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Abstract

Birth rates have dramatically decreased and, with continuous improve-
ments in life expectancy, pension expenditure is on an irreversibly
increasing path. This will raise serious concerns for the sustainabil-
ity of the public pension systems usually financed on a pay-as-you-go
(PAYG) basis where current contributions cover current pension ex-
penditure. In this paper, we propose, as an alternative solution, that
the deficit of the scheme is immediately covered by the state but in
return the individuals need to invest an amount of money into a fund.
This investment is designed so that the individuals can repay to the
state the deficit of the PAYG scheme at a particular level of proba-
bility and at the same time provides, on expectation, some gains to
individuals. Two different strategies of debt repayment depending on
the amount invested and the timing of the repayment to the state are
analysed. We compare our results with the direct payment of the con-
tribution that makes the system balanced by the individual. If the
investment period is long enough, the optimal strategy tends to be a
lump sum debt repayment. Directly covering the deficit of the PAYG is
the optimal strategy if the investment period is short and the amount
invested is relatively small. For shorter investment intervals and higher
investment amounts it might be optimal to use a continuous repayment
scheme.
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1 Introduction

The decline in fertility rates, the increase in longevity and the current fore-
casts for the ageing of the baby-boom generation all point to a substantial
increase in the age dependency ratio, and this will raise serious concerns
for the sustainability of PAYG pension systems. In particular, the life ex-
pectancy at birth is expected to increase by 5.3 for males and 5.1 years
for females when comparing 2016 with 2070 (European Commission [11]).
This is a worldwide problem, and consequently, many European countries
(European Commission [6, 7]) have already carried out some parametric re-
forms, or even structural reforms, to ensure the financial sustainability of
their pension systems.
In Europe, the common trend of the pension crisis is a wave of parametric
adjustments including countries, among others, France, Greece, Hungary,
Romania and Spain, see Whitehouse [28, 27] and OECD [17, 18, 19, 20].
In Latin America, since the 1980’s, most of the countries in the region made
structural reforms replacing completely or partially their PAYG system with
programmes containing a fully funded component of individually capitalised
accounts (Rofman et al. [24]). As a result, a transfer of financial market
and volatility risk from the state to the individual happened.
The PAYG rate of return can be lower than the rate of return of funding
schemes, especially in countries where the working population is not grow-
ing. In this case, the individual might consider that there is an implicit
cost equivalent to the difference in return; see Robalino and Bodor [23] and
Valdés-Prieto [26] for taxes implicit to PAYG schemes. However, the high-
variability of the funding rate of return makes the choice between PAYG and
funding less obvious and there might be advantages of mixing PAYG and
funded schemes (De Menil et al. [8], Persson [22]). Also, PAYG is a useful
social security financing technique which ensures income redistribution at
both the inter and intra-generational levels.
On the other hand, Fajnzylber and Robalino [12] state that the transition
from a PAYG to a fully funded scheme has a high transition cost where cur-
rent contributors pay twice: first to finance their own retirement capital and
second to finance pension benefits of current retirees. Currently, countries,
such as Australia, Canada, Norway, Sweden, Latvia and Poland, amongst
others, combine funded and PAYG elements within the mandatory pension
system to improve the pension sustainability of the PAYG part and at the
same time to increase the amount of the pensions. These mixed systems
have been advocated, particularly by the World Bank, as a practical way to
reconcile the higher financial market returns compared with GDP growth
with the costs of a scheme with a greater funded element.
The academic literature has extensively focused on studying the optimal
allocation between a funding (defined contribution) scheme and a PAYG in
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mixed pension system under a portfolio theory framework.1 However, these
studies do not deal with the problems in the financial sustainability of the
PAYG component.
Robalino and Bodor [23] propose the use of government indexed bonds - first
introduced by Buchanan [4] to support the sustainability of PAYG schemes.
In particular, Robalino and Bodor [23] analyse the case of a cash-surplus of
the pension fund being invested every six or twelve months in GDP indexed
government bonds. However this approach does not guarantee the financial
sustainability of the system, and the application is done to notional account
systems. Other papers, Auerbach and Kotlikoff [2], Sinn [25], Palacios and
Sinn [21], also provide some discussion about the use of government bonds.
Our research proposes a different method to ensure the financial sustainabil-
ity of PAYG schemes based on mixed pension systems. In our framework,
the deficit of the scheme is immediately covered by the state but in return
the individuals have to invest an amount of money into a fund.Two different
types of debt repayment to the state – depending on the amount invested
and the timing of the repayment of the deficit – are analysed. The invest-
ment should be designed so that in expectation the individuals can repay
the debt to the state and receive some return on investment. We prove that
the optimal strategy tends to be a lump sum if long-term investments are
allowed. However, directly covering the deficit of the PAYG is the optimal
strategy if the allowed investment period is short and the amount invested
in the fund is relatively small.
Following this introduction, the next section describes the model together
with the assumptions used. In our proposed modelling framework we take on
the view of a prototypical customer (PC) that earns the average salary and
has the average age. This can be regarded as a standardization approach
comparable to the representative agent in finance. Our framework avoids
any demographic modelling (i.e. longevity and/or fertility risks) for the PC
as these risks are immediately translated into changes in the balanced con-
tribution rate of the PAYG. Further, our model is based on a credit granted
by the state to the PC in the sense that the state covers the deficit as soon
as it happens and the PC will be paying to the state in the future. In Sec-
tion 3, some variants are presented where the PC invests the corresponding
money into a fund and needs to repay the credit either at the end of the
year or after a longer specified period. A comparison between the annual
approach and the long-term approach is given along. In Section 4, we as-
sume that the individuals need to transfer any excess of return above some
particular level that needs to be optimised. We compare the results with
the corresponding discrete time approach of Section 3. Section 5 concludes
and makes suggestions for further research.

1See, for example, Matsen and Thogersen [15], Devolder and Melis [9], and Alonso-Garćıa
and Devolder [1].
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2 The Model Setting

To introduce a swift transformation of PAYG into a mixed pension system
which is socially accepted, we suggest that the contributions of the individ-
uals go into a PAYG and a funding scheme. While this will not immediately
solve the problem of increasing contributions, the willingness of the state
to take over possible losses or to formally grant credits combined with the
higher return potential of the fund investment shall make the mixed system
more attractive to the contributors. It shall give them the feeling that they
get more for the higher contribution.

For the fund evolution we consider standard models such as a geometric
Brownian motion. The costs of PAYG are assumed to be known for a cer-
tain time span. Our justification for this is that the state can control the
level of the contributions that have to be paid out of the contributors’ wages.
The above mentioned time span will be the time for which we suggest dif-
ferent mixed strategies for the contributors. In Section 3 we will present our
modeling approach in a discrete-time framework while Section 4 is embed-
ded in a continuous-time setting.

To eliminate the explicit consideration of the evolution of wages and mor-
tality, we introduce a representative or a prototypical contributor (PC), i.e.
the average contributor, with an average age, an average salary and average
salary increases. This PC contributes an amount C0 – expressed in percent-
age of his salary – at time t = 0 into the PAYG. Let assume that the state
anticipates the deficit and it is known that the contributions that make the
PAYG system sustainable over the next T years are given by

C = (C1, ..., CT )

with
Cj > C0, j = 1, ..., T .

We assume that the state targets to transform the classical PAYG scheme
into a mixed pension scheme. For this, the state is formally taking over the
payment of the differences Cj − C0 for j = 1, ..., T . However, these pay-
ments represent some kind of a credit granted to the contributor, because,
as soon as the deficit occurs the PC has to invest some pre-specified amount
of money in a fund, in addition to the regular contribution of C0 to PAYG.
We are considering the same allocation for all individuals, i.e. for the PC.
Such a limited choice of different investment opportunities is in line with a
lot of current initiatives in the public pension sector that call for standard
products that are cost-efficient due to only limited possible choices.

A certain part of the return on fund investment will be used to repay the
debt amount of Cj − C0 in the (near) future. Once the deficit is paid, the
gains, if any, belong to the PC and could be used for instance for the re-
tirement phase. In contrast, if the investment is not enough to cover the
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deficit, the government will bear the risk of not full debt repayment in one
particular year.

Note in particular that the reduction of the PAYG contribution and the
possible gains of the PC will highly depend on the amount invested.

The following sections specify two types of investment strategies depending
on the amount invested and the time horizon for the debt repayment. We
calculate the probability of full payback of the debt, the expected loss of the
state and the expected gains of the PC. We also compare our results with
the direct payment of Cj to the PAYG scheme by the PC.
We will always act on some filtered space (Ω,A, (Ft)t≥0,P) where F is as-
sumed to be the right-continuous filtration generated by a given geometric
Brownian motion F .

3 Lump Sum Repayment in a Discrete-Time Set-
ting

In this section, we consider an annual fund investment approach where (an
agreed multiple of) the increase of the contribution paid by the PC is in-
vested for a year. Depending on the the actual way how the risk of a shortfall
is shared between PC and the state, we suggest two different models.

3.1 Variant A: Annual Payback

We assume that at time t = 0 it is agreed that the contribution to PAYG
of the PC is fixed to be C0 for the next T + 1 years. In return, the PC
invests an amount of α(Cj − C0) into a fund with value dynamics given by

Ft = F0e
µt+σWt

at time j = 1, ..., T for some α > 0. Then, at time j+1, the PC pays Cj−C0

to the state if
α(Cj − C0)eµ+σ(Wj+1−Wj) ≥ Cj − C0 .

If this is the case, then the remaining value of the fund position stays with
the PC and PC makes a gain of

Gj := (Cj − C0)
(
αeµ+σ(Wj+1−Wj) − 1

)+
.

Otherwise, the PC liquidates the fund position and pays

α(Cj − C0)eµ+σ(Wj+1−Wj)

to the state that in addition covers the amount of money needed for PAYG,

Lj := (Cj − C0) ·
(

1− αeµ+σ(Wj+1−Wj)
)+

.
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This procedure is repeated every year.2

It should be stated explicitly that in the second case above, for α > 1 the
PC realizes a loss compared to the payment of Cj to PAYG directly. Note
also the following relation between gain of the PC and loss of the state given
by

Cj − C0 − Lj = αeµ+σ(Wj+1−Wj) −Gj (1)

which can easily be seen by the fact that we either have Lj = 0 or Gj = 0
(or both are zero in the unlikely event of Cj − C0 = αeµ+σ(Wj+1−Wj)).

Certainly, the state wants to keep the probability of losses small, while the
whole procedure is only attractive for the PC if there is a possible gain at
least on the level of expectations. It is thus clear that the fund characteristics
play an important role. Therefore, we summarize some properties in the
following proposition.

Proposition 3.1
For a value of α > 0 and Cj > C0 > 0, we obtain:

a) The probability Pj that the full payment of Cj −C0 is made to the state
at time j + 1 is given by

Pj := P
[
αeµ+σ(Wj+1−Wj) ≥ 1

]
= Φ

(
µ+ ln(α)

σ

)
.

b) The expected loss E[Lj ] of the state at time j + 1 is given by

E[Lj ] = E
[
(Cj − C0)

(
1− αeµ+σ(Wj+1−Wj)

)+
]

= (Cj − C0)

{
Φ

(
−µ+ ln(α)

σ

)
− αeµ+σ2

2 Φ

(
−µ+ σ2 + ln(α)

σ

)}
.

c) The expected gain E[Gj ] of the PC at time j + 1 is given by

E[Gj ] = (Cj − C0)

{
αeµ+σ2

2 Φ

(
µ+ σ2 + ln(α)

σ

)
− Φ

(
µ+ ln(α)

σ

)}
.

Proof: Assertion a) is implied by the fact that Wj+1 − Wj is standard
normally distributed.

For Assertion b), the normal distribution of Wj+1 −Wj yields

E[Lj ] = (Cj − C0)

(
1√
2π

∫ −µ+ln(α)
σ

−∞
e−

y2

2 dy − α√
2π

∫ −µ+ln(α)
σ

−∞
eµ+σy− y

2

2 dy

)
= (Cj − C0)

{
Φ

(
−µ+ ln(α)

σ

)
− αeµ+σ2

2 Φ

(
−µ+ σ2 + ln(α)

σ

)}
.

2As the PC invests at time j - in line with the necessary increase of the PAYG contribution
- and pays back at time j + 1, the procedure also includes a credit for a duration of one
year.
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Assertion c) is then implied by relation (1) between Gj and Lj . �

Remark 3.2 (Risk for the PC)
By construction of the strategy, the PC can only make a loss in year j of

L
(PC)
j = (α− 1)(Cj − C0)

in the case of α > 1. Note that the loss equals a constant value, only its
occurrence is random. By Part a) of Proposition 3.1, the probability for
such a loss, its expected value and variance are given by

P
[
L

(PC)
j

]
= Φ

(
−µ+ ln(α)

σ

)
E[L

(PC)
j ] = (α− 1)(Cj − C0)Φ

(
−µ+ ln(α)

σ

)
Var[L(PC)

j ] = (α− 1)2(Cj − C0)2Φ

(
−µ+ ln(α)

σ

)
Φ

(
µ+ ln(α)

σ

)
Note that a high value of α reduces all those numbers, while a high volatility
σ of the fund tends to increase them. �

The probability of being able to fully pay back Cj −C0 to the state at time
j+1 is increasing in α. The same is true for the expected final fund position

of the PC given that min
{
Cj −C0;αeµ+σ(Wj+1−Wj)

}
has been already paid

to the state. However, a time horizon of just one year is very short. Consider
for instance the case of

α = 1 ,

i.e. one invests exactly the debt amount Cj−C0 at the beginning of year j+1
into the fund. Then, part a) of Proposition 3.1 implies that the probability
for obtaining Cj − C0 at time j is given by

P
[
(Cj − C0)eµ+σ(Wj+1−Wj) > Cj − C0

]
= Φ

(µ
σ

)
.

Note that for a fund with optimistic parameters µ = 0.04, σ = 0.2 this prob-
ability is approximately 58% which might be considered as not satisfactory
enough. In order to reduce the probability of an annual shortfall (i.e. no
full debt repayment by the PC) significantly, the state should require

α� 1 ,

i.e. the PC should contribute C0 plus a fund investment such that the
resulting sum is well-above the actually needed contribution of Cj at time
j. At the same time, only a strong requirement for a small probability of
shortfall will lead to building up a significant amount of money in a fund
for the PC, as shown in the following example.
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Example 3.3
We illustrate the issues raised above by looking at two settings of values for
the fund parameters:

a) A standard fund: µ = 0.04, σ = 0.2

In this setting, the probabilities for a full payment of C1 − C0 at time 1 as
a function of α, denoted by P1, are computed. Further, we also calculate
the expected loss for the state, E[L1], and the expected gain of the PC
after paying to the state, E[G1]. In addition we look at the following two
quantities:

E[B1] := E
[
(C1 − C0)

(
αeµ+σW1 − 1

)]
,

E[GA1 ] := E[G1]− (α− 1)(C1 − C0) .

E[B1] is the expected fund position after one year if always the full value
C1 − C0 has to be paid back by the PC. E[GA1 ] describes the expected gain
for the PC minus the additional investment of (α− 1)(C1−C0). The above
quantities for C0 = 1, C1 = 1.1 can be found in Table 1 below.

α 0.9 1 1.05 1.1 1.25 2 3

P1 0.37 0.58 0.67 0.75 0.91 > 0.99 1.00
E[L1] 0.01 0.005 0.004 0.003 0.001 < 10−4 < 10−4

E[G1] 0.006 0.0117 0.015 0.020 0.034 0.112 0.219
E[B1] -0.004 0.006 0.011 0.017 0.033 0.112 0.219
E[GA1 ] 0.0158 0.0117 0.0104 0.0095 0.0085 0.0124 0.0186

Table 1: The key quantities of the scheme as functions of α for C0 = 1,
C1 = 1.1.

While the first four rows in Table 1 show an obvious behaviour (i.e. the
full payback probability and the gains increase and the expected loss of the
state decreases with increasing α), it is actually the last row that should be
noticed. The expected differences between the net gains and the additionally
invested amount first decrease with increasing α and then increase for large
values of α. In particular, for values of 1 ≤ α ≤ 1.25 there is no real incentive
for PC to exceed α = 1. The reason for that is that, initially, E[G1] does not
grow fast enough with increases in α. There is an initially large benefit for
PC as the state takes over some significant investment risk via accepting an
expected loss of 5% per unit of money given as a credit. If the state accepts
an expected loss of 10% per unit of money in the case for α = 0.9 then PC
has already realised a sure gain of 1% plus a small expected net wealth after
paying back Cj−C0. In total, this leads to E[GA1 ] = 0.0158, i.e. an expected
gain of 15.8% compared to the payment of C1−C0 = 0.1 to PAYG directly.
However, such a (partially) safe gain can only be interpreted as a subsidy
granted by the state to motivate fund investment.

The effect of the state taking over the shortfall risk becomes insignificant
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with increasing values of α. Even more, for very large values of α the
probability that we end up with a zero fund position after paying back
vanishes, and the fund investment can unfold its full potential.

If the state required a probability for a full credit payback of 0.9, 0.95 or
0.99 then corresponding values of α are given by 1.24, 1.34 and 1.53. Thus,
to avoid a loss with a probability of 99%, the PC needs to invest 53% more
in the fund than when paying the increase in the contribution directly into
PAYG. On the positive side, the PC obtains an expected net fund wealth of
6.25% for additionally paying in 5.3% in our example

This is an example for illustrative purposes, however, we think that even if
α is (slightly) higher than 1, our framework, can be applicable in real world
as this is a multiple of a potential small value, i.e. difference in the value
of contributions. Let us consider, for example, an annual average salary of
25,000 and a contribution rate of 15% – which is in line with the average
contribution rate in Europe. If the contribution rate that makes the system
balanced is 16.5%, then the annual contributions needed are 4,125. One
possibility would be for the PC to immediately increase his contributions to
this new level. This would represent an annual increase of 375 with respect
to the contribution rate of 15%. The alternative that we propose is the
investment by the PC of a certain amount into a fund. If α = 1.25, the
PC would invest 469, which is 7.8 euros more per month compared to the
case of paying directly the deficit of the PAYG. After this investment, the
state, with a probability of 0.91, gets the full debt from the PC, i.e. 375
and the PC would get back, in expectation, 123. As the investment in the
fund is slightly higher than the amount strictly needed to balance the PAYG
scheme, i.e. 94, the positive difference for the PC with respect to covering
the PAYG debt directly is 29.

b) A very well-diversified fund: µ = 0.04, σ = 0.1

From Table 2, we can now realize that the probability of the full payment
P1 and the expected loss E[L1] are better for α ≥ 1 than in the case of the
fund with σ = 0.2. However, the expected net gains for the PC E[G1] are
slightly smaller. �

α 0.9 1 1.05 1.1 1.25 2 3

P1 0.26 0.66 0.81 0.91 0.96 0.99 0.996
E[L1] 0.007 0.002 0.001 4 · 10−4 10−4 < 10−4 < 10−4

E[G1] 0.002 0.007 0.011 0.015 0.020 0.026 0.031

Table 2: The probability for the full debt repayment P1, the expected loss
of the state E[L1] and the expected gain of the PC E[G1] as functions of α.

To summarise the above examples, it either needs a large value of α which
might not be feasible for all contributors or a longer time of investment
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before the credit is paid back to the state. We will look at the second
variant in Section 3.2.

We will here also have a quick look at a different variant of paying (back)
the difference Cj −C0 after the investment of α(Cj −C0). This variant will
be considered in detail in Section 4 in a continuous-time framework that
allows a more flexible version.

Let us therefore assume that the state agrees that the PC can keep at least
a certain return of up to b ≥ −1

(
i.e. an amount of (1 + b)α(Cj − C0)

)
at the end of the investment period. Whatever exceeds this - but does not
exceed Cj −C0, goes to the state. If, however, the surplus investment result
is less than Cj − C0 then the possibly remaining part of Cj − C0 will be
taken over by the state. Note that now the loss Lj of the state gets the
more complicated representation of

Lj := (Cj − C0) ·
(

1− α
(
eµ+σ(Wj+1−Wj) − (1 + b)

)+
)+

while relation (1) still stays valid. Further, from the form of Lj , we can
compute

P[Lj = 0] = Φ

(
µ− ln(1 + b+ 1

α)

σ

)
.

Hence, for b = 0 the probability of no loss for the state is bounded by Φ(µ/σ)
which might not be high enough and will even decrease for bigger values of
b. Further, a non-positive value of b can only be preferable for the PC in
the case of α < 1, but then the probability for a full debt repayment to the
state decreases.

The probability of the full repayment for 1-year investment and the standard
fund with µ = 0.04, σ = 0.2 are summarised in Table 3. The values obtained

α 0.8 0.9 1 1.25 2 10
b

0.02 <0.001 <0.001 <0.001 0.003 0.0291 0.357
0 <0.001 <0.001 <0.001 0.003 0.0338 0.391

-0.5 0.005 0.014 0.034 0.133 0.5793 0.997
-0.75 0.034 0.090 0.018 0.482 0.9493 1
-0.9 0.097 0.224 0.391 0.770 0.9971 1

-1 0.180 0.372 0.579 0.906 0.9999 1

Table 3: Probability for the full debt repayment as a function of α and b.

in Table 3 show some clear indications:

� Even in the case of b = −1, a high probability (i.e. one above 80%)
such that this investment result exceeds C1 − C0 is only obtained for
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the cases of α ≥ 1.25. In the latter case, the PC is better off by paying
the difference C1 − C0 directly to PAYG.

� For values of α < 1 the payback probabilities are far from being satis-
factory for the state.

Further, by noting that with a similar, but slightly longer computation as
in part b) of the proof of Proposition 3.1, we obtain

E[Lj ] = (Cj − C0)
[
Φ(W (u)) + α(1 + b)

(
Φ(W (u))− Φ(W (d))

)
−αeµ+0.5σ2

(Φ(W (u) + σ)− Φ(W (d) + σ))
]
,

where we have used the abbreviations of

W (u) =
ln(1 + b+ 1

α)− µ
σ

, W (d) =
ln(1 + b)− µ

σ
.

We then also obtain the expected gain E[Gj ] with the help of relation (1).

For our standard fund with µ = 0.04, σ = 0.2 we calculated the probability
of a full payback, the expected losses of the state and the expected gains of
the PC for the values of b = −0.5, 0 and large values of α = 2, 5, 10.

α 2 2 5 5 10 10
b -0.5 0 -0.5 0 -0.5 0

P1 0.58 0.03 0.98 0.24 0.997 0.39
E[L1] 0.011 0.078 0.0006 0.06 <0.0001 0.052
E[G1] 0.1233 0.1899 0.4315 0.4912 0.9619 0.9618

Table 4: The probability of full payback, the expected payment to the state
and the expected net fund value of the PC after (partial) payback as func-
tions of α and b.

Table 4 shows that only for the values with b = −0.5 (and α = 5, 10) the
probabilities for a full payback and the values of the expected losses are
acceptable for the state. The value of b = −0.5 is, however, difficult to
accept by the PC as it means for e.g. a value of α = 5 the state can still
claim the full amount of 0.1 even if the PC has lost 30% of the invested
amount of 0.5. Of course, the value of b = 0, which would at least prevent
the state from claiming money from the PC in all cases of an investment
loss, is something that the PC might expect. However, only in the case of
α = 10 (or α = 5) and b = −0.5 both parties should be able to live with the
results. A very low expected loss paired with a success probability of nearly
one would satisfy the state, while PC realizes an expected gain of 0.9619.
This means that the expected annual return of the PC on the investment of
1 = 10×0.1 is higher than 6% (note that C1−C0 has to be paid to the state
otherwise). Still, there remains the question if the PC can afford investing
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such a comparably higher amount of money and also wants to take the over
the investment risk.

One reason for the bad performance of this variant of paying back the credit
can be the fact that we are only able to pay back the surplus at the end of
the year. We will therefore in Section 4 consider a continuous-time model
where we pay back parts of the credit as soon as sufficiently high surpluses
have been realized.

3.2 Variant B: A granted credit

As a second approach, the state again pays the difference of Cj−C0 at times
j = 1, ..., T , where we assume that the values Cj are deterministic. However,
the state considers these payments as a credit with zero interest rate3 to the
PC. This construction allows the PC to invest money in a fund for a longer
time and delays the full payback to time T . The potential gains from the
fund investment are then used

� to pay back the credit and

� to build up money as reserves for the own future.

Thus, it remains to find the optimal additional amount of money, that the
PC invests into the fund, and the strategy to pay back the credits granted
by the state. As in Variant A, we consider the following strategy:

At time j − 1 the PC contributes C0 + α(Cj − C0) with α > 0, j = 1, ..., T .
C0 directly goes to PAYG while α(Cj −C0) is invested into the fund. Thus,
at time j the PC has a fund position Fj (before payment of the new contri-
bution), where

Fj := α

j∑
k=1

(
(Cj−k+1 − C0)eµk+σ(Wj+1−Wj−k+1)

)

E [Fj ] = α

j∑
k=1

(Cj−k+1 − C0)e(µ+σ2

2
)k

for j = 1, ..., T . In the special case of Cj = C̄ for all j = 1, ..., T , we have

E [Fj ] = α

j∑
k=1

(Cj−k+1 − C0)e(µ+ 1
2
σ2)k = α(C̄ − C0)eµ+ 1

2
σ2 1− e(µ+ 1

2
σ2)j

1− eµ+ 1
2
σ2

We assume that the full credit sum, defined as

Ctotal :=
T∑
j=1

(Cj − C0)

3This is a reasonable assumption given the current ultra low interest rate environment in
Europe.
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will be paid to the state at time T .

We thus arrive at

Lemma 3.4
For an α > 0 and the above investment strategy into the fund, we have:

a) In the case of payments of α(Cj − C0) at time j, j = 1, ..., T into the
fund, the credit can be fully paid back in expectation at time T if we choose

α = α∗ :=

∑T
j=1 (Cj − C0)∑T

j=1 (Cj − C0)e(µ+ 1
2
σ2)(T+1−j)

.

In the particular case of Cj = C̄ for all j = 1, ..., T , this simplifies to

α = α∗ = T
1

eµ+ 1
2
σ2

1− eµ+σ2

2

1− e(µ+ 1
2
σ2)T

.

b) The expected gain for the PC in nominal values by comparing the credit
sum

∑
(Cj − C0) with the invested amount α∗

∑
(Cj − C0) is strictly posi-

tive as we have µ+ σ2

2 > 0.

Proof: a) follows from the required equality between the sum of (expected)
payments by the state and E[FT ] which then has to be solved for α∗C0.
b) is obvious. �

In contrast to the one period setting of Variant A, we cannot easily calculate
the probability of a loss by the state or the expected net fund value for the
PC at time T . The reason is a well-known fact that the distribution of the
sum of log-normally distributed random variables is not explicitly known.
We therefore illustrate the performance of this strategy and its differences
to Variant A in the next section.

3.3 Comparison of Variant A and Variant B

As we do not have explicit distributional results for Variant B, we present
a numerical example where we choose T = 10 and also Cj = C̄ = 1.1 · C0.
We then simulate 10, 000 realisations of the fund performance and estimate
the probability of a shortfall/loss (i.e. the event of FT < T · (C̄ − C0)), the
expected loss for the state and the expected net wealth for the PC that
remains in the fund at time T . We again consider the two different fund
parameter sets already used for illustrating Variant A. We especially want
to compute (or more precisely, estimate via Monte Carlo simulation)

Pshortfall := P
[
FT ≤ T · (C̄ − C0)

]
= P [FT ≤ 1] ,

Eshortfall := E
[
(1− FT )+

]
,

Efinalnetfund := E
[
(FT − 1)+

]
.

13



For this, note first that in our setting, we can explicitly calculate

E[FT ] = α · 0.1 · eµ+ 1
2
σ2 e10(µ+ 1

2
σ2)

1− eµ+ 1
2
σ2

.

By the well known relation

E[X] = E[X+]− E[X−]

we can thus estimate/compute Efinalnetfund from E[FT ] and the estimate for
Etotalloss.

3.3.1 A standard fund: µ = 0.04, σ = 0.2.

Under our above assumptions on the fund parameters and C̄−C0 = 0.1·C0 =
0.1, T = 10 we obtain first:

α 1 1.05 1.1 1.15 1.2 1.25

Pshortfall 0.272 0.232 0.197 0.171 0.145 0.123
Eshortfall 0.054 0.045 0.036 0.030 0.024 0.020
Efinalnetfund 0.470 0.530 0.593 0.657 0.722 0.789

Table 5: Probability for a shortfall, expected shortfall, expected net wealth
as functions of α.

To see the time effect of investment one can e.g. compare the additional
total nominal payment of 0.25 with the net gain of 0.789 in the case of the
choice of α = 1.25. Of course, one should take interest rates into account.
However, in the current ultra low interest rate environment in Europe, using
nominal values is a good approximation. This is especially true in a country
such as Germany with negative interest rates for short term investments.

To compare the performance of Variant B with that of Variant A, we now
consider the corresponding values when we use

α = αA,90 ≈ 1.242 ,

the α that leads to a 90% security level for a full payment to the state at
each single payment time. It comes along with the probability of at least
one loss of 0.35 and a total expected loss of 0.0087. It is clear that this loss
probability is not comparable to those of Variant B. The break even value
αB such that the expected total loss of the state equals that of Variant A
is given by αB = 1.44. While it is comparably high, it leads to an expected
net fund wealth of 1.047 compared to the additional nominal payments of
0.44.
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α 1 1.05 1.1 1.15 1.2 1.25

Pshortfall 0.131 0.087 0.053 0.035 0.020 0.015
Eshortfall 0.012 0.007 0.004 0.002 0.001 0.001
Efinalnetfund 0.304 0.364 0.425 0.488 0.552 0.616

Table 6: Probability for a shortfall, expected shortfall, expected net wealth
as functions of α.

3.3.2 A very well diversified fund: µ = 0.04, σ = 0.1.

For this set of fund parameters we obtain: As in the case of Variant A the
loss figures now clearly improve while the net fund wealth performs slightly
weaker due to the small variance.

Again, we can compare

α = αA,90 ≈ 1.0925 ,

the alpha that leads to a 90% security level for a full payment to the state
at each single payment time with its counter part in Variant B that leads to
the same expected total loss of 0.004515. This time, the break even value
αB = 1.0927 is very close to αA,90. It leads to an expected net fund wealth
of 0.416 compared to the additional nominal payments of 0.0927.

4 Continuous Debt Repayment with Optimisation
Features

In this part of the paper, we assume the same credit scheme described in the
previous section. However, we consider a different set of strategies that can
be applied in order to repay the debt to the state. We assume that the state
requires the PC to share the profits from an investment continuously in time,
i.e. the PC has to transfer continuously in time any excess above some level
b (to be optimised) into a special bank account during a specified period. As
the continuous withdrawal procedure will be crucial for understanding the
whole following section, we give first an intuitive explanation of a discretised
withdrawal mechanism. Let ε > 0 and b > 0 be arbitrary but fixed. If
the return on investment (normalised to the initial value 1) hits the level
1 + b + ε, then ε is shifted to a special bank account. Subsequently, the
process re-starts at 1 + b, see Figure 1. Once the level 1 + b+ ε is attained
again, ε is shifted to the special account. This pattern is repeated until
we arrive at the chosen time horizon (for instance, 1 year, 10 years etc.).
The continuous withdrawal can be envisioned as the discretised withdrawal
procedure with ε converging to 0. Note that using processes as a geometric
Brownian motion, an Ornstein-Uhlenbeck or Cox-Ingersoll-Ross process to
model the investment will unavoidably lead to the change of path after the
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Figure 1: Return on investment with two hitting barriers: 1+b and 1+b+ε
and withdrawal of ε by hitting 1 + b+ ε.

withdrawal. All mentioned processes depend in their drift (and volatility)
on the current value of the process, see for instance, Borodin and Salminen
[3]. Hence, changing the current value through a withdrawal will change the
entire future evolution of the process. The discretisation approach will be
described mathematically in Lemma 4.2 below.

We propose the following credit scheme: once an increase in contribution
becomes necessary, the PC has the choice to pay the increase in contribution
or to invest in a pre-specified fund. Should the PC go for the second option,
the state contractually agrees to pay the difference between the old and the
new contributions in the following, say, 10 years. In return, the PC has to
invest a certain amount of money at the beginning of every year so that
following the continuous withdrawal mechanism described above at the end
of every year the debt to the state can be repaid and the PC can get some
positive return on investment.
Our objective is to maximise the amount of money remaining to the PC after
the debt repayment. The emphasis lies on the investment of the minimal
possible amount such that the probability that the debt can be fully repaid
to the state stays above some pre-specified level. Note that the PC carries
the investment risk where the state has the risk that the PC will not be able
to repay the debt. It means in particular that we allow for negative values
of the level b.
As before we model the price of the fund under consideration by a geometric
Brownian motion

Ft = F0e
µt+σWt .

We denote by Dt(b) the part of the gains, depending on the chosen barrier
b, that is transferred to the debt account and by Rt(b) the part remaining
to the PC for the time horizon 1 year unless otherwise specified.
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Remark 4.1
Let us clarify the relation between F (t), Dt(b) and Rt(b) if we assume the
above discretised withdrawal strategy: The fund starts with F0 = R0(b).
As long as the fund value does not exceed (1 + b + ε)F0, Ft and Rt(b) are
identical. Only at the time s1, when the normalised (divided by F0) fund
attains the value 1+b+ε for the first time, we shift ε ·F0 to the debt account
D. It is then directly cashed in by the state and reduces the PC’s debts, but
is formally kept in Dt(b). The remaining part Rs1(b) = (1 + b)F0 remains
invested in the fund until the next time s2 when the fund starting in s1 with
the initial value (1 + b)F0 arrives at (1 + b+ε)F0. Then again, we shift ε ·F0

to the debt account D and keep Rs2(b) = (1 + b)F0 in the fund afterwards.
Without the shifting we would have obtained:

Rs2(b) = F0 · eµs2+σWs2 = F0
(1 + b+ ε)2

1 + b

while with the shifting, we have

Rs2(b) +Ds2(b) = F0 · (1 + b+ 2ε)

which is smaller than (1 + b+ ε)2/(1 + b) > 0. Hence, we eliminate parts of
the potential fund investment return by shifting money to the debt account.
On the other hand, we keep the realised surplus for reducing the remaining
debt and therefore ensure that at least parts of the debt are already repaid.

�

Let now b ∈ [−1, 1] be arbitrary but fixed. If the return at time t ∈ [0, 1]
compared to the initial value F0

Ft − F0

F0
= eµt+σWt − 1

exceeds the level b, the excess
(
eµt+σWt−1−b

)
is transferred to the debt bank

account. Mathematically it means that the process {eµt+σWt} is downward-
reflected at 1 + b. Since under the logarithm the reflection property remains
preserved, we can consider the downward-reflection of {µt+σWt} at ln(1+b).
For a Brownian motion with drift we know that the reflected process, below
the level ln(1 + b), at time t is given by

µt+ σWt −
(

max
0≤s≤t

{µs+ σWs} − ln(1 + b)
)+

.

Therefore, transforming the downward-reflection back, gives the part re-
maining to the PC

Rt(b) := e
µt+σWt−

(
max
0≤s≤t

{µs+σWs}−ln(1+b)

)+

,

confer for details for instance [3, p. 77]. It remains to find the expression for
the debt part, denoted by Dt(b), to be accumulated on the special account.
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Lemma 4.2
Let b be arbitrary but fixed. For any time t ≥ 0 it holds

Dt(b) = (1 + b)
(

max
0≤s≤t

{µs+ σWs} − ln(1 + b)
)+

.

Proof: Recall first that Dt(b) describes the excess of the return from the
fund above the pre-specified boundary of 1 + b.
In order to prove our claim we will stick to the following roadmap:

� We discretise the withdrawal procedure and calculate the correspond-
ing amount transferred to the debt account until time t.

� Then, we calculate Dt(b) as the limit of the discretised models.

Consider an ε > 0, define for n ≥ 1

T1 := inf{s ≥ 0 : eµs+σWs = 1 + b+ ε}
= inf{s ≥ 0 : µs+ σWs = ln(1 + b+ ε)},

Tn+1 := inf{s ≥ Tn : eln(1+b)+µ(s−Tn)+σ
(
Ws−WTn

)
= 1 + b+ ε}

= inf
{
s ≥ Tn : ln(1 + b) + µ(s− Tn) + σ

(
Ws −WTn

)
= ln(1 + b+ ε)

}
and let

Nt(ε) := sup{n ≥ 1 : Tn ≤ t} .
The stopping times Tn describe the times when the return on investment
hits the level 1 + b + ε with a subsequent withdrawal of ε. The random
variable Nt(ε) describes the number of withdrawals until a fixed time t for
a given ε > 0. Note that Nt(ε) only jumps at the stopping times Tn with
Nt(ε) = n for t ∈ [Tn, Tn+1). It means, we approximate the procedure of
skimming off the return of the considered geometric Brownian motion by
a process, depending on ε, where we first wait until eµs+σWs hits the level
1+b+ε and pay ε immediately into the debt account. Subsequently, we wait
until the considered geometric Brownian motion (now with the start value
1+ b) again hits the level 1+ b+ε and transfer ε into the debt account. The
amount transferred into the debt account up to time t is given by εNt(ε).
The process after the withdrawals, denote it by F εt , fulfils F εt = eµt+σWt for
t ∈ [0, T1) and

F εT1 = 1 + b =
( 1 + b

1 + b+ ε

)
eµT1+σWT1 =

( 1 + b

1 + b+ ε

)NT1 (ε)
eµT1+σWT1 .

Then, for t ∈ (T1, T2) using NT1(ε) = Nt(ε) = 1 one gets

F εt = F εT1e
µ(t−T1)+σ(Wt−WT1

) =
( 1 + b

1 + b+ ε

)
eµT1+σWT1eµ(t−T1)+σ(Wt−WT1

)

=
( 1 + b

1 + b+ ε

)Nt(ε)
eµt+σWt .
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Iterating the above steps, yields for the process F εt :

F εt =
( 1 + b

1 + b+ ε

)Nt(ε)
eµt+σWt = eNt(ε) ln

(
1+b

1+b+ε

)
eµt+σWt .

The structure of Tn as hitting times of an arithmetic Brownian motion yields,
confer for instance [13, p. 95]:

Nt(ε) = sup

{
n ∈ N : max

0≤s≤t
{µs+ σWs} − ln(1 + b) ≥ n · ln

(1 + b+ ε

1 + b

)}
.

Therefore, we can conclude

lim
ε→0

Nt(ε)ε = (1 + b)
(

max
0≤s≤t

{µs+ σWs} − ln(1 + b)
)+

a.s.

Furthermore, it holds

lim
ε→0

Nt(ε) ln
( 1 + b

1 + b+ ε

)
= lim

ε→0
Nt(ε)ε ·

ln(1 + b)− ln(1 + b+ ε)

ε

= −
(

max
0≤s≤t

{µs+ σWs} − ln(1 + b)
)+

a.s.

This means in particular that the process F εt converges to Rt(b) a.s. as
ε→ 0, implying that εNt(ε) converges to Dt(b) a.s. for ε→ 0. Therefore:

Dt(b) = lim
ε→0

εNt(ε) = (1 + b)
(

max
0≤s≤t

{µs+ σWs} − ln(1 + b)
)+

.

�

Like in the previous section, we assume that the initial investment is given
by F0 = α(C1 − C0) with some positive α, and require for every period

P
[
F0Dt(b) ≥ C1 − C0

]
≥ p ⇔ P

[
Dt(b) ≥

1

α

]
≥ p, (2)

for some given p ∈ [0, 1]. This credibility condition ensures that the level b
is not chosen too high and the debt to the state will be paid with at least
probability p · 100%.
Assume the percentage p is fixed contractually, then we can find the optimal
pair (b, α) such that the expected loss of the PC is minimised. Let

V (b) : = E
[
R1(b)

]
= E

[
e
µ+σW1−

(
max

0≤s≤1
{µs+σWs}−ln(1+b)

)+]
,

U(b) : = E[D1(b)] = (1 + b)E
[(

max
0≤s≤1

{µs+ σWs} − ln(1 + b)
)+]

,

i.e. V (b) is the expected return on investment of the PC and U(b) is the
expected value of the accumulated debt account.

19



In order to proceed with our derivations and also for numerical calculations
we will need to consider the density function of max

0≤s≤t
{µs + σWs}. This

density, g(y; t), is given by

g(y; t, µ) =
2√

2πtσ
e−

(y−µt)2

2σ2t − e
2µy

σ2 µ

σ2
Erfc

(y + µt√
2tσ

)
, (3)

with Erfc(x) = 2√
π

∫∞
x e−z

2
dz, confer for instance Borodin & Salminen, p.

250 formula 1.1.4 for the distribution function of max
0≤s≤1

{µs+ σWs}.

For simplicity we write g(y;µ) if t = 1.

The normalised loss (the spent amount exceeding the required payments of
C1 − C0, i.e. the real loss divided by C1 − C0) is given by

L(b, α) := α− αV (b)− 1→ min! (4)

It is clear that V (b) is strictly increasing in b, meaning that the maximum of
V (b), and the minimum of the loss, is attained at the maximal b, allowed by
the credibility condition (2). However, this maximal b will again depend on
α. Thus, we have to specify the set of admissible pairs (b, α) before we can
solve the optimisation problem (4). Note first that the PC does not have an
infinite amount of money on her/his disposal. Therefore, we have to restrict
the set of admissible α to some reasonable values and introduce a liquidity
restriction boundary α∗ > 0 with 0 < α ≤ α∗.

Lemma 4.3
Assume p in (2) is fixed, p̃ is given by∫ ∞

p̃
g(y; t, µ) dy = p

and α∗ <∞ is the liquidity restriction boundary.
If α∗ < e1−p̃ then the PC should prefer to pay the required increase in
contribution directly into the PAYG account.
If α∗ ≥ e1−p̃, the pair minimising the loss (4) is (b∗, α∗), where b∗ is implicitly
given by

1

(1 + b∗)(p̃− ln(1 + b∗))
= α∗

Proof: Consider the credibility condition (2). Using the density (3), we get

P
[
Dt(b) ≥

1

α

]
= P

[
(1 + b)

(
max
0≤s≤t

{µs+ σWs} − ln(1 + b)
)+
≥ 1

α

]
= P

[
max
0≤s≤t

{µs+ σWs} ≥
1

(1 + b)α
+ ln(1 + b)

]
=

∫ ∞
ln(1+b)+ 1

α(1+b)

g(y; t, µ) dy .
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Since g(y; t, µ) > 0 for all y ∈ R+, for every p ∈ [0, 1] there is a unique lower
integral boundary p̃ ∈ R+ such that∫ ∞

p̃
g(y; t, µ) dy = p .

Assume p in (2) is fixed and p̃ is the corresponding lower integral boundary.
Then the set of admissible pairs (b, α) is described by the inequality

p̃ ≥ ln(1 + b) +
1

α(1 + b)
,

which is equivalent to α ≥ 1
(1+b)(p̃−ln(1+b)) =: ∆(b). Further, it holds

∆′(b)

{
≤ 0 : ep̃−1 − 1 ≥ b,
> 0 : ep̃−1 − 1 < b,

i.e. ∆(b) attains its global minimum at b = ep̃−1−1 > −1 with ∆(ep̃−1−1) =
e−p̃+1.
Since our target is to minimise the loss defined in (4), and it is done by
the biggest allowed value of b, we can restrict our considerations to the set
b ≥ ep̃−1 − 1, the area where ∆(b) is strictly increasing.
Noting that ep̃ − 1 > ep̃−1 − 1 and ∆(ep̃ − 1) = ∞, we define the set of
allowed pairs (b, α) to be

ep̃−1 − 1 ≤ b < ep̃ − 1 and α ≥ 1

(1 + b)(p̃− ln(1 + b))
.

Note that if α∗ < ∆(ep̃−1 − 1) = e−p̃+1, then the set of admissible pairs is
empty.
If α∗ ≥ e−p̃+1, there is a unique b∗ ∈ [ep̃−1−1, ep̃−1) such that ∆(b∗) = α∗.
And the set of admissible pairs shrinks to

ep̃−1 − 1 ≤ b < b∗ and
1

(1 + b)(p̃− ln(1 + b))
≤ α ≤ α∗ .

�

The above lemma ensures that if we require α∗ ≥ e1−p̃, the minimal loss
will be attained at (b∗, α∗). If L(b∗, α∗) is bigger than zero, this is a clear
indicator that the funding strategy is not working, and paying the increase
in contribution immediately into the PAYG account is more preferable for
the PC.

Note that if the accumulated amount exceeds the debt then the PC has an
additional gain. Therefore, the entire expected normalised loss function Le
is defined as follows:

Le(b, α) := α− αV (b)− 1− αU(b) + 1 = α− αV (b)− αU(b) .
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Lemma 4.4
The function Le is decreasing in b, if α > 0.

Proof: W.l.o.g we assume α = 1. Using (3), we get the following represen-
tation

V (b) + U(b) = eµ+σ2

2

∫ ln(1+b)

0
g(y;µ+ σ2) dy

+ (1 + b)eµ+σ2

2

∫ ∞
ln(1+b)

e−yg(y;µ+ σ2) dy

+ (1 + b)

∫ ∞
ln(1+b)

(y − ln(1 + b))g(y;µ) dy .

Deriving with respect to b and using ez − 1 ≥ z yields

V ′(b) + U ′(b) = E
[
eµ+σW1−M11I[M1>ln(1+b)]

]
+ E

[(
M1 − ln(1 + b)− 1

)
1I[M1>ln(1+b)]

]
≥ E

[(
µ+ σW1 − ln(1 + b)

)
1I[M1>ln(1+b)]

]
.

In order to calculate the expectation in the last line above, we use the
Markovian property of the Brownian motion W . Define additionally τb :=
inf{t ≥ 0 : µt+ σWt = ln(1 + b)}, then

E
[(
µ+ σW1 − ln(1 + b)

)
1I[M1>ln(1+b)]

]
= E

[(
µτb + σWτ − ln(1 + b) + µ(1− τb) + σ

(
W1 −Wτb

))
1I[τb<1]

]
= E

[(
µ(1− τb) + σW̃1−τb

)
1I[τb<1]

]
= µE[(1− τb)1I[τb<1]] > 0 ,

where W̃ is an independent copy of W . �

This means in particular that Le attains its minimum at the biggest admis-
sible b. Of course, one might minimise the function Le instead of L and
redefine the set of admissible barriers in (2) accordingly. However, we keep
the credibility condition (2) and consider the additional (positive) expecta-
tion αU(b)− 1 as a buffer similar to the net profit condition in risk theory,
confer for instance [10, p. 130], where the expected premia should be strictly
bigger than the expected loss in order to avoid the almost sure ruin. In our
model, this means that we keep αE[D1(b)] > C1 − C0 in order to make the
repayment of the debt more probable even if the probability p in (2) is rel-
atively small.

Since it does not make sense for the PC to prefer the funding scheme to
paying the increase in contribution directly if the expected loss is positive,
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we formalise the following (normalised by dividing through C1 − C0) prof-
itability condition

α− αV (b) = α− αE

[
e
µ+σW1−

(
max

0≤s≤1
{µs+σWs}−ln(1+b)

)+]
< 1 . (5)

The above condition means that the normalised loss of the PC α − αV (b)
should be smaller than the amount of 1 that could have been paid directly
into the PAYG. Recall that in order to create a buffer for the state in the
sense that the debt will be fully repaid in expectation, we do not take into
account the possible gain if the debt account exceeds the C1 − C0.
In order to rewrite the above conditions in terms of integrals, we introduce a

new measure Q by the following Radon-Nicodym density dQ
dP = eσW1−σ

2

2 and

W̃s = Ws− σs a standard Brownian motion under Q. Setting for simplicity
M1 := max

0≤s≤1
{µs+ σWs}, we can rewrite the expected return on investment

for the PC as follows using the density introduced in (3)

V (b) = E
[
eµ+σW1e−(M1−ln(1+b))+

]
= eµ+σ2

2 EQ
[
e−(M1−ln(1+b))+

]
= eµ+σ2

2

{∫ ln(1+b)

0
g(y;µ+ σ2) dy + (1 + b)

∫ ∞
ln(1+b)

e−yg(y;µ+ σ2) dy
}
.

Remark 4.5
Consider the derivatives of V (b):

V ′(b) = eµ+σ2

2

∫ ∞
ln(1+b)

e−yg(y;µ+ σ2) dy

= E
[
e
µ+σW1− max

0≤s≤1
{µs+σWs}

1I[ max
0≤s≤1

{µs+σWs}≥ln(1+b)]

]
> 0,

V ′′(b) = − eµ+σ2

2

(1 + b)2
· g(ln(1 + b);µ+ σ2) < 0 .

By maximising just the expected value, we do not take into account the
variance and consequently the risk for return on investment to stay consid-
erably below the expected value. One might consider the following target
functional instead of V (b).

Ṽ (b) := E
[
eµ+σW1−(M1−ln(1+b))+

]
− λE

[
e2µ+2σW1−2(M1−ln(1+b))+

]
→ max!

with some weight λ > 0. Using change of measure technique mentioned
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Figure 2: Expected 1-year return on investment V (b) and modified func-
tional Ṽ (b) with λ = 0.85.

above, the derivative fulfils

Ṽ ′(b) = E
[{
eµ+σW1−M1 − 2λ(1 + b)e2µ+2σW1−2M1

}
1I[M1>ln(1+b)]

]
= eµ+σ2

2

∫ ∞
ln(1+b)

e−yg(y;µ+ σ2) dy

− 2λ(1 + b)e2µ+2σ2

∫ ∞
ln(1+b)

e−2yg(y;µ+ 2σ2) dy

Since µ+σW1 ≤M1 a.s. we can conclude that eµ+σW1−M1 ≥ e2µ+2σW1−2M1

a.s., meaning that for 2λ(1 + b) ≤ 1 the first derivative Ṽ ′(b) stays positive,
meaning that the value Ṽ (b) is increasing. However, the global behaviour
of Ṽ ′(b) is highly sensitive to the choice of λ - a variable which cannot be
clearly justified from the economical point of view and creates in this way
another source of uncertainty and an opportunity for manipulations.
Also, one should not forget that the derivative Ṽ ′(b) can not be considered
globally, but just on the interval allowed by the credibility condition (2) and
the boundary α∗ defined in Remark (4.3). In Figure 2 we see the functions
V (b) (left) and Ṽ (b) (right) for µ = 0.04, σ = 0.2 and λ = 0.85. Depending
on the b∗ the maximum of Ṽ (b) will be attained at different values of b.
Also, the curve Ṽ (b) changes its form depending on λ. �

In the examples below we demonstrate how the credibility and the prof-
itability conditions work for a fund with realistic parameters.

Example 4.6
Assume like above µ = 0.04, σ = 0.2 and α∗ = 10.
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In the table below, we compute several values of P
[
D1(b) ≥ 1

α

]
for different

pairs (b, α).

α 1 2 3 4 5
b

−0.2 7.7 · 10−7 0.06553328 0.40025361 0.71208305 0.91564864
−0.1 1.32 · 10−6 0.03766247 0.23837807 0.45738957 0.62378926
−0.05 1.48 · 10−6 0.02776680 0.17865039 0.35389069 0.49496449

0 1.53 · 10−6 0.02014832 0.13156264 0.26808831 0.38351917
0.05 1.49 · 10−6 0.01441359 0.09534295 0.19919441 0.29075048

Table 7: P
[
D1(b) ≥ 1

α

]
for different values of α and b for 1 year time horizon.

We see that if the state requires a relatively high p, the values of α are high
and b becomes negative.

• Choose now p = 0.7, i.e. the credibility condition is P
[
D1(b) ≥ 1

α

]
≥ 0.7.

Then: p̃ = 0.093078333, α∗ should be bigger than 2.4766867, the biggest
possible b leading to α =∞ equals 0.0975477 and b∗ = −0.00768. It holds

L(b∗, α∗) = α∗ − α∗V (b∗)− 1 = 0.327634 > 0 .

Thus, if the state requires p = 0.7, the PC should prefer to pay the increase
in contribution C1 − C0 into the PAYG her-/himself and not to use the
funding possibility.

• If the state requires P
[
D1(b) ≥ 1

α

]
≥ 0.5 then p̃ = 0.15750112. The

minimal possible α∗ preventing the set of admissible pairs (b, α) to be non-
empty equals e−p̃+1 = 2.3221625. The biggest possible b leading to α = ∞
equals 0.1705821 and the maximal admissible b corresponding to α∗ = 10 is
given by b∗ = 0.06574. The expected loss is then

L(b∗, α∗) = −0.2603 < 0 .

What does this result mean for the PC? The function V (b) (expected return
on investment for the PC) is given in Figure 2, left picture. If b < 0.2030 then
the expected return on investment will be smaller than 100%, meaning that
in expectation the PC will not get her/his full investments back. However,
the primary target of adding a funding component is to reduce the increase
in contribution C1 − C0 and not to entirely avoid any payments. Below we
demonstrate how this might work in practice.
In Germany, it is planned to increase the monthly contribution from 18.6%
to 19.5% starting from the year 2024. Assume, for an average contributor
the monthly increase will approximately amount to 20 Euro, i.e. 240 Euro
per year. Thus, investing 240 ·α∗ = 2, 400 Euro into a fund with parameters
given like above, the PC will pay the debt of 240 Euro with probability
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Figure 3: Sets of (b, α) fulfilling the credibility (2) (dark grey areas) and
profitability (5) (light grey areas) conditions for p = 0.7 (left) and p = 0.5
(right).

50% and, compared to the direct payment to the PAYG, have a gain of
240 · 0.2603 ≈ 62.5 Euro. This means, the PC will pay in expectation
240 − 62.5 = 177.5 instead of 240 Euro per year. The expected loss of the
state is then given by

(C1 − C0)− (C1 − C0)α∗ · U(b∗) = −75.6,

meaning that in expectation the PC gets back an additional amount of 75.6.
Thus, the PC has an expected gain of 62.5 + 75.6 = 138.1 compared to
paying the increase of contribution immediately. And the state gets the
debt in expectation fully back.

In Figure 3 we plotted the sets of (b, α) fulfilling the credibility (2) and the
profitability (5) conditions.
On the left picture of Figure 3 we see the area with (b, α) such that V (b, α) ≥
0.7 (dark grey) and the area where L(b, α) ≤ 0 (light grey). It is obvious
that these two sets are disjoint, meaning that there is no combination of
(b, α) for α∗ = 10 such that the debt is repaid with at least probability 70%
and simultaneously the PC’s loss is less than C1−C0. In the right picture in
Figure 3, we see that the set of pairs (b, α) fulfilling the credibility condition
with p = 0.5 (dark grey) and simultaneously the profitability condition (light
grey) is given by the narrow black area lying between the dark and light grey
ones. �

4.1 A 10-years investment period

It is clear that investing for a longer period brings higher returns in ex-
pectation. Therefore, in this section, the state still pays the increase in
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Figure 4: Sets of (b, α) fulfilling the credibility (2) (dark grey area) and
profitability (5) (light grey area) conditions for 10 years and p = 0.7.

contributions, but requires its money back after a period of 10 years. The
PC invests some amount of money for 10 years in a pre-specified fund. At
the end of the investment period, the PC has to repay the debt and will
hopefully get some gain.
The invested amount should be a multiple, α, from the total anticipated
increase of contributions over the next ten years. Considering the numbers
given in Example 4.6, the forecast of increase in contribution over the next
10 years amounts to 2, 400 Euro. Like in the previous section, we require the
credibility condition (2) and the profitability condition (5) while the time
interval changes from 1 to 10.

Example 4.7
Assume again µ = 0.04 and σ = 0.2. In the Table 8 below we calculate
P[D10(b) ≥ 1

α ] for different pars of (b, α). The difference to a 1 year in-
vestment is considerable. For instance, in order to keep the probability of
repayment above 70% it suffices to set α = 3 and b = 0.05. Therefore, we
set α∗ = 3, i.e. the highest possible α the state is willing to adopt is equal
to 3.

α 1 2 3 4 5
b

−0.2 0.2546296 0.7276311 0.8842143 0.9508487 0.9860533
−0.1 0.2671423 0.6884180 0.8334411 0.8984640 0.9341821
−0.05 0.2698034 0.6680602 0.8076430 0.8715453 0.9071802

0 0.2706137 0.6474819 0.7817909 0.8444029 0.8797703
0.05 0.2699046 0.6268430 0.7560225 0.8172035 0.8521476

Table 8: P
[
D10(b) ≥ 1

α

]
for different values of α and b for 10 years time

horizon.
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Figure 4 showcases the pairs (b, α) allowed by the credibility condition (2)
(dark grey area), the pairs (b, α) where the profitability condition is fulfilled
(light grey area) and the intersection area (black). It is clear that the 10-
year investment should be preferred if the financial situation allows. �

5 Comparison of the Two Investment Types

This section compares the two strategies introduced above in Sections 3 and
4: continuous withdrawal and a lump sum repayment at the end of the pe-
riod.
For that purpose, we look at the loss functions corresponding to each strat-
egy in dependence on time. Let again α∗ be the liquidity restriction. Define

Ld(t) := α∗ − α∗E[eµt+σWt ] + 1,

Lc(t, b) := α∗ − α∗E
[
e
µt+σWt−

(
max
0≤s≤t

{µs+σWs}−ln(1+b)
)+]
− 1 .

i.e. Ld is the normalised loss of the PC in the model with the lump sum
debt repayment and Lc is the normalised loss in the continuous withdrawal
model. Both functions depend now on the time interval under consideration.
Let further

Λ(t, b) := Lc(t, b)− Ld(t)

= α∗E[eµt+σWt ]− α∗E
[
e
µt+σWt−

(
max
0≤s≤t

{µs+σWs}−ln(1+b)
)+]
− 2 .

It is easy to see that Λ is strictly increasing in t and strictly decreasing in
b. Because

Λ(0, b) =

{
−2 : b ≥ 0

−α∗b− 2 : b < 0,

and lim
t→∞

Λ(t, b) =∞ we conclude that for every b with b ≥ − 2
α∗ there is an

t such that L(t, b) = 0. For b < − 2
α∗ the function Λ stays positive meaning

that the continuous withdrawal strategy is definitely not optimal.
Thus, for b ≥ − 2

α∗ we can conclude that by implicit function theorem there
is a curve β : [0,∞) → [− 2

α∗ ∨ −1, 1], β′ > 0 such that Λ(t, β(t)) ≡ 0,
Λ(t, b) > 0 for b < β(t) and Λ(t, b) < 0 for b > β(t).
The choice of the investment strategy will depend on the parameters of the
underlying fund, the liquidity restriction α∗, the investment time horizon t
and credibility condition (2):

� If Λ(t, b∗) > 0, choose the lump sum repayment strategy;

� If Λ(t, b∗) ≤ 0 choose the continuous withdrawal strategy;

� If Ld(t),Lc(t, b
∗) ≥ 0 - pay directly into the PAYG system.
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Assuming again µ = 0.04, σ = 0.2, α∗ = 10, t = 1 and p = 0.5 we get
b∗ = 0.06574, confer Example 4.6. It holds that

Ld(1) = 10− 10eµ+σ2

2 + 1 = 0.3816 > 0,

Lc(1, b
∗) = −0.2603 < 0 .

Therefore, for one year time horizon and α∗ = 10 one should prefer the
continuous withdrawal.
For the time horizon of 10 years one gets for the same parameters b∗ = 0.8707

Ld(10) = 10− 10e(µ+σ2

2
)10 + 1 = −7.2211 < 0,

Lc(10, b∗) = −3.5291 < 0,

Λ(10, b∗) = 3.6921 > 0,

meaning that one should definitely prefer the lump sum repayment strategy.
This can be explained by the fact that by withdrawing money from the
investment we miss possible gains. Even taking into account the amount
on the debt account exceeding the actual debt will not make the continuous
withdrawal more attractive:

Lc(10, b∗)− α∗E[D10(b∗)] + 1 = −7.088 > −7.2211 .

In the table below we sum up the optimal choice of a strategy for different
values of α and time horizons t in years. Let C denote the continuous
withdrawal and LS the lump sum debt repayment strategy. If it is optimal
not to use any of the funding strategies but just to pay the increase in
contribution into the PAYG, we write PAYG.

α 1 2 3 4 5 6 7 8 9 10
t

1 PAYG PAYG PAYG C C C C C C C
2 PAYG PAYG C C C C C C C C
4 PAYG C C C C C C LS LS LS
6 PAYG C C C LS LS LS LS LS LS
8 PAYG C C LS LS LS LS LS LS LS

10 PAYG C LS LS LS LS LS LS LS LS
20 LS LS LS LS LS LS LS LS LS LS
40 LS LS LS LS LS LS LS LS LS LS

Table 9: The optimal strategy for different values of α and time horizons t.

The probability of default for the state, i.e. the probability that the state
will not get the full debt back, equals 50% by definition of the optimal b∗.
For the discrete repayment case we sum up the results in Table (10) below for
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the parameters given above. For each pair (t, α) we calculate the probability
of default P[αeµt+σWt < 1 + α], meaning that the state will get less than
C1 − C0 after the PC gets his invested money back.

α 1 2 3 4 5 6 7 8 9 10
t

1 0.99 0.96 0.89 0.82 0.76 0.72 0.68 0.65 0.63 0.61
2 0.98 0.87 0.77 0.69 0.64 0.60 0.58 0.55 0.54 0.52
4 0.91 0.73 0.63 0.56 0.52 0.49 0.47 0.46 0.45 0.44
6 0.82 0.63 0.54 0.49 0.45 0.43 0.41 0.40 0.39 0.38
8 0.75 0.56 0.48 0.43 0.40 0.38 0.37 0.36 0.35 0.34

10 0.68 0.50 0.43 0.39 0.37 0.35 0.34 0.33 0.32 0.31
20 0.45 0.33 0.28 0.26 0.25 0.24 0.23 0.22 0.21 0.21
40 0.24 0.17 0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.12

Table 10: P[αeµt+σWt < 1 + α] for different values of α and time horizons t.

Again, in Table 10 we see that for short-term periods it is more profitable
to use the continuous withdrawal strategy or PAYG.

6 Conclusions

In the last decade, most OECD countries have enacted pension reforms
of their traditional defined-benefit pay-as-you-go (PAYG) schemes. PAYG
requires the balance between income from contributions and pension expen-
diture where the current contributions finance the current pensions. The
most common reforms have been the changes in the level of benefits (some-
times linked to a longevity index, such as the life expectancy) and increases
in the retirement age.
At the same time, there are some countries that combine the PAYG scheme
and a defined contribution funding part within the mandatory pension sys-
tem. These systems have been advocated, particularly by the World Bank,
as a practical way to the higher financial market returns with the cost of
a scheme with a greater funded component. In this line, the present paper
proposes an alternative with the contributors investing an extra amount of
money into a fund, so that part of the investment together with the returns
can restore the financial sustainability of the PAYG scheme. The contributor
faces the investment risk while the state bears the risk that the returns on
investment do not cover the deficit in contributions for the period analysed
However, in the case of extra returns after debt repayment, the contributor
keeps the gains. On the other hand, the loss of the state, in the worst case,
will amount to the increase in contribution needed to restore the financial
sustainability of the system while the contributor would normally invest and
risk a much bigger multiple of this amount.
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Two different debt repayment types depending on the amount invested and
the timing of the repayment to the state are analysed for a prototypical
contributor. The first set of strategies features the repayment of the debt
at the end of a pre-specified period as a lump sum. In several examples,
we calculate the probability of full payback of the debt, expected loss of the
state and the expected value of the gains for the individual. In particular,
we compare, for different invested amounts, the case of the repayment after
a year versus a repayment after 10 years. As expected, the loss probability
decreases when the amount invested and the investment horizon increase.
As an optimisation approach, we study the case when the state requires the
individual to transfer any excess above a particular level (barrier) of return –
to be optimised – continuously in time as a debt repayment (second type of
strategies). Comparing different barriers, we show that the optimal strategy
is the biggest possible barrier such that the debt to the state is repaid with
a certain pre-specified probability. In an example, we compare the continu-
ous withdrawal and the lump sum repayment strategies with the possibility
to pay the increase in contribution directly into the PAYG system. If the
period for the repayment is long enough, the optimal strategy tends to be a
lump sum debt repayment. Directly paying into the PAYG is the optimal
strategy if the investment period is short and the amount invested is rela-
tively small.
The model presented in this paper could be implemented as an alternative
to both the PAYG and mixed pension systems as we are not advocating a
particular strategy but rather offer possibilities allowing to reflect the actual
market and societal situation. Additionally, our model could raise the public
awareness of the financial sustainability of the PAYG and promote interest
in pension basic principles as the expected gains for the individuals depend
on demographic, economic and financial factors.4

Finally, based on the methodology presented in this paper, at least three
important directions for future research can be identified. First, it would
be interesting to explore the smoothed and affordable contributions to be
invested by the individual to make the model more applicable in the real
world. Another direction would be to study the risk sharing between the
government and the individuals under different scenarios by using for in-
stance Value at Risk and Expected Shortfall risk measures. Finally, one can
analyse a possible structure and asset allocation problems of the fund that
might be used in the real life.

4Currently, there is empirical evidence that most individuals have very limited under-
standing about the core elements of social insurance systems and on the key variables
that define the amount of their pensions (Mitchell [16], Lusardi and Mitchell [14], Bucher-
Koenen and Lusardi [5] amongst others).
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