Optimal Dividends under a Stochastic Interest Rate

JULIA EISENBERG *

Institute of Mathematical Methods in Economics, Vienna University of Technology.

Abstract

We consider an insurance entity endowed with an initial capital and an income,
modeled as a Brownian motion with drift. The discounting factor is modeled as a
stochastic process: at first as a geometric Brownian motion, then as an exponen-
tial function of an integrated Ornstein-Uhlenbeck process. It is assumed that the
insurance company seeks to maximize the cumulated value of expected discounted
dividends up to the ruin time. We find an explicit expression for the value function
and for the optimal strategy in the first but not in the second case, where one has
to switch to the viscosity ansatz.
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1 Introduction

In fact, the present paper deals with the excessively investigated problem of dividend
maximization in the Brownian risk model, however under a stochastic interest rate inde-
pendent of the surplus. That is to say, in the previous studies the discounting rate, which
undoubtedly plays a crucial role in the choice of the optimal strategy, is assumed to be a
positive constant. Since as already mentioned, the dividend optimization problems have
been investigated for a quite long time, we omit listing the existing literature and just
refer to a survey on the dividend problems in insurance by Albrecher and Thonhauser
[1] and references therein.

Interest rates build an integral part of market economy, influencing huge firm invest-
ment as well as small households spending decisions. Random perturbations on financial
markets can cardinally change the monetary behaviour of an investor, leading to a to-
tally different result than expected under the assumption of a constant interest rate.
Intuitively, it is clear that a stochastic interest rate reflects fluctuations on the market
much better than a deterministic one. Thus, it is clear that in order to describe the
behaviour of an economic agent possibly realistic, we should use a stochastic interest
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rate. Rather, the question is which short rate (rates of interest for a short period of
time) models should be used and whether any explicit results can be obtained.

In the following, we discuss the problem of dividend maximization under the two fol-
lowing models: the Dothan and the Vasicek model. The Dothan model assumes that the
discounting factor follows a geometric Brownian motion. The advantage of such a model
is that the expected value of the discounting factor is given by an exponential function
with an exponential linearly depending on time. On the other hand, its disadvantage is
that it does not have the mean reversion property and the discounting factor can become
arbitrarily high. In contrast, the Vasicek model incorporates mean reversion, the short
rate is defined as an Ornstein-Uhlenbeck process. A huge disadvantage of this model
is that the short rate can become negative. We correct this defect by defining the dis-
counting factor as an exponential function applied on the integrated Ornstein-Uhlenbeck
process. Due to a complex structure of the preference function, the calculations become
much more complicated as well. For more details about interest rate models in general
and in particular about the two mentioned above, confer for example [7].

To the best of our knowledge, the problem of dividend maximization under a stochas-
tic interest rate has not been previously addressed. In [9], stochastic interest rate mod-
els were applied to an economic agent whose surplus was assumed to be deterministic.
There, it was possible to find explicit expressions for the value function and for the op-
timal strategy under the stochastic interest rate models mentioned above. In the case
of a geometric Brownian motion, there was no difference to the case with a constant
interest rate in the form of the value function or the optimal strategy. Just the drift
and the volatility of the geometric Brownian motion found its way into some constant
parameters in the value function.

In the present paper, we model the surplus process as a Brownian motion with
drift. In the setting with a constant interest rate and a general diffusion with special
parameters as a surplus process, the problem of dividend maximization was considered
by Shreve et al. in [12]. Also, in [3] Asmussen and Taksar solved the problem for the
special case of Brownian motion. They found out that the optimal strategy is a constant
barrier. In Section 2, we investigate the problem of dividend maximization under the
Dothan model and find, similar to the case with deterministic income, that the optimal
strategy does not change (compared to the Asmussen-Taksar case) in its form, but in the
parameters. In Section 3, we consider the Vasicek model. Here, the situation changes
significantly. It is not that easy any more to calculate a return function corresponding to
some strategy. Even in the case of the strategy “always pay out on the maximal possible
rate” we are not able to show the concavity of the corresponding return function in the
x-component if the initial interest rate is negative. We show that the value function
is a viscosity solution to the corresponding Hamilton—Jacobi-Bellman equation, for the
methods confer for example Bardi and Capuzzo-Dolcetta [5].



2 Geometric Brownian Motion as a Discounting Factor

Consider an insurance company whose surplus is given by a Brownian motion with drift
X = z+ pt+ oWy, where {W;} is a standard Brownian motion. The insurance company
is allowed to pay out dividends, where the accumulated dividends until ¢ are given by
C;, the dividend rate process by C' = {c;}, yielding for the ex-dividend surplus X¢:

XtC::U—i—,ut—l—aWt—Ct.

The consideration will be stopped at the ruin time of X¢. Let further {B;} be a
standard Brownian motion independent of {W;}. We let the underlying filtration {F;}
be generated by {W;, B;}. At first, we allow just for the strategies C' = {cs} with
accumulated dividends up to time ¢ given by C; = fot csds with ¢; € [0,&] for some
¢ > 0, and call such a strategy admissible if additionally C' is cadlag, adapted to {F;}
and for the ex-dividend process it holds X > 0 up to the ruin time.
As a risk measure, we consider the value of expected discounted dividends, where the
dividends are discounted by a geometric Brownian motion
52

exp{—r—mt —0B;}, if m> 5
Denoting by 7¢ the ruin time of the surplus process under some admissible strategy
C = {cs}, we define the return function corresponding to C' to be

C

VO (rz) = E[/OT e TTms=0Bs ds} .

Note that

The HJB equation corresponding to the problem is given by

2 2
o 1)
wVy+ —Vow —mVy + —Vp + sup c{e™" =V, }
2 2 0<e<e

=0, (1)



For the sake of convenience, we define the following quantities:

R R A e 3

n: = <0,
2
_M+\//’L2+202 m_é_
0= - ( 2)>o, (2)
2
=1 +20%(m = %)
¢ = 5 < 0.
g

Consider at first the case where we pay on the maximal possible rate £ up to ruin. Let
20 =inf{t >0: z+ (u—E&)t+oW, = 0}. Note that 75" is independent of the process
{Bt}. Then via Fubini’s theorem, the return function corresponding to the strategy
cs =& is

T§’O

VEe(r,z) = SE{/ e rmi=0B: dt}
0
€0

e[ [ e rmeonal
0

_ 56—7" E|:1 . ef(mf%)n‘f’o}
m

The last step in the above calculation is due to the formula 2.0.1 in [6, p. 295]. Further,
due to n < 0 we have

VE(r,x) = — e ne™ > 0.

T 52
2

In particular, V3¢ (t,x) <e "if — 5’762 < 1. This means that the function V¢ solves the

2

HJB equation (1) if — 5’762 <1 and becomes a candidate for the value function.

m—g

én

52

Let now — > 1. We conjecture that the value function can be written in the form

m—=3
V(r,z) = e "F(z). In this case, the HIB equation becomes
o? 52
uF' (z) + 7F"(az) —mF(z) + EF(CC)

+ sup {1 —F'(z)} =0.
0<e<g
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Figure 1: Left picture: Realisations of {e™"~™79Bs} =1, for m = 2 and § = 1. Right
picture: The value function.

Proceeding like in Schmidli [11, p. 99], we have to solve the following two differential
equations:
o? 52

uFi (@) + T F{ (@) = (m = ) Fi2)

+&{1 - Fi(2)} =0
and

o2
uFy(x) + EFQ"(JU) — (m— E)Fg(x) =0.

We conjecture that the value function is given by e~ " Fy(x) below some boundary and
by e~ "F}(z) above this boundary. Since the value function is bounded in z for a fixed r
and V(r,0) = 0, we can conclude

Fi(z) =Ce™ and Fy(z)= B(eez — ecx) .

Our target is to determine & > 0, C' and B such that Fy(2) = Fy(2), F{(2) = F}(&) and
F/(&) = FY(&). For F(x) = Fi(z) for x > % and F(x) = Fy(x) for z < & we obtain

F(z) =
577 ) e@xie(ac <
m,% n(eeﬁ,e—gi),geeﬁJrCeg@ T <
n(x—a&) 0eb% _elE
(1)
m—"°- n(eh—e@”)—ee%—l{e(z

Z

where z is given by
¢G-n¢
log <92*n9)
0—-¢
The function e™"F(z) is twice continuously differentiable with respect to r and to x,
increasing and concave in x, decreasing and convex in 7.

.i':



Proposition 2.1
The value function is given by V(r,x) = e "F(x). The optimal strategy C* = {c%} is

cs(z) = §]I[XSC* >3]

Proof: Let C' be an arbitrary admissible strategy and 7€ be the ruin time of {Xtc }.
Then it holds via Ito’s formula, using that e™" F'(x) fulfils (1):

e "nC F(XE o) = e "F(x)

tATC
- / e s TOBs (XY (1 — ) ds
0
02 tATC
+ - / e—T—mS—éBSF//(XS) dS
2 Jo
tATC 52
—/ e Tms—0Bs (m — —)F(XC) ds
0
tATC
+o / e "m0 (X ) AW
0
tATC
+6 / e "B p(xE) dB
0
tATC
<e "F(x)— / e "M 0Bs e ds
0
tATC
+o / e "M OB p (X O AW,
0
tATC
+0 / e "M OBs (XY dB, .
0

It is easy to see that F’(x) is bounded. Further, {e™"~™$798:1 is a continuous process
fulfilling fg R[e~2r—2ms=20Bs] ds < 0o. According to this, we can conclude that the last
two stochastic integrals above are martingales with expectation 0. Taking expectations
on the both sides of the above inequality yields

E[e_r_m(t/\Tc)_éBt/\TCF(Xg\Tc):| S B_TF(x)

tATC
— E[/ e Tms—0Bs ds] .
0



Note that for C' = C* equality holds. In the case 7¢ < t one obviously has F (XTCC) =
F(0) = 0. Since F is bounded by —, one has

92
m=3

E [efrfm(t/\Tc)fszt/\Tc F(Xg\TC )]

=K [eirimtisztF(XtC)][[Tc>tﬂ
S E [e,r,mt,(gBt F(Xtc)]

< E[e—T’—mt—5Bt] 5

Since we assumed m > %, it holds

lim E[e™" ™) =0B 0 p(xC )] =0.

C
t—00 tAT

Thus,

" P (a) >VCYr,z) :C arbitrary,
e x A
=V (rzx) :C=C*.

And we can conclude that V(r,z) > V¢ (r,2) = e "F(z) > supVC(r,z) = V(r,z). O
C

Example 2.2

Let m=2,6=1, p =2, 0 =4 and £ = 5. Then the value function is illustrated in the
right picture in Figure 1. The optimal barrier is in this case given by £ = 1.7216. In
the left picture of Figure 1 one sees 5 realisations of a geometric Brownian motion with
initial value r = 1, m = 2 and § = 1. The volatility of the paths is quite high, but yet
~As_where X is a positive constant. Such a behaviour
corresponds to a normal yield curve, which we will discuss in more detail in the next
section. |

the trend is similar to the one of e

The optimal strategy is like in the case with a constant deterministic interest rate a
barrier strategy with a constant barrier. The barrier depends on the parameters of the
geometric Brownian motion describing the preference function. Similar to the case with
deterministic discounting, one can show that if £ < u with a positive probability the
process remains positive up to infinity. Also, for the optimal strategy the ruin occurs
almost surely, confer for example [11, p. 102].

Remark 2.3 (Unrestricted Dividends)
In the case of unrestricted dividends, the proofs are similar to those in Schmidli [11, pp.
102-104]. In order to incorporate the interest rate, we need to modify some parameters



T

in the value function from [11] and to multiply it by e~
the most important results, for details please confer [11] .

. For that reason, we just list

e The value function V (r,z) can be obtained as the limit over the value functions V¢(r, )
for by & restricted dividend rates, where the boundary £ goes to infinity, and is given by

e@zieéz

€ _—e <z
— 0ef% — (el =
Vir,z)=¢e " . .
(r.z) bsto—3 o>’
m=3
where
ln<ﬁ>
. 02
T = .
0—¢

e The optimal strategy C* is to pay out the excess to 2, i.e. ¢f = max{ sup X°—z,0},
0<s<TAt

where X0 = x + pus + oW, and 7 denotes the ruin time under C*. |

3 Ornstein-Uhlenbeck Process as a Preference Rate

In this subsection, we denote by {rs} an Ornstein-Uhlenbeck process
S
rs=re *®+b(l—e ")+ 56“5/ e’ dB,
0

or as a stochastic differential equation
drs, = a(l; —rg)dt + 6dB; ,

where {B,} is a standard Brownian motion, a,6 > 0, and let Ug = fos ry du. In the
following, we manifest the fact ro = y by writing UY. Here, b is the long-term mean of
the process {rs}, i.e. all trajectories of the interest rate process {rs} will evolve around
b in the long run. Under the assumption of a normal yield curve (vields rise as maturity
lengthens), we assume that b> %. In the case b < 0, {UI'} converges to —oo for s — oo,
i.e. we would have an inverted yield curve. In Figure 2 one sees 5 realisations of the
process exp{—U!}, ie. 1o = 1, 6=1,a=3,b=4 (the left picture), b = 0 (the picture
in the centre) and b = —1 (the right picture). The left picture reflects the aforesaid
normal behaviour of the yield curve. Our target is to maximize the expected discounted
dividends if the interest rate is given by {r;}. It means, we discount a dividend rate
at time s, say c¢; > 0, by the factor e=Vs. However, considering the structure of U! it
becomes evident that .

Ur =bs4+Ur™°
where U"™" = [#,du and 7, = (r — b)e™® + de~® [' e dt. Note that {r} is an
Ornstein-Uhlenbeck process with the long-term mean equal 0. Thus, the term e s rep-

r7r—b
resents the usual deterministic discounting factor and the term e~Us ~ adds stochasticity
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and consequently uncertainty to the discounting dynamics.
We let the surplus process be modeled like in the section before by a Brownian motion
with drift

Xi=x+ut+ oW,

where {WW} is independent of {B}. For a dividend rate strategy C = {cs}, the ex-
dividend surplus X is then

XtC:x—i-ut—i-UWt—Ct,

where C denotes the cumulated dividend process corresponding to C. A dividend rate
strategy C' = {cs} is called admissible if ¢; € [0,£], for some fixed £ > 0, is cadlag,
adapted to the filtration {F,}, generated by {Bs, W,} and fulfilling X > 0 up to
the ruin time. We denote the set of admissible strategies by C. Let C' = {¢s} be an
admissible strategy and 7¢ the ruin time of {X£'}, where X§ = x. The return function
corresponding to C' and the value function are defined as

=4
VY (r x) = E[/ cee Vs ds], (r,xz) e Rx Ry,
0

Vir,z) =supVE(r,z), (rz) e RxR, .
ceC

Here, confer for example Brigo and Mercurio, E[e_Ug ] is the price at zero of a zero-
coupon bond (or pure-discount bond) with maturity s. But we are interested in the
price at 5. In Borodin and Salminen [6, p. 525] one finds E[e~Us] = e/("%), where
- 8% r—b
= —bs+ —s—
f(rys) s+ 5.2° -
—as
+—4a3(1—(2—e )?) -

(1 — e*as)

Notation 3.1 i
~ 2
In order to get lim f(r,s) < oo for all r € R, we additionally assume b > 2{7 and let

§—00
52

b:b_T‘,Q

)
and § = —.
V2a



Now, we can rewrite the function f as follows

r—>b 5?2

f(r,s) = —bs — (1—e™) = 521~ ™). (3)

Note that we can estimate the function f as follows

52 r—>b
f(rys) Z—bs—ﬁ—max{ - ,0}

fr,s) < —bs — min{%b,o} _

Due to the properties of f, the value function V' is bounded

V(r,z) = 2}?3 VO (r x) < §E[/O e trdt]

= 5/00 ef(tJ') dt
0 ()

_ min r—b
cee L {b =)

2
r—b )
7max{ o ,0}7ﬁ

> &<

The HJB equation corresponding to the problem is

o? - 52
uVy + EVM +alb—r)V, + EVW —rV

+ sup c{l—Vgc}:O.
0<e<¢

We start by considering the constant strategy c; = &.

3.1 Payout on the Maximal Rate

Denote the ruin time of the process
Xp=a+(u—t+ oW,

starting at = by 750, The return function corresponding to the strategy “pay out on the
maximal rate until ruin” is given by

Ve(r,z) = {E{/Tz e Us ds}
0

10



where we used the independence of U”" and 5% and Fubini’s theorem. In order to
calculate V¢(r, x) more precisely, consider the function f(r, s), defined in (3). Let ©g = 1,

_ 2
2(r) =0+ &,

sk .
0, = (_1)]9/27216/2@’6@/2)! : k even
0 . otherwise

nZT‘k
o)

k=0
then

ef(r,s) . 2a ZA —(b+an)s ]

The power series above is well defined for all (r,s) € R x Ry because

n k
zZ\r
<> S{j‘ €0k

|z(1) §2(n—Fk)
Z kl on— ka2(n k)( k)l

(I ( )+ 5)"

n!

Define further

- E—p— \/ 24+ 202(b+ an) 1)

O'

The Laplace transform of 759 is well known, so that using E[e*(“‘m)”g’o] = e*, confer
for example [6, p. 295], we obtain

VE(r,x)
£,0

2 T
_ efz(T)Jr;? Z An(z(r))éE {/0 e—(b—l—an)s ds
n=0

1—em®

R
)+2a2 Z An(Z(’I"))ém
n=0

Note that for z, h > 0 the process {Xf} starting at x+h has to cross the level x before the

ruin occurs and 7' h > 750 as. Due to this, the function V¢(r,z) is strictly increasing
in x:

Vi(r,z+h)=E [5/ T el ) ds]
0
T§’°

> E[§/O el () ds} = V().

11



Obviously, V¢ is twice continuously differentiable with respect to  and to x. In partic-
ular, by the definition of 7, in (7) it holds

o 2(6—n) +2(b+an)

nn - 0_2 n 0_2 )
giving
z(r 52 - —677"3677121
Vin(ra) = e " 0a2 37 A (a(n)e 5
n=0

_ 2(§ — ) ¢
- 0,2 Vx (Ta 1’)

2% 2 e (b + an)

ﬂe 2§%u»bﬂn

0'

25 _3(7")4'& —(b+an)75°
~ 2 Mg%WWk(’]

20§ —w) ¢ 2¢ Fr 5%
=" — =E|e/\"T )
o2 Ve (r, ) 2 e ]

Lemma 3.2 .
Let 75 be defined like before. The function A(r,x) = E[ef(rm%’ )} is positive and
strictly decreasing in x for all (r,z) € R?.

Proof: It is obvious, that A is positive. Since we assumed b > 252, it holds b > 0.
Verbatim from Subsection 2.1 in [9], for a fixed € Ry the function fs(r, s) can have at
most one zero at s = w1 (r) = — 1 In(uy(r)) with

r—b+< +\/ —b+ 2 Ll
262 /a

uy(r) = >0.

This means that for a fixed r it holds either fs(r,s) < 0 for all s € [0,00), if ui(r) > 1,
or fs(r,s) > 0 for s € [0,wy(r)) and fq(r,s) < 0 for s € (wy(r),o0), if ui(r) < 1.
Consequently, we consider just the case where the function f is decreasing in s for
s € R4 and the case where f is at first increasing and then decreasing in s.

It is easy to see that the function w;(r) is increasing in 7 and u;(0) = 1. It means that
fs(r,s) <0 for all (r,s) € R2.

Since for y > x it obviously holds T, 05 750
function A(r, z) is strictly decreasmg in . O

a.s., we can conclude that for r € Ry the

Lemma 3.3
For (r,z) € Ri it holds fo(r,x) < 0.

12



Proof: Assume first £ < p. Then due to the representation

Vi) = 2 v a) - B npa)
o o
and positivity of A, the claim is trivially fulfilled even for all (r,z) € R x R,..
Assume for £ > p that there is an (r*,2*) € R% such that Vi (r*,2*) > 0. Then the
r.h.s. of the above representation of V&, is also non-negative. Furthermore, the function
@Vf(r,x) - i—gA(r,x) is increasing in = at (r*,2*) due to Lemma (3.2). It means
that VJ% becomes /remains positive for all 2 > z*, which implies that ng is increasing in
x for x € (z*,00), contradicting V& >0 and
$li_)n010Vf(r, x) =
—en"mﬁn
b+an

T—r00

2 o0
lim e "t 22 Z A (2(r)€
n=0

In the case V. (r*,2*) = 0, we can use the same arguments like above due to the fact
that A(r,x) is strictly increasing increasing in x if » € R... O

It means in particular, that the function 1 — VS is strictly increasing in x for all (r,z) €
Ri. On the other hand, with similar arguments like above one has

Vi (r,z) = V5 (r, @)
d 7—5’0 1 —as
= __gE[/ 17O s sl <0 ’
dﬂ? 0

a

ie. 1—VE (r,z) is increasing in r for all x € Ry. This allows the following conclusion:
If 1 — V£(0,0) < 0, there is an r* € Ry such that 1 — V& (r*,0) = 0 and

1=VE(r,z) >1-V(r,0) >1-V5(r*,0)=0

for r > r* and ¢ > 0. For 0 < r < r*, because Ve < 0, (r,x) € R2, the function Ve s
invertible with respect to x for all x € Ry. By the implicit function theorem, there is a
continuously differentiable function a(r), defined on [0, 7*], such that

1-V&(r,a(r) =0
and 1 — V& (r,z) < 0 for z < a(r), 1 — VE(r,z) > 0 for > a(r). Obviously,

d
0= —EVf(r, a(r))

= V5 (ra(r) + o' (n)VE(r, a(r)) .
The fact fo, VE <0 yields o/ (r) < 0.

13
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Figure 3: Left picture: Function 1 — A (r,x) (gray) cutting the 0 surface (black). Right
picture: The curve a(r).

Example 3.4
Consider the following parameters b = 2, a =1, 0 =1, =1, p = 04 and £ = 5.

Then the corresponding function 1 — Ve cutting the z = 0 surface can be seen in the
left picture in Figure 3. In the right picture one finds the separating curve «(r). For
r* = 4.04 the curve cuts x = 0. In particular, it is not optimal to always pay out on the
maximal rate. |

3.2 Value Function and Viscosity Solutions

Here, we again consider (r,z) € R x Ry. At first, we investigate the properties of the
value function V.

Lemma 3.5 (Basic properties of V)
The value function V (r,z) is locally Lipschitz continuous, increasing in x and decreasing
inr.

Proof: The value function is obviously strictly increasing in x and decreasing in r. Let
further x,h € Ry, r € R and C be an c-optimal strategy for the initial point (r + h,x).
Then C'is also an admissible strategy for (r,z). In particular, denoting the ruin time of
the surplus process X¢ by 7¢ one has

0>V(r+h,z)—V(r,x)

14



Let now C' be an e-optimal strategy for the initial point (r, 2+ h), 7 :=inf{t > 0 X ¢
(0,z + h), Xo =2} and define C' = {¢} to be

B 0 t<T
Ct =
Cir t>7'andX£:x—i—h.
Then,
0<V(r,x+h)—V(rx)

<Vrz+h)+e—Ve(r,z+h)
=Vr,x+h)+e

C

—-E [er: /0 efﬁsﬁ Cs dS]I[XQZJH_h]]

=VYr,z+h)+e
C

— E |:6_U: /T e_(rT_r)(l_e_as)e_Ugcs dS
0

X ]I[XQ::erh}}
<VCrz+h)+e
o E[H[TTSHeiU:;XS =+ h} VC(T7 z +h)

-E |:]I[r7>7"} ]I[X9:m+h]6_Ui
C

X /T (1+(r = rp)(1 = e7)e Ve, ds}
0
< {1 -E [eiU:II[XQ:erh}}
+E [H[r»r}@_w (rr = T)]I[X9=r+h]] }
xVC(r,x+h)+¢.

Since, {r;} and {X}} are independent, the function in the curly brackets in the last
line of the above inequality depends on h just via the stopping time 7. In Borodin
and Salminen [6, p. 525] one finds the expectations of e~/ and e~Yir;. The density
function of 7 is well known, so that the expectations in the curly brackets can be easily
calculated. In particular, the obtained functions are locally Lipschitz continuous, and
we can conclude that there is a constant L such that

0<V(r,x+h)—=V(r,x) <hLV(r,z+h)+e¢
567 min{rgb,O}
———

Thus, the value function is locally Lipschitz continuous. O

< hL €.

15



Since the value function is locally Lipschitz, Rademacher’s Theorem ensures the existence
of the derivatives almost everywhere. Furthermore, the Lipschitz continuity on compact
sets implies that V is absolutely continuous.

Here, we cannot expect that the value function is twice continuously differentiable with
respect to x and to r, i.e. that V will be a classical solution to the HJB equation (6).
For that reason, the concept of viscosity solutions has to be considered.

Definition 3.6

We say that a continuous function v : R x Ry — R is a viscosity subsolution to (6) at
(7,Z) € R x Ry if any function ¢ € C*!(R x Ry, Ry) with ¢(, Z) = u(F, &) such that
u — 1 reaches the maximum at (7, z) satisfies

o2 - 52
M% + 7¢$$ + a(b - T)wr + Ewrr - 7“¢

+ sup c(l —1/196) >0
0<e<g

and we say that a continuous function % : R x Ry — R, is a viscosity supersolution to
(6) at (7,Z) € R x Ry if any function ¢ € C*'(R x Ry, Ry) with ¢(7, ) = a(F, Z) such
that @ — ¢ reaches the minimum at (7, z) satisfies

2 _ 52
U + T bus + alb = 1)or + Tbry — 10

+ sup c(l—qﬁm) <0.
0<e<g

A viscosity solution to (6) is a continuous function v : R x Ry — Ry if it is both a
viscosity subsolution and a viscosity supersolution at any (r,z) € R x R.

Since, we are dealing with a Brownian motion with drift as a surplus process, the proof
methods are standard. So that we prove as an illustration that the value function is a
viscosity supersolution. The remaining proofs can be can be obtained from the author
on request.

Proposition 3.7
The value function V (r,x) is a viscosity solution to (6).

Proof: Here, we just show that V is a supersolution. For this purpose let ¢, h € Ry,
(r,z) e R xRy, > 0, be fixed and 75° = inf{t > 0: x4 (1 — &)t + oW, = 0}.
Similar to Azcue and Muler [4], see also Eisenberg [9], one can show that V fulfils the
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dynamic programming principle. This yields for an admissible strategy C' = {cs}

Tf’o/\h
V(r,z) = sup {E[/ e Use, ds]
0

ceC
7600 c
T V(TT;E’O/\h’XTg’O/\h)} }

—l—E{e

rﬁ’OAh
= CE[/ ef(r:9) ds]
0
“Uleo,, u
+E|:€ Tz V(TTE/\/'HXTSE’O/\]—L)] .

Now let ¢ be a twice continuously differentiable with respect to x and to r test function
with V(r,z) = ¢(r,z) and V — ¢ attaining a minimum at (r,z). Then, we obtain

rﬁ’o/\h
0> CE[/ el (:9) ds]
0

—Ur
+E[e TV (o, (€ - 7)o

_ E{V(r,ﬂf)][[é’ogh}}

+E [(e—Ufi(p(rh, X3 — o(r, m)) H[T§,0>h]] .
In the next step, we divide the above expression by h and let h go to 0.
Since V is locally Lipschitz, the expectation E [e*UsTV(rS, (&—c)s) = V(r, x)} is bounded,
giving together with }Lir% P[0 < ) =0
—

E [(67U:£’0 V(Tﬂg,o s X%o) - V(T’ x)) ][[Tf’o<h}]

lim

h—0 h
=0.
For the remaining terms one has
o2 - B
:u'(bx + 7¢xz + a(b - T)(ﬁr + §¢7"7" - T¢
c—cp, <0.
This inequality holds for all ¢ € [0,£]. Therefore, V' is a supersolution to (6). O
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Proposition 3.8

Let v(r,z) be a super- and u(r, x) a subsolution to (6), satisfying the conditions fulfilled

by the value function: locally Lipschitz continuous, increasing in x, decreasing in T,

bounded like described in (5) and u(r,0) = v(r,0) = 0. If lim u(r,z) < lim v(r,z),
T—00 T—00

then u(r,z) < wv(r,z) for all (r,z) € R x Ry.

Outlook

For the discounting function given by a geometric Brownian motion, it was an easy
exercise to prove the existence of the optimal strategy for the both cases: for restricted
and unrestricted dividend rates. This lies partly on the fact that the surplus and the
discounting processes are assumed to be independent, and partly on the fact that the
expected value of a geometric Brownian motion is given by an exponential function,
whose exponential linearly depends on time.

In the last section, we have considered the problem of consumption maximization
under a stochastic interest rate described by an Ornstein-Uhlenbeck process. It was
impossible to find explicit expressions for the optimal strategy and the value function.
In contrast to the case of a deterministic surplus linearly depending on time, we could
not even prove that the value function is concave in the x component. We can just
conjecture that the optimal strategy would be given by a barrier function depending on
{r+}. Further investigation of this problem will be the subject of our future research.
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