · S, (2)

for some H ∈ L(S) and martingale V with VT ∈ L2(σ(T))
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Progressive filtration enlargement

Sketch of the proof of “⊆” (for p = 1, X ≡ 1)

Fix Q ∈ SSC(G)

Consider the process Mt = 1{τ≤t} −
∫ t∧τ

0
1

Zs−
dAs (1)

By semi-static completeness,

M = M0 + V + H · S, (2)

for some H ∈ L(S) and martingale V with VT ∈ L2(σ(T))

By (1), (2) and continuity of S, by considering the jumps of M:

τ = inf
{

t ∈ [0,T ] :
1

Zt−
∆At + ∆Vt = 1

}
.
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Progressive filtration enlargement

Sketch of the proof of “⊆” (for p = 1, X ≡ 1)

Fix Q ∈ SSC(G)

Consider the process Mt = 1{τ≤t} −
∫ t∧τ

0
1

Zs−
dAs (1)

By semi-static completeness,

M = M0 + V + H · S, (2)

for some H ∈ L(S) and martingale V with VT ∈ L2(σ(T))

By (1), (2) and continuity of S, by considering the jumps of M:

τ = inf
{

t ∈ [0,T ] :
1

Zt−
∆At + ∆Vt = 1

}
.

By assumption, τ > σ = inf{t > 0 : St , S0}

And V is constant on ]]σ,∞[[ by our characterization Theorem

Therefore τ = inf
{
t ∈ [0,T ] : 1

Zt−
∆At = 1

}
F-stopping time.
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Progressive filtration enlargement

Remarks.

From the proof it is clear that the set equivalence still holds
true without any assumption on S when Ψ = ∅.
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Progressive filtration enlargement

Remarks.

From the proof it is clear that the set equivalence still holds
true without any assumption on S when Ψ = ∅.

We can generalize the theorem for filtration enlargements with
countably many single-jump processes.

Theorem
Let S be continuous and H generated by Xk 1[[τk ,T ]], k ∈ N. Assume
τk > σ on {0 < τk < ∞} for all k , and |{k : τk (ω) ≤ T }| < ∞ ∀ ω.
Then

SSC(G) = {Q ∈ SSC(F) : F = G under Q }
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Conclusions

Motivated by robust super-hedging price computation, we study
extreme calibrated martingale measures

We obtain:

Semi-static version of the Jacod-Yor theorem.

Description of semi-statically complete models in terms of
dynamically complete models glued together by means of an
atomic tree.

Application to robust pricing by informed agents: under
structural assumptions, informed agents price using only those
models that render the additional information uninformative.

Lots of things remain to be done and appear to be within reach:

Infinitely many static claims (→ case ST ∼ µ)
Better understanding of price processes with jumps
More general filtration enlargements
. . .
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Thank you for your attention!
@ Walter: have a great year in Zurich!
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