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Abstract

In this paper, we study a dividend maximisation problem for a Brownian risk model as a
surplus and a Markov-switching model describing the preference rate of an insurer. The
preference rate can attain two values – a positive and a negative. The negative preference
reflects the situation when the uncertainty prevails and the insurer shows more waiting
tendency. In the times of the positive preference the insurer is in modus operandi.
We solve the problem of finding the optimal dividend payout strategy for the setting with
a classical ruin concept as well as for the case of a Parisian ruin with an exponential delay.
In the first case, the optimal strategy turns out to be of a barrier type for the positive
preference rate and no dividends are paid in the times of the negative rate. The optimal
barrier increases with increasing intensity to switch into the state with a negative prefer-
ence and shows the inverse dependence on the counterpart intensity.
In the case of Parisian ruin, the optimal strategy depends on the parameter of the ruin
delay and the severity of the negative preference rate. If the expected delay is relatively
short the optimal strategy remains a barrier (even equal to zero) in the positive state with
no dividends being paid in the negative state. If the expected delay is long, the optimal
strategy in the negative state might change from not paying dividends to a band strategy.
We give explicit expressions for the value functions and present conditions determining the
type of the optimal strategy. Both problems are illustrated by examples.
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1 Introduction

Strategic optimisation of dividend policies is an important topic in economic and actuarial
sciences. The distribution of dividends publicly displays the ability to earn profits and consti-
tutes self-assurance and success of the company. Dividends are a way to redistribute profits
to shareholders as a way to thank them for their support and to encourage additional invest-
ments. As dividends payments reduce the capital of the company, there is a trade-off between
the maximisation of payouts and staying in business as long as possible. For this reason, timing
of announcements and magnitude of dividend payments are crucial and influence strongly the
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benefit of a dividend payment for the company. For example, dividend change announcements
receive stronger reaction from investors in recessions than in expansions.

A fundamental assumption in many early research articles on dividend strategies is that the
percepted worth of immediate dividend payments exceeds the benefit from dividend distribu-
tion in the future. That is to say, there is a constant technical discounting on the time-value of
dividend payments given through a positive preference rate δ > 0. In this framework, dividend
optimisation problems are well-studied (some examples connected to our model can be found
in Asmussen and Taksar [6], Gerber and Shiu [14] and [15], and Hubalek and Schachermayer
[17]; Avanzi and Gerber [7] and Avram et al. [8] are set in more general frameworks).
However, in reality, preference rates of companies change over time and are influenced by
various exogenous and endogenous factors, such as a change in management, the influence of
(im-)patient investors, additional regulatory requirements and, of course, drastic events such
as market crashes. Recent behavioural studies also show that there is a relation of preference
rates and cultural differences (see, for example, Wang et al. [31] and Breuer et al. [10]).

A second fundamental assumption in dividend optimisation problems is that the company
goes out of business at the first time the surplus becomes negative. However, a company with
a high credit score, which has been reliably repaying debt in the past, will likely have access
to the financial means to get over a lean period. Therefore, the concept of ruin from the
managerial perspective can, in practice, differ from the “classical” definition.

For a more realistic modelling of time preference, many recent articles introduce time-inconsis-
tent discounting or preference functions. For example, Li et al. [21] and Zhu et al. [34] deal
with dividend optimisation problems under a non-exponential, stochastic (quasi-)hyperbolic
discounting. The approach of “hyperbolic” discounting is based on the assumption that the
economic player imposes a higher subjective discounting on the near future than on the far
future and is in line with the empirical findings of Wang et al. [31]. Another example provides
the paper by Jiang and Pistorius [18], where an optimal dividend problem for a diffusion
process is considered in a regime switching setting. In particular, the preference function takes
an exponential form with positive discounting rates which depend on the (random) state of
the economy. The changes of this state are determined by a continuous time Markov chain.
Akyildirim et al. [1] analyse the problem of dividend maximisation in a diffusion model for
which the preference rate switches back and forth between two positive states. They identify
optimal thresholds for dividend distribution in the different states and analyse their sensitivity
with respect to mean, volatility and, in particular, the jump rates in numerical examples. In
contrast to [18], they additionally include the possibility to issue new shares. This is motivated
by the fact that the changing costs of equity issuance (and the size of financial frictions in
general) influence the dividend policy of firms.

Eisenberg and Krühner [13] consider the problem of minimal capital injections in a regime
switching setting, where, in one of two regimes, the preference rate is allowed to be negative. An
influential factor to the subjective preference rate of a manager or a company is the assessment
of the current and future development of the economy. Since the future is never certain, we must
consider the impact of uncertainty on time preference. The most likely effect of uncertainty
or concern about future income and needs, given risk aversion, is trying to play it safe. This
is done by preparing, partially or fully, for the worst eventuality with a sudden reduction in
income or increase in needs. Such precautionary behaviour (or, if you like sophistication, such
minimum regret strategy) should reduce the rate of time preference. In particular, uncertainty
can be a reason to withhold earnings to either reinvest them into the company by building
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safety capital or to save them for dividend payments at a later, more advantageous time. This
effect, which has also been observed by Wang et al. [31], corresponds to a negative preference
rate and is, to our knowledge, not yet reflected in common preference rate models by optimising
dividends.

The possibility of continuing business for a certain amount of time after the classical “ruin”
event is reflected in the definition of Parisian ruin, proposed by Dassios and Wu [12]. In a
model with Parisian ruin, the surplus is allowed to become negative for a certain (random or
deterministic) amount of time. If the company recovers within this time, that is to say, if the
surplus re-enters the positive half plane, it does not go out of business.
The cases of deterministic and exponential Parisian delays require different mathematical tech-
niques and also differ in their economic tractability. Whilst the deterministic delays can be
easily explained as a fixed time frame given to the insurer to come out of red numbers, the
exponential delays, being memoryless, are harder to justify from the practical point of view.
Mathematically, the deterministic delays add time dependence and increase the complexity of
the considered problems, rarely allowing for explicit solutions. However, sometimes one can
overcome the “deterministic curse”. An example provide Wong and Cheung [32], who study
Laplace transforms of Parisian ruin times with deterministic and stochastic ruin “clocks” for
a renewal risk process with exponential jumps.
Loeffen et al. [20] express ruin probabilities of the Parisian ruin time with a deterministic clock
for spectrally negative Lévy processes via scale functions. Landriault et al. [19] modify the
model tackled in [20] by assuming that the Parisian delays are of a mixed Erlang nature. The
authors show that this modification leads to more explicit results.
Renaud [26] considers the problem of dividend optimisation under a spectrally negative Lévy
surplus and an exponential Parisian delay. There, it was possible to prove the optimal strategy
to be a constant barrier.
Further results on dividend optimisation problems under Parisian ruin can be found, for in-
stance, in Czarna and Palmowski [11], Xu et al. [33] and references therein.

In this paper, we examine the impact of negative preference rates and Parisian ruin on
(optimal) dividend strategies for an insurance company. We consider an arithmetic Brownian
motion surplus model in an independent Markov switching setting with two possible states
of a positive and a negative preference rate. Payout strategies are considered in the setting
of a classical ruin and under a Parisian ruin. In particular, we discover connections between
the optimal payout strategies, switching intensities and the parameter of the exponential ruin
clock in the case of Parisian ruin.

Choosing an exponentially distributed Parisian delay leads to a time independent value
function, which allows us to get explicit results. Also, the considered model can be interpreted
as a special case of the Omega model, introduced in Albrecher et al. [2] and further discussed,
for example, in Gerber et al. [16] and in Albrecher and Lautscham [5]. Similar to the definition
of the Parisian ruin framework, a company whose surplus is described by the Omega model
does not go out of business when the surplus becomes negative. Instead, one introduces a
bankruptcy rate function ω(x) describing the probability of ruin within dt time units for a
given negative surplus x. Hence, the case of an exponential Parisian ruin clock with parameter
γ corresponds to a constant bankruptcy rate ω(x) = γ−1, x < 0, in the Omega model.
Another interpretative link provide models with randomised observation times, see Albrecher
et al. [3] and Albrecher et al. [4]. “Randomised observation” means that a manager or regulator
can only monitor the surplus at discrete times. If the surplus is negative at an observation
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time, bankruptcy is declared. In particular, if the number of observations is given by a Poisson
process, i.e. the inter-observation times are identically exponentially distributed, having a
positive surplus until the n-th observation means “no ruin” so far in the Parisian framework.

The remainder of the paper is organised as follows. In Section 2 we present the mathe-
matical model constituting the basis of our analysis. Section 3 deals with the optimisation
problem for a classical ruin setup. We define bipartite strategies where the insurer waits with
the distribution of dividends until the preference rate is positive and the surplus lies above a
certain barrier. For these “barrier” strategies we calculate explicitly the corresponding return
functions and prove that the optimal strategy is also of this type. We analyse in detail the
dependence of the value function and optimal barrier on the switching intensities and discover
that the barrier and the return increase if more time is spent (on average) in the phases with
negative preference. In Section 4, we analyse the optimal control problem for Parisian ruin. In
this setting we define barrier and band strategies and find their return functions. We examine
in detail the dependence of the optimal strategy on the average time the surplus is allowed to
stay negative. In Section 5, we summarise our findings and comment on the economic impli-
cations. The appendix contains mathematical and technical details of some of the proofs for
the interested reader.

2 The General Model

In this section, we present the mathematical formulation of the general model we are going to
consider in both parts of the paper and introduce the crucial notation. All processes are defined
on the probability space (Ω,F,F ,P), where F = {Ft} is a right-continuous filtration. In the
following sections, we use the common notation: P[·|Y0 = y] = Py[·] and E[·|Y0 = y] = Ey[·] for
any stochastic process Y = {Yt}.
We assume that the surplus process of the insurance company under consideration is given by
a Brownian motion with drift

Xt = x+ µt+ σWt,

where W is a standard Brownian motion, µ, σ > 0 are constants. The insurance company is
allowed to pay dividends. A dividend strategy is a non-decreasing process D = {Dt} describing
the accumulated payments until time t and leading to the post-dividend surplus

XD
t = x+ µt+ σWt −Dt for all t ≤ τ ,

where τ describes the ruin time of XD. The concept of ruin will be defined in the corresponding
sections below.
Aiming at maximising the expected discounted dividends, the following preference rate model
will be taken as a basis. The company is assumed to live through a cycle of microeconomical
changes in its preference rate process r. Let r = {rt} be a continuous-time F-adapted Markov
chain with two states δ1 ≤ 0 and δ2 > 0. The Markov chain switches with intensity λ1 > 0
from δ1 to δ2 and λ2 ≥ 0 from δ2 to δ1, i.e. the generator matrix of r is given by(

−λ1 λ1

λ2 −λ2

)

The following result was first obtained in Pedler [24] and will be crucial for our derivations.
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Lemma 2.1
Let ∆ :=

(λ1+δ1+λ2+δ2)+
√

(λ1+δ1−λ2−δ2)2+4λ1λ2

2 , ∆ :=
(λ1+δ1+λ2+δ2)−

√
(λ1+δ1−λ2−δ2)2+4λ1λ2

2
Then, it holds

Ei
[
e−

∫ t
0 rs ds

]
=

(δi −∆ )e−∆ t − (δi −∆ )e−∆ t

∆ −∆
. (1)

�

Note that the Markov chain r and the Brownian motion W are independent as they are adapted
to the same filtration F . Further, we define the value function as

V (x, i) = sup
D∈D

VD(x, i) = sup
D∈D

Ex,i
[∫ τ

0
e−

∫ t
0 rs ds dDt

]
, i ∈ {1, 2} , x ≥ 0 , (2)

where VD(x, i) denotes the return function of an admissible strategy D when starting in the
regime with the preference rate δi and initial capital x, and D denotes the set of admissible
strategies to be defined in every section separately.

3 Classical Ruin

In this section, we consider the problem given in (2) under the classical definition of the time
of ruin. Thus, the company declares ruin at the moment the (post-dividend) surplus process
becomes negative for the first time:

τ = inf{t ≥ 0 : XD
t < 0} .

We restrict our considerations to the set of admissible strategies Dc containing all strategies
D with D0 ≥ 0, D is cadlag and XD

t ≥ 0 for all t ≤ τ .
The optimisation problem (2) will be tackled via solving the corresponding Hamilton–Jacobi–
Bellman (HJB) equation for x ≥ 0, i, j ∈ {1, 2} and V (0, 1) = 0 = V (0, 2). The heuristically
derived HJB is given by

max
{σ2

2
V ′′(x, i) + µV ′(x, i)− (λi + δi)V (x, i) + λiV (x, j), 1− V ′(x, i)

}
= 0 . (3)

Before considering the HJB, we need to ensure that the value function in (2) is well-defined.

Proposition 3.1
The value function (2) is well-defined if and only if

δ1 > −
λ1δ2

λ2 + δ2
. (4)

Proof: • Assume first δ1 ≤ − λ1δ2
λ2+δ2

, then ∆ ≤ 0 and ∆ > 0. The strategy D̃t = ξt with
ξ = µ

2 is an admissible strategy and the corresponding ruin time τ̃ of the post-dividend process

XD̃ fulfils P[τ̃ =∞] > 0, compare Borodin and Salminen [9, p. 309]. Then, it holds

V (x, 1) ≥ VD̃(x, 1) = Ex,1
[ ∫ τ̃

0
e−

∫ t
0 rs ds dD̃t

]
= ξEx

[ ∫ τ̃

0
E1[e−

∫ t
0 rs ds] dt

]
≥ ξPx[τ̃ =∞]

∫ ∞
0

(δ1 −∆ )e−∆ t − (δ1 −∆ )e−∆ t

∆ −∆
dt =∞ .
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• On the other hand, if (4) is fulfilled then ∆ ,∆ > 0, δ2 > ∆ and δ2 < ∆ . Let D be
an arbitrary admissible strategy with the corresponding ruin time τ of XD. Since D is by
definition non-decreasing and

∫ t
0 rs ds is continuous it holds via integration by parts∫ τ

0
e−

∫ t
0 rsds dDt = Dτe−

∫ τ
0 rsds +

∫ τ

0
Dtrte

−
∫ t
0 rsds dt−D0 .

� We show first that the expression Dτe−
∫ τ
0 rs ds is well defined on [τ = ∞]. Note that

eaXt
a ≥ Xt ≥ Dt for any a > 0 and t ≥ 0. Now we specifically define a :=

−µ+
√
µ2+σ2∆

σ2 >

0. The strong law of large numbers yields lim
t→∞

1
t

∫ t
0 rsds = δ1

λ1
+ δ2

λ2
and lim

t→∞
aXt
t → aµ

almost surely, see for instance Norris [23]. We conclude lim
t→∞

(
aXt −

∫ t
0 rs ds

)
= −∞

almost surely as aµ < δ1
λ1

+ δ2
λ2

due to (4).

� Building expectations yields

Ex,i
[ ∫ τ

0
e−

∫ t
0 rsds dDt

]
= Ex,i

[
Dτe−

∫ τ
0 rtdt

]
+ Ex,i

[ ∫ τ

0
Dtrte

−
∫ t
0 rsds dt

]
−D0

≤ Ex,i
[
Xτe−

∫ τ
0 rtdt

]
+ Ex,i

[ ∫ τ

0
Dtδ2e−

∫ t
0 rsds dt

]
≤ Ex,i

[eaXτ−
∫ τ
0 rtdt

a

]
+

∫ ∞
0

δ2

a
Ex,i

[
eaXt−

∫ t
0 rsds

]
dt . (5)

� Note that for any t > 0 it holds via change of measure with the new measure P∗,
expectation E∗ and the Radon-Nikodym derivative dP

dP∗ = e−a(Xt−x)+σ2a2

2
t+µat:

Ex,i
[
eaXt−

∫ t
0 rsds

]
= eaxE∗x,i

[
e

(
σ2a2

2
+µa
)
t−

∫ t
0 rsds

]
= eax+ ∆

2
t · (δi −∆ )e−∆ t − (δi −∆ )e−∆ t

∆ −∆
.

ensuring the existence of the integral in (5).

� It remains to consider Ex,i
[

eaXτ−
∫ τ
0 rt dt

a

]
. Since both processes X and r are Markovian

the following holds true for any t > 0 and a given above:

Ex,i
[
eaXt−

∫ t
0 rs ds

]
≥ Ex,i

[
eaXt−

∫ t
0 rs ds1I[τ≤t]

]
= Ex,i

[
eaXτ−

∫ τ
0 rs dsE

[
ea(Xt−Xτ )−

∫ t
τ rs ds1I[τ≤t]

∣∣∣Fτ]]
= Ex,i

[
eaXτ−

∫ τ
0 rs ds1I[τ≤t] ·

(rτ −∆ )e−
(

∆ −∆
2

)
(t−τ) − (rτ −∆ )e−

∆
2

(t−τ)

∆ −∆

]
≥ Ex,i

[
eaXτ−

∫ τ
0 rs ds1I[τ≤t]

](δ2 −∆ )e−
(

∆ −∆
2

)
t − (δ2 −∆ )e−

∆
2
t

∆ −∆
.

Dividing both sides of the above inequality by (δi−∆ )e
−
(

∆ −∆
2

)
t−(δi−∆ )e−

∆
2 t

∆ −∆ and letting
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Figure 1: Ex-dividend process following a barrier strategy with barrier b∗ (compare Example
3.15 below). The time intervals with rt = δ1 are shown shaded in gray. The barrier b∗ is
represented by the dotted line.

t go to infinity, we get

eax ≥ lim
t→∞

Ex,i
[
eaXτ−

∫ τ
0 rs ds1I[τ≤t]

](δ2 −∆ )e−
(

∆ −∆
2

)
t − (δ2 −∆ )e−

∆
2
t

(δi −∆ )e−
(

∆ −∆
2

)
t − (δi −∆ )e−

∆
2
t

= Ex,i
[
eaXτ−

∫ τ
0 rs ds1I[τ<∞]

]∆ − δ2

∆ − δi
.

This implies that Ex,i
[
eaXτ−

∫ τ
0 rs ds1I[τ<∞]

]
has an upper bound which is independent

from D. In the same way one can show that Ex,i
[
eaXτ−

∫ τ
0 rs ds1I[τ=∞]

]
= 0.

�

3.1 Barrier strategies and their return functions

In this section we consider a special type of strategies, called barrier strategies. The considered
barriers are assumed to be positive constants. In models with no regime switching, a barrier
strategy with a given barrier b pays out any amount exceeding b and does nothing if the surplus
is below b.

Definition 3.2
In the present paper, we talk about a barrier strategy with a barrier pair (∞, b), b > 0, if:
no dividends are paid in the regime with a negative preference rate; whereas, we follow the
classical barrier strategy for the barrier b during the positive rate phases.

First, we introduce the notation and conventions to be used in the following explanations.
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Notation 3.3
• We let

q1 :=
−µ+

√
µ2 + 2σ2∆

σ2
, q2 :=

−µ−
√
µ2 + 2σ2∆

σ2
,

q3 :=
−µ+

√
µ2 + 2σ2∆

σ2
, q4 :=

−µ−
√
µ2 + 2σ2∆

σ2
, q5 :=

−µ−
√
µ2 + 2σ2(λ1 + δ1)

σ2
.

Note that q1 > 0 > q2 are the solutions to the quadratic equation σ2

2 q
2 + µq = ∆ and

q3 > 0 > q4 solve σ2

2 q
2 + µq = ∆ .

• The functions ψ(x) := eq1x − eq2x and φ(x) := eq3x − eq4x are strictly increasing solutions
with φ(0) = ψ(0) = 0 to the equations

σ2

2
ψ′′(x) + µψ′(x) = ∆ ψ(x) ,

σ2

2
φ′′(x) + µφ′(x) = ∆ φ(x) . (6)

• For convenience of notation we let A := −λ1
∆ −(λ1+δ1) and B := −λ1

∆ −(λ1+δ1) . It is easy to see

that A < 0 and λ2+δ2
λ2

> B > λ1
λ1+δ1

> 1.

• In order to simplify the explanations, we write (G∞, Fb) for the return function, V(∞,b)(x, i),
corresponding to a barrier pair (∞, b), where

V(∞,b)(x, i) =

{
Fb(x) : if x ∈ R+ and i = 2

G∞(x) : if x ∈ R+ and i = 1 .
(7)

• For a pair H of sufficiently smooth functions H(x, 1) and H(x, 2), x ≥ 0, and i 6= j we write:

LH(x, i) =
σ2

2
H ′′(x, i) + µH ′(x, i)− (λi + δi)H(x, i) + λiH(x, j) .

The following properties of the functions ψ and φ will be crucial in derivation of the value
function.

Lemma 3.4
1.) The second derivatives φ′′ and ψ′′ are strictly increasing on (0,∞), have unique zeros xψ,
xφ respectively with 0 < xψ < xφ.

2.) Let ψ̃(x) = ψ′′(x)
ψ′(x) and φ̃(x) = φ′′(x)

φ′(x) . Then ψ̃(x)− φ̃(x) > 0 for all x > 0.

3.) It holds ψ̃′(x),φ̃′(x) > 0.
4.) Denote the solutions to Differential equations (6) in dependence on λ2 by ψλ2(x) and φλ2(x).

Then ψ̃λ2(x) =
ψ′′λ2

(x)

ψ′λ2
(x)

is increasing and φ̃λ2(x) =
φ′′λ2

(x)

φ′λ2
(x)

is decreasing in λ2. Furthermore,

ψ̃λ2(x) converges uniformly on compacts to a continuously differentiable function and φ̃λ2(x)

converges uniformly on compacts to −2µ
σ2 as λ2 goes to − δ2(λ1+δ1)

δ1
.

Proof: See Appendix. �

A first observation concerning the return of a barrier strategy is made in the following Lemma.

8



Lemma 3.5
Let V(∞,b) be the return function of the barrier strategy (∞, b), b > 0. Then,

V(∞,b)(x, 1) = C5(b)eq5(x−b) +
λ1

λ1 + δ1
V(∞,b)(x, 2) +

µλ1

(λ1 + δ1)2

on [b,∞) for some C5(b) ∈ R. In particular, V(∞,b) is linearly bounded and solves the differential
equation L(V(∞,b))(x, 1) = 0 for x ≥ b.

Proof: Since the surplus exceeding b is immediately paid out during the regime with the
positive preference rate δ2, we have V(∞,b)(x, 2) = x − b + V(∞,b)(b, 2). Starting at (x, 1) with
x > b, i.e. with the preference rate δ1 and initial surplus x, let T1 denote the time of the first
switch into the regime 2. Let θ = inf{t > 0 : Xt = b} and get for x > b, then

V(∞,b)(x, 1) = Ex,1
[
e−δ1θV(∞,b)(b, 1)1I[θ≤T1] + e−δ1T1

(
XT1 − b+ V(∞,b)(b, 2)

)
1I[θ>T1]

]
.

The claim follows using the formulas (2.0.1) and (1.2.8) from Borodin and Salminen [9, pp.
295,252]:

Ex,1
[
e−δ1θ1I[θ≤T1]

]
= eq5(x−b) and Ex,1[e−δ1T11I[θ>T1]] = −λ1eq5(x−b)

λ1 + δ1
+

λ1

λ1 + δ1
,

Ex,1
[
e−δ1T1(XT1 − b)1I[θ>T1]

]
=
λ1(x− b)
λ1 + δ1

+
µλ1

(λ1 + δ1)2
− µλ1eq5(x−b)

(λ1 + δ1)2
.

It is straight forward to show that the obtained function solves L(V(∞,b))(x, 1) = 0. �

Using standard martingale techniques, one can prove that the return function of a barrier
strategy solves a system of differential equations. Lemma 3.5 in combination with the proof of
Proposition 3.1 ensures existence of the related expectations:

Lemma 3.6
For a barrier strategy with a barrier b > 0, the corresponding return function V(∞,b) on [0, b]
is the unique solution to the system of differential equations

L(V(∞,b))(x, 1) = 0 and L(V(∞,b))(x, 2) = 0 (8)

with V(∞,b)(0, 1)(0) = V(∞,b)(0, 2) = 0, V ′(∞,b)(b, 2) = 1. We have V(∞,b) = (G∞, Fb), with

Fb(x) =

{
C2(b)ψ(x) + C4(b)φ(x) , x ∈ [0, b) ,

x− b+ C2(b)ψ(x)(b) + C4(b)φ(b) , x ≥ b ,

G∞(x) =

{
AC2(b)ψ(x) +BC4(b)φ(x) , x ∈ [0, b) ,

C5(b)eq5x + λ1
λ1+δ1

Fb(x) + λ1µ
(λ1+δ1)2 , x ≥ b ,

(9)

where the coefficients are given by

C2(b) =
−B

(φ′′(b)
φ′(b) − q5

)
− λ1

λ1+δ1
q5

−Bψ′(b)
(φ′′(b)
φ′(b) − q5

)
+Aψ′(b)

(ψ′′(b)
ψ′(b) − q5

) , C4(b) =
1− ψ′(b)C2(b)

φ′(b)

C5(b) =
(A−B)ψ′(b)C2(b) +B − λ1

λ1+δ1

q5eq5b
.

(10)
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It holds G∞ ∈ C2(R+), Fb ∈ C2(R+\{b}). There is a unique b∗ ∈ (xψ, xφ) leading to F ′′b∗(b
∗) = 0

and consequently to Fb∗ ∈ C2(R+) with C2(b∗) > 0, C4(b∗) > 0, C5(b∗) < 0 and

(A−B)C2(b∗)ψ′(b∗)

(
q5 −

ψ′′(b∗)

ψ′(b∗)

)
+
(
B − λ1

λ1 + δ1

)
q5 = 0 (11)

Proof: See Appendix. �

Next, we prove that there is a certain barrier strategy, which not only solves the connected
differential equation, but also the HJB equation (3).

Lemma 3.7
The return function V(∞,b∗) = (G,F ), corresponding to the barrier strategy with a barrier pair
(∞, b∗) and leading to G,F ∈ C2(R+) solves the HJB equation (3).

Proof: In order to prove that (G,F ) solve the HJB equation (3) we need to show that
G′(x) > 1 on [0,∞], F ′(x) > 1 on [0, b∗) and µ+ (λ2 + δ2)F (x) + λ2G(x) < 0 on (b∗,∞).
1.) Recall first that due to Lemma 3.6 it holds that b∗ ∈ (xψ, xφ), C2(b∗), C4(b∗) > 0, C5(b∗) <
0, F ′(b∗) = 1, F ′′(b∗) = 0 and G is twice continuously differentiable and fulfils on [b∗,∞):

G′∞(x) = C5(b∗)q5eq5x +
λ1

λ1 + δ1
>

λ1

λ1 + δ1
> 1 and G′′∞(x) = C5(b∗)q2

5eq5x < 0 .

2.) On the other hand, representation (9) yields F ′′(x) < 0 on [0, xψ] and G′′(x) < 0 on
[xψ, b

∗]. Hence, if F ′′(x̂) = 0 for some x̂ ∈ (xψ, b
∗] then G′′(x) < 0 on [x̂, b∗]. Assume

x̂ := inf{x > 0 : F ′′(x) = 0} ∈ (xψ, b
∗). Then, it obviously holds F ′′′(x̂) ≥ 0. Based on the

differential equation for F and properties of F and G, we can conclude that

(λ2 + δ2)F ′(x̂)− λ2G
′(x̂) ≥ 0 and (λ2 + δ2)F ′′(x̂)− λ2G

′′(x̂) > 0.

This means that on (x̂, x̂ + ε) for some ε > 0 it holds (λ2 + δ2)F ′(x) − λ2G
′(x) > 0 implying

that F ′′ and consequently (λ2 + δ2)F ′′(x) − λ2G
′′(x) are positive on (x̂, x̂ + ε). Hence, (λ2 +

δ2)F ′(x)−λ2G
′(x) will stay positive on (x̂, b∗) preventing F ′′ to become zero, which contradicts

F ′′(b∗) = 0. Therefore, F ′′(x) < 0 and consequently F ′(x) > 1 on [0, b∗).
In a similar way one can show G′′(x) < 0 and G′(x) > λ1

λ1+δ1
on [0, b∗].

3.) We already know that F and G have the form (9), where G′ > λ1
λ1+δ1

> 1 on R+ and
F ′ > 1 on [0, b∗). Therefore, our aim is to insert the function x−b∗+F (b∗) into the differential
equation (8) and show that the obtained expression L(x) is non-positive on [b∗,∞), where

L(x) := µ− (λ2 + δ2)
(
x− b∗ + F (b∗)

)
+ λ2G(x) .

Note first that L(b∗) = L(V(∞,b∗))(b
∗, 2) = 0 by definition. Deriving the differential equation

for F on [0, b∗) we get

0 =
σ2

2
F ′′′(b∗−) + µF ′′(b∗)− (λ2 + δ2)F ′(b∗) + λ2G

′(b∗) =
σ2

2
F ′′′(b∗−) + L′(b∗) .

We know that F ′′(x) < 0 on [0, b∗) and F ′′(b∗) = 0 meaning F ′′′(b∗−) ≥ 0 and consequently
L′(b∗) = −(λ2 + δ2) +λ2G

′(b∗) ≤ 0. Further, because L′′(x) = λ2G
′′(x) < 0 on [b∗,∞) (see 1.)

above), it follows L′(x) < 0 on (b∗,∞) implying L(x) < 0 on (b∗,∞). �

Now, we are ready to prove
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Theorem 3.8 (Verification Theorem)
In the case of classical ruin, a barrier strategy with the barrier pair (∞, b∗) is an optimal
strategy and its return function V(∞,b∗) is the value function V defined in (2).

Proof: See Appendix. �

3.2 Dependence of the value function on the switching intensities

In this section, we investigate the dependence of the value function and of the optimal strategy
on the switching intensities. We restrict our analysis to the switching intensity from the state 2
into the state 1, i.e. from the state with a positive preference rate into the state with a negative
preference, i.e. to λ2, as the results for λ1 can be obtained in a similar way.
We consider two different switching intensities λ2 and λ̃2. W.l.o.g. we assume that λ̃2 > λ2, all
other parameters being unchanged, and denote the optimal barriers corresponding to λ̃2 and
λ2 by b̃∗ and b∗ respectively. The objective is to show that with increasing switching intensity
λ2, the optimal barrier will increase as well, i.e. in the newly adopted notation b̃∗ > b∗.

Notation 3.9
In the following, by adding a tilde to the already existing notation we indicate the quantities

corresponding to λ̃2.

Lemma 3.10
For the function V = (G,F ), given in (7), it holds G(x) > F (x) and G′(x) > F ′(x) on (0,∞).

Proof: See Appendix. �

Lemma 3.11
For every x > 0 it holds F (x) < F̃ (x) and G(x) < G̃(x).

Proof: Consider the Markov chain {rs} with the two states δ1 and δ2 and intensities λ1, λ2.
By changing the time, we can construct a Markov chain with the states δ1 and δ2 but with the
intensities λ1 and λ̃2 respectively. For that purpose define

ϕ(x) := 1I[x=δ1] +
λ̃2

λ2
1I[x=δ2].

Because ϕ(x) is positive on the set {δ1, δ2}, the integral∫ t

0

1

ϕ(rs)
ds =

∫ t

0
1I[rs=δ1] +

λ2

λ̃2

1I[rs=δ2] ds

is strictly increasing in t, attains 0 at t = 0 and converges to infinity as t → ∞. Since we

assumed λ̃2 > λ2, 1
ϕ(rs)

is smaller than one, implying d
dt

(
t−

∫ t
0 1I[rs=δ1] + λ2

λ̃2
1I[rs=δ2] ds

)
> 0 .

Hence, there is a unique strictly increasing function ξ(t) > t such that
∫ ξ(t)

0
1

ϕ(rs)
ds = t. Note

that the infinitesimal generator of the Markov chain {rs} is given by

Af(x) = λ1

(
f(δ2)− f(δ1)

)
1I[x=δ1] + λ2

(
f(δ1)− f(δ2)

)
1I[x=δ2] .
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Figure 2: Occupation times in the state δ1 for the processes {rs} and {r̃s}.

Due to Volkonskii [29], the process r̃s := rξ(s) is a two-state Markov chain with the generator
ϕ(x)Af(x). It means r̃s is a Markov process with the states δ1 and δ2 and the corresponding
intensities λ1 and λ̃2.
Now, what is the connection between {rt} and {r̃t}? Denote by Λt and Λ̃t the time which
the processes rt and r̃t respectively have spent in the state δ1 up to time t. In Figure 2 we
see the times (represented as solid lines) spent by the processes {rs} and {r̃s} in the state δ1.
The solid lines for {rs} and {r̃s} have equal lengths. However, the intervals between the lines
corresponding to the times spent in δ2 have different lengths, due to λ̃2 > λ2.
Since ξ(t) > t for every t and ω, it holds that Λt ≤ Λ̃t, see Figure 2. Therefore, it holds∫ t

0
rs ds = δ2t+ (δ1 − δ2)Λt ≥ δ2t+ (δ1 − δ2)Λ̃t =

∫ t

0
r̃s ds .

Let now D be the barrier strategy corresponding to the barrier (b∗,∞). Then, D is an admis-
sible strategy for the pair (W, r̃s) because ξ(t) > t. Thus,

F (x) = Ex,2
[ ∫ τ

0
e−

∫ t
0 rs dDt

]
< Ex,2

[ ∫ τ

0
e−

∫ t
0 r̃s dDt

]
≤ F̃ (x) .

The same relationship holds true for G and G̃. �

Proposition 3.12
It holds b̃∗ > b∗.

Proof: The proof uses on the one hand the relations given by the differential equations for
F̃ , G̃ and F,G and on the other hand Lemma 3.11. For the sake of clarity of presentation the
technicalities are shifted to Appendix. �

We have seen that Assumption (4): δ1 > − λ1δ2
λ2+δ2

is crucial for the well-definiteness of the stated
problem. Proposition 3.12 states that the bigger λ2 the bigger would be the optimal barrier.
We now examine what happens to the optimal barrier if and λ2 approaches the critical value
leading to δ1 = − λ1δ2

λmax
2 +δ2

:

λmax
2 := −δ2

(λ1

δ1
+ 1
)
,

with the interpretation λmax
2 :=∞, if δ1 = 0.
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Proposition 3.13
It holds b∗ →∞ as λ2 → λmax

2 .

Proof: We have seen in Proposition 3.12 that the optimal barrier b∗(λ2), as a function of λ2,
is strictly increasing and therefore has a unique limit. Assume lim

λ2→λmax
2

b∗(λ2) = ξ < ∞. For

every λ2 the optimal barrier b∗ leading to F,G ∈ C2 fulfils due to (11)

C2(b∗)ψ′(b∗)

(
ψ′′(b∗)

ψ′(b∗)
− φ′′(b∗)

φ′(b∗)

)
= −φ

′′(b∗)

φ′(b∗)
.

Note that due to Lemma 3.4, φ′(x)
φ′′(x) uniformly converges to −2µ

σ2 and ψ′′(x)
ψ′(x) uniformly converges

to a continuously differentiable function ψ̂max(x) on [0, 2ξ] as λ2 → λmax
2 . Also for λ2 = λmax

2

one easily gets B = λ1
λ1+δ1

. Thus, letting λ2 → λmax
2 in the above equality yields

2µ
σ2

λ1
λ1+δ1

2µ
σ2

λ1
λ1+δ1

+Aψ̂max(ξ) + ( λ1
λ1+δ1

−A)q5

(
ψ̂max(ξ) +

2µ

σ2

)
=

2µ

σ2
,

which is equivalent to ψ̂max(ξ) = q5 < 0. This is a contradiction as for any optimal barrier b∗

it holds ψ′′(b∗)
ψ′(b∗) > 0, see Lemma 3.4. Therefore, we can conclude that our claim holds true. �

Remark 3.14 (Dependence on λ1.)
Considering the dependence of the value function and the optimal strategy on the switching
intensity λ1 and letting all other parameters unchanged leads to the following results.

Let − δ1(λ2+δ2)
δ2

< λ1 < λ̃1 and denote the corresponding value functions by V = (G,F ) and

Ṽ = (G̃, F̃ ) respectively.
• It holds G̃ < G, F̃ < F on (0,∞) and b̃∗ < b∗.

• The optimal barrier as a function of λ1 converges to infinity as λ1 → − δ1(λ2+δ2)
δ2

.

Thus, the smaller the intensity to switch from the state with a negative preference to the state
with a positive preference the smaller will be the positive barrier in order to be able to collect
dividends. It is a trade off between paying as much dividends as possible and avoiding ruin
during the positive preference rate phase.
We omit the proof as it follows closely all steps presented above for λ2. �

Example 3.15
Choose δ1 = −0.01, δ2 = 0.04, λ1 = 0.5, λ2 = 0.2, µ = 0.1, σ = 0.3. Then δ1 > − λ1δ2

λ2+δ2
. The

optimal strategy is given by the barrier b∗ = 1.729236 in the phases with a positive interest
rate and no dividend payments in the phases with a negative rate. The value function (G,F )
along with the optimal barrier (dotted line) are illustrated on the lhs of Figure 3. Figure 1 in
the beginning of this section shows a simulation of the ex-dividend process for this parameter
set.
Now, we compare two value functions with different switching intensities λ̃2 = 0.5 and λ2 = 0.2
by keeping all other parameters unchanged. The switching intensities λ̃2 and λ2 lead to the
optimal barriers b̃∗ = 2.200543 and b∗ = 1.729236 respectively. The lhs of Figure 3 illustrates
the value functions (G,F ), (G̃, F̃ ) with the corresponding barriers b∗ and b̃∗ (dotted lines).
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Figure 3: Lhs: The value functions and the barriers b̃∗ and b∗ (dotted lines). Rhs: The
derivatives F̃ ′(x) and F ′(x) on [0, b∗].

The rhs in Figure 3 shows that the derivative F̃ ′ lies above F ′ leading in this way to a bigger
optimal barrier.
The dependence of the optimal barrier on the switching intensities λ2 (lhs) and λ1 (rhs) is
illustrated in Figure 4, where the zeros xφ and xψ are given as dashed lines above and below
the curves b∗(λ2) (lhs), b∗(λ1) (rhs) respectively. As explained in Section 3.2, the optimal
barrier b∗ is strictly increasing in λ2, decreasing in λ1 and converges to infinity as λ2 goes to
− δ2(λ1+δ1)

δ1
or λ1 goes to − δ1(λ2+δ2)

δ2
. �

Remark 3.16
Note that because the optimal barrier b∗ from the pair (∞, b∗) fulfils b∗ ∈ (xψ, xφ), see Lemma
3.6, and 0 < xψ < xφ, see Lemma 3.4, we can conclude that there are no parameter sets leading
to b∗ = 0. �

4 Parisian Ruin

In this section, we introduce a random delay in declaring the event of ruin. Every time the
surplus process becomes negative an independent random clock is activated. The ruin is said
to have occurred if the running maximum of the surplus process stays negative during a given
random period, which is assumed to be exponentially distributed with some parameter γ > 0.
Thus, the expected delay is decreasing in γ, i.e. the bigger γ the shorter will be the expected
ruin delay and vice versa. We do not allow for dividend payments if the surplus process is
negative.
Formally: Let T ∼ Exp(γ) be independent of X and r and define the ruin time of the surplus

14



Figure 4: Dependence of the optimal barrier on the switching intensity λ2 (lhs) and λ1 (rhs).

process XD under a dividend strategy D to be

τ := inf{t+ T : sup
t≤s≤t+T

XD
s < 0} ,

The set of admissible strategies Dp contains all strategies D with D0 ≥ 0, D is cadlag,
max{XD

t−, 0} ≥ Dt − Dt− ≥ 0 and Dt constant during XD
t < 0 for all t ≤ τ . The last

condition reflects that no dividend payments are allowed during a phase with negative capital.
We again target to maximise the expected discounted dividend payments until the time of
ruin, given by (2). We assume that condition (4) is fulfilled. The proof of the well-definiteness
of the problem follows closely the proof of Proposition 3.1. The HJB equation for the modified
problem and x ≥ 0 is then

max
{σ2

2
V ′′(x, i) + µV ′(x, i)− (δi + λi)V (x, i)(x) + λiV (x, j), 1− V ′(x, i)

}
= 0 . (12)

Notation 4.1
In this section we define for a pair H of sufficiently smooth functions H(x, 1) and H(x, 2) and
i 6= j:

L H(x, i) =
σ2

2
H ′′(x, i) + µH ′(x, i)− (λi + δi)H(x, i) + λiH(x, j) , x ≥ 0 ,

L H(x, i) =
σ2

2
H ′′(x, i) + µH ′(x, i)− (λi + δi + γ)H(x, i) + λiH(x, j) , x ≤ 0 ,

Remark 4.2
Note that because we do not allow any dividend payments if the surplus is negative, for x < 0,
any return function VD fulfils system of differential equations

L VD(x, 1) = 0 and L VD(x, 2) = 0 , (13)

with boundary conditions lim
x→−∞

VD(x, i) = 0 for i ∈ {1, 2}. The general solutions are

VD(x, 1) = Ac1eu1x +Bc3eu3x, VD(x, 2)(x) = c1eu1x + c3eu3x , (14)
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Figure 5: Ex-dividend process following a band strategy with parameter β (compare Example
4.13 below). The time intervals with rt = δ1 are shown shaded in grey. The band parameter
β is represented by the dash-dotted line.

where

u1 :=
−µ+

√
µ2 + 2σ2(∆ + γ)

σ2
, u3 :=

−µ+
√
µ2 + 2σ2(∆ + γ)

σ2
.

The coefficients c1 and c3 will be uniquely determined by the requirement of C1-fit at zero .
The proof follows closely the proof of Lemma 3.6 with dividends set to 0. �

4.1 Barrier/band strategies and their return functions

In case of a Parisian ruin the exponential delay and hence the parameter γ will impact the
optimal strategy. We conjecture that the optimal strategy will be of a barrier or band type
and study the properties and the corresponding return functions. A band strategy is based on
a sequence of intervals {(a0, b0], (a1, b1], ..., (an, bn]} and acts according to where the surplus is
located. If the surplus is in a band, (ak, bk], no dividends are paid. On the top of this region
is the band (bk, ak+1], where dividends are paid immediately such that the process is brought
back to the frontier bk between the both bands.

Definition 4.3
In the present paper, a strategy is called band strategy with parameter β > 0 if no dividends
are paid in the negative rate phases when the surplus lies in (β,∞). Otherwise the entire
positive surplus is paid out as dividends.

Notation 4.4
• We write (G∞, Fb, g∞, fb) for the return function, V(∞,b), corresponding to a barrier (∞, b),
where

V(∞,b)(x, i) =

{
Fb(x) : if x ∈ R+, i = 2

G∞(x) : if x ∈ R+, i = 1
, V(∞,b)(x, i) =

{
fb(x) : if x ∈ R−, i = 2

g∞(x) : if x ∈ R−, i = 1
,
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Figure 6: (γ, µ)-combinations for different optimal strategy types.

where fb(x) = c1eu1x + c3eu3x and g∞(x) = Ac1eu1x +Bc3eu3x as given in (14).
• The functions ψ and φ from Section 3 will be now replaced by the functions

ψγ(x) := eq1x − u1 − q1

u1 − q2
eq2x , φγ(x) := eq3x − u3 − q3

u3 − q4
eq4x ,

i.e. Fb(x) = C2(b)ψγ(x) + C4(b)φγ(x) and G∞(x) = AC2(b)ψγ(x) + BC4(b)φγ(x). The alter-
nating structure of ψγ(x) and φγ(x) accounts for the new boundary condition at 0: instead of
Fb(0) = G∞(0) = 0 we have a C1-fit of the pairs Fb and fb, G∞ and g∞.
• Analogously, we write (Gβ, F0, gβ, f0) for the return function, V(β,0), corresponding to a band
strategy (β, 0).

Remark 4.5
It holds that u1 > q1 > 0 and u3 > q3 > 0, where σ2

2 u
2
1 +µu1 = ∆ +γ and σ2

2 u
2
3 +µu3 = ∆ +γ.

The functions ψγ and φγ are strictly increasing solutions to the equations

σ2

2
ψ′′γ(x) + µψ′γ(x) = ∆ ψγ(x) ,

σ2

2
φ′′γ(x) + µφ′γ(x) = ∆ φγ(x) .

with strictly increasing second derivatives. The (unique) zeros of ψ′′γ and φ′′γ will be denoted
in the following by χψ and χφ respectively. Depending on the parameter set, χψ and χφ
can become negative. However, the relation χψ < χφ holds true in all relevant cases, i.e.

γ > (∆ )2σ2

2µ2 (see the proof of Lemma 4.7). �

The following roadmap outlines the key steps in finding the optimal strategy for different
values of γ.

• First, we assume that the optimal strategy is of a barrier or a band type in the sense
of Definitions 3.2 and 4.3. We subdivide R+ in three intervals (γ̄(µ),∞), (γ(µ), γ̄(µ)] and
(0, γ(µ)] with some functions γ̄(µ) > γ(µ) > 0 depending on the drift of the surplus process.

• We find the optimal barriers/bands for values of γ from each of the three intervals and
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calculate the boundaries γ̄(µ) (implicitly given by ξ = 0 with ξ in (16)) and γ(µ) (implicitly
given by η = 0 with η in (20)).
The three different areas are illustrated in Figure 6. The pairs (γ, µ) lying to the right of the
solid curve, γ̄(µ), lead to a barrier strategy with a positive barrier b > 0. The pairs (γ, µ)
between the solid, γ̄(µ), and the dashed, γ(µ), curves correspond to a strategy with barrier
b = 0. And finally, the area to the left of the dashed curve γ(µ) produces a band strategy with
a parameter β > 0.

• We show that the critical curve γ̄(µ) exists for all parameter sets λ1, δ1, λ2, δ2 and σ, and
γ(µ) exists only under the additional condition that |δ1| is not too large.

4.1.1 Short expected delay γ ∈ (γ̄(µ),∞)

We know that the bigger γ the smaller will be the expected delay. Therefore, Parisian ruin
with big γ values may be close to the case of a classical ruin considered in Section 3. Hence,
it seems likely that the optimal strategy will be a barrier strategy with the barrier of the type
(∞, b), b > 0 in the sense of Definition 3.2, i.e. no dividends are paid during the regime with
a negative preference rate. In the following, we consider barrier strategies with a barrier pair
(∞, b) and calculate the corresponding “optimality interval” (γ̄(µ),∞) in dependence of µ.

Remark 4.6
• Since we consider barrier strategies from Section 3 we can use the results derived there.
As it has been shown in Lemma 3.6, for a barrier strategy with a barrier (∞, b), for some
b > 0, the corresponding return function V(∞,b)(x, i) = (G∞, Fb) on [0,∞) has the form (9)
with coefficients Cs2(b), Cs4(b), Cs5(b). According to the C1-requirement at zero, we get

Cs2(b) =
−B

(φ′′γ(b)

φ′γ(b) − q5

)
− λ1

λ1+δ1
q5

−Bψ′γ(b)
(φ′′γ(b)

φ′γ(b) − q5

)
+Aψ′γ(b)

(ψ′′γ (b)

ψ′γ(b) − q5

) , Cs4(b) =
1− ψ′γ(b)C2(b)

φ′γ(b)
(15)

Cs5(b) =
−(B −A)ψ′γ(b)cs2(b) +B − λ1

λ1+δ1

q5eq5b
, cs1(b) =

q1 − q2

u1 − q2
· Cs2(b) , cs3(b) =

q3 − q4

u3 − q4
· Cs4(b) .

• The system of differential equations L (V(∞,b))(x, i) = 0 for (G∞, Fb) and the system
L (V(∞,b))(x, i) = 0 for (g∞, fb) indicate that a C2-fit at 0 is possible just if Fb(0) = 0,
G∞(0) = 0, i.e. in case of an immediate ruin when the surplus reaches zero. Thus, due to
γ > 0 the smooth fit at x = 0 will remain a C1-fit. �

In order to prove that the optimal barrier pair is given by (∞, b) for some parameters we need
to specify the boundary γ̄. Roughly speaking, we are searching for the values of γ allowing
F ′′b (b) = 0 for some b > 0. As we already know the structure of the coefficients Cs2(b) and
Cs4(b), the following result is straight-forward.

Lemma 4.7
There is a unique function γ̄(µ) on (0,∞), implicitly given by ξ(γ, µ) = 0 where

ξ(γ, µ) :=
(
A− λ1

λ1 + δ1

)ψ′γ(0)

ψ′′γ(0)
−
(
B − λ1

λ1 + δ1

)φ′γ(0)

φ′′γ(0)
+
B −A
q5

, (16)

such that for all γ > γ̄(µ) there exists a unique b > 0 leading to F ′′b (b) = 0.
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Proof: 1.) If χψ ≥ 0, which is equivalent to γ ≥ (∆ )2σ2

2µ2 , then the existence of a b > 0 with

F ′′b (b) = 0 follows like in the proof of Lemma 3.6.

2.) Assume now χψ < 0 and χφ > 0, i.e. (∆ )2σ2

2µ2 < γ < (∆ )2σ2

2µ2 .

• From the proof of Lemma 3.6 we know already that in case F ′′b (b) = 0 it should hold b ∈ (0, χφ)
and

Cs2(b)ψ′γ(b) =
−φ′′γ(b)/φ′γ(b)

ψ′′γ(b)/ψ′γ(b)− φ′′γ(b)/φ′γ(b)
.

The proof of Lemma 3.6 yields us the existence and uniqueness of a b > 0 with F ′′b (b) = 0 if
h(γ, µ) < 0, where

h(γ, µ) := (A−B)Cs2(0)ψ′γ(0)
(
q5 −

ψ′′γ(0)

ψ′γ(0)

)
+
(
B − λ1

λ1 + δ1

)
q5 , (17)

see Lemma 3.6, (11).

• The condition h(γ, µ) < 0 becomes ξ(γ, µ) > 0, if we rearrange the terms like in the proof of
Lemma 3.6. Thus, we are searching for the pairs (γ, µ) yielding ξ(γ, µ) > 0.

• The function ξ(γ, µ) is strictly decreasing in γ, approaching −∞ if γ ↗ (∆ )2σ2

2µ2 and ∞ if

γ ↘ (∆ )2σ2

2µ2 . This follows because it holds that

ψ′′γ(0)

ψ′γ(0)
= q1 + q2 − q1q2/u1 =

−µ+ ∆ /u1

σ2/2
,

φ′′γ(0)

φ′γ(0)
= q3 + q4 − q3q4/u3 =

−µ+ ∆ /u3

σ2/2
, (18)

and u1, u3 are increasing in γ.

• The behaviour of ξ(γ, µ) in the variable µ is not easy to obtain. Therefore, we estimate the
derivative of ξ with respect to µ by the function ξ itself.
Note first that d

dµq5 = q5/
√
µ2 + 2σ2(λ1 + δ1) and d

dµu1 = −u1/
√
µ2 + 2σ2(∆ + γ). A similar

result can be obtained for u3, if one substitutes ∆ by ∆ .

Second, it holds that ∆ < λ1+δ1 < ∆ and −µ+ ∆
u1
> 0, −µ+ ∆

u3
< 0 for γ ∈

( (∆ )2σ2

2µ2 , (∆ )2σ2

2µ2

)
.

This gives by using (18)

d

dµ

(ψ′′γ(0)

ψ′γ(0)

)
=
−
√
µ2 + 2σ2(∆ + γ) + ∆ /u1√
µ2 + 2σ2(∆ + γ) · σ2/2

<
1√

µ2 + 2σ2(λ1 + δ1)
·
ψ′′γ(0)

ψ′γ(0)
.

A similar result can be obtained for
φ′′γ(0)

φ′γ(0) .

• Assembling the above results yields then the following estimation

d

dµ
ξ(γ, µ) < − ξ(γ, µ)√

µ2 + 2σ2(λ1 + δ1)
.

Thus, if ξ(γ̂, µ̂) ≥ 0 then it holds that d
dµξ(γ̂, µ̂) < 0. In other words, if ξ(γ̂, µ̂) = 0 for some

pair (γ̂, µ̂) then it holds that ξ(γ̂, µ) < 0 for all µ > µ̂.

By the implicit function theorem, we can find a unique strictly decreasing γ̄(µ) ∈
( (∆ )2σ2

2µ2 , (∆ )2σ2

2µ2

)
leading to ξ(γ̄(µ), µ) = 0 = h(γ̄(µ), µ), h(γ, µ) < 0 for all γ > γ̄(µ) and h(γ, µ) > 0 for all
(∆ )2σ2

2µ2 < γ < γ̄(µ). In particular, it holds lim
µ→0

γ̄(µ) =∞ and lim
µ→∞

γ̄(µ)→ 0. �
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Corollary 4.8
If γ > γ̄(µ), with γ̄(µ) given in Lemma 4.7, then there exists a unique b∗ ∈ (χψ ∨ 0, χφ) such
that the return function V(∞,b∗) = (G∞, Fb∗), corresponding to the barrier strategy with a
barrier pair (∞, b∗) fulfils: Fb∗ , G∞ ∈ C2(R+) and solves the HJB equation (12).

Proof: The proof follows closely the proof of Lemma 3.7. �

4.1.2 Medium expected delay γ ∈ (γ(µ), γ̄(µ)]

In case the expected delay is relatively long, one would expect the optimal barriers to change.
If γ lies below the critical boundary γ̄(µ), a barrier b > 0 is not optimal anymore. It seems
likely that the expected ruin delay is now so long that it becomes optimal to payout the entire
positive surplus as dividends during the positive preference rate periods. However, the delay
may not be long enough to induce dividend payments during the negative preference phases.
The trade off between maximising dividends and avoiding ruin by accumulating more surplus
at a rate µ is reflected in the boundary γ(µ), to be determined in this section. We will see that
the existence of the aforementioned boundary γ(µ) depends on the negative preference rate δ1.
If |δ1| is big enough it would be always optimal to wait during the negative preference phases
in order to benefit from the accumulated negative rate at the switch time to the positive rate
regime.
We start by considering the barrier strategy with the barrier pair (∞, 0), i.e. during the positive
preference phases the entire positive surplus is paid as dividends, and no dividend payments
occur during the negative preference intervals, and investigate when this strategy is optimal.
Note that the return function V(∞,0) = (G∞, F0, g∞, f0) fulfils, compare Lemma 3.6:

F0(x) = x+ cm1 + cm3 , G∞(x) = Cm5 eq5x +
λ1

λ1 + δ1

(
x+ cm1 + cm3 +

µ

λ1 + δ1

)
,

f0(x) = cm1 eu1x + cm3 eu3x, g∞(x) = Acm1 eu1x +Bcm3 eu3x.

Using C1-fit at x = 0 yields

cm1 u1 =

(
B − λ1

λ1+δ1

)(
1
q5
− 1

u3

)
+ λ1µ

(λ1+δ1)2(
B − λ1

λ1+δ1

)(
1
q5
− 1

u3

)
−
(
A− λ1

λ1+δ1

)(
1
q5
− 1

u1

) , cm3 =
1− cm1 u1

u3
,

Cm5 =
(A−B)

q5
cm1 u1 +

B − λ1
λ1+δ1

q5
.

(19)

Remark 4.9
1.) For all γ > γ̄(µ), due to the C2-fit at the optimal barrier b∗ > 0 it holds for C2(b) defined

in (15), see the proof of Lemma 3.6: C2(b)ψ′γ(b) =
−φ′′γ(b)/φ′γ(b)

ψ′′γ (b)/ψ′γ(b)−φ′′γ(b)/φ′γ(b) .

We know from Lemma 4.7 that for all γ ≤ γ̄(µ) it holds ξ(γ, µ) ≥ 0, with ξ defined in (16).
And it is a straightforward calculation to show that ξ(γ, µ) ≥ 0 is equivalent to C2(0)ψ′γ(0) ≥

−φ′′γ(0)/φ′γ(0)

ψ′′γ (0)/ψ′γ(0)−φ′′γ(0)/φ′γ(0) .

2.) For Cs2(b) and cs1(b) defined in (15) it holds, using ψ′γ(0) = u1
q1−q2
u1−q2 , (18) and B − λ1

λ1+δ1
=
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B∆
u3

and the corresponding relation for A:

cs1(0)u1 = ψ′γ(0)Cs2(0) =
−B

(φ′′γ(0)

φ′γ(0) − q5

)
− λ1

λ1+δ1
q5

−B
(φ′′γ(0)

φ′γ(0) − q5

)
+A

(ψ′′γ (0)

ψ′γ(0) − q5

) = cm1 u1 > 0 .

3.) For Cm5 it holds then that Cm5 = Cs5(0). Furthermore, for γ = γ̄(µ) it holds Cs2(0)ψ′γ(0) ≥ 0
implying

Cm5 q5 +
λ1

λ1 + δ1
= Cs2(0)ψ′γ(0)(A−B) +B ≤ B <

λ2 + δ2

λ2
.

This means that the cases of short and medium delay “fit together” at γ̄(µ), which is the
largest γ corresponding to a zero barrier. �

In order to investigate when the barrier strategy with the barrier (∞, 0) is optimal, we need
to insert the obtained the return function into the HJB equation (12).

Lemma 4.10
There exists a unique δ∗1 < 0 such that for δ1 ≤ δ∗1 the pair (G∞, F0) fulfils G∞, F0 ∈ C2(R+)
and solves the HJB equation (12) for all γ < γ̄(µ). If δ1 > δ∗1 then there exist a µ0 > 0 and a
unique strictly decreasing function 0 ≤ γ(µ) < γ̄(µ), µ ∈ [0, µ0] such that if γ ∈ (γ(µ∧µ0), γ̄(µ)]
the pair (G∞, F0) fulfils G∞, F0 ∈ C2(R+) and solves the HJB equation (12) , i.e.
1.) G′∞(x) ≥ 1 for all x ≥ 0,
2.) µ− (λ2 + δ2)F0(x) + λ2G∞(x) ≤ 0 for all x ≥ 0.

Proof: 1.) • Note that G′′∞(x) = Cm5 q
2
5eq5x. Thus, if Cm5 q5 ≥ 0 (i.e. (A−B)cm1 u1+B− λ1

λ1+δ1
≥

0) then G′∞ is decreasing with G′∞(x) ≥ lim
y→∞

G′∞(y) = λ1
λ1+δ1

> 1.

• If Cm5 q5 < 0 (i.e. (A−B)cm1 u1 +B− λ1
λ1+δ1

< 0) then G′∞ is increasing with G′∞(x) > G′∞(0).

We need to find the values of γ such that G′∞(0) ≥ 1. Note that G′∞(x) = Cm5 q5eq5x+ λ1
λ1+δ1

≥ 1

for all x ≥ 0 holds true if Cm5 q5 + λ1
λ1+δ1

≥ 1. Hence, using the definition of Cm5 in (19), the
crucial condition becomes (A−B)cm1 u1 +B − 1 ≥ 0. Having in mind Definition (19), Remark

4.9 and noting that q5 −
ψ′′γ (0)

ψ′γ(0) = 1
σ2/2

(
λ1+δ1
q5
− ∆

u1

)
< 0 the condition for G′∞(0) ≥ 1 becomes

0 ≥ h(γ, µ)−
(
B − λ1

λ1 + δ1

)
q5 + (B − 1)

(
q5 −

ψ′′γ(0)

ψ′γ(0)

)
,

where h is given in (17). Because λ1
λ1+δ1

> 1 and ψ′′γ(0) > 0 as χψ < 0, we have

−
(
B − λ1

λ1 + δ1

)
q5 + (B − 1)

(
q5 −

ψ′′γ(0)

ψ′γ(0)

)
< −(B − 1)

ψ′′γ(0)

ψ′γ(0)
< 0 ,

meaning that for all γ ≥ γ̄(µ) it holds h(γ, µ) −
(
B − λ1

λ1+δ1

)
q5 + (B − 1)

(
q5 −

ψ′′γ (0)

ψ′γ(0)

)
< 0.

Define now

η(γ, µ) :=
(A− 1)

(
B − λ1

λ1+δ1

)(
1
q5
− 1

u3

)
− (B − 1)

(
A− λ1

λ1+δ1

)(
1
q5
− 1

u1

)
A−B

+
λ1µ

(λ1 + δ1)2
, (20)
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where the dependence on γ and µ is hidden in u1, u3 and q5. Since the denominator of cm1 u1

is negative, (A−B)cm1 u1 +B − 1 ≥ 0 is equivalent to η(γ, µ) ≥ 0.

• There exists a unique value δ∗1 , such that η(0, 0) = 0. For all δ > δ∗1 , there is a unique strictly
decreasing function γ(µ) defined on [0, µ0], µ0 > 0, γ(µ0) = 0 and γ(0) <∞ such that

η(γ, µ) =

{
< 0 : γ < γ(µ) and µ ∈ [0, µ0]

≥ 0 : otherwise.

Since the proof of these facts is just a technical calculation of derivatives, we postpone it to
the appendix.
We can conclude that G′∞(x) ≥ 1 holds true for all x ≥ 0 if γ̄(µ) ≥ γ ≥ γ(µ ∧ µ0).

2.) It remains to show µ− (λ2 + δ2)F0(x) + λ2G∞(x) ≤ 0 for all x ≥ 0.

Due to C1-fit at zero, one has µ− (λ2 + δ2)F0(0) + λ2G∞(0) = −σ2

2 f
′′
0 (0) + γf0(0). Further,

−σ
2

2
f ′′0 (0) + γf0(0) = cm1 u1

(
− σ2

2
u1 +

γ

u1
+
σ2

2
u3 −

γ

u3

)
− σ2

2
u3 +

γ

u3

= cm1 u1

(
µ− ∆

u1
− µ+

∆

u3

)
+ µ− ∆

u3

= −σ
2

2
Cs2(0)ψ′γ(0)

(
ψ′′γ(0)

ψ′γ(0)
−
φ′′γ(0)

φ′γ(0)

)
− σ2

2

φ′′γ(0)

φ′γ(0)
. (21)

Because
ψ′′γ (0)

ψ′γ(0) −
φ′′γ(0)

φ′γ(0) > 0, see Lemma 3.4, we can conclude using Remark 4.9 1.) that for all

γ < γ̄(µ) the expression in (21) is negative. This means in particular, µ − (λ2 + δ2)F0(0) +
λ2G∞(0) < 0 for all γ < γ̄(µ).

If Cm5 ≥ 0 then G′′∞(x) = λ2C
m
5 q

2
5eq5x ≥ 0, i.e. d2

dx2

(
µ − (λ2 + δ2)F0(x) + λ2G∞(x)

)
≥ 0.

Assumption (4) implies for the first derivative at ∞

lim
x→∞

(
− (λ2 + δ2) + λ2G

′
∞(x)

)
= −(λ2 + δ2) + λ2

λ1

λ1 + δ1
=
λ2 + δ2

λ1 + δ1

(
− δ1 −

λ1δ2

λ2 + δ2

)
< 0 ,

meaning that −(λ2 + δ2) + λ2G
′
∞(x) < 0 for all x ≥ 0. Thus, µ− (λ2 + δ2)F0(x) + λ2G∞(x) is

decreasing in x, negative at zero, and consequently negative for all x ≥ 0.

If Cm5 < 0 then G′′∞(x) < 0, meaning that the first derivative of µ− (λ2 + δ2)F0(x) + λ2G∞(x)
is decreasing in x.
Due to Remark 4.9, it holds G′∞(0) < λ2+δ2

λ2
, leading to −(λ2 + δ2) + λ2G

′
∞(0) < 0 and

consequently to −(λ2 + δ2) +λ2G
′
∞(x) < 0. Therefore, the biggest and still negative (see (21))

value of µ− (λ2 + δ2)F0(x) + λ2G∞(x) is attained at x = 0. �

4.1.3 Long expected delay γ ∈ (0, γ(µ)]

In this section, we assume δ1 > δ∗1 and let the parameter γ be very small, i.e. the expected
delay is almost infinite. Here, we consider band strategies with bands {(−∞, 0], (β,∞)} for
some β > 0. It means, the entire positive surplus is paid as dividends in both phases. However
during the negative preference regime no dividends are paid if the surplus lies in (β,∞). The
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idea behind such a strategy is the following. Since the expected delay is long one would expect,
similar to the case γ ∈ (γ(µ), γ̄(µ)], that the entire positive surplus is paid as dividends during
the positive preference regime. During the negative preference periods, since we assume that
the surplus rate fulfils µ < µ0, i.e. is relatively low, it may be more optimal to pay the entire
surplus as dividends if the initial value is so small that the process ruins easily. On the other
hand, if the initial surplus is big the process may stay above the barrier until entering the
positive preference regime and be entirely paid as dividends. Here, the accumulated negative
preference increases the expected discounted dividends. Of course, the band parameter β will
depend on γ and µ. The return function V(β,0) = (Gβ, F0, gβ, f0) corresponding to a band
strategy with a parameter β is:

F0(x) = x+ cl1 + cl3, Gβ(x) =

{
C l5eq5x + λ1

λ1+δ1

(
x+ cl1 + cl3 + µ

λ1+δ1

)
: x > β

x+Acl1 +Bcl3 : x ≤ β
,

f0(x) = cl1eu1x + cl3eu3x, gβ(x) = Acl1eu1x +Bcl3eu3x

compare Lemma 3.6. Using C1-fit at x = 0 and at x = β yields

cl1 =
B − 1

(B −A)u1
> 0 , cl3 =

1−A
(B −A)u3

> 0 , C l5 =
δ1

(λ1 + δ1)q5eq5β
> 0

and the barrier β is given in dependence of the function η(γ, µ) defined in (20):

β =
1

δ1

(
λ1f0(0)− (λ1 + δ1)gβ(0) +

δ1

q5
+

λ1µ

λ1 + δ1

)
=

(λ1 + δ1)2

δ1
η(γ, µ) . (22)

Note that β = 0 if γ = γ(µ) and β > 0 for γ < γ(µ) because δ1 < 0.

Lemma 4.11
The pair (Gβ, F0) solves the HJB equation (12) if
1.) G′β(x) ≥ 1 for all x ≥ β.
2.) µ− (λ1 + δ1)Gβ(x) + λ1F0(x) ≤ 0 for x ∈ [0, β].
3.) µ− (λ2 + δ2)F0(x) + λ2Gβ(x) ≤ 0 for x ≥ 0.
These conditions are fulfilled if δ1 > δ̃1 and γ ∈ (0, γ(µ∧µ0)]. In this case, (Gβ, F0) ∈ C2(R+\β).

Proof: 1.) Because C l5 > 0 and G′β(β) = 1, we can conclude G′β(x) ≥ 1 for x ≥ β.
2.) Since δ1 < 0, the biggest value of µ− (λ1 + δ1)Gβ(x) + λ1F0(x) on [0, β] is attained at β.
The function Gβ fulfils G′′β(β) = q2

5C
l
5eq5β > 0 and for x ≤ β

0 > −σ
2

2
G′′β(β) = µ− (λ1 + δ1)Gβ(β) + λ1F0(β) ≥ µ− (λ1 + δ1)Gβ(x) + λ1F0(x) .

3.) Since δ2 > 0, the biggest value of µ− (λ2 + δ2)F0(x) + λ2Gβ(x) on [0, β] is attained at 0.
Therefore, using the C1-fit at zero:

µ− (λ2 + δ2)F0(0) + λ2Gβ(0) = −cl1u1

(σ2u1

2
− γ

u1

)
− cl3u3

(σ2u3

2
− γ

u3

)
= − B − 1

(B −A)

(
− µ+

∆

u1

)
+

A− 1

(B −A)

(
− µ+

∆

u3

)
Because B−1

B−A ,
1−A
B−A > 0 and u1, u3 are increasing in γ, we can conclude that the above expres-

sion is increasing in γ, attaining its maximum at γ = γ(µ). Note that for γ = γ(µ) it holds

cm1 u1 = B−1
B−A = cl1u1 by definition of γ(µ). Lemma 4.10, (21) yields the desired result. �
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Figure 7: Lhs: The value functions G and F and the barrier (dotted line). Rhs: The derivatives
G′(x) and F ′(x) and the barrier (dotted line).

4.1.4 Verification Theorem and Numerical Example

We summarise our findings with the following

Theorem 4.12 (Verification Theorem)
In the case of Parisian ruin, the optimal strategy depends on the parameter γ of the exponential
clock:
1.) If γ ∈ (γ̄(µ),∞), a barrier strategy with the barrier pair (∞, b∗) is an optimal strategy and
its return function V(∞,b∗) is the value function V in (2).
2.) If δ1 ≤ δ∗1 and γ ∈ (0, γ̄(µ)) or δ1 > δ∗1 and γ ∈ (γ(µ∧µ0), γ̄(µ)), a barrier strategy with the
barrier pair (∞, 0) is an optimal strategy and its return function V(∞,0) is the value function
V in (2).
3.) If δ1 > δ∗1 and γ ∈ (0, γ(µ ∧ µ0)), a band strategy with the parameters (β, 0) is an optimal
strategy and its return function V(β,0) is the value function V in (2).

Proof: See Appendix. �

Example 4.13
Consider the parameters from Example 3.15: δ1 = −0.01, δ2 = 0.04, λ1 = 0.5, λ2 = 0.2,
σ = 0.3. The separating curve γ(µ) is given in Figure 6, dashed line. The pairs (γ, µ) lying
above the curve indicate that it is not optimal to pay dividends if the interest rate is negative.
The pairs below the curve imply the existence of a band [0, β] such that during the negative
preference phases it is optimal to pay out the whole positive surplus as dividends if the surplus
lies in [0, β] and to wait until the phase with a positive rate if the surplus is outside [0, β]. The
separating curve γ(µ) is strictly decreasing in µ, fulfils γ(0.232581) = 0 and γ(0) = 0.09494.

Thus, choosing µ = 0.02 and γ = 0.01 leads to β = 2.3145. The functions G, F , f , g, their
derivatives and the parameter β (dotted line) are illustrated in Figure 7. A simulation of the
ex-dividend process is displayed in Figure 5. �
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5 Conclusion

In this paper, we have considered optimal dividend strategies in a regime switching model with
two states, one of which allows a negative preference rate or technical discounting.
We have shown that a barrier strategy is optimal in case ruin is defined as the first time the
ex-dividend surplus is negative. In the positive regime, b∗ marks the critical value below which
dividend payments would be to risky and might cause premature ruin. Since the value of
dividends is perceived as increasing with time in the negative regime, the insurer waits until
the end of the current phase to pay out a lump sum. We have shown that this barrier is
always strictly positive. This is not surprising because paying out the full surplus would lead
to immediate ruin, and, by our assumption µ > 0, the insurer expects the future business to
be profitable.
In addition, we were able to prove a monotone relation between the switching intensities and
the dividend barriers using differential equations connected to the problem. As it turns out,
the more time (on average) is spent in the negative regime, the larger the barrier. One expla-
nation for this may be that due to long and frequent “collecting”-phases the value of future
dividends is perceived as higher than the value of immediate payments.
The second part of our analysis has dealt with the case in which the observation period ends
when an excursion of the ex-dividend process to the negative half plane outlasts an indepen-
dent, exp(γ)-distributed time (i.e. Parisian ruin). In line with the economic intuition, one of
the key assumptions is that no dividend payments are allowed if the surplus is negative. We
have shown that optimal dividend strategies are of one of three different types, depending on
the average surplus and the expected time limit (expressed through the pair (µ, γ)). We have
proven existence of a curve (µ, γ(µ)) which is asymptotic to the µ- and the γ-axis, such that a
barrier strategy with a strictly positive barrier is optimal for all pairs (µ, γ) above the curve.
This is the case which is closest to the case of regular ruin, which is not surprising: If γ is large,
this means that the “reprieve” for recovery after the surplus becomes negative is very short.
Moreover, the larger the general drift of the process, the shorter the duration of a negative
excursion will be. This also explains why the critical γ(µ) is decreasing with growing drift µ.
This curve exists for all parameter sets.
A remarkable result of our analysis of Parisian ruin is that a barrier strategy with barrier b∗ = 0
is actually possible. In fact, all points lying on the critical curve correspond to a zero barrier.
This means that the insurer retains and collects all payments during the negative preference
regime and then pays out all earnings at the first regime switch as a lump sum.
Now the optimal behaviour for pairs (µ, γ) which lie below the curve, i.e. there is a relatively
long time to recover, depends on the preference rate. If the weight of the negative preference
is rather large, meaning that δ1 ≤ δ∗1 , the zero barrier remains optimal for all pairs (µ, γ)
below the critical curve. A remarkable and somewhat surprising result is that if the negative
preference rate only has a mild impact (i.e. δ1 > δ∗1), the optimal strategy can take a new
shape. We have shown that in this case, there exists another curve (µ, γ(µ)) with γ(µ) < γ(µ),
such that in between the curves the zero barrier is optimal. Below the curve (µ, γ(µ)), while
the zero barrier remains optimal in the positive regime, dividends are paid out according to
a band strategy in the negative regime. Under this strategy, if the process starts above the
band parameter β in the negative regime, the insurer waits until either β is reached or the first
switch occurs. From this time on, dividends are paid out at a zero barrier in both regimes.
Likely, this type of strategies arises because of two influential factors. The first factor is that

25



with a low value of γ, the ruin event occurs very late, such that the insurer will aim to pay
out as much dividends as possible. A natural extension to this strategy would be to pay out
dividends in the positive preference regime, even if the surplus is negative. However, this be-
haviour is not allowed. Therefore, the second factor is the extent of the negative preference
in the corresponding regime. If the positive impact of waiting to pay out dividends is not too
large, the insurer resorts to payments in the negative regime.
As the techniques we have used are predominantly based on the relation of the corresponding
differential equations, an interesting and promising topic for future research would be to extend
these results to more general models.
An interesting and important extension to the model would be to include jumps in the sur-
plus, for example, by considering a compound Poisson process. In this case, the HJB-equation
becomes a system of two integro-differential equations. For instance, Lu and Li, [22, Section
6], characterise the return function of a constant barrier dividend strategy for a classical risk
model in a regime switching environment by such a system of equations. The case of expo-
nentially distributed claim sizes (in a classical risk model) may be a good starting point for
further investigations of the optimisation problem incorporating a negative interest rate phase.
However, due to the expected complexity of the HJB equation in the compound Poisson set-
ting, the results and proof techniques used in this paper (which heavily rely on the differential
equations) cannot be easily transferred. In fact, the assumption of exponential claims, would
produce a system of differential equations of 3rd order. As stated in the introduction, an
extension of these methods to the case of deterministic Parisian delay is not trivial. Here,
a consideration of Erlangian time horizons (which can be used to approximate deterministic
times) as in [19] might be a starting point to re-establish the relation to the deterministic case.
Still, it should be noted that under this assumption the memoryless property is lost. This
means, the related differential equations change substantially in this case, as they additionally
depend on the time parameter.

6 Appendix

Proof of Lemma 3.4:
1.) We know that ψ(x) = eq1x − eq2x and φ(x) = eq3x − eq4x.
It is clear that ψ′(x), φ′(x), ψ′′′(x), φ′′′(x) > 0 for all x > 0 and ψ′′(0), φ′′(0) < 0. Thus, if ψ′′

has a zero, x̂, this zero is unique. The existence of x̂ follows from lim
x→∞

ψ′′(x) =∞.

In the same way, we get the existence of a unique zero of φ′′. It is straightforward to explicitly
calculate xψ and xφ and to show 0 < xψ < xφ. In step 2.) below, we give an alternative
proof of 0 < xψ < xφ based on the corresponding differential equations. The advantage of this
method is that it does not require any technical calculations.

2.) Now, divide the derived differential equations for ψ′ and φ′ by ψ′ and φ′ respectively:

σ2

2

ψ′′′(x)

ψ′(x)
+ µ

ψ′′(x)

ψ′(x)
= ∆ ,

σ2

2

φ′′′(x)

φ′(x)
+ µ

φ′′(x)

φ′(x)
= ∆ .

Let ψ̃(x) := ψ′′(x)
ψ′(x) and φ̃(x) := φ′′(x)

φ′(x) . Then, the above differential equations become

σ2

2

(
ψ̃′(x) + ψ̃(x)2

)
+ µψ̃(x) = ∆ ,

σ2

2

(
φ̃′(x) + φ̃(x)2

)
+ µφ̃(x) = ∆
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with the boundary condition ψ̃(0) = −2µ
σ2 = φ̃(0). Comparison theorem, see Walter [30, p.

138], yields then ψ̃(x) > φ̃(x) for all x > 0. In particular, we can conclude that the zero of ψ′′,
denoted by xψ, is positive and strictly smaller than the zero of φ′′, denoted by xφ.

3.) It is easy to see that q2 < ψ̃(x) < q1 and q4 < φ̃(x) < q3 for all x ≥ 0. Since the differential
equations for φ̃ and ψ̃ can be written as

ψ̃′(x) +
(
ψ̃(x)− q1

)(
ψ̃(x)− q2

)
= 0 , φ̃′(x) +

(
φ̃(x)− q3

)(
φ̃(x)− q4

)
= 0

we can conclude that ψ̃′, φ̃′ > 0.

4.) A simple calculation shows that ∆ is increasing in λ2. Comparison theorem Walter [30,
p. 138] yields then that ψ′λ2

< ψ′
λ̃2

when ψλ2 and ψλ̃2
correspond to the parameters λ2 and λ̃2

respectively and λ2 < λ̃2.
Note that (ψ̃λ2(x))

0≤λ2<− δ2(λ1+δ1)
δ1

is a monotonically increasing sequence of continuous func-

tions that converges pointwise on every compact set to the continuous function ψ̃− δ2(λ1+δ1)
δ1

(x).

Dini’s theorem yields the uniform convergence.
In a similar way, one can show that (φ̃λ2(x))

0≤λ2<− δ2(λ1+δ1)
δ1

converges to −2µ
σ2 uniformly on

compacts. �

Proof of Lemma 3.6:
1.) It is straight forward to check that the functions Fb and G∞ defined in (9) solve the system
of differential equations (8) on [0, b]. The coefficients given in (10) result as the unique solutions
to the equation system F ′b(b) = 1, G′∞(b−) = C5(b)q5eq5b+ λ1

λ1+δ1
and G′′∞(b−) = C5(b)q2

5eq5b.
2.) We show now the existence of a unique b∗ such that the corresponding return function
V(∞,b∗) = (G,F ) fulfils G,F ∈ C2(R+). Solving the equations F ′(b−) = 1, F ′′(b−) = 0,
G′(b−) = G′(b+) and G′′(b−) = G′′(b+) yields

C2(b)ψ′(b) =
−φ′′(b)
φ′(b)

ψ′′(b)
ψ′(b) −

φ′′(b)
φ′(b)

and (A−B)C2(b)ψ′(b)

(
q5 −

ψ′′(b)

ψ′(b)

)
+
(
B − λ1

λ1 + δ1

)
q5 = 0 .

(23)

Note that due to Lemma (3.4) it holds ψ′′(b)
ψ′(b) −

φ′′(b)
φ′(b) > 0 for all b > 0. Therefore, defining

α(b) := −q5

(
A− λ1

λ1 + δ1

)φ′′(b)
φ′(b)

+ q5

(
B − λ1

λ1 + δ1

)ψ′′(b)
ψ′(b)

+ (A−B)
φ′′(b)

φ′(b)

ψ′′(b)

ψ′(b)

we have α(b) = 0 is equivalent to (23). Since ψ′, φ′ > 0, xψ < xφ and it holds α(xψ) > 0,

α(xφ) < 0, we can consider ψ′(b)φ′(b)
ψ′′(b)φ′′(b)α(b) on R+\{xψ, xφ}. Due to Lemma 3.4 the functions

ψ′(b)
ψ′′(b) and φ′(b)

φ′′(b) are strictly decreasing, so that

α̃(b) :=
ψ′(b)φ′(b)

ψ′′(b)φ′′(b)
α(b) = −q5

(
A− λ1

λ1 + δ1

) ψ′(b)
ψ′′(b)

+ q5

(
B − λ1

λ1 + δ1

) φ′(b)
φ′′(b)

+ (A−B)

is strictly increasing in b on (0, xψ), (xψ, xφ) and (xφ,∞). Because for all b > xφ it holds
ψ′′, φ′′ > 0 one has α̃(b) < 0 on (xφ,∞), i.e. no zeros. For b = 0 we have, see the proof of

Lemma 3.4 2.): ψ′(0)
ψ′′(0) = φ′(0)

φ′′(0) = −σ2

2µ and consequently using A−B < 0 and q5 < 0

α̃(0) = q5

(
A− λ1

λ1 + δ1

)σ2

2µ
− q5

(
B − λ1

λ1 + δ1

)σ2

2µ
+ (A−B) =

(A−B)(λ1 + δ1)

µq5
> 0 .
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Therefore, no zeros can exist in the interval (0, xψ). On the other hand, because lim
b↘xψ

α̃(b) =

−∞ and lim
b↗xφ

α̃(b) = ∞, we can conclude that there is a unique b∗ ∈ (xψ, xφ) fulfilling (23).

It is a direct consequence of b∗ ∈ (xψ, xφ) that 1 > ψ′(b∗)C2(b∗) > 0 with C2(b) given in (23).
The coefficients C5(b∗) and C4(b∗) given in (10) yield φ′(b∗)C2(b∗) = 1− ψ′(b∗)C2(b∗) > 0 and

C5(b∗) =
(A−B)ψ′(b∗)C2(b∗) +B − λ1

λ1+δ1

q5eq5b∗
=

(A−B)ψ′′(b∗)C2(b∗) +B − λ1
λ1+δ1

q2
5eq5b∗

< 0 .

3.) It remains to show that for a b > 0 the function V(∞,b) = (G∞, Fb) as given in (9) is the
return function corresponding to a barrier strategy with a barrier pair (∞, b). This is done
by applying a suitable version of Itô’s formula to the function f(x, y, α) = e−xV(∞,b)(y, α)
and the three dimensional process consisting of the discounting, the surplus and the switching
mechanism. This scheme applies to all b. To avoid repetition, we refer to the proof of Theorem
3.8 below, in which we show in detail how to obtain the result for b∗ and V(∞,b∗) = (G,F ). �

Proof of Theorem 3.8 (Verification Theorem):
Let D denote an arbitrary admissible dividend strategy and XD the ex-dividend process under
D and by τ the ruin time of XD. Let further b∗ be such Ṽ = (G,F ) with G = G∞, F = Fb∗

given in (9) solves the HJB equation. Let Dc be the continuous part of D and ∆D the pure
jump part. For the sake of clarity of presentation we let αt = 1I[rt=δ2] + 1, i.e. αt = 1 if rt = δ1

and αt = 2 if rt = δ2. Ṽ is twice continuously differentiable. We apply Itô’s formula to the
intervals [Yn−1, Yn] with Yn =

∑n
i=1 Ti (compare Protter [25], pp. 214,216) and get:

e−
∫ t∧τ
0 rνdν Ṽ (XD

t∧τ , αt∧τ ) = Ṽ (XD
0 , α0) +

∫ t∧τ

0
e−

∫ s
0 rνdν σṼ ′(XD

s , αs) dWs +M Ṽ
t∧τ

+

∫ t∧τ

0
e−

∫ s
0 rvdv LṼ (XD

s , αs) ds−
∫ t∧τ

0
e−

∫ s
0 rνdν Ṽ ′(XD

s , αs) dDc
s

+
∑

0≤s≤t∧τ
e−

∫ s
0 rνdν [Ṽ (XD

s− −∆Ds, αs)− Ṽ (XD
s−, αs)]1I[∆Ds>0] , (24)

where M Ṽ is the local martingale associated to the regime switching mechanism. That is,
writing for a Poisson random measure N with intensity dt× λ(dy)

dαt =

∫
R
h(α(t−), z) N(dt,dy) , h(a, z) =

{
1I[0,λ1)(z) , if a = 1 ,

−1I[λ1,λ1+λ2)(z) , if a = 2 ,

and compensated Poisson random measure Ñ(dt,dy) := N(dt,dy) − dt × λ(dy), the process
Mf is given by

Mf
t =

∫ t

0

∫
R

[f(XD
s−, αs− + h(αs−, z))− f(XD

s−, αs−)] Ñ(ds, dz) .

Since Ṽ solves the HJB-equation, either it holds LṼ (XD
s , αs) ≤ 0 and Ṽ ′(XD

s , αs) = 1, or
L(Ṽ )(XD

s , αs) = 0 and Ṽ ′(XD
s , αs) ≥ 1. Because the derivative of Ṽ is at least equal to one,
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additionally we have Ṽ (XD
s− −∆Ds, αs)− Ṽ (XD

s−, αs) ≤ −∆Ds. Thus,∫ t∧τ

0
e−

∫ s
0 rvdv LṼ (XD

s , αs) ds−
∫ t∧τ

0
e−

∫ s
0 rνdν Ṽ ′(XD

s , αs) dDc
s

+
∑

0≤s≤t∧τ
e−

∫ s
0 rνdν [Ṽ (XD

s− −∆Ds, αs)− Ṽ (XD
s−, αs)]1I∆Ds>0

≤ 0−
∫ t∧τ

0
e−

∫ s
0 rνdν dDc

s −
∑

0≤s≤t∧τ
e−

∫ s
0 rνdν∆Ds1I∆Ds>0 = −

∫ t∧τ

0
e−

∫ s
0 rνdν dDs .

Now rearranging the terms of (24), we conclude

Ṽ (XD
0 , α0) +

∫ t∧τ

0
e−

∫ s
0 rνdν σṼ ′(XD

s , αs) dWs +M Ṽ
t∧τ

≥ e−
∫ t∧τ
0 rνdν Ṽ (XD

t∧τ , αt∧τ ) +

∫ t∧τ

0
e−

∫ s
0 rνdν dDs ≥ 0 ,

so the local martingale on the left hand side is bounded from below and is therefore a super-
martingale. Taking expectations we find

Ṽ (x, i) ≥ Ex,i
(
Ṽ (XD

0 , α0) +

∫ t∧τ

0
e−

∫ s
0 rνdν σṼ ′(XD

s , αs) dWs +M Ṽ
t

)
≥ Ex,i

(
e−

∫ t∧τ
0 rνdν Ṽ (XD

t∧τ , αt∧τ )
)

+ Ex,i
(∫ t∧τ

0
e−

∫ s
0 rνdν dDs

)
.

Now if we let t → ∞ the second term on the right hand side converges to the return of the
dividend strategy D by monotone convergence. If the first term goes to zero, we can conclude
Ṽ (x, i) ≥ V (x, i). Since XD

t ≤ Xt ≤ eaXt
a for a defined as in Proposition 3.1, and since

additionally, Ṽ is linearly bounded, we consider

Ex,i
(

e−
∫ t∧τ
0 rνdν Ṽ (XD

t∧τ , αt∧τ )
)

= 0 + Ex,i
(

1I{τ>t}e
−

∫ t
0 rνdν Ṽ (XD

t , αt)
)

≤ c1Ex,i
(

1I{τ>t}e
−

∫ t
0 rνdν XD

t

)
+ c2Ex,i

(
1I{τ>t}e

−
∫ t
0 rνdν

)
≤ c1

a
Ex,i

(
1I{τ>t}e

aXt−
∫ t
0 rνdν

)
+ c2Ex,i

(
e−

∫ t
0 rνdν

)
≤ c1eax

a

(δi −∆ )e−
(

∆ −∆
2

)
t − (δi −∆ )e−

∆
2
t

∆ −∆
+ c2

(δi −∆ )e−∆ t − (δi −∆ )e−∆ t

∆ −∆
.

for positive constants c1, c2 which are determined by the function Ṽ . The expressions on the
right hand side were obtained in Lemma 2.1 and the proof of Proposition 3.1. Both converge
to zero for i ∈ {1, 2} as t → ∞. Since the left hand side is non-negative for all t ≥ 0, we
conclude that the expectation converges to zero.
Now we show that the function Ṽ is the value of the strategy D∗ = (∞, b∗). We shortly write
X∗ for the ex-dividend process XD∗ . In the same way as before we obtain

Ṽ (X∗0 , α0) +

∫ t∧τ

0
e−

∫ s
0 rνdν σṼ ′(X∗s , αs) dWs +M Ṽ

t∧τ

= e−
∫ t∧τ
0 rνdν Ṽ (X∗t∧τ , αt∧τ ) +

∫ t∧τ

0
e−

∫ s
0 rνdν dD∗s , (25)
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because the jumps of the dividend process under strategy D∗ occur exactly at the times
when the preference regime switches from negative to positive. Again using that Ṽ is linearly
bounded, we have:

Ex,i
(

sup
t≤T

e−
∫ t∧τ
0 rνdν Ṽ (X∗t∧τ , αt∧τ )

)
= Ex,i

(
sup
t≤T

e−
∫ t
0 rνdν Ṽ (X∗t∧τ , αt∧τ )1I{t≤τ}

)
≤ c1e−δ1TEx,i

(
sup
t≤T

Xt

)
+ c2e−δ1T <∞ ,

which is finite for all T > 0. Moreover, it follows from the proof of Proposition 3.1, that

Ex,i
(

sup
t≤T

∫ t∧τ

0
e−

∫ s
0 rνdν dD∗s

)
≤ Ex,i

(∫ τ

0
e−

∫ s
0 rνdν dD∗s

)
<∞ .

So, this time, the local martingale in (25) is a martingale. Therefore,

Ṽ (x, i) = Ex,i
(

e−
∫ t∧τ
0 rνdν Ṽ (X∗t∧τ , αt∧τ )

)
+ Ex,i

(∫ t∧τ

0
e−

∫ s
0 rνdν dD∗s

)
for all t ≥ 0. Letting t → ∞ and using the same arguments as above, we conclude Ṽ (x, i) =

Ex,i
(∫ τ

0 e−
∫ s
0 rνdν dD∗s

)
. �

Proof of Lemma 3.10:
• Assume first that it holds G′(0)− F ′(0) < 0. From the differential equations for F and G:

σ2

2
F ′′(x) + µF ′(x)− (λ2 + δ2)F (x) + λ2G(x) = 0,

σ2

2
G′′(x) + µG′(x)− (λ1 + δ1)G(x) + λ1F (x) = 0,

we get using G(0) = F (0) = 0 that G′′(0)−F ′′(0) > 0. Let now x̂ := inf{x > 0 : G′(x)−F ′(x) >
0}. Because G(0) = F (0) = 0 we immediately obtain that G(x) < F (x) on (0, x̂]. Subtracting
the differential equations for G and F at x̂, one has

σ2

2

(
G′′(x̂)− F ′′(x̂)

)
= −δ2F (x̂) + δ1G(x̂) + (λ2 + λ1)

(
G(x̂)− F (x̂)

)
< 0

which means that G′(x̂)− F ′(x̂) cannot become zero, contradicting our assumption.
Assuming G′(0) = F ′(0) would yield G′′(0) = F ′′(0) and G′′′(0)−F ′′′(0) = δ1F

′(0)−δ2F
′(0) <

0, meaning that in an ε-environment of 0 it holds G′′(x) < F ′′(x) and G′(x) < F (x). Hence,
we can use the contradiction argument from above.

• It remains to consider the case when F ′(0) < G′(0) but there is an 0 < x̄ < b∗ with
F ′(x̄) > G′(x̄) and F ′′(x̄) > G′′(x̄). From

0 >
σ2

2

(
G′′(x̄)− F ′′(x̄)

)
= −µ

(
G′(x̄)− F ′(x̄)

)
− δ2F (x̄) + δ1G(x̄) + (λ2 + λ1)

(
G(x̄)− F (x̄)

)
.

we can conclude that −δ2F (x̄)+δ1G(x̄)+(λ2+λ1)
(
G(x̄)−F (x̄)

)
< 0. As long as F ′(x) > G′(x)

the function
(
G(x)−F (x)

)
is decreasing, meaning that −δ2F (x) + δ1G(x) + (λ2 +λ1)

(
G(x)−
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F (x)
)
< 0. Hence, F ′(x) = G′(x) would imply G′′(x) − F ′′(x) < 0, i.e. G′(x) < F ′(x) for all

x ∈ [x̄, b∗] contradicting F ′(b∗) = 1 < G′(b∗) stated in Lemmata 3.5 and 3.6. �

Proof of Proposition 3.12:
We prove the claim by contradiction and assume first b̃∗ ≤ b∗.
1.) Then, it follows from the properties of the value function F̃ ′(b̃∗)−F ′(b̃∗) ≤ 0 and F̃ ′′(b̃∗)−
F ′′(b̃∗) ≥ 0. On the other hand, because F̃ (x) > F (x) and G̃(x) > G(x) for x > 0 (Lemma
3.11), we conclude that F̃ ′(0)−F ′(0) > 0 and G̃′(0)−G′(0) > 0, which implies F̃ ′′(0)−F ′′(0) < 0
and G̃′′(0)−G′′(0) < 0 due to differential equations (8) for F and G.

2.) Let ω := inf{x > 0 : F̃ ′(x)− F ′(x) ≤ 0} and v := sup{x > 0 : G̃′(x)−G′(x) ≤ 0}.
We know already that

G̃′(x)−G′(x) = (A−B)
(
ψ′
λ̃2

(x)− ψ′λ2
(x)
)

+B
(
F̃ ′(x)− F ′(x)

)
.

Since ψ′
λ̃2

(x) − ψ′λ2
(x) > 0 (Lemma 3.4) and B > λ1

λ1+δ1
we can conclude that v < ω, and for

all x with F̃ ′(x)− F ′(x) ≤ 0 it holds

G̃′(x)−G′(x) <
λ1

λ1 + δ1

(
F̃ ′(x)− F ′(x)

)
. (26)

3.) Deriving and subtracting the differential equations for G̃ and G on [0, b∗], yields

σ2

2
{G̃′′′(x)−G′′′(x)}+ µ{G̃′′(x)−G′′(x)} = (λ1 + δ1){G̃′(x)−G′(x)} − λ1{F̃ ′(x)− F ′(x)} .

(27)

For x = v it holds G̃′′(v)−G′′(v) ≤ 0 and (λ1 + δ1){G̃′(v)−G′(v)} − λ1{F̃ ′(v)− F ′(v)} < 0,
meaning that G̃′′ − G′′ stays negative. Therefore, we can conclude using (27) and (26) that
(λ1 + δ1){G̃′(x) − G′(x)} − λ1{F̃ ′(x) − F ′(x)} < 0 for all b∗ ≥ x ≥ v, meaning that G̃′′(x) −
G′′(x) < 0 and consequently G̃′(x) − G′(x) < 0 for all b∗ ≥ x ≥ v. However, due to Lemma
3.5 there is an R ∈ R such that G̃′(b∗) − G′(b∗) = Rq5eq5b

∗
and G̃′′(b∗) − G′′(b∗) = Rq2

5eq5b
∗

leading to a contradiction Rq5eq5b
∗
< 0 and Rq2

5eq5b
∗
< 0, as q5 < 0. �

Proof of Lemma 4.10:
Here, we prove that the function η defined in (20) is decreasing in γ and µ and there is a
unique function γ(µ) such that η(γ(µ), µ) ≡ 0.

1.) Recall that η(γ, µ) =
(A−1)

(
B− λ1

λ1+δ1

)(
1
q5
− 1
u3

)
−(B−1)

(
A− λ1

λ1+δ1

)(
1
q5
− 1
u1

)
A−B + λ1µ

(λ1+δ1)2 . Since

A− λ1

λ1 + δ1
=

A∆

λ1 + δ1
, B − λ1

λ1 + δ1
=

B∆

λ1 + δ1
,

1

q5
=

σ2

2(λ1 + δ1)
q5 +

µ

λ1 + δ1

we can rearrange the terms in η and get

η(γ, µ) = − B − 1

B −A
· A

λ1 + δ1

∆

u1
− 1−A
B −A

· B

λ1 + δ1

∆

u3
+

δ1

(λ1 + δ1)q5
+

λ1µ

(λ1 + δ1)2
.
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Note that the dependence on γ and µ is hidden in u1, u3 and q5. Taking derivatives with
respect to γ and µ yields because ∆ > ∆ , u1 > u3 and A(B−1)

(B−A) < 0:

d

dγ
η(γ, µ) =

A(B−1)
(B−A)

∆
u1(λ1+δ1)

u1

√
µ2 + 2δσ2(∆ + γ)

+

B(1−A)
(B−A)

∆
u3(λ1+δ1)

u3

√
µ2 + 2δσ2(∆ + γ)

>
−η(γ, µ) + σ2

2
δ1q5

(λ1+δ1)2

u3

√
µ2 + 2δσ2(∆ + γ)

.

d

dµ
η(γ, µ) =

A(B−1)
(B−A)

∆
u1(λ1+δ1)√

µ2 + 2δσ2(∆ + γ)
+

B(1−A)
(B−A)

∆
u3(λ1+δ1)√

µ2 + 2δσ2(∆ + γ)
+

σ2

2
δ1q5

(λ1+δ1)2√
µ2 + 2σ2(λ1 + δ1)

>
−η(γ, µ) + σ2

2
δ1q5

(λ1+δ1)2√
µ2 + 2δσ2(∆ + γ)

+

σ2

2
δ1q5

(λ1+δ1)2√
µ2 + 2σ2(λ1 + δ1)

.

Thus, we can immediately conclude that η(γ, µ) is strictly increasing in γ and in µ if η(γ, µ) <
σ2

2
δ1q5

(λ1+δ1)2 . In particular, if η(γ̃, µ̃) = 0 for some (γ̃, µ̃) then d
dγ η(γ̃, µ̃) > 0 and d

dµη(γ̃, µ̃) > 0

meaning that η(γ, µ) > 0 for all (γ, µ) ∈ (γ̃,∞)× (µ̃,∞).

2.) It remains to check when the function η can attain negative values.
Let γ = 0 and µ = 0. Then, u1 = q1 =

√
2∆ /σ2, u3 = q3 =

√
2∆ /σ2, q5 = −

√
2(λ1 + δ1)/σ2,

η(0, 0) =
(1−A)

(
B − λ1

λ1+δ1

)(
1
q5
− 1

q3

)
+ (B − 1)

(
A− λ1

λ1+δ1

)(
1
q5
− 1

q1

)
B −A

=
(B − 1)A∆

(
1
q5
− 1

q3

)
(λ1 + δ1)(B −A)

·
{

(1−A)B

(B − 1)A
+

∆

∆
·

1
q1
− 1

q5
1
q3
− 1

q5

}
.

As B = λ1
λ1+δ1

if δ1 = − λ1δ2
λ1+δ1

and A < 0, it is easy to see that

η(0, 0) =

{
(1−A)(B−1)

B−A
(

1
q1
− 1

q3

)
< 0 : if δ1 = 0,

B−1
B−A ·

(
A− λ1

λ1+δ1

)(
1
q5
− 1

q1

)
> 0 : if δ1 = − λ1δ2

λ1+δ1
.

By the intermediate value theorem, there is at least one δ1 leading to η(0, 0) = 0. In order to
show the uniqueness, we consider the expression in front of the curly brackets, which is positive
as A, q5 < 0, B > 1. Using the definitions of A and B, see Notation 3.3, and considering δ1 as
a variable we can define

(1−A)B

(B − 1)A
= −∆ − δ1

∆ − δ1
,

∆

∆

1
q1
− 1

q5
1
q3
− 1

q5

=
∆ +

√
(λ1 + δ1)∆

∆ +
√

(λ1 + δ1)∆
.

u1(δ1) := − ∆ − δ1

∆ +
√

(λ1 + δ1)∆
u2(δ1) :=

∆ − δ1

∆ +
√

(λ1 + δ1)∆

It is straightforward to get that the function x−δ1
x+
√

(λ1+δ1)x
fulfils

d

dx

(
x− δ1

x+
√

(λ1 + δ1)x

)
=

1

(x+
√

(λ1 + δ1)x)2

{
x+

√
(λ1 + δ1)x− (x− δ1)

(
1 +

√
λ1 + δ1

2
√
x

)}
=

√
λ1 + δ1

(x+
√

(λ1 + δ1)x)2

{1

2

√
x+

δ1√
λ1 + δ1

+
δ1

2
√
x

}
.
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Figure 8: The function (x− δ∗1)/
(
x+

√
(λ1 + δ∗1)x

)
.

Let now f(x, δ1) := 1
2

√
x + δ1√

λ1+δ1
+ δ

2
√
x
. Then, it is clear that f is strictly increasing in x,

fulfilling lim
x→0

f(x, δ1) = −∞ and lim
x→∞

f(x, δ1) =∞.

Also, it is clear that f is strictly increasing in δ1. Thus, there is a unique, strictly decreasing
function v(δ1) such that f(v(δ1), δ1) ≡ 0.

Let δ∗1 := inf{a > 0 : u1(a)−u2(a) < 0}. Note that v(δ∗1) ≥ ∆ (δ∗1) or v(δ∗1) ≤ ∆ (δ∗1) is impos-
sible, as in this way it would hold −u1(δ1) 6= u2(δ∗1), see Figure 8. If v(δ∗1) ∈

(
∆ (δ∗1),∆ (δ∗1)

)
then f(∆ ) > f(∆ ) for all δ1 > δ∗1 as ∆ and ∆ are increasing in δ1 and v(δ1) is decreasing. To
explain it on the example of Figure 8: u2(δ1) will move down the decreasing arm and change at
some point to the increasing arm of the function (x− δ∗1)/

(
x+

√
(λ1 + δ∗1)x

)
, whereas −u1(δ1)

will move up on the increasing arm for increasing values of δ1. The value v(δ1) will move to
the left, so that it will hold either v(δ1) ∈

(
∆ (δ1),∆ (δ1)

)
or v(δ1) ≤ ∆ (δ1) for δ1 > δ∗1 .

And we can conclude that δ∗1 is the unique zero of η(0, 0).
Further, we know that η(γ, 0) is strictly increasing in γ at least until η(γ, 0) attains zero and

lim
γ→∞

η(γ, 0) =
δ1

(λ1 + δ1)q5
> 0 and lim

µ→∞
η(0, µ) = lim

µ→∞

−µδ1

(λ1 + δ1)2
=∞ .

By the intermediate value theorem, there are unique γ0 and µ0 such that η(γ0, 0) = 0 = η(0, µ0).
In particular, due to 1.) we can conclude that η(γ, µ0) > 0 and η(γ0, µ) > 0 for γ > 0, µ > 0.

3.) By the implicit function theorem there is a unique decreasing function γ(µ) ≤ γ0, given as
a dashed line in Figure 6, and defined on the interval [0, µ0], µ0 <∞, such that η(γ(µ), µ) ≡ 0.
All pairs (γ, µ) below or on the dashed curve in Figure 6 yield η(γ, µ) ≤ 0 and consequently
β ≥ 0. �

Proof of Theorem 4.12:
Let Ṽ denote the respective solution to the HJB equation for the cases of short, medium and
long expected delay given in Corollary 4.8, Lemma 4.10 and Lemma 4.11 extended to the
negative half plane. We note that in all cases the functions are piecewise twice continuously
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differentiable. The second derivative has at most two discontinuities, which lie at x = 0 and
x = β > 0. Now we apply Itô’s formula in the formulation of Protter [25], pp. 214,216, to
the intervals [Yn−1, Yn] with Yn =

∑n
i=1 Ti. This is possible due to Lemma 45.9 of Rogers and

Williams [27]. Similar to the proof of Theorem 3.7, we therefore obtain for every admissible
dividend strategy D:

e−
∫ t∧τ
0 rνdν Ṽ (XD

t∧τ , αt∧τ ) = Ṽ (XD
0 , α0) +

∫ t∧τ

0
e−

∫ s
0 rνdν σṼ ′(XD

s , αs) dWs +M Ṽ
t∧τ

+

∫ t∧τ

0
e−

∫ s
0 rvdv LṼ (XD

s , αs) ds−
∫ t∧τ

0
e−

∫ s
0 rνdν Ṽ ′(XD

s , αs) dDc
s

+
∑

0≤s≤t∧τ
e−

∫ s
0 rνdν [Ṽ (XD

s− −∆Ds, αs)− Ṽ (XD
s−, αs)]1I[∆Ds>0] , (28)

where LṼ (x, i) = (L Ṽ (x, i))1I(−∞,0) + (L Ṽ (x, i))1I[0,∞). Since Ṽ solves the HJB-equation,

either it holds LṼ (XD
s , αs) ≤ 0 and Ṽ ′(XD

s , αs) = 1, or LṼ (XD
s , αs) = 0 and Ṽ ′(XD

s , αs) ≥ 1
whenever XD

s ≥ 0. By (13), LṼ (XD
s , αs) = 0 if XD

s < 0. Moreover, since dividend payments
are forbidden if the surplus is negative, Ds is constant if XD

s < 0. Combining these findings,
we arrive at

Ṽ (XD
0 , α0) +

∫ t∧τ

0
e−

∫ s
0 rνdν σṼ ′(XD

s , αs) dWs +M Ṽ
t∧τ

≥ e−
∫ t∧τ
0 rνdν Ṽ (XD

t∧τ , αt∧τ ) +

∫ t∧τ

0
e−

∫ s
0 rνdν dDs ≥ 0 .

Now the assertion follows by the same arguments as used in the proof of Theorem 3.7. �
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