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Abstract

We consider an insurance company modelling its surplus process by a Brownian
motion with drift. Our target is to maximise the expected exponential utility of
discounted dividend payments, given that the dividend rates are bounded by some
constant.
The utility function destroys the linearity and the time homogeneity of the consid-
ered problem. The value function depends not only on the surplus, but also on time.
Numerical considerations suggest that the optimal strategy, if it exists, is of a barrier
type with a non-linear barrier. In the related article [14], it has been observed that
standard numerical methods break down in certain parameter cases and no close
form solution has been found.
For these reasons, we offer a new method allowing to estimate the distance of an
arbitrary smooth enough function to the value function. Applying this method, we
investigate the goodness of the most obvious suboptimal strategies – payout on the
maximal rate, and constant barrier strategies – by measuring the distance of its
performance function to the value function.

Key words: suboptimal control, Hamilton–Jacobi–Bellman equation, dividend
payouts, Brownian risk model, exponential utility function.
2010 Mathematical Subject Classification: Primary 93E20

Secondary 91B30, 60H30

1 Introduction

Dividend payments of companies is one of the most important factors for analytic
investors when they have to decide whether they invest into the firm. Furthermore,
dividends serve as a sort of litmus paper, indicating the financial health of the considered
company. Indeed, the reputation, and consequently commercial success of a company
with a long record of dividend payments would be negatively impacted in the case the
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company will drop the payments. On the other hand, new companies can additionally
strengthen their position by declaring dividends. For the sake of fairness, it should
be mentioned that there are also some serious arguments against dividend payouts, for
example for tax reasons it might be advantageous to withhold dividend payments. A
discussion of the pros and contras of dividends distribution is beyond the scope of the
present manuscript. We refer to surveys on the topic by Avanzi [6] or Albrecher and
Thonhauser [4].

Due to its importance, the value of expected discounted dividends has been for a
long time, and still remains, one of the most popular risk measures in the actuarial
literature. Modelling the entire surplus of an insurance company by a Brownian motion,
a compound Poisson process or a general Levy process with an infinite or finite time
horizon – lots of papers have been written on maximising expected discounted dividends.
Gerber [13], Bühlmann [10], Azcue and Muler [7], Albrecher and Thonhauser [3] are just
some of the results obtained since de Finetti’s path-breaking paper [11].
Shreve, Lehoczky and Gaver [20] considered the problem for a general diffusion process,
where the drift and the volatility fulfil some special conditions. Modelling the surplus
process via a Brownian motion with drift, was considered by Asmussen and Taksar [5],
who could find the optimal strategy to be a constant barrier.

All the papers mentioned above deal with linear dividend payments, in the sense
that the lump sum payments or dividend rates are not skewed by a utility function.
Hubalek and Schachermayer [15] apply various utility functions to the dividend rates
before accumulation. Their result differs a lot from the classical result described in
Asmussen and Taksar [5].

An interesting question is to consider the expected “present utility” of the discounted
dividend payments. It means the utility function will be applied on the value of the
accumulated discounted dividend payments up to ruin. In this way, one considers as a
risk measure the utility of the present value of dividends. The dividend payments are not
attributed to a specific owner (the shareholders), they serve as the only cash-flow stream
used to evaluate the company’s financial health. Therefore, the present utility of the
accumulated payments accounts for the company’s risk aversion by exercising a dividend
payment strategy. The fact that the considerations are stopped at ruin indicates that
the negative surplus is considered as a high risk. A higher utility of the present value of
future dividends payments makes the company more attractive for potential investors.
An early ruin will of course lead to a smaller utility of the present value of dividends.
Thus, the event of ruin is a technical feature and does not mean that the company
actually goes out of business.
Some big companies, for instance Munich Re (see [17]), do not reduce their dividends
also in crisis times for strategic and reputational reasons. Recently, researchers have
started to investigate the problem of non-decreasing dividend payments, some examples
are Albrecher et al. [2], [1]. In this case, even with a linear utility function, the problem
becomes two dimensional. Adding a non-linear utility function to this setting would
further complicate the solution to the problem.

Modelling the surplus by a Brownian motion with drift, Grandits et. al applied in
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[14] an exponential utility function to the value of unrestricted discounted dividends. In
other words, they considered the expected utility of the present value of dividends and
not the expected discounted utility of the dividend rates. In that paper, the existence
of the optimal strategy could not be shown. We will investigate the related problem
where the dividend payments are restricted to a finite rate. Note that using a non-linear
utility function increases the dimension of the problem. Therefore, tackling the problem
via the Hamilton–Jacobi–Bellman (HJB) approach in order to find an explicit solution
seems to be an unsolvable task. Of course, one can prove the value function to be the
unique viscosity solution to the corresponding Hamilton–Jacobi–Bellman equation and
then try to solve the problem numerically. However, on this path one faces two prob-
lems that are not easy to tackle. First, the proof that the value function is a (unique)
viscosity solution to the corresponding HJB equation can be very complex, time- and
space-consuming. In particular, if one chooses a non-linear and non-exponential utility
function the value function will depend on 3 variables: the time t, the surplus x and the
accumulated dividend payments prior to the starting time t. Using an exponential utility
allows to get rid of the third variable. This is also one of the reasons why an exponential
utility is considered in the present paper. Having just two variables to consider allows
to represent the proposed method in a more clear way, avoiding unnecessary details.
Second, if the maximal allowed dividend rate is quite big the standard numerical meth-
ods like finite differences and finite elements break down. We discuss some numerical
problems in Section 5.

In this paper, we offer a new approach. Instead of proving the value function to be
the unique viscosity solution to the corresponding Hamilton–Jacobi–Bellman equation,
we investigate the “goodness” of suboptimal strategies. In this way, one avoids both
problems described above. There is no need to prove that the value function is a classical
or a viscosity solution to the HJB equation, and no need to solve the HJB equation
numerically. One simply chooses an arbitrary control with an easy-to-calculate return
function and compares its performance, or rather an approximation of its performance,
against the unknown value function.
The method is based on sharp occupation bounds which we find by a method developed
for sharp density bounds in Baños and Krühner [8]. This enables us to make an educated
guess and to check if our pick is indeed almost as good as the optimal strategy.
This approach drastically differs from procedures usually used for calculation of the value
function in two ways. First, unlike most numerical schemes there is no convergence to the
value function, i.e. one only gets a bound for the performance of one given strategy but
no straightforward procedure to get better strategies. Second, our criterion has almost
no influence from the dimension of the problem and is consequently directly applicable
in higher dimensions.

The paper is organised as follows. In the next section, we motivate the problem and
derive some basic properties of the value function. In Section 3, we consider the case of
the maximal constant dividend rate strategy, the properties of the corresponding return
function and the goodness of this strategy (a bound for the distance of the return func-
tion to the unknown value function). Section 4 investigates the goodness of a constant
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barrier strategy. In Section 5, we consider examples illustrating the classical and the new
approach. Finally, in the appendix we gather technical proofs and establish occupation
bounds.

2 Motivation

We consider an insurance company whose surplus is modelled as a Brownian motion
with drift

Xt = X0 + µt+ σWt t ≥ 0

where µ, σ,X0 ∈ R. We will use the Markov property of X. To be exact we mean that
(Ω,A) is a measurable space, P(t,x), x ∈ R, t ≥ 0 is a family of measures, X,W : Ω×R+ →
R are continuous sample paths processes and under P(t,x) we have that (Ws+t)s≥0 is a
standard Brownian motion Wu = 0, u ∈ [0, t], Xs = x + µmax{t − s, 0} + Ws, s ≥ 0
and (Ft)t≥0 is the right-continuous filtration generated by X. In particular, we have
P(t,x)(Xt = x) = 1. Note that the process X is defined for all time points s ≥ 0 but we
have P(t,x)(Xs = x) = 1 for 0 ≤ s ≤ t, which basically means that X is constant equal
to its starting value x before its starting time t. We denote by E(t,x) the expectation
corresponding to P(t,x), also we use the notation Ex := E(0,x).

Further, we assume that the company has to pay out dividends, characterised by a
dividend rate. Denoting the dividend rate process by C, we can write the ex-dividend
surplus process as

XC
t = x+ µt+ σWt −

∫ t

0
Cs ds .

In the present manuscript we only allow dividend rate processes C which are progressively
measurable and satisfy 0 ≤ Cs ≤ ξ for some maximal rate ξ > 0 at any time s ≥ 0. We
call these strategies admissible. Let U(x) = 1

γ −
1
γ e
−γx, γ > 0, be the underlying utility

function and τC := inf{s ≥ t : XC
s < 0} the ruin time corresponding to the strategy C

under the measure P(t,x). Our objective is to maximise the expected exponential utility
of the discounted dividend payments until ruin. Since we can start our observation in
every time point t ∈ R+, the target functional is given by

V C(t, x) := E(t,x)

[
U
(∫ τC

t
e−δsCs ds

)]
,

Here, δ > 0 denotes the preference rate of the insurer, helping to transfer the dividend
payments to the starting time t.
Further, we assume that the dividend payout up to t equals 0, for a rigorous simplification
confer [14] or simply note that with already paid dividends C̄ up to time t we have

E(t,x)

[
U
(
C̄ +

∫ τC

t
e−δsCs ds

)]
= U(C̄) + e−γC̄V C(t, x).

4



The corresponding value function V is defined by

V (t, x) := sup
C

E(t,x)

[
U
(∫ τC

t
e−δsCs ds

)]
where the supremum is taken over all admissible strategies C. Note that V (t, 0) = 0,
because ruin will happen immediately due to the oscillation of Brownian motion, i.e.
τC = min{s ≥ t : XC

s = 0} for any strategy C under P(t,x). The Hamilton–Jacobi–
Bellman (HJB) equation corresponding to the problem can be found similar as in [14],
for general explanations confer for instance [19]:

Vt + µVx +
σ2

2
Vxx + sup

0≤y≤ξ

[
y
(
− Vx + e−δt(1− γV )

)]
= 0 . (1)

We like to stress at this point that we neither show that the value function solves the HJB
in some sense, nor that a good enough solution is the value function. In fact, our approach
of evaluating the goodness of a given strategy compared to the unknown optimal strategy
does not assume any knowledge about the optimal strategy or its existence.

Assuming that the HJB equation has a classical solution (i.e. smooth enough), one
would expect that an optimal strategy C∗ is the maximiser in the HJB equation at any
given point of time which would depend on the state of the optimal strategy, i.e.

C∗(s,X∗s ) =


0 if − Vx(s,X∗s ) + e−δs(1− γV (s,X∗s )) < 0,

∈ [0, ξ] if − Vx(s,X∗s ) + e−δs(1− γV (s,X∗s )) = 0,

ξ if − Vx(s,X∗s ) + e−δs(1− γV (s,X∗s )) > 0.

P(t,x)-a.s. for any s ≥ t.

Remark 2.1
For every dividend strategy C it holds:

V C(t, x) = E(t,x)

[
U
(∫ τC

t
Cse

−δs ds
)]
≤ U

(
ξ

∫ ∞
t

e−δs ds
)

= U
(ξ
δ
e−δt

)
We conclude

lim
x→∞

V (t, x) ≤ U
(ξ
δ
e−δt

)
,

and V is a bounded function. Consider now a constant strategy Ct ≡ ξ, i.e. we always
pay on the rate ξ. The ex-dividend process becomes a Brownian motion with drift µ− ξ
and volatility σ. Define further for n ≥ 1

ηn :=
ξ − µ−

√
(ξ − µ)2 + 2δσ2n

σ2
< 0 , (2)

and let τ ξ := inf{s ≥ t : x + (µ − ξ)s + σWs ≤ 0}, i.e. τ ξ is the ruin time under the
strategy ξ. Here and in the following we define

∆ := ξγ/δ. (3)
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With help of change of measure technique, see for example [19, p. 216], we can calcu-
late the return function V ξ of the constant strategy Ct ≡ ξ by using the power series
representation of the exponential function:

V ξ(t, x) = Ex
[
U
(
ξ

∫ τξ

t
e−δs ds

)]
=

1

γ
− 1

γ
Ex
[
e−∆

(
e−δt−e−δ(t+τξ)

)]
=

1

γ
− 1

γ
e−∆e−δtEx

[
e∆e−δ(t+τ

ξ)
]

=
1

γ
− e−∆e−δt

γ

∞∑
n=0

e−δtn∆n

n!
Ex[e−δτ

ξn]

=
1

γ
− e−∆e−δt

γ
− e−∆e−δt

γ

∞∑
n=1

e−δtn∆n

n!
eηnx . (4)

It is obvious, that in the above power series lim
x→∞

and summation can be interchanged

yielding lim
x→∞

V ξ(t, x) = U
(
ξ
δe
−δt
)

. In particular, we can now conclude

lim
x→∞

V (t, x) =
1

γ
− 1

γ
exp

(
−∆e−δt

)
= U

(ξ
δ
e−δt

)
.

uniformly in t ∈ [0,∞). �

Next, we show that for some special values of the maximal rate ξ with a positive prob-
ability the ex-dividend surplus process remains positive up to infinity.

Remark 2.2
Let C be an admissible strategy, where XC is the process under the strategy C. Let

further Xξ be the process under the constant strategy ξ, i.e. Xξ is a Brownian motion
with drift (µ− ξ) and volatility σ. Then it is clear that

Xξ
s ≤ XC

s .

If µ > ξ then it holds, see for example [9, p. 223], P(t,x)[τ
C =∞] ≥ P(t,x)[τ

ξ =∞] > 0.
�

Finally, we gather one structural property of the value function which, however, is
not used later.

Proposition 2.3
The value function is Lipschitz-continuous, strictly increasing in x and decreasing in t.

Proof: • Let h > 0, ε > 0 be arbitrary but fixed. Let further C be an ε-optimal strategy
for (t, x) ∈ R2

+, i.e. V (t, x) ≤ V C(t, x) + ε. Define the strategy C̃ for (t, x + h) in the
following way:

C̃s =

{
Cs : t ≤ s < τC ,

ξ : otherwise.
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Then, C̃ is an admissible strategy and does actually the same as the strategy C until
the process XC̃ reaches the level h. Afterwards it pays at maximal rate until ruin which
is strictly later τC < τ C̃ . Note that U(x+ y) = U(x) + e−γxU(y) and, hence, we have

V (t, x+ h)−V (t, x) ≥ V C̃(t, x+ h)− V C(t, x)− ε

= E(t,x+h)

[
U
(∫ τ C̃

t
C̃se

−δs ds
)]
− E(t,x)

[
U
(∫ τC

t
Cse

−δs ds
)]
− ε

= E(t,x+h)

[
e−γ

∫ τC
t C̃se−δs dsU

(∫ τ C̃

τC
ξe−δs ds

)]
− ε

≥ E(t,x+h)

[
e−γ

∫∞
t ξe−δs dsU

(∫ τ C̃

τC
ξe−δs ds

)]
− ε

≥ Kh − ε ,

where Kh > 0 and can be chosen independent of the strategy C. Thus we find that
V (t, x+ h)− V (t, x) ≥ Kh.
• Consider further (t, 0) with t ∈ R+. Let h, ε > 0 and C be an arbitrary admissible
strategy. Let τ0 be the ruin time for the strategy which is constant zero. Define

%n :=

√
µ2 + 2σ2δn

σ2
, θn :=

−µ
σ2

+ %n and ζn :=
−µ
σ2
− %n (5)

for any n ∈ N. Using Eh[e−δτ
0
] = eζ1h, confer for instance [9, p. 295]. It follows with

X0
s ≥ XC

s and using the convexity of the exponential function, U(x) = 1−e−γx
γ ≤ x:

V C(t, h) = E(t,h)

[
U
(∫ τC

t
e−δsCs ds

)]
≤ Eh

[
U
(
ξ

∫ t+τ0

t
e−δs ds

)]
= Eh

[
U
(ξ
δ
e−δt(1− e−δτ0

)
)]
≤ ξ

δ
e−δt

(
1− eζ1h

)
≤ −ξ

δ
ζ1h . (6)

– Let h ≥ 0 and τ0 be the ruin time for the strategy which is constant zero. Let (t, x) ∈
R2

+ be arbitrary, C be an admissible strategy which is ε-optimal for the starting point
(t, x+ h), i.e. V (t, x+ h)− V C(t, x+ h) ≤ ε. Define further τ̃ := inf{s ≥ t : XC

s = h}.
Then XC

s ≥ 0 for s ∈ [t, τ̃ ] under P(t,x) because XC
s ≥ h for s ∈ [t, τ̃ ] under P(t,x+h).

Then, the strategy C, up to τ̃ is an admissible strategy for (t, x) fulfilling

V C(t, x) = E(t,x)

[
U

(∫ τ̃

t
e−δsCs ds

)]
= E(t,x+h)

[
U

(∫ τ̃

t
e−δsCs ds

)]
.

Note that XC
τ̃ = h and, hence, we have

τC − τ̃ = inf{u ≥ 0 : XC
u+τ̃ = 0} = inf{u ≥ 0 : h+ (Xu+τ̃ −Xτ̃ )−

∫ u

τ̃
Cr dr = 0}

≤ inf{u ≥ 0 : h+ (Xu+τ̃ −Xτ̃ ) = 0} =: β0
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where Pβ0

(t,x+h) = Pτ0

t,h. Here, Pτ0

t,h denotes the law of τ0 under Pt,h; analogously Pβ0

(t,x+h)

is the law of β0 under Pt,x+h. Since, U fulfils U(a + b) ≤ U(a) + U(b) for any a, b ≥ 0,
we have

V (t, x+ h) ≤ V C(t, x+ h) + ε = E(t,x+h)

[
U

(∫ τC

t
e−δsCs ds

)]
+ ε

= E(t,x+h)

[
U

(∫ τ̃

t
e−δsCs ds+

∫ τC

τ̃
e−δsCs ds

)]
+ ε

≤ E(t,x+h)

[
U

(∫ τ̃

t
e−δsCs ds

)]
+ E(t,x+h)

[
U

(∫ τC

τ̃
e−δsCs ds

)]
+ ε

≤ V C(t, x) + E(t,x+h)

[
U

(
ξ

δ

(
e−δτ̃ − e−δτC

))]
+ ε

≤ V (t, x) + E(t,x+h)

[
U

(
ξ

δ

(
1− e−δ(τC−τ̃)

))]
+ ε

≤ V (t, x) + Eh
[
U

(
ξ

δ

(
1− e−δτ0))]

+ ε .

Because ε was arbitrary and due to (6) we find

0 ≤ V (t, x+ h)− V (t, x) ≤ −ξ
δ
ζ1h .

Consequently, V is Lipschitz-continuous in the space variable x with Lipschitz-constant
at most − ξ

δ ζ1.

• Next, we consider the properties of the value function concerning the time variable.
Because δ > 0, it is clear that V is strictly decreasing in t. First we show that the
value function is strictly decreasing in time. To this end let (t, x) ∈ R2

+, h > 0 and
C be an admissible strategy which is constant zero before time t + h and τ its ruin
time. Since C is measurable with respect to the σ-algebra σ(Xs : s ≥ t) we find a
measurable function c : R+ × C(R+,R) → R such that Cs(ω) = c(s − t, (Xt+u)u≥0).
Defining C̃s := c(s− (t+ h), (Xt+h+u)u≥0 we see that the law of (Xs, Cs)s≥t under P(t,x)

equals the law of (Xs+h, C̃s+h)s≥t under P(t+h,x).

The stopping time τ̃ := inf{s ≥ t+ h : XC̃
s = 0} is the corresponding ruin time.

V C(t, x) = E(t,x)

[
U
(∫ τ

t
Cse

−δs ds
)]

= E(t+h,x)

[
U
(∫ τ̃

t+h
C̃se

−δ(s−h) ds
)]

Taking the supremum over all strategies yields

V (t, x) = sup
C̃

E(t+h,x)

[
U

(
eδh
∫ τ̃ C̃

t+h
C̃se

−δs ds

)]
> V (t+ h, x).
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Let further (t, x) ∈ R2
+, h > 0 and C be an admissible strategy. Then, the strategy C̃

with C̃s := Cs−h1I{s≥h} is admissible. Since, U is concave we have

V (t+ h, x) ≥ V C̃(t+ h, x) = E(t+h,x)

[
U
(∫ τC+h

t+h
e−δsCs−h ds

)]
= E(t,x)

[
U
(
e−δh

∫ τC

t
e−δsCs ds

)]
≥ e−δhV C(t, x) .

Building the supremum over all admissible strategies on the right side of the above
inequality and using Remark 2.1, yields

0 ≥ V (t+ h, x)− V (t, x) ≥ V (t, x)(e−δh − 1) ≥ −U
(ξ
δ

)
δh

and, consequently, V is Lipschitz-continuous as a function of t with constant δU(ξ/δ). �

2.1 Heuristics

Heuristically, our approach to compare a given feedback strategy C with the unknown
optimal strategy C∗ works as follows:

1. We start with the performance function V C corresponding to some feedback strat-
egy Ct = c(t,XC

t ). V C satisfies (if smooth enough)

V C
t + µV C

x +
σ2

2
V C
xx + c

{
− V C

x + e−δt(1− γV C)
}

= 0, V C(t, 0) = 0 .

2. However, sometimes V C is not smooth enough or not known explicitly. In this
case one would use a replacement H (simply any C1,2-function from R+ × R to R
with H(t, 0) = 0) and define the mismatch

Ψ := Ht + µHx +
σ2

2
Hxx + c

{
−Hx + e−δt(1− γH)

}
.

where Ψ as close to zero as possible is desirable.

3. We consider an other strategy C∗ and the corresponding controlled process X∗ =
XC∗ as well as their performance V ∗ := V C∗ . Its ruin time is denoted by τ and
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we obtain from Itô’s formula using X∗τ = 0 and H(t, 0) ≡ 0:

0 = e−γ
∫ τ
t e
−δuC∗u du ·H(τ,X∗τ )

= H(t,X∗t ) +

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·Hx dWs

+

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·

(
Ht + µHx +

σ2

2
Hxx + C∗s

{
−Hx − γe−δsH

})
ds

= H(t,X∗t ) +

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·Hx dWs

+

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·

(
Ht + µHx +

σ2

2
Hxx + c(−Hx + e−δs(1− γH))

)
ds

+

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du · (C∗s − c)

{
−Hx + e−δs(1− γH)

}
ds

−
∫ τ

t
e−γ

∫ s
t e
−δuC∗u du · e−δsC∗s ds

= H(t,X∗t ) +

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·Hx dWs +

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·Ψ ds

+

∫ τ

t
e−γ

∫ s
t e
−δuC∗u du(C∗s − c)

{
−Hx + e−δs(1− γH)

}
ds

− U
(∫ τ

t
e−δuC∗u du

)
.

4. Taking P(t,x)-expectation (assuming the local martingale from the dWs-integral is
a martingale) bringing the expectation of the U -term on the other side yields

V ∗(t, x) = H(t, x) + E(t,x)

[∫ τ

t
e−γ

∫ s
t e
−δuC∗u du ·Ψ ds

]
+ E(t,x)

[∫ τ

t
e−γ

∫ s
t e
−δuC∗u du · (C∗s − c)

{
−Hx + e−δs(1− γH)

}
ds

]
.

5. Up to here, this is all standard. The performance function V ∗ is expressed in terms
of a new function H plus two error terms which could have a negative sign. Several
other stochastic control problems can be brought to a similar equation. The first
error term corresponds to the usage of a function other than the performance
function of our initial feedback control C. The second error term corresponds to
the suboptimality of the feedback control C compared to the control C∗ measured
relatively by the function H.

6. Now, we need to control the error terms despite the appearance of the unknown
optimal control. The first error term is simply bounded by∣∣∣∣E(t,x)

[∫ τ

t
e−γ

∫ s
t e
−δuC∗u duΨ ds

] ∣∣∣∣ ≤ E(t,x)

[∫ τ

t
|Ψ(s,X∗s )| ds

]
,
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where one has to deal with the unknown processX∗ but its control has disappeared.
This is the point where occupation bounds as in the appendix yield explicit upper
bounds.

7. The appearance of C∗ in the second error term can be suppressed via maximising
the integrand over all possible values of C∗. Since C = C∗ is a possible value, this
maximum is positive and we obtain:

E(t,x)

[∫ τ

t
exp(−γ

∫ s

t
e−δuC∗u du)(C∗s − c)(−Hx + e−δs(1− γH)) ds

]
≤ E(t,x)

[∫ τ

t
sup
y∈[0,ξ]

(
(y − c)(−Hx + e−δs(1− γH))

)
ds

]
.

8. Putting these together we obtain:

V ∗(t, x) ≤ H(t, x) + E(t,x)

[∫ τ

t
|Ψ(s,X∗s )| ds

]
+ E(t,x)

[∫ τ

t
sup
y∈[0,ξ]

(
(y − c)(−Hx(s,X∗s ) + e−δs(1− γH(s,X∗s )))

)
ds

]
.

9. If we have a common upper bound Υt,x ≥ 0 for E(t,x)

[∫ τ
t |Ψ(s,X∗s )| ds

]
, then we

may take the supremum over all strategies on the left hand side and obtain

V (t, x) ≤ H(t, x) + Υt,x

+ E(t,x)

[∫ τ

t
sup
y∈[0,ξ]

(
(y − c)(−Hx(s,X∗s ) + e−δs(1− γH(s,X∗s )))

)
ds

]
.

We will employ bounds for the expected occupation to obtain such a common
upper bound which are summarised in the appendix. Note, that after choosing the
optimal y in dependence on (s,X∗x) allows to employ those common upper bounds
also to the second summand.

Remark 2.4
We like to note that if H = V C (i.e. Ψ = 0) and if in the maximisation in Point 8 above
the maximiser is attained in C, then both error terms vanish and we find

V C ≤ V ≤ H = V C

which yields that all are the same. That means, if a feedback control C is found such
that its performance function V C satisfies the HJB equation

sup
y∈[0,ξ]

(
V C
t + µV C

x +
σ2

2
V C
xx + y(−V C

x + e−δt(1− γV C))

)
= 0, V C(t, 0) = 0,

then we verified heuristically V C = V . �
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3 Payout on the Maximal Rate

3.1 Could it be optimal to pay on the maximal rate up to ruin?

At first, we investigate the constant strategy ξ, i.e. the dividends will be paid out at
the maximal rate ξ until ruin. In this section we find exact conditions under which this
strategy is optimal. We already know from (4) that the corresponding return function
is given by

V ξ(t, x) =
1

γ
− 1

γ
e−∆e−δt − e−∆e−δt

∞∑
n=1

∆n

γn!
e−δtneηnx .

It is obvious that V ξ is increasing and concave in x and decreasing in t. For further
considerations we will need the following remark.

Remark 3.1
Consider ηn, defined in (2), as a function of ξ.

1. Since
d

dξ
ηn =

−ηn√
(ξ − µ)2 + 2δσ2n

,

it is easy to see that ηn(ξ) and ηn+1(ξ)n
ηn(ξ)(n+1) are increasing in ξ. Also, we have

lim
ξ→∞

ηn+1(ξ)n

ηn(ξ)(n+ 1)
= 1 .

We conclude that ηn+1

(n+1) >
ηn
n , as ηn, ηn+1 < 0.

2. Further, we put to record
lim
ξ→∞

ξηn(ξ) = −δn .

3. Also, we have

d

dξ

(
δn+ ξηn(ξ)

)
= ηn

(
1− ξ√

(ξ − µ)2 + 2δσ2n

){< 0 ξ < µ2+2δσ2n
2µ

≥ 0 ξ ≥ µ2+2δσ2n
2µ .

Thus, at ξ = 0 the function ξ 7→ δn + ξηn(ξ) attains the value δn > 0, at its minimum

point ξ∗ = µ2+2δσ2n
2µ we have

δn+ ξ∗ηn(ξ∗) = δn− µ2 + 2δσ2n

2σ2
= − µ2

2σ2
< 0

and, finally, for ξ → ∞ it holds, due to Item 2 above, that lim
ξ→0

δn + ξηn(ξ) = 0. Thus,

for every n ∈ N the function ξ 7→ 1 + ηn(ξ)ξ
δn has a unique zero at δnσ2

2µ . �
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Further, it is easy to check that in V ξ summation and differentiation can be interchanged.
Derivation with respect to x yields

V ξ
x (t, x) = −e−∆e−δt

∞∑
n=1

∆n

γn!
e−δtnηne

ηnx .

In order to answer the optimality question, we have to look at the function −V ξ
x +

e−δt
(
1−γV ξ

)
, appearing in the crucial condition in HJB equation (1). If this expression

is positive for all (t, x) ∈ R2
+ the function V ξ becomes a candidate for the value function.

For simplicity, we multiply the expression −V ξ
x + e−δt

(
1− γV ξ

)
by eδte∆e−δt and define

ψ(t, x) : =
e∆t

t

{
− V ξ

x

( ln(t)

−δ
, x
)

+ t
(

1− γV ξ
( ln(t)

−δ
, x
))}

=
∞∑
n=0

tn
∆n

n!

{ ηn+1ξ

δ(n+ 1)
eηn+1x + eηnx

}
. (7)

If ψ ≥ 0 on [0, 1] × R+, then V ξ does solve the HJB equation and as we will see, it is
the value function in that case.

Proposition 3.2
V ξ is the value function if and only if ξ ≤ δσ2

2µ . In that case V ξ is a classical solution to
the HJB equation (1) and an optimal strategy is constant ξ.

Proof: Since σ2

2 η
2
n = (ξ − µ)ηn + δn for all n ≥ 1, it is easy to check, using the power

series representation of V ξ, that V ξ solves the differential equation

V ξ
t + µV ξ

x +
σ2

2
V ξ
xx + ξ

(
− V ξ

x + e−δt(1− γV ξ)
)

= 0 .

We first assume that ξ ≤ δσ2

2µ and show that V ξ is the value function. Note that ξ ≤ δσ2

2µ

is equivalent to η1ξ
δ + 1 ≥ 0. We have ξ ≤ n δσ2

2µ for any n ≥ 1 and Remark 3.1 1. yields
for all n ≥ 2

ηn
ξ

δn
+ 1 > η1

ξ

δ
+ 1 ≥ 0.

This gives immediately for all (t, x) ∈ (0, 1]× R+:

ψ(t, x) ≥
∞∑
n=0

tn
∆n

n!

{ ηn+1ξ

δ(n+ 1)
+ 1
}
eηnx ≥ 0 .

which is equivalent to

−V ξ
x (t, x) + e−δt

(
1− γV ξ(t, x)

)
≥ 0

for all (t, x) ∈ R2
+. This means that V ξ solves HJB equation (1) if ξ ≤ δσ2

2µ .

Let now C be an arbitrary admissible strategy, τ its ruin time and X̂u := XC
u . Applying

Ito’s formula yields P(t,x)-a.s.
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e−γ
∫ τ∧s
t e−δuCu duV ξ(τ ∧ s, X̂τ∧s) = V ξ(t, x) + σ

∫ τ∧s

t
e−γ

∫ y
t e
−δuCu duV ξ

x dWy

+

∫ τ∧s

t
e−γ

∫ y
t e
−δuCu du

{
V ξ
t + (µ− Cy)V ξ

x +
σ2

2
V ξ
xx − γCye−δyV ξ

}
dy .

Since V ξ
x is bounded, the stochastic integral above is a martingale with expectation zero.

For the second integral one obtains using the differential equation for V ξ:∫ τ∧s

t
e−γ

∫ y
t e
−δuCu du

{
V ξ
t + (µ− Cy)V ξ

x +
σ2

2
V ξ
xx − γCye−δyV ξ

}
dy

=

∫ τ∧s

t
e−γ

∫ y
t e
−δuCu du

{(
Cy − ξ

)[
− V ξ

x + e−δy
(
1− γV ξ

)]
− Cye−δy

}
dy.

Building the expectations on the both sides and letting s→∞, we obtain by interchang-
ing limit and expectation (due to the bounded convergence theorem):

0 = V ξ(t, x)

+ E(t,x)

[ ∫ τ

t
e−γ

∫ y
t e
−δuCu du

(
Cy − ξ

){
− V ξ

x + e−δy
(
1− γV ξ

)}
dy
]

(8)

− E(t,x)

[ ∫ τ

t
e−γ

∫ y
t e
−δuCu du · Cye−δy dy

]
. (9)

Since Cu ≤ ξ and −V ξ
x

(
y, X̂y

)
+ e−δy

(
1 − γV ξ

(
y, X̂y

))
≥ 0, the expectation in (8) is

non-positive.
For (9) one has

E(t,x)

[ ∫ τ

t
e−γ

∫ y
t e
−δuCu du · Cye−δy dy

]
= −E(t,x)

[ ∫ τ

t
d
e−γ

∫ y
t e
−δuCu du

γ

]
= E(t,x)

[
U
(∫ τ

t
e−δuCu du

)]
= V C(t, x) ,

giving V C(t, x) ≤ V ξ(t, x) for all admissible strategies C. Therefore, V ξ is the value
function.

Let now ξ > δσ2

2µ and assume for contradiction that V ξ is the value function. Then we
have ψ(0, 0) = 1 + η1ξ/δ < 0. It means in particular, that the function ψ is negative
also for some (t, x) ∈ (0, 1] × R+. Consequently, V ξ does not solve the HJB equation
(1). However, V ξ is smooth enough and has a bounded x-derivative. Thus, classical
verification results (see, for instance, [19] Section 2.5.1) yield that V ξ solves the HJB
equation. A contradiction. �

In the following, we assume ξ > δσ2

2µ .
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3.2 The goodness of the strategy ξ.

We now provide an estimate on the goodness of the constant payout strategy which relies
only on the performance of the chosen strategy ξ and on deterministic constants. Recall
from (2) and (5) that

ηn =
(ξ − µ)−

√
(ξ − µ)2 + 2nδσ2

σ2
,

θn =
−µ+

√
µ2 + 2nδσ2

σ2
, ζn =

−µ−
√
µ2 + 2nδσ2

σ2
.

We first present the main inequality of this section and then discuss in the following
remark finiteness of the sum.

Proposition 3.3
Let t, x ≥ 0. Then we have

V (t, x) ≤ V ξ(t, x)

+ ξe−δt
∞∑
n=0

e−δtn
∆n

n!

∫ ∞
0

(
−ηn+1ξ

δ(n+ 1)
eηn+1y − eηny

)+

fn+1(x, y) dy,

where

fn(x, y) :=
2
(
eθn(x∧y) − eζn(x∧y)

)
eηn(x−y)+

σ2 ((θn − ηn)eyθn − (ζn − ηn)eyζn)
, y ≥ 0.

Proof: We know that the return function V ξ ∈ C1,2. Let C be an arbitrary admissible
strategy. Then, using Ito’s formula for s > t under P(t,x):

e−γ
∫ s∧τC
t e−δuCu du · V ξ(s ∧ τC , XC

s∧τC )

= V ξ(t, x) +

∫ s∧τC

t
e−γ

∫ r
t e
−δuCu du ·

{
V ξ
t + (µ− Cr)V ξ

x +
σ2

2
V ξ
xx − γe−δrCrV ξ

}
dr

+ σ

∫ s∧τC

t
e−γ

∫ r
t e
−δuCu du · V ξ

x dWr .

Using the differential equation for V ξ, one obtains like in the last proof, using the
definition of ψ from (7):

e−γ
∫ s∧τC
t e−δuCu du · V ξ(s ∧ τC , XC

s∧τC )

= V ξ(t, x) +

∫ s∧τC

t
e−γ

∫ r
t e
−δuCu du · (Cr − ξ) · e−δre−∆e−δrψ(e−δr, XC

r ) dr

−
∫ s∧τC

t
e−γ

∫ r
t e
−δuCu du · Cre−δr dr + σ

∫ s∧τC

t
e−γ

∫ r
t e
−δuCu du · V ξ

x dWr .
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Building the P(t,x)-expectations, letting s→∞ and rearranging the terms, one has

V C(t, x) = V ξ(t, x)

+ E(t,x)

[ ∫ τC

t
e−γ

∫ r
t e
−δuCu du · (Cr − ξ) · e−δre−∆e−δrψ(e−δr, XC

r ) dr
]
.

Our goal is to find a C-independent estimate for the expectation on the rhs. above, in
order to gain a bound for the difference V (t, x) − V ξ(t, x). Since e−γ

∫ r
t e
−δuCu du ≤ 1,

e−∆e−δr ≤ 1 and −(Cr − ξ) ≤ ξ we have

E(t,x)

[ ∫ τC

t
e−γ

∫ r
t e
−δuCu du · (Cr − ξ) · e−δre−∆e−δrψ(e−δr, XC

r ) dr
]

≤ −ξE(t,x)

[ ∫ τC

t
e−γ

∫ r
t e
−δuCu du · e−δre−∆e−δrψ(e−δr, XC

r )1I{ψ(e−δr,XC
r )<0} dr

]
≤ −ξE(t,x)

[ ∫ τC

t
e−δrψ(e−δr, XC

r )1I{ψ(e−δr,XC
r )<0} dr

]
.

Now, inserting the power series representation of ψ from (7), one gets

− ξE(t,x)

[ ∫ τC

t
e−δrψ(e−δr, XC

r )1I{ψ(e−δr,XC
r )<0} dr

]
≤ ξ

∞∑
n=0

e−δt(n+1) ∆n

n!
E(t,x)

[ ∫ τC

t
e−δ(r−t)(n+1)

(
−ηn+1ξ

δ(n+ 1)
eηn+1XC

r − eηnXC
r

)+

dr
]

≤ ξe−δt
∞∑
n=0

e−δtn
∆n

n!

∫ ∞
0

(
−ηn+1ξ

δ(n+ 1)
eyηn+1 − eηny

)+

fn+1(x, y) dy

where the last inequality follows from Theorem A.1. �

Remark 3.4
One could wonder if the infinite sum appearing on the right hand side of Proposition
3.3 is finite. In order to see its finiteness we try to find an upper bound of the form
An for the integral. To this end we split the integral in two parts, from 0 to x and the
remaining part. Since θn → ∞ while ηn, ζn → −∞ for n → ∞. We have for 0 ≤ y ≤ x
that

fn(x, y) :=
2
(
1− e(ζn−θn)y

)
eηn(x−y)

σ2
(
(θn − ηn)− (ζn − ηn)e(ζn−θn)y

)
≤ K1

1

θn − ηn
≤ K1
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for some suitable constant K1 > 0 (not depending on n and y). For 0 ≤ x ≤ y we find

fn(x, y) :=
2
(
eθn(x−y) − eζnx−θny

)
σ2
(
(θn − ηn)− (ζn − ηn)ey(ζn−θn)

)
≤ K2e

θn(x−y)

for some suitable constant K1 > 0 (not depending on n and y). The bracket appearing
inside the integral before fn+1 is bounded by some constant K3 > 0. We find that∫ ∞

0

(
−ηn+1ξ

δ(n+ 1)
eηn+1y − eηny

)+

fn+1(x, y) dy ≤ xK1K3 +
K2K3

θn
≤ K4

for some suitable constant K4 > 0. Hence, the sum is bounded by

exp(∆e−δt)K4.

�

4 The Goodness of Constant Barrier Strategies

Shreve et al. [20] and Asmussen and Taksar [5] considered the problem of dividend
maximisation for a surplus described by a Brownian motion with drift. The optimal
strategy there turned out to be a barrier strategy with a constant barrier.
Let q ∈ R+ and C be given by Cs = ξ1I{XC

s >q}, i.e. C is a barrier strategy with a constant

barrier q and ruin time τC = inf{s ≥ 0 : XC
s = 0}. The corresponding return function

fulfils due to the Markov-property of XC

V C(t, x) =
1

γ
− 1

γ
Ex
[
e−γ

∫ t+τC
t e−δsCs ds

]
.

Note that for every a > 0 we have

Ex
[
ea

∫ t+τC
t e−δsCs ds

]
≤ ea

∫∞
t e−δsξ ds = e

aξ
δ
e−δt <∞ .

It means, the moment generating function of
∫ t+τC
t e−δsCs ds is infinitely often differ-

entiable and all moments of
∫ t+τC
t e−δsCs ds exist.

Aiming at finding the performance function of a barrier strategy with a constant barrier
q, we use the classical ansatz of calculating the performance “above the barrier”, “below
the barrier” and putting these two solutions together via the smooth fit at the barrier
(in our case a C(1,1)-fit). We define

Mn(q) := Eq
[(

∆− γ
∫ τC

0
e−δsCs ds

)n]
> 0,

τ q,ξ := inf{s ≥ 0 : Xξ
s = q},

τ q,0 := inf{s ≥ 0 : X0
s /∈ (0, q)}.
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Since, a barrier strategy depends on the surplus, but not on the time, we pretend to start
at time 0 accounting for a different starting time t > 0 by shifting the corresponding
stopping times by t. Starting at x > q, one will pay at the maximal rate ξ up to τ q,ξ and
then follow the barrier strategy with the starting value q. Starting at x < q, one would
not pay dividends until τ q,0, i.e. until the surplus hits the level q or ruins. If the level q will
be hit before ruin, then one would follow the barrier strategy starting at q. This means
in particular, that after hitting the level q the strategy will be exactly the same does not
matter whether starting at x > q or at x < q. We will use this fact in order to enforce
smooth fit (C(1,1)-fit) at the barrier. A C(1,2)-fit can usually be achieved just by a barrier
strategy which turns out to be the optimal strategy and whose performance function is
the value function, see for instance [5] and [19] for details, further explanations are given
in Section 5.1. Figure 1 illustrates the C(1,1)-fit of the return function corresponding
to the 5-barrier. The gray and black areas correspond to the “above the barrier” and
“below the barrier” solutions. The right picture shows that the second derivative with
respect to x of the performance function is not continuous at the barrier.
For F (t, x) := V C(t, x), x > q, and for G(t, x) := V C(t, x), x < q, it holds:

F (t, x) =
1

γ
− 1

γ
Ex
[
e
−γξ

∫ t+τq,ξ
t e−δs ds−γ

∫ t+τC
t+τq,ξ

e−δsCs ds
]

=
1

γ
− 1

γ
Ex
[

exp
(
e−δt(−∆(1− e−δτq,ξ)− γ

∫ τC

τq,ξ
e−δsCs ds)

)]
=

1

γ
− 1

γ
e−∆e−δtEx

[
exp

(
e−δte−δτ

q,ξ
(∆− γ

∫ τC−τq,ξ

0
e−δsCs+τq,ξ ds)

)]
=

1

γ
− 1

γ
e−∆e−δt − 1

γ
e−∆e−δt

∞∑
n=1

e−δtn

n!
Ex
[
e−δnτ

q,ξ]
Eq
[(

∆− γ
∫ τC

0
e−δsCs ds

)n]
=

1

γ
− 1

γ
e−∆e−δt − 1

γ
e−∆e−δt

∞∑
n=1

e−δtn

n!
eηn(x−q)Mn(q)

= −1

γ

∞∑
n=1

e−δtn

n!

n∑
k=0

(
n

k

)
(−∆)n−kMk(q)e

ηk(x−q) . (10)

G(t, x) = Ex
[
F
(
t+ τ q,0, q

)
;X0

τq,0 = q
]

= −1

γ

∞∑
n=1

e−δtn

n!
· e

θnx − eζnx

eθnq − eζnq
n∑
k=0

(
n

k

)
(−∆)n−kMk(q) . (11)

where, for the fourth equality, we developed the first exponential function in the ex-
pectation into its power series and used the Markov property to see that the P0,x-law
given Fτq,ξ of τC − τ q,ξ equals the P0,q-law of τC . Also, for the last equality for G we
inserted the formula for F and used the identities given in Borodin and Salminen [9, p.
309, formula 3.0.5 (b)]. The notation used in G means Ex[Yt;A] = Ex[Yt1IA] for some
process Y .
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Figure 1: The return function corresponding to a 5-barrier strategy and its second
derivative with respect to x.

In order to analyse the performance function of a barrier strategy we will develop the
performance function into integer powers of (e−δt) with x-dependent coefficients and
truncate at some N . This will result in an approximation for the performance function
which is much easier to handle but this incurs an additional truncation error. Inspecting
Equations (10), (11) motivates the approximations

FN (t, x) =

N∑
n=1

e−δtn
n∑
k=0

An,ke
ηk(x−q), (12)

GN (t, x) :=
N∑
n=1

Dne
−δtn e

θnx − eζnx

eθnq − eζnq
, (13)

for x, t ≥ 0 where η0 := 0. In order to achieve a C(1,1) fit we choose Dn :=
n∑
k=0

An,k and

An,n :=

n−1∑
k=0

(νn − ηk)An,k

ηn − νn
, νn :=

θne
θnq − ζneζnq

eθnq − eζnq
.

This leaves the choice for An,0, . . . , An,k−1 open which we now motivate by inspecting
the dynamics equation for F,G which should be:

Gt(t, x) + µGx(t, x) +
σ2

2
Gxx(t, x) = 0,

Ft(t, x) + µFx(t, x) +
σ2

2
Fxx(t, x) = ξ

(
Fx(t, x) + e−δt(γF (t, x)− 1)

)
with boundary condition G(t, 0) = 0 for t, x ≥ 0.

It is easy to verify that GN (t, 0) = 0 and GNt (t, x) + µGNx (t, x) + σ2

2 G
N
xx(t, x) = 0.
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However, since Hk(x) := eηkx solves the equation

δkHk(x) = (µ− ξ)∂xHk(x) +
σ2

2
∂2
xHk(x)

we find that

FNt (t, x) + (µ− ξ)FNx (t, x) +
σ2

2
FNxx(t, x) =

N∑
n=1

e−δtn
n−1∑
k=0

δ(k − n)An,ke
ηk(x−q),

e−δtξ(γFN (t, x)− 1) = −e−δtξ +

N+1∑
n=2

e−δtn
n−1∑
k=0

γξAn−1,ke
ηk(x−q)

We will treat the term e−δt(N+1)ξγ
N∑
k=0

AN,ke
ηk(x−q) as an error term and otherwise equate

the two expressions above. This allows to define the remaining coefficients which are
given by:

An,k :=
γξAn−1,k

δ(k − n)
= (−γξ

δ
)n−k

Ak,k
(n− k)!

= (−∆)n−k
Ak,k

(n− k)!
,

An,0 :=
(
− γξ

δ

)n−1 ξ

δn!
=

(−γ)n−1ξn

δnn!
=

(−∆)n

−γn!

for n ≥ k ≥ 1 and the last line also for n = 0.
The following lemma shows that FN solves “almost” the same equation as F is thought
to solve. Instead of being zero we see an error term which converges for time to infinity
faster than e−δtN .

Lemma 4.1
We have

GNt (t, x) + µGNx (t, x) +
σ2

2
GNxx(t, x) = 0,

FNt (t, x) + µFNx (t, x) +
σ2

2
FNxx(t, x) + ξψN (e−δt, x) = −e−δt(N+1)ξγ

N∑
k=0

AN,ke
ηk(x−q),

for any t ≥ 0, x ≥ q where

ψN (e−δt, x) := −FNx (t, x) + e−δt(1− γFN (t, x)).

Proof: The claim follows by inserting the definitions of GN and FN . �

We define

V N (t, x) := 1I{x≥q}F
N (t, x) + 1I{x<q}G

N (t, x), (14)

ψN (e−δt, x) := −V N
x (t, x) + e−δt(1− γV N (t, x))

for any t, x ≥ 0. We now want to compare the approximate performance function V N

for the barrier strategy with level q to the unknown value function. We proceed by first
bounding ψN in terms of a double power series in e−δt and x-dependent exponentials.
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Lemma 4.2
With the preceding definitions we have for x ≥ q

−ψN (e−δt, x)1I{ψN (e−δt,x)<0}

≤
N+1∑
n=1

e−δtn

(
n∑
k=0

eηk(x−q)
{

1I{n=1,k=0} − 1I{n6=N+1}ηkAn,k − 1I{n 6=1,k 6=n}γAn−1,k

})+

and for 0 ≤ x < q we have

ψN (e−δt, x)1I{ψN (e−δt,x)>0} ≤
N+1∑
n=1

e−δtn
(

1I{n=1} −Dnh
′
n(x)1I{n6=N+1}

−γDn−1hn−1(x)1I{n6=1}

)+

where hn(x) := eθnx−eζnx
eθnq−eζnq .

Proof: Inserting the definition of ψN and the definitions of FN andGN found in Equation
(12) resp. Equation (13) yields for x ≥ q where η0 = 0

ψN (e−δt, x)

=

N+1∑
n=1

e−δtn
n∑
k=1

eηk(x−q) (1I{n=1,k=0} − 1I{n6=N+1}ηkAn,k − 1I{n6=1,k 6=n}γAn−1,k

)
and for 0 ≤ x < q we obtain

ψN (e−δt, x) =
N+1∑
n=1

e−δtn
(
1I{n=1} −Dnh

′
n(x)1I{n6=N+1} − γDn−1hn−1(x)1I{n6=1}

)
.

Using the inequality (
∑N

n=1 e
−δtncn)+ ≤

∑N
n=1 e

−δtn(cn)+ for c ∈ RN we obtain for
x ≥ q

−ψN (e−δt, x)1I{ψN (e−δt,x)<0}

≤
N+1∑
n=1

e−δtn

(
n∑
k=1

eηk(x−q)
{

1I{n=1,k=0} − 1I{n6=N+1}ηkAn,k − 1I{n6=1,k 6=n}γAn−1,k

})+

and for 0 ≤ x < q we obtain

ψN (e−δt, x)1I{ψN (e−δt,x)>0} ≤
N+1∑
n=1

e−δtn
(

1I{n=1} −Dnh
′
n(x)1I{n 6=N+1}

−γDn−1hn−1(x)1I{n 6=1}

)+

as claimed. �
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We will employ the same method like in Section 3.2 and rely on the occupation
bounds from Theorem A.1. We have in mind that V N ≈ V C ≤ V . The three error
terms appearing on the right-hand side of the following proposition are in this order
the error for behaving suboptimal above the barrier, the error for behaving suboptimal
below the barrier and the approximation error.

Proposition 4.3
We have

V (t, x) ≤ V N (t, x)

+
N+1∑
n=1

e−δtnξ

[(
n∑
k=0

{
1I{n=1,k=0} − 1I{n6=N+1}ηkAn,k − 1I{n 6=1,k 6=n}γAn−1,k

}

×
∫ ∞
q

eηk(y−q)fn(x, y) dy

)+

+

∫ q

0

(
−Dn

θne
θny − ζneζny

eθnq − eζnq
+
(

1I{n=1} − γ1I{n6=1}Dn−1
eθn−1y − eζn−1y

eθn−1q − eζn−1q

)+

fn(x, y) dy

]

+ e−δt(N+1)ξγ

∫ ∞
0

N∑
k=0

|AN,k|eηk(y−q)fN+1(x, y) dy

for any t, x ≥ 0 where fk are defined in Proposition 3.3.

Proof: Observe that V N is analytic outside the barrier q and C(1,∞) on R+ × R+ and
the second space derivative is a bounded function. Thus, we can apply the change of
variables formula, confer [16].
Choose an arbitrary strategy C̄ and denote its ruin time by τ . Following the heuristics
from Section 2.1 up to Step 4 with H = V N for the strategy C̄ yields

V C̄(t, x) = V N (t, x) + E(t,x)

[ ∫ τ

t
e−γ

∫ r
t e
−δuC̄u du(C̄r − ξ1I{XC̄

r >q}
)ψN (e−δr, XC̄

r ) dr
]

− ξγE(t,x)

[ ∫ τ

t
e−γ

∫ r
t e
−δuC̄u due−δr(N+1)1I{XC̄

r >q}

N∑
k=0

AN,ke
ηk(XC

r −q) dr
]

≤ V N (t, x) + ξγE(t,x)

[ ∫ τ

t
e−δr(N+1)1I{XC̄

r >q}

N∑
k=0

|AN,k|eηk(XC
r −q) dr

]
+ E(t,x)

[ ∫ τ

t

(
− ξ1I{XC̄

r >q,ψ
N (e−δr,XC̄

r )<0} + ξ1I{XC̄
r <q,ψ

N (e−δr,XC̄
r )>0}

)
ψN (e−δr, XC̄

r ) dr
]
,

where we used that 0 ≤ C̄r ≤ ξ. Applying Lemma 4.2 to the last summand, pulling out
the sum and applying Theorem A.1 yields
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V C̄(t, x) ≤ V N (t, x)

+
N+1∑
n=1

e−δtnξ

[(
n∑
k=0

{
1I{n=1,k=0} − 1I{n 6=N+1}ηkAn,k − 1I{n6=1,k 6=n}γAn−1,k

}

×
∫ ∞
q

eηk(y−q)fn(x, y) dy

)+

+

∫ q

0

(
1I{n=1} −Dnh

′
n(y)1I{n6=N+1} − γDn−1hn−1(y)1I{n6=1}

)+
fn(x, y) dy

]

+ e−δt(N+1)ξγ

∫ ∞
q

N∑
k=0

|AN,k|eηk(y−q)fN+1(x, y) dy ,

where hn(y) := eθny−eζny
eθnq−eζnq . Since C̄ was an arbitrary strategy and the right hand side

does not depend on C̄, the claim follows. �

Now we quantify the notion V N ≈ V C . Here, we see a single error term which corre-
sponds to the approximation error (third summand) in Proposition 4.3.

Lemma 4.4
Let t, x ≥ 0. Then we have

|V N (t, x)− V C(t, x)| ≤ e−δt(N+1)ξγ

∫ ∞
q

N∑
k=0

|AN,k|eηk(y−q)fN+1(x, y) dy .

Proof: By following the lines of the proof of Proposition 4.3 with the specific strategy
C̄t = Ct = ξ1I{XC

t >q} until estimates are used yields

V C(t, x) = V N (t, x) + E(t,x)

[ ∫ τ

t
e−γ

∫ r
t e
−δuCu du(Cr − ξ1I{XC

r >q})ψ
N (r,XC

r ) dr
]

− ξγE(t,x)

[ ∫ τ

t
e−γ

∫ r
t e
−δuCu due−δr(N+1)1I{XC

r >q}

N∑
k=0

AN,ke
ηk(XC

r −q) dr
]

= V N (t, x)

− ξγE(t,x)

[ ∫ τ

t
e−γ

∫ r
t e
−δuCu due−δr(N+1)1I{XC

r >q}

N∑
k=0

AN,ke
ηk(XC

r −q) dr
]
.
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Hence, we find

|V C(t, x)− V N (t, x)| ≤ ξγE(t,x)

[ ∫ τ

t
e−δr(N+1)1I{XC

r >q}

N∑
k=0

|AN,k|eηk(XC
r −q) dr

]
= ξγe−δt(N+1)

∫
R

1I{XC
r >q}

N∑
k=0

|AN,k|eηk(yr−q)fN+1(x, y) dy

due to Theorem A.1. �

5 Examples

Here, we consider two examples. The first one will illustrate how the value function and
the optimal strategy can be calculated using a straightforward approach under various
unproven assumptions. In fact, we will assume (without proof) that the value function
is smooth enough, the optimal strategy is of barrier type and that the barrier, the value
function above the barrier and the value function below the barrier have suitable power
series representations. In [14] has been observed that similar power series – if exist –
have very large coefficients for certain parameter choices. This could mean that the
power series doesn’t converge or that insufficient computing power was at hand.
In the second subsection, we will illustrate the new approach and calculate the distance
of the performance function of a constant barrier strategy to the value function. The
key advantages of this approach are that we do not rely on properties of the value
function, nor do we need to know how it looks like. From a practical perspective, if the
value function cannot be found, one should simply choose any strategy with an easy-to-
calculate return function. Then, it is good to know how large the error to the optimal
strategy is.

5.1 The straightforward approach

In this example we let µ = 0.15, δ = 0.05, γ = 0.2 and σ = 1. We try to find the value
function numerically. However, we do not know whether the assumptions which we will
make do actually hold true for any possible parameters — or, even for the parameters
we chose.
We conjecture and assume that the optimal strategy is of a barrier type where the barrier
is given by a time-dependent curve, say α; the value function V (t, x) is assumed to be a
C1,2(R2

+) function and we define

h(t, x) := V (t, x), t ≥ 0, x ∈ [α(t),∞),

g(t, x) := V (t, x), t ≥ 0, x ∈ [0, α(t)],

24



Figure 2: The optimal strategies for different values of ξ. The dashed line corresponds
to the Asmussen-Taksar strategy [5] (unrestricted dividend case).

This means, we assume that h solves HJB equation (1) on R+ × [α(t),∞) and g solves
(1) on R+ × [0, α(t)]. In particular, the functions h and g fulfil

ht + (µ− ξ)hx +
σ2

2
hxx + ξe−δt

(
1− γh

)
= 0 , lim

x→∞
h(t, x) = U

(ξe−δt
δ

)
,

gt + µgx +
σ2

2
gxx = 0 , g(t, 0) ≡ 0 .

Similar to the derivations of the functions F and G in Section 4, we assume that

h(t, x) :=
1

γ
− 1

γ
e−∆e−δt + e−∆e−δt

∞∑
n=1

Jne
−δtneηnx ,

g(t, x) :=
∞∑
n=1

Lne
−δtn(eθnx − eζnx) ,

α(t) :=

∞∑
n=0

an
n!
e−δtn ,

for some coefficients. Note that we do not investigate the question whether the functions
h, g and α have a power series representation. We define further auxiliary coefficients
bk,n, pk,n and qk,n:

eηnα(t) =:
∞∑
k=0

bk,n
k!

e−δtk, eθnα(t) =:

∞∑
k=0

pk,n
k!

e−δtk, eζnα(t) =:

∞∑
k=0

qk,n
k!

e−δtk ,

Since we assume that the value function is twice continuously differentiable with respect
to x, we have using smooth fit

h(t, α(t)) = g(t, α(t)), gx(t, α(t)) = hx(t, α(t)), gxx(t, α(t)) = hxx(t, α(t)) . (15)
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Note that (15) yields ht(t, α(t)) = gt(t, α(t)). Therefore, we can conclude hx(t, α(t)) =

e−δt
(

1− γh(t, α(t))
)

. Alternatively to (15), one can consider at (t, α(t)) the equations

−hx + e−δt(1− γh) = 0, −gx + e−δt(1− γg) = 0, h = g . (16)

Thus, we can find the coefficients an, Jn and Ln from the three equations (16).
First, we calculate the coefficients of the power series resulting from the functions eηnα(t),
eθnα(t), eζnα(t). This is done using the general Leibniz rule:

bk+1,n = ηn

k∑
j=0

(
k

j

)
ak−j+1bj,n, b0,n = eηnα(0),

pk+1,n = θn

k∑
j=0

(
k

j

)
ak−j+1pj,n, p0,n = eθnα(0),

qk+1,n = ζn

k∑
j=0

(
k

j

)
ak−j+1qj,n, q0,n = eζnα(0) .

Now, in order to calculate the coefficients of the power series representations of h(t, α(t))
and g(t, α(t)) and their derivatives, we define auxiliary coefficients for m ∈ {1, 2}:

Xm,j :=

j∑
n=1

Jnη
m−1
n

bj−n,n
(j − n)!

, Zm,k :=
k∑
j=1

∆k−j

(k − j)!
Xm,j ,

Wm,k,j := Lj
(
θm−1
j pk,j − ζm−1

j qk,j
)
, Ym,k :=

k∑
n=1

Wm,k−n,n
(k − n)!

.

Then, we can write the functions g and h along with their derivatives as power series:

g(t, α(t)) =
∞∑
k=1

e−δtkY1,k, h(t, α(t)) =
∞∑
k=1

e−δtkZ1,k −
1

γ

∞∑
k=1

(
−∆

)k e−δtk
k!

,

gx(t, α(t)) =

∞∑
k=1

e−δtkY2,k, hx(t, α(t)) =

∞∑
k=1

e−δtkZ2,k .

Equating coefficients yields a0 = log
(
η1−ζ1
η1−θ1 ·

ζ1
θ1

)
/(θ1 − ζ1), L1 = 1

θ1eθ1a0−ζ1eζ1a0
, J1 =

e−η1a0

η1
and for k ≥ 2:

X2,k = −γX1,k−1, Y2,k = −γY1,k−1, Y1,k = Z1,k −
(
−∆

)k
γk!

. (17)

Note that Equations (17) specify Lk, Jk and ak−1 in kth step. The coefficients given
above have a recursive structure. Due to this fact the presented method turns out to
be very time- and memory-consuming. Numerical calculations show that the above
procedure yields well-defined power series for relative small values of ξ. However, for big
ξ the coefficients explode, which makes the calculations unstable and imprecise especially
for t close to zero.
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Mathematica code for the calculation of the coefficients Jn, Ln and an.

(*The optimal strategy for xi=1, (g=gamma)*)

mu = 0.15; xi = 1; sigma = 1; delta = 0.05; g = 0.2; n = 500;

w = -xi*g/delta;

eta[k_] = xi - mu - Sqrt[(xi - mu)^2 + 2*delta*k];

zeta[k_] = -mu - Sqrt[mu^2 + 2*delta*k];

theta[k_] = -mu + Sqrt[mu^2 + 2*delta*k];

(*The coefficients*)

Array[L, n]; Array[J, n]; Array[a, n];

(*Auxiliary functions*)

p[k_, m_] := p[k, m] = If[m == 0, Exp[theta[k]*a[0]],

theta[k]*Sum[Binomial[m - 1, j]*a[m - j]*p[k, j], {j, 0, m - 1}]];

q[k_, m_] := q[k, m] = If[m == 0, Exp[zeta[k]*a[0]],

zeta[k]*Sum[Binomial[m - 1, j]*a[m - j]*q[k, j], {j, 0, m - 1}]];

b[k_, m_] := b[k, m] = If[m == 0, Exp[eta[k]*a[0]],

eta[k]*Sum[Binomial[m - 1, j]*a[m - j]*b[k, j], {j, 0, m - 1}]];

X1[k_] := X1[k] = Sum[J[j]*b[j, k - j]/((k - j)!), {j, 1, k}];

X2[k_] := X2[k] = Sum[J[j]*b[j, k - j]/((k - j)!), {j, 2, k - 1}];

X3[k_] := X3[k] = Sum[J[j]*eta[j]*b[j, k - j]/((k - j)!), {j, 2, k - 1}];

X4[k_] := X4[k] = Sum[J[j]*eta[j]*b[j, k - j]/((k - j)!), {j, 1, k - 1}];

Z[k_] := Z[k] = Sum[w^(k - j)/(k - j)!*X1[j], {j, 1, k - 1}];

Y1[k_] := Y1[k] = Sum[L[j]*(p[j, k - j] - q[j, k - j])/((k - j)!), {j, 1, k}];

Y2[k_] := Y2[k] = Sum[L[j]*(p[j, k - j] - q[j, k - j])/((k - j)!), {j, 2, k - 1}];

Y3[k_] := Y3[k] = Sum[L[j]*(theta[j]*p[j, k - j] - zeta[j]*q[j, k - j])/((k - j)!), {j, 2, k - 1}];

Y4[k_] := Y4[k] = Sum[L[j]*(theta[j]*p[j, k - j] - zeta[j]*q[j, k - j])/((k - j)!), {j, 1, k - 1}];

r1[k_,j_] := r1[k, j] = (p[k, j] - q[k, j]);

r2[k_,j_] := r2[k, j] = (theta[k]*p[k, j] - zeta[k]*q[k, j]);

r3[k_,j_] := r3[k, j] = (theta[k]^2*p[k, j] - zeta[k]^2*q[k, j]);

(*The first coefficients*)

a[0] = 1/(theta[1] - zeta[1])*Log[(eta[1] - zeta[1])/(eta[1] -theta[1])*zeta[1]/theta[1]];

L[1] = 1/(theta[1]*p[1, 0] - zeta[1]*q[1, 0]);

J[1] = 1/(eta[1]*b[1, 0]);

L[2] = (w - eta[2]/eta[1]*w + w^2/(2*g)*eta[2])/(r2[2,0] - eta[2]*r1[2,0]);

J[2] = (L[2]*r2[2,0] - w)/(eta[2]*b[2, 0]);

a[1] = (-g*J[1]*b[1, 0] - J[2]*eta[2]*b[2, 0])/eta[1];

(*Recursions for the calculation of the remaining coefficients*)

f[k_] := f[k] = (-g*Y1[k - 1] - Y4[k])/r2[k,0];

h[k_] := h[k] = (-g*X1[k - 1] - X4[k])/(eta[k]*b[k, 0]);

v[k_] := v[k] = (k - 1)!/(L[1]*(r2[1, 0] - r1[k, 0]/r2[k, 0]*r3[1, 0])

- J[1]*eta[1]*b[1, 0]*(1 - eta[1]/eta [k]))

*(Z[k] - w^k/(g*k!) + X2[k] - g/eta[k]*X1[k - 1] - 1/eta[k]*X3[k]

- Y2[k] + g*r1[k, 0]/r2[k, 0]*Y1[k - 1] + r1[k, 0]/r2[k, 0]*Y3[k]

- Sum[Binomial[k - 2, j]*a[k - 1 - j]/(k - 1)!*(L[1]*(r2[1, j] - r1[k, 0]/r2[k, 0]*r3[1, j])

- J[1]*b[1, j]*(eta[1] - eta[1]^2/eta[k]))

, {j, 1, k - 2}]);

For[i = 3, i <= n, i++, a[i - 1] = v[i]; L[i] = f[i]; J[i] = h[i]];

In Figure 3 we see the functions h (black) and g (gray) meeting at the barrier α(t) in
the left picture. The right picture illustrates the crucial functions −hx + e−δt(1 − γh)
(black), −gx + e−δt(1− γg) (gray) along with the zero-plane (white). One sees that the
zero-plane cuts −hx + e−δt(1− γh) and −gx + e−δt(1− γg) exactly along the curve α.
Note that the numerical procedure used here works well just for small values of ξ. Due to
the recursive structure of the coefficients, the bigger ξ-values let the coefficients explode
and enforce an early truncation of the power series representations.
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It should be noted here once again that the obtained functions h and g do not represent
the value function. And the optimal strategy cannot yet be claimed to be of a barrier
type with the barrier given by α. First, one has to prove a verification theorem.
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Figure 3: The functions h(t, x) (black) & g(t, x) (gray) in the left picture and the func-
tions −hx + e−δt(1 − γh) (black) & −gx + e−δt(1 − γg) (gray) & 0 (white) in the right
picture for ξ = 1.

5.2 The distance to the value function

2 4 6 8 10 12 14
x
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Figure 4: The difference of the value function and an approximation of the performance
function corresponding to a constant barrier strategy at t = 0: V (0, x) − V N (0, x) for
ξ = 1 with V N given in (14) and the barrier q given in (18).

We use the same parameters as in the previous section, i.e. µ = 0.15, δ = 0.05, γ = 0.2
and σ = 1. We illustrate the error bound given by Proposition 4.3 for N = 20 summands
and four different values for ξ, namely 0.15, 0.17, 0.32 and 1. We will compare the
unknown value function to the performance of the barrier strategy with barrier at
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Figure 5: The plots show a numerical valuation of the error bounds given in Proposition
4.3 for the barrier strategy with parameters ξ = 0.15, ξ = 0.17, ξ = 0.32 and ξ = 1
respectively as indicated at the side of each plot. The error bound is shown at time
t = 0 where it is largest across several values of x.

q =

(
log(−ζ1) + log(ζ1 + η1)− log(θ1)− log(θ1 − η1)

θ1 − ζ1

)+

, (18)

i.e. we employ the strategy Cs = ξ1I{XC
s ≥q}. Recall the definition of η1, θ1 and ζ1 from

(2) and (5).
The barrier strategy with the barrier q has been shown to be optimal if no utility function
is applied, see [19, p. 97]. In the case of ξ = 0.15 one finds q = 0, i.e. we pay out at
maximal rate all the time which is optimal due to Proposition 3.2. Therefore, this case is
left with approximation error only. For the other values of ξ, it is non-optimal to follow
a barrier strategy and, hence, we do have a substantial error which cannot disappear
in the limit. The corresponding pictures in Figure 5.2 show this error as for N = 20
summands the approximation error is already several magnitudes smaller than the error
incurred by following a suboptimal strategy.
Figure 4 illustrates for ξ = 1 the difference between the value function V (x) and the
approximation V N , given in (14), of the performance function corresponding to the
barrier strategy with the barrier q given in (18) at t = 0. Note that the difference

29



V (0, x)− V N (0, x) consists of 3 subfunctions:

V (0, x)−V N (0, x) =


F (0, x)− FN (0, x) : x ≥ q, gray line in Figure 4,

F (0, x)−GN (0, x) : x ∈ [α(0), q], black dashed line in Figure 4,

G(0, x)−GN (0, x) : x ∈ [0, α[0]], black line in Figure 4.

It is clear that for any fixed x the maximal difference V (t, x)−V N (t, x) is attained at t =
0, as the curve α is increasing and converges to q for t→∞. Thus, the difference q−α(t)
attains its maximum at t = 0 leading to a bigger difference between the performance
functions.

A Appendix

In this section we provide deterministic upper bounds for the expected discounted
occupation of a process whose drift is not precisely known. This allows to derive an
upper bound for the expect discounted and cumulated positive functional of the process.
These bounds are summarised in Theorem A.1.
Let a, b ∈ R with a ≤ b, I := [a, b], σ > 0, δ ≥ 0, W a standard Brownian motion and
consider the process

dXt = Ct dt+ σ dWt

where C is some I-valued progressively measurable process. We recall that we denote
by Px a measure with Px[X0 = x]. The local time of X at level y and time t is denoted
by Lyt and τ := inf{t ≥ 0 : Xt = 0}. Further we define for x, y ≥ 0

α :=
a+
√
a2 + 2δσ2

σ2
, β+ :=

√
b2 + 2δσ2 − b

σ2
, β− :=

−
√
b2 + 2δσ2 − b

σ2
,

f(x, y) :=
2
(
eβ+(x∧y) − eβ−(x∧y)

)
e−α(x−y)+

σ2 ((β+ + α)eyβ+ − (β− + α)eyβ−)
.

Theorem A.1
We have Ex

[∫ τ
0 e
−δs dLys

]
≤ σ2f(x, y). In particular, for any measurable function ψ :

R+ → R+ we have

Ex
[∫ τ

0
e−δsψ(Xs) ds

]
≤
∫ ∞

0
ψ(y)f(x, y) dy.

The proof is given at the end of this section.

Lemma A.2
f is absolutely continuous in its first variable with derivative

fx(x, y) :=


2(β+e

xβ+−β−exβ−)
σ2((β++α)eyβ+−(β−+α)eyβ−)

x ≤ y,
2(−αeyβ++αeyβ−)e−α(x−y)

σ2((β++α)eyβ+−(β−+α)eyβ−)
x > y.
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For any y ≥ 0 the function fx(·, y) is of finite variation and

dfx(x, y) = − 2

σ2
δy(dx) +

(
2δ

σ2
f(x, y)−

2(b1I{x<y} + a1I{x>y})

σ2
fx(x, y)

)
dx

where δy denotes the Dirac-measure in y. Moreover, if we denote by fxx(x, y) the second
derivative of f with respect to the first variable for x 6= y, then we get

sup
u∈[a,b]

(
σ2

2
fxx(x, y) + ufx(x, y)− δf(x, y)

)
= 0, x 6= y.

Proof: Obtaining the derivative and the associated measure is straightforward. If δ = 0,
then the statement of the lemma is trivial. This is due to the fact that β+ = 0, β− = − 2b

σ2 ,
α = 2a

σ2 . The function f in this case fulfils fx(x, y) > 0 if x < y and fx(x, y) < 0 if x > y.
Now, assume that δ > 0. We have α, β+ > 0 > β− which immediately yields fx(x, y) > 0
for x < y and fx(x, y) < 0 for x > y. The last equality follows. �

Lemma A.3
Let y ≥ 0 and assume that Ct = a1I{Xt>y} + b1I{Xt≤y}. Then

Ex
[ ∫ τ

0
e−δs dLys

]
= σ2f(x, y).

Proof: Ito Tanaka’s formula together with the occupation time formula yield

f(Xt∧τ , y) = f(x, y) +

∫ t

0
σfx(Xs∧τ , y) dWs −

1

σ2
Lyt∧τ

+

∫ t

0
Csfx(Xs∧τ , y) +

σ2

2
fxx(Xs∧τ , y) ds

= f(x, y) +

∫ t

0
σfx(Xs∧τ , y) dWs −

1

σ2
Lyt∧τ + δ

∫ t

0
f(Xs∧τ , y) ds.

Using the product formula yields

e−δtf(Xt∧τ , y) = f(x, y) +

∫ t

0
σe−δsfx(Xs∧τ , y) dWs −

1

σ2

∫ t∧τ

0
e−δs dLys .

Since fx(·, y) is bounded we see that the second summand is a martingale. If δ > 0, then
we find that

lim
t→∞

Ex[e−δtf(Xt∧τ , y)] = 0.

If δ = 0 and a ≤ 0, then τ <∞ P-a.s. and boundedness of f yields

lim
t→∞

Ex[f(Xt∧τ , y)] = 0.
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If δ = 0 and a > 0, then lim
t→∞

Xt∧τ takes values in {0,∞} and lim
x→∞

f(x, y) = 0, thus

boundedness of f yields again

lim
t→∞

Ex[f(Xt∧τ , y)] = 0.

Thus, we find by monotone convergence

0 = f(x, y)− 1

σ2
lim
t→∞

Ex
[∫ t∧τ

0
e−δs dLys

]
= f(x, y)− 1

σ2
Ex
[∫ τ

0
e−δs dLys

]
.

�

The next lemma is a simple variation of the occupation times formula.

Lemma A.4
Let g : R+ → R+ be continuous, τ be a random time and ψ : R → R+ be Borel
measurable. Then ∫ τ

0
g(s)ψ(Xs)σ

2 ds =

∫
R
ψ(y)Zy dy

where Zy :=
∫ τ

0 g(s) dLys .

Proof: If the claim is proved for bounded stopping times, then an arbitrary stopping
time τ can be approximated by bounded stopping times via τ = limN→∞min{N, τ}
and monotone convergence yields the claim. For the remainder of the proof we assume
that τ is a bounded stopping time. Additionally, we start with bounded and Lebesgue-
integrable ψ. Once the claim is proved for bounded and Lebesgue-integrable ψ, it follows
for the remaining ψ by monotone convergence.
Let ε > 0. Since g is continuous it is uniform continuous on [0, τ ]. Hence, there is δ > 0
such that |g(x)− g(y)| < ε for any x, y ∈ [0, τ ] with |x− y| < δ. For an integer N > τ/δ

we find with FN :=
∑N

k=1

∫ k τ
N

(k−1) τ
N

(g(s)− g((k − 1)τ/N))ψ(Xs)σ
2 ds that

∫ τ

0
g(s)ψ(Xs)σ

2 ds =

N∑
k=1

∫ k τ
N

(k−1) τ
N

g((k − 1)τ/N)ψ(Xs)σ
2 ds

+
N∑
k=1

∫ k τ
N

(k−1) τ
N

(g(s)− g((k − 1)τ/N))ψ(Xs)σ
2 ds

=

∫
R
ψ(y)

N∑
k=1

g((k − 1)τ/N)(Lyk τ
N
− Ly(k−1) τ

N
) dy + FN ,

where we used [18, Corollary VI.1.6] for the second equality.
We have |FN | ≤ ε

∫ τ
0 ψ(Xs)σ

2 ds by choice of δ and

N∑
k=1

g((k − 1)τ/N)(Lyk τ
N
− Ly(k−1) τ

N
)→

∫ τ

0
g(s) dLys , N →∞.
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It holds ∣∣∣∣∣
N∑
k=1

g((k − 1)τ/N)(Lyk τ
N
− Ly(k−1) τ

N
)

∣∣∣∣∣ ≤ sup
a∈[0,τ ]

g(a) · Lyτ

and, hence, Lebesgue’s dominated convergence result yields∫
R
ψ(y)

N∑
k=1

g((k − 1)τ/N)(Lyk τ
N
− Ly(k−1) τ

N
) dy →

∫
R
ψ(y)Zy dy

as required. �

Proof:[Proof of Theorem A.1] Fix y ≥ 0. For any progressively measurable process η
with values in I we define

Y η
t := X0 +

∫ t

0
ηs ds+ σWt and V (x) := sup

η
Ex
[∫ τ

0
e−δs dLy,ηs

]
,

where τη := inf{t ≥ 0 : Y η
t = 0} and L·,η denotes a continuous version of the local time

of Y η. Clearly, we have

Ex
[∫ τ

0
e−δs dLy,ηs

]
≤ V (x).

Moreover, the previous two lemmas yield that Y η∗ with

η∗t = a1I{Y η
∗

t >y} + b1I{Y η
∗

t ≤y}

is the optimally controlled process and we get V (x) = σ2f(x, y). (The process η∗ exists
because the corresponding SDE admits pathwise uniqueness, see [18, Thm IX.3.5].)
This proves the inequality for the local time. The additional inequality follows now from
Lemma A.4. �
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[10] H. Bühlmann. Mathematical Methods in Risk Theory. Springer-Verlag, New York,
1970.

[11] B. de Finetti. Su un’impostazione alternativa della teoria collettiva del rischio.
Transactions of the XVth congress of actuaries., 2:433–443, 1957.

[12] W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solu-
tions. Springer, New York, 1st edition, 1993.

[13] H. U. Gerber. Entscheidungskriterien für den zusammengesetzten Poisson-prozess.
Schweiz. Verein. Versicherungsmath. Mitt, 69:185–228, 1969.

[14] P. Grandits, F. Hubalek, W. Schachermayer, and M. Zigo. Optimal expected expo-
nential utility of dividend payments in Brownian risk model. Scandinavian Actuarial
Journal, 2:73–107, 2007.

[15] F. Hubalek and W. Schachermayer. Optimization expected utility of dividend pay-
ments for a Brownian risk process and a peculiar nonlinear ode. Insurance Math.
Econ, 34:193–225, 2004.

[16] G. Peskir. A change-of-variable formula with local time on curves. J. Theor. Probab.,
18:499–535, 2005.

[17] Reuters, by Jonathan Gould. Munich Re pledges stable dividend after profit drop, 6
August 2008. https://www.reuters.com/article/sppage012-l5116107-oisbn\
-idUSL511610720080806.

34

https://www.reuters.com/article/sppage012-l5116107-oisbn\-idUSL511610720080806
https://www.reuters.com/article/sppage012-l5116107-oisbn\-idUSL511610720080806


[18] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer,
Berlin Heidelber, 3rd edition, 2005.

[19] H. Schmidli. Stochastic Control in Insurance. Springer, London, 2008.

[20] S. E. Shreve, J. P. Lehoczky, and D. P. Gaver. Optimal consumption for general
diffusions with absorbing and reflecting barriers. SIAM J. Control and Optimization,
22:55–75, 1984.

35


	Introduction
	Motivation
	Heuristics

	Payout on the Maximal Rate 
	Could it be optimal to pay on the maximal rate up to ruin?
	The goodness of the strategy .

	The Goodness of Constant Barrier Strategies
	Examples 
	The straightforward approach
	The distance to the value function

	Appendix

