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Abstract

Pension providers are currently running into trouble mainly due to the ultra-low
interest rates and the guarantees associated to some pension benefits. In this paper,
we aim to reduce the pension volatility and provide adequate pension levels – with
no guarantees – through a new pension design. Under this design, the individual’s
premium is split into an individual and a collective account, both invested in funds.
When the return from the individual fund exceeds a predefined corridor, a certain
number of units is transferred to or from the collective account. In this way, the
volatility of the individual fund is smoothed. By controlling the corridor width, we
maximise the total accumulated capital at retirement.
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1 Introduction

Pensions are in constant flux as insurers need to reinvent their products in an environ-
ment with continuous increases in longevity and ultra-low interest rates. At the same
time employees desire security in retirement in the sense that they could get the re-
tirement income they expect due to their past and current contributions into a pension
scheme.
With-profits contracts (or participating policies in the US) were historically a significant
part of the UK life insurance product palette. With-profits contract generally consists of
a benefit if the individual dies within the term (term insurance) and a lump sum if the
policyholder survives within the term (pure endowment). This allows the policyholder
to build up funds for a specific purpose such as an income in retirement. The important
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feature in this type of contracts is that additional periodic return can be given to the
policyholder. In order to remove the short-term volatility of policyholder’s payout value
different smoothing mechanisms are applied in practice, see Goecke [7] and Guillén et
al. [8]. A with-profits investment can either be conventional or unitised with the latter
buying units in the with-profits fund. In the past, with-profits contracts often contained
guarantees, like for example minimum guaranteed return, which allowed just for low-risk
investments resulting in a lower expected value of the final accumulated amount.1

In order to meet consumer’s needs in terms of stability after retirement, the dynamic
hybrid life insurance offers guarantees achieved by a periodical rebalancing process be-
tween three funds (the policy reserves, a guarantee fund and and equity fund), Bohnert
et al. [3]. However, the investments are still made on low and average-risk products.
In the case of Constant Proportion Portfolio Insurance (CPPI) strategies, the investor
chooses a multiplier and a floor below which he does not want the value of the portfolio
to fall. The aim of the CPPI design is to keep the exposure to equities as a constant
multiple of the floor. In a bull market the CPPI strategies perform better than buy-
and-hold strategies. However, when the markets are falling in price CPPIs are not good
strategies, doing it also relatively poor in a flat market, see Perold and William [11].
Currently, under the ultra-low interest rate economic environment, which significantly
reduces the long-term benefits, the insurers try to avoid guarantees associated to pension
products. Over the past few decades, in occupational pensions, traditional defined ben-
efit (DB) plans are gradually losing their dominance and there has been a shift towards
defined contribution (DC) pensions, where the investment risk is completely shifted from
the insurer to the clients. Under a DC scheme the level of the pension is uncertain and,
in general, without higher contribution rates will not produce decent benefits.

For workplace and private pension plans, collective defined contribution (CDC) schemes
offer a middle ground between DB and DC plans. Under CDC, contributions are pooled
and managed on a collective basis, and members own a proportional share of the aggre-
gated collective investment rather than individuals share of the underlying assets as for
the case of individual DC.2 The plan also has a target pension amount — rather than a
contractual guarantee-based on a long term and mixed risk investment plan. The way
CDC adjusts the level of current and prospective pensions mean that there is an element
of cushioning (smoothing) of volatility and much better long-term protection as the risk
is shared by the members. This is because investment risk is adjusted over time and
longevity risk is pooled across the membership. However, CDC entails some significant
challenges particularly regarding the communication of the benefit calculation to mem-
bers3, complex governance decision for trustees and high running costs that are likely to

1For an overview of new life insurance products, see Gatzert and Schmeiser [6].
2Collective pension schemes are also the dominant form of saving for retirement in countries such as

the Netherlands and Norway – countries recognised as having among the best pension systems in the
world according the Melbourne Mercer Global Pension Index (2019). See Bovenberg [4], Hoevenaars
and Ponds [9], Ponds and Van Riel [12] and Binsbergen et al. [1], amongst others. In the UK, the
Pension Scheme Act (2015) sets up a new legislate framework for private pensions encouraging shared
risk pension schemes and collective benefits.

3Members have no control over the attribution of losses and surpluses.
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make it suitable only for larger schemes.

There is a clear need of security in retirement, i.e. satisfactory and stable pension ben-
efits but at the same time the pension providers do not want to offer guarantees under
the current low-interest rate environment. In this paper, the traditional guarantees are
replaced with low volatility so that a more return-oriented approach is followed and,
therefore, higher expected returns are obtained for the policyholder.
With the aim of reducing the pension volatility and providing satisfactory pension levels,
in this paper, we analyse a new pension design (first described in Boado et al. [2]) in the
accumulation phase where the individual’s premium is split into two accounts: individ-
ual account and collective account. Similar to unitised with-profit products, the premia
in both accounts are invested in funds (the same or different ones). Depending on the
performance of the individual fund, some units are transferred from or to the collective
fund. In this way, the collective account acts as a smoothing mechanism for individual
accounts. At retirement age, the individual receives a lifelong pension (or a lump sum
payment) linked to her individual account and a portion of the collective account ac-
cording to a so-called redistribution index, that is, a weight that identifies the part of the
collective account belonging to a client according to her premium payment evolution.
This paper builds upon Boado-Penas et al. [2] and addresses the mathematical aspects
to determine the optimal corridor for the exchange of units between the individual and
collective accounts so that the final accumulated capital at retirement age is maximised.
In January 2020, the aforementioned pension design has been reportedly adapted by Die
Mobiliar, a Swiss insurance company, see [10]. Given its very recent market authorisa-
tion no studies have been conducted to determine the optimal corridor to maximise the
first pension amount or the total accumulated capital at retirement age. In the present
paper, we aim to address the latter problem.

Following this introduction, the next section of the paper describes the proposed pen-
sion model in the accumulation phase. Section 3 describes the mathematical model of
the product and defines the target functional to maximise. Depending on the chosen
help/gain-sharing procedures the optimal strategy for individual accounts has a different
structure. First, we analyse a relatively simple case when the collective fund can never
be empty, which corresponds to the full guarantee case. Second, we assume that it is
not possible to get any help from the collective account if the total number of help units
required by individual accounts exceeds the number of units in the collective account.
Section 4 concludes and makes suggestions for further research.

2 The Model

This section presents the mathematical formulation to determine the optimal corridor
for the exchange of units between the individual and the collective account so that the
total saved amount for the individual at retirement age is maximised. As optimisation
criteria, we discuss the reasonability and mathematically feasibility of the optimal mean
and optimal mean-variance.
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For simplicity, we assume that the individual and collective accounts hold shares from
the same fund whose price per share Ht is modelled by a Geometric Brownian motion,
i.e.

Ht = ex+µt+σWt , t ≥ 0

with W being a standard Brownian motion and ex the initial value of the fund, and the
return of the fund is expressed as

ρt :=
Ht

Ht−1
− 1 .

We denote by k and −k the corridor boundaries of the individual fund, and k ∈ [0, 1].
The returns exceeding the upper corridor boundary are partially distributed from the
individual account to the collective account while the losses (negative returns falling out
the lower corridor boundary) are partially compensated from the collective account.

Let denote by V j
t = ηjtHt the value of the j-th individual account at time t where ηjt is

the number of shares that belongs to the j-th individual at time t.

The value of of the collective account at time t is given by Ct = θtHt where θt denotes
the number of shares at time t in the collective account. Note that the individual 1-step
return from time t− 1 to t, without readjustments of the number of shares in the time
interval [t− 1, t], is given by

ηjt−1Ht

ηjt−1Ht−1

− 1 = ρt,

i.e. the individuals have the same return as the fund as long as their number of shares
is not changed.
The mathematical formulation of the with-profit procedure is as follows for some 1 ≤
a ≤ b:

� If ρt > k, then we say that the fund over-performed and a fraction 1
b (b ≥ 1) of the

surplus is transferred from the individual to the collective account

1

b

(
Ht −Ht−1(1 + k)

)
ηt−1 =

1

b
Vt−1

( Ht

Ht−1
− 1− k

)
=

1

b
Vt−1

(
ρt − k

)
,

i.e. one transfers 1
b

(
1 − Ht−1

Ht
(1 + k)

)
ηt−1 units of the fund into the collective

account.

� If ρt < −k, then we say that the fund under-performed and in this case the
individual account creates a claim for the collective account and gets

1

a

(
Ht−1(1− k)−Ht

)
ηt−1 =

1

a
Vt−1

(
1− k − Ht

Ht−1

)
=

1

a
Vt−1

(
− k − ρt

)
,

i.e 1
a

(
Ht−1

Ht
(1 − k) − 1

)
ηt−1 units will be transferred into the individual account,

where a ∈ [1, b].
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Hence, the over- and under-performances will be less severe as one gets compensated
for under-performance and shares the gains in case of an over-performance. From an
individual point it is desirable that b > a, i.e. relatively less shares are transferred from
the individual account in case of over-performance than shares are transferred into the
individual account in case of under-performance. It is clear that, compared to the case
with no exchange mechanism between individual and collective account, the realised
volatility will be reduced. Note that the value k = 0 means that the exchange mech-
anism is used at each time step with non-zero return, i.e. growth and shrinking of the
individual account is linearly dampened by the amounts 1

b ,
1
a respectively. The other

extreme value k = 1 means that the fund has to grow/shrink by more than 100% per
time step for the exchange mechanism to be triggered. Since shrinking by more than
100% is not possible (100% shrinking is already ruin) this means that k = 1 has only
an effect on very extreme growth — which we believe is neglectable for practical use.
Theoretically, one could also allow k ∈ (1,∞), where k = ∞ would simply turn off the
exchange mechanism.
The exchange mechanism described above faces a problem if the collective account is
plundered by individual accounts too often. It would mean that (some) individual ac-
counts are not profitable and need a continuous support. For this reason, we restrict the
choice of a barrier to those k ∈ [0, 1] where the collective account does not loose money
in expectation. This leads to the following profitability condition:

Profitability condition: The set of admissible k ∈ [0, 1] is given by those k fulfilling

E
[1

a

(
1− k − Ht

Ht−1

)+
− 1

b

( Ht

Ht−1
− 1− k

)+]
≤ 0 . (1)

This can be easily reformulated as:

1

a
E
[(

1− k − Ht

Ht−1

)+
] ≤ 1

b
E
[( Ht

Ht−1
− 1− k

)+]
.

The idea of profitability is not new. For instance, in ruin theory, the net profit condition,
that states that the expected total loss should be strictly smaller than the expected
earnings from premia payments, is required.4

At the end of the accumulation phase, at the retirement point, the total saved amount
will consist of two parts: the total saved amount from the individual account and a part
from the collective account.

3 Maximisation of the Total Saved Capital

From our model setup it is clear that the total accumulated capital will depend on
the transactions between the individual and the collective accounts as explained in the
previous section. Therefore, the way the transactions are performed will impact the

4See Dickson [5].
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optimisation procedures. In this section we consider three scenarios.

First, we assume that the collective account always has enough units to cover all claims
from the individual account. This means, in particular, that the insurance product
we consider offers a guarantee in the sense that if the real collective account becomes
empty or does not have a sufficient number of units to cover the drawdowns of individual
accounts – a third party (the state or the employer) pays the deficit by investing into
the collective account.

In the second scenario, in case of an insufficient number of units in the collective account
to cover the individual claims, no units at all are transferred from the collective fund.

Third, we use the so-called redistribution index J , to be explained in Section 3.3 in order
to specify the number of units that can be transferred to an individual in case of a deficit
in the collective account.

3.1 The collective fund is never empty

In this section, we seek to maximise the expected total saved amount at the retirement
point5, given that the collective account is never empty. It means that the insurance
company promises to provide a sufficient coverage for individual accounts if needed.
This case can be seen as a pension product with guarantees. The product described
in the previous sections provides some stability and better returns than the traditional
products with guarantees.
Following the Markovian structure of the fund, the expected saved capital in a single
period can be optimised independently from the past.
In order to find the optimal choice of the corridor boundary kt for the period [t−1, t], we
will make use of a recursive backward search, starting our considerations in the period
[T − 1, T ].
The wealth in the individual account of a policyholder V , in the case we refer to a
representative individual, consists of the part γ ∈ [0, 1] of the premia πind paid into
the individual accounts (the proportion 1 − γ of the premia is paid into the collective
account, the investment returns, and the amount transferred to or from the collective
account.

Vt = γπind + ηt−1Ht − 1I[ρt>kt]
1

b
Vt−1

(
ρt − kt

)
+ 1I[ρt<−kt]

1

a
Vt−1

(
− kt − ρt

)
. (2)

The wealth of the collective fund is described by its investment returns, the part 1−γ of
all the premia πall, and the gains or losses from the transactions with all the individual
accounts

Ct = (1− γ)πall + θt−1Ht +
∑
j

{
1I

[ρt>k
j
t ]

1

b
V j
t−1

(
ρt − kjt

)
+ 1I

[ρt<−kjt ]
1

a
V j
t−1

(
kjt + ρt

)}
,

5The monetary amounts (the premia paid) are transformed into fund shares almost immediately after
the payment. Therefore, the money being invested into the fund is automatically discounted – not by
an interest rate, but by the value of the fund serving as a benchmark. It means, the present value of the
premia is represented by the value of the fund.
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Note that we first use θt−1, i.e. the number of shares in the collective account from the
time t− 1. Only after the unit exchanges and premium payments, the number of shares
will be adjusted to θt.

For an individual, it is desirable to maximise the wealth of their individual account at
the retirement point, which would imply a higher value of the initial pension. Clearly,
high expectation on the value of the saved wealth with a strong negative skewness is
not desirable and it is much more preferable to have low down-side risk. While the
“goodness” of the wealth at retirement can be measured in various ways (e.g. mean-
variance optimisation, mean-semivariance optimisation or utility maximisation) we offer
an analysis based on mean-“realised volatility” optimisation later on. This is related
to mean-variance optimisation but not the same6. We return to the more simple mean
maximisation which leads to following optimisation criterion:

A(k1, . . . , kT ) := E
[
VT
]

(3)

which is to be maximised over all possible choices of corridor boundaries k1, . . . , kT at
every point of time for every individual7 where the corridor boundary kt is decided at
time t− 1, i.e. Ft−1-measurable.
Due to the simplifying assumption that the collective account does not ruin, the choices
for the corridor boundaries are not influenced by the choices for other individuals. In
order to show this we define the function

Ψ1(k) : = E
[
ρT −

1

b
(ρT − k)+ +

1

a
(−ρT − k)+

]
= E

[VT − VT−1 − γπind

VT−1

]
(4)

for k ∈ [0, 1]. Note that the distribution of the return ρt does not depend on the
time-point t due to homogeneity assumptions of the underlying fund. Consequently, the
time-point T in the definition of Ψ1 can be replaced by any time-point t = 1, . . . , T while
Ψ1 stays the same. We make an observation regarding the maximum of Ψ1 first.

Lemma 3.1
Define

Ξ(k) := E
[
ρt +

1

a

(
− ρt − k

)+
− 1

b

(
ρt − k

)+]
, (5)

then the maximum of Ξ is attained either at k = 1 or at the minimal k allowed by the
profitability condition. If the profitability condition is not assumed, then the maximum
is attained in either 0 or 1.

6Note that realised volatility can be calculated from a single path whereas variance estimation requires
several scenarios to be meaningful.

7The optimal corridor boundaries will be chosen by the insurance company for the individuals and
not by the individuals themselves.
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Proof: Let f denote the density of the random variable HT
HT−1

, which is given by

f(y) =
1√

2πyσ
e−

(ln(y)−µ)2

2σ2 . (6)

because H is a geometric Brownian motion. The derivatives of Ξ are given by

Ξ′(k) = −1

a

∫ 1−k

0
f(y) dy +

1

b

∫ ∞
1+k

f(y) dy,

Ξ′′(k) =
1

a
f(1− k)− 1

b
f(1 + k) .

therefore

Ξ′(1) =
1

b

∫ ∞
2

f(y) dy > 0,

Ξ′′(0) =
(1

a
− 1

b

)
f(1) ≥ 0,

Ξ′′(1) = −1

b
f(2) < 0,

where the second inequality holds because 1 ≤ a ≤ b. Continuity of Ξ′′ yields that the
set {k ∈ [0, 1] : Ξ′′(k) = 0} is non-empty and closed. For k0 ∈ [0, 1] with Ξ′′(k0) = 0 we
find that 1

af(1− k0) = 1
bf(1 + k0) and, hence, we have

Ξ′′′(k0) =
f(1− k0)

aσ2(1− k0)(1 + k0)

[
2σ2 − 2µ+ (1 + k0) ln(1− k0) + (1− k0) ln(1 + k0)

]
.

The expression in quadratic brackets B(k) := [2σ2−2µ+(1+k) ln(1−k)+(1−k) ln(1+k)]
above is strictly decreasing in k, converging to −∞ if k approaches 1, and has at most
one zero point. We show that there is k0 ∈ [0, 1] such that Ξ′′ is positive on [0, k0] and
negative on [k0, 1].
Case 1: B has no zero in [0, 1]. Then B(k) < 0 for any k ∈ [0, 1] and Ξ′′ is strictly

decreasing near any of its zeros and, hence, has exactly one zero k0 ∈ [0, 1]. Consequently,
Ξ′′ is positive on [0, k0] and negative on [k0, 1].
Case 2: B has a unique zero k̄ ∈ [0, 1]. For any zero k1 of Ξ′′ with k1 < k̄ we find that

Ξ′′ is strictly increasing near k1 and, hence, k1 = 0. Since Xi′′(0) ≥ 0 and Ξ′′(1) < 0
there must be a zero k0 of Ξ′′ in [k̄, 1] and 0 is the only possible zero strictly before k̄.
If k0 = k̄ is the only such zero, then Ξ′′ is of the desired shape. Hence, we may assume
that k0 > k̄. Then we have Ξ′′′(k0) < 0 and, hence Ξ′′ is strictly decreasing near k0

which implies that there is at most one such zero and Ξ′′ must be strictly positive on
(k̄, k0] and, hence, has the desired shape.
Thus, we have that Ξ′′ is positive on [0, k0] and negative on [k0, 1] for some k0 ∈ [0, 1].
Consequently, Ξ′ attains its maximum in k0, Ξ′ is increasing on [0, k0] and decreasing on
[k0, 1]. Since Ξ′(1) > 0 we find that Ξ′ has at most one zero k1 ∈ [0, k0). Consequently,
either Ξ is decreasing on [0, k1] and increasing on [k1, 1] or Ξ is increasing on [0, 1]. The
claim follows. �
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Proposition 3.2
Let k∗ ∈ [kmin, 1] be the unique maximum of the function Ψ1, where kmin is the smallest
value for k allowed by the profitability condition (1).8

Then the optimal choice for the corridor boundary is given by k∗, which is time- and
contract-independent in the sense that k∗ will be optimal at any t and for any contract.
Moreover, it holds either k∗ = kmin or k∗ = 1.

Proof: We have for A defined in (3)

A(k1, . . . , kT ) = E[V (T )] =
T∑
t=1

E[∆Vt]

where ∆Xt := Xt−Xt−1 for any process X and t ≥ 1. We will see that there is a choice
of corridor boundaries which maximises each summand and, hence, maximises the sum.
Rearranging the terms, we get

Vt − Vt−1 = ∆Vt = γπind + Vt−1
Vt − Vt−1 − γπind

Vt−1

which yields by the tower property and the definition of Ψ1 in (4):

E[∆Vt] = γπind + E
[
Vt−1E

[
Vt − Vt−1 − γπind

Vt−1

∣∣∣Ft−1

]]
= γπind + E [Vt−1Ψ1(kt)]

for any t = 1, . . . , T . The later equality holds true due to the iid property of the returns.
Since Vt−1 is positive, we find that the maximiser k0 of Ψ1 is the optimal choice for kt
when maximising E[∆Vt]. Thus, we have

sup
k1,...,kT

E[∆Vt] = γπind + Ψ1(k0) sup
k1,...,kt−1

E [Vt−1] .

Consequently, we find that kt = k0 is the optimal choice. Lemma 3.1 yields that k0 ∈
{0, 1}. �

As we have seen in the proof above, by looking at the terms depending on k it is sufficient
to maximise

M1(k) := E
[1

a

(
1− k − HT

HT−1

)+
− 1

b

( HT

HT−1
− 1− k

)+]
. (7)

As our target is to smooth the evolution of individual portfolios we need some kind of
penalty for high volatility in order to obtain a maximum. Such a penalty function can
be the expected realised volatility of the fund. Here, we use the relative realised variance
which means we optimise

A(k1, . . . , kT ) := E[VT ]− αE

[
T∑
t=1

1

Vt−1
(Vt − Vt−1 − γπind)2

]
8Note that with k = 1 the profitability condition is always met and, hence, kmin ≤ 1.
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for some risk-aversion α > 0 where we optimise the corridor boundaries k1, . . . , kT at
every point of time. For α the insurance company may choose the desired proportion
between the mean and the realised volatility.9

We observe the following identity

Vt − Vt−1 − γπind

Vt−1
= ρt +

1

a

(
− ρt − k

)+
− 1

b

(
ρt − k

)+
,

and define equivalently to Ψ1 given in (4):

Ψ2(k) := E
[(Vt − Vt−1 − γπind

Vt−1

)2]
,

for any k ∈ [0, 1] which allow to simplify the optimisation problem.

Lemma 3.3
It holds

A(k1, . . . , kT ) =
T∑
t=1

E
[
Vt−1

(
Ψ1(kt)− αΨ2(kt)

)]
for any choice of corridor boundaries for the times 1, ...T : k1, . . . , kT . In particular, it is
optimal to choose k1 such that the expression

Ψ1(k1)− αΨ2(k1)

is maximised and to let then k1 = ... = kT for all individuals.

Proof: We have

A(k1, . . . , kT ) = E
[ T∑
t=1

∆Vt

]
− αE

[
T∑
t=1

1

Vt−1
(Vt − Vt−1 − γπind)2

]

=
T∑
t=1

E

[
Vt−1

{
E
[
Vt − Vt−1 − γπind

Vt−1

∣∣∣∣Ft−1

]

− αVt−1E
[(

Vt − Vt−1 − γπind

Vt−1

)2 ∣∣∣∣Ft−1

]}
+ γπind

]

=
T∑
t=1

(
E
[
Vt−1

(
Ψ1(kt)− αΨ2(kt)

)]
+ γπind

)
.

This shows that an optimal choice for kT is a maximum of the function Ψ1 − αΨ2. A
simple induction shows that k1 = · · · = kT with the above choice of k1 is optimal. �

9We would like to note that the realised volatility is easily observed from the data while other risk
measures such as the variance can only be obtained if something like “independent copies of the same
experiment” are at hand. However, real data usually provides only a single path.
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Figure 1: The function M2(k) for σ = 0.092367, µ = 0.06, α = 2, a = 2 and b = 4
yielding M2(0) = M2(0.1897). The profitability condition (1) is fulfilled on [0, 1].

From the preceding lemma we know that the optimal choice of corridor boundary k is
the maximiser of the following (time-independent) functional:

M2(k) := Ψ1(k)− αΨ2(k)

=

{
E
[
ρT +

1

a

(
− ρT − k

)+
− 1

b

(
ρT − k

)+]
− αE

[(
ρT +

1

a

(
− ρT − k

)+
− 1

b

(
ρT − k

)+)2]}
,

Remark 3.4
The function Ψ2 is strictly increasing. Lemma 3.1 shows that Ψ1 is first decreasing
until reaching its minimum and increasing thereafter. Consequently, Ψ1 − αΨ2 is first
decreasing and may start to increase at a later time but this cannot be before the
minimum of Ψ1. Thus, the maximum of Ψ1 − αΨ2 as a function on [0, 1] is either
attained in 0 or after the minimum of Ψ1.
It might happen, confer Figure 1, that the maximum of Ψ1 − αΨ2 cannot be uniquely
defined, i.e. the set argmax{Ψ1−αΨ2} contains at least two elements, say k1 < k2. Recall
that maximising the value of an individual account corresponds to the maximisation of
the function M1 defined in (7) and leads to a bang bang strategy. Since, the individual
accounts yield the main basis for the calculation of the initial pension, we choose k1 if
M1 is decreasing and k2 if M1 is increasing in order to optimise the value of individual
accounts.

Example 3.5
Let us assume the following parameters: a = 2 and b = 4. In Figures 2, 3, 4 we use the
following parameter sets:
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Figure 2: M2(k) (left picture) and profitability condition (right picture) for µ = 0.045,
σ = 0.06 and α = 3.5.

Figure 3: M2(k) (left picture) and profitability condition (right picture) for µ = 0.045,
σ = 0.2 and α = 0.5.

Figure 4: M2(k) (left picture) and profitability condition (right picture) for µ = 0.01,
σ = 0.4 and α = 0.5.
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� Figure 2: µ = 0.045, σ = 0.06 and α = 3.5.
The maximum of M2(k) is attained at k = 0.09785. The profitability condition
(1) is fulfilled for all k ∈ [0, 1].
The existence of a unique maximum is due to the fact that the volatility is quite low
compared to the return. But on the other hand, the penalising factor α increases
the risk awareness.

� Figure 3: µ = 0.045, σ = 0.2 and α = 0.5.
For this set of parameters, the function M2(k) attains its maximum at k = 0. The
volatility of 20% is too high for the given return. It is optimal to get help from the
collective account continuously (and to share the gains continuously), i.e. k = 0,
as the evolution of the fund seem to be not very optimistic.
The right picture in Figure 3 represents the profitability condition and indicates
that all k ∈ [0, 1] are admissible.

� Figure 4: µ = 0.01, σ = 0.4 and α = 0.5.
In this third case, the volatility even increases to 40%. The maximum ofM2 is again
attained at k = 0. However, the profitability condition allows just k ∈ [0.0664, 1]
as we can see in the right picture. Therefore, one would take k = 6.64% as the
optimal barrier parameter.

�

3.2 No help if the collective account does not have sufficient number
of units

In this section, we assume that in the case that the collective account does not have
enough units in order to cover all claims at a particular point in time, no single claim
will be paid, i.e. the exchange mechanism to help the individual accounts is void for that
time point. The evolution of the wealth for an individual j is given by

V j
t = γπind + ηt−1Ht −

1

b
V j
t−1

(
ρt − kj

)+

+
1

a
V j
t−1

(
− ρt − kj

)+
1I[
θt−1(1+ρt)≥ 1

a

n∑
i=1

ηit−1

(
−ki−ρt

)+] ,
where n is the total number of the contracts in the insurance pool, k1, ..., kn and
η1
t−1, ..., η

n
t−1 are the corridor boundaries and the number of shares in the individual

accounts at that time respectively.
Note that here we index the corridor boundaries by individuals rather by time but new
thresholds can be chosen dynamically at discrete time points. The individual account
under consideration is indexed by j. On the left hand side of the indicator we find 1/a
times the value of the collective account before any units are transferred and on the right
hand-side the total volume of all individual losses exceeding the individual thresholds.
If the left hand side in the indicator is not bigger, then there is insufficient wealth to
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cover for the corresponding part of the individual excess losses. In that case, no one gets
any help at all to prevent the collective account to become negative.
Our target is to optimise the expected return minus the relative realised quadratic vari-
ation for each individual, i.e. for each individual we aim at optimising

E[V j
t ]− αE

[
T∑
t=1

1

V j
t−1

(V j
t − V

j
t−1 − γπind)2

]
.

The problem here is the cross-dependence among all individuals. One possibility could
be that all individuals use the same barrier, chosen by the insurance company. We make
a precise error analysis in the sense that we single out how much an individual can
improve and show that this depends only on the fraction of its wealth compared to the
collective wealth, which in a large community should be rather small.
We try to find a common choice of barriers such that no individual has an improved
target value if all barriers are increased or decreased a bit.
Our main result of this section, Theorem 3.7 below, states that it is optimal to choose
the same barrier for all individuals and dynamically increase the barriers if the amount
in the collective account is relatively low compared to the total wealth of all individual
accounts. We would like to stress that we use the same risk aversion level α for all
individuals. This fact leads to the same corridor boundary for all individuals, i.e. all
individuals are treated the same. We believe that it is impossible to have a fair risk-
sharing agreement respecting different individual risk aversion levels.
Following the same arguments as in the previous sections we can see that it is optimal
to optimise at each time step separately, i.e. at time t for each individual j we need to
optimise

E[U jt − α(U jt )2]

where

U jt = ρt −
1

b
(ρt − kj)+ +

1

a

(
−kj − ρt

)+
1I[
θt−1(1+ρt)>

1
a

n∑
i=1

ηit−1

(
−ki−ρt

)+]
and k1, . . . , kn are to be chosen Ft−1-measurable in [kmin, 1] where kmin is the minimal
allowed value by the profitability condition. Our target criterion implies that an optimal
choice of corridor boundary kj is either the minimal allowed value kmin, the maximal
possible value 1 or it satisfies

∂kjE[U jt − α(U jt )2] = 0.

Remark 3.6
If a (possibly non-optimal) choice of thresholds has been made, then the indicator, as a
function of ρt is decreasing and, hence, there is some constant z∗(k1, . . . , kn) such that

1I[
θt−1(1+ρt)≥ 1

a

n∑
i=1

ηit−1

(
−ki−ρt

)+] = 1I[ρt≥z∗(k1,...,kn)].
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Also we have

z∗(k1, . . . , kn) = −
aθt−1 +

∑
i∈I η

i
t−1k

i

aθt−1 +
∑

i∈I η
i
t−1

∈ [−1, 0]

I :=

{
j = 1, . . . , n : aθt−1(1− kj)−

n∑
i=1

ηjt−1(kj − ki)+ ≥ 0

}

Note that z∗ is Lipschitz-continuous and its absolutely continuous derivative is given by

∂kjz
∗(k1, . . . , kn) =

−ηjt−11I{j∈I}

aθt−1 +
∑

i∈I η
i
t−1

.

In the particular case that all ki are equal we find I = {1, . . . , n} and, hence, the following
simplifications

z∗(k1, . . . , k1) = −
aθt−1 +

∑n
i=1 η

i
t−1k

1

aθt−1 +
∑n

i=1 η
i
t−1

,

∂kjz
∗(k1, . . . , k1) =

−ηjt−1

aθt−1 +
∑n

i=1 η
i
t−1

.

This reveals that if the same barrier k is chosen for all individuals and if the j-th
individual has negligible amount compared to the total amount of all other individuals
plus the collective amount, then the ∂kj -derivative is negligible as well.

We can now formulate the main result of this section. Basically, we try to optimise the
choice of k under the constraint that all kj have to be equal. This does not allow to
optimise for every individual but we quantify that each individual cannot improve by
much if every individual has a small wealth in the scheme compared to the total wealth
of the scheme.

Theorem 3.7
Define z(k) := −aθt−1+k

∑n
i=1 η

i
t−1

aθt−1+
∑n
i=1 η

i
t−1

for k ∈ [0, 1] and

N(c, k) := E[h(c, k)− αh(c, k)]

where h(c, k) := ρt − 1
b (ρt − k)+ + 1

a(−k − ρt)+1I{ρt>c} for k ∈ [0, 1] and c ∈ [−1, 0]. For
a given value of c ∈ [−1, 0] we denote the maximiser of N(c, . . . ) by k(c).
Assume that there is k̄ ∈ [0, 1] such that k̄ = k(z(k̄)).
Then choosing the barrier k, for each individual at time t − 1 is near to the optimal
in the sense that changing the barrier kj for the j-th individual does not improve its
performance by more than

‖ρt‖∞
(1/a+ α)ηjt−1

aθt−1 +
∑n

i=1 η
i
t−1

where ‖ρt‖∞ denotes the maximum of the continuous density of ρt.
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Proof: We choose the barriers ki = k̄ for any other individual i 6= j. For the j-th
individual we are supposed to maximise the function

E[U jt − α(U jt )2]

over the possible values of kj ∈ [0, 1] and its maximiser is denoted by k̄j . We simply
write z∗(kj) when we mean z∗(k1, . . . , kn) as a function of kj and the other ki = k̄.
Define c := z(k̄) = z∗(k̄). k̄ is the maximiser of the function N(c, ·) and

|N(c, kj)− E[U jt − α(U jt )2]|

≤ E
[

1

a
1I{ρt<−kj ,ρt∈[c,z∗]} + α(|U tj |+ |N(c, kj)|)1

a
1I{ρt<−kj ,ρt∈[c,z∗(k̄j)]}

]
.

Since U,N are bounded by 1 on {ρt < 0} we find

|N(c, kj)− E[U jt − α(U jt )2]| ≤ (1/a+ α)P (ρt ∈ [c, z∗(k̄j)]).

Remark 3.6 yields |c− z∗(k̄j)| ≤ |k̄j − k̄| ηjt−1

aθt−1+
∑n
i=1 η

i
t−1
≤ ηjt−1

aθt−1+
∑n
i=1 η

i
t−1

and the result

follows. �

The theorem suggests a simple algorithm to find a nearly optimal choice, namely to
choose a sequence k̄n and cn recursively via k̄0 = 1, c0 = 0 (or any other starting values)
and define recursively

cn+1 := z(k̄n),

k̄n+1 := k(cn+1)

for any n ∈ N. The value cn is the threshold where it is expected that such a downfall
of the underlying fund makes it impossible to cover all the losses from the individual
accounts and k̄n the barrier chosen for all the individuals.10

3.3 Using a redistribution index if the collective account does not have
sufficient number of units

Another possibility to handle the situation of insufficient number of units in the collective
account is to use the so-called redistribution index.

At the retirement point T , every new pensioner gets not only the capital from their
individual account but also a proportion from the collective account. This proportion is
determined via the redistribution index which we denote by J jT−1 for the j-th contract.

The time T − 1 indicates that J jT−1 is determined at time T − 1 to avoid arbitrage.

10Also, using the mean field game theory, where each individual has contributed an actually negligible
amount compared to the whole collective, optimisation of the barrier in this particular case is roughly
the same as ignoring the possibility of the collective fund to become empty. There, due to the fact that
the value functions for all individuals are equal, the optimality can only be attained by choosing the
same barrier.
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The index is updated during the accumulation phase when premia payments are made
and is constant otherwise, which means that it is discrete in nature and develops over
time, i.e. at any time t one can determine J jt .

The redistribution index can be also used in order to determine the number of units to
be transferred into an individual account in case of under-performance if the collective
account does not have enough units to cover all occurred claims. This is critical as there
is a lack of analysis in both academic research and regulation with respect to the strategy
the insurance company should adopt in this case. We intend to fill in this gap through
some possible scenarios in this section.
If the collective account does not have enough units, the policies with a deficit can, for
instance, claim a number of units corresponding to their redistribution index. It means
the individual account has the following value

Vt = γπind + ηt−1Ht −
1

b
Vt−1

( Ht

Ht−1
− 1− k

)+

+
1

a
Vt−1

(
1− k − Ht

Ht−1

)+
1I[
aθt−1

Ht
Ht−1

>
n∑
i=1

ηit−1

(
1−ki− Ht

Ht−1

)+]
+ min

{
Jt−1θt−1Ht,

1

a
Vt−1

(
1− k − Ht

Ht−1

)+
}

× 1I[
aθt−1

Ht
Ht−1

≤
n∑
i=1

ηit−1

(
1−ki− Ht

Ht−1

)+],
where kj = k. In Section 3.2, we proved that the optimal corridor corridor boundary for
the return, k, is the same for all contracts in the pool of contributors. It means, if the
fund go down all individual accounts will produce claims simultaneously. However, the
claim sizes depend on the number of shares in the individual accounts and differ from
contract to contract. Therefore, some contracts might produce claims smaller than the
number of units in the collective account corresponding to their redistribution index and
vice versa. If the regulation requirements allow to entirely empty the collective account,
the following recursive procedure can be applied, see also Figure 5:

� Settle all individual claims that are below their redistribution part.
In Figure 5 the claims amounting to 4, 6 and 20 have the redistribution indices 0.1
(yielding 10 shares), 0.2 (yielding 20 shares) and 0.3 (yielding 30 shares) respec-
tively. It means these claims can be settled immediately.

� Adjust the redistribution indices of the remaining claims to the new number of
claims and settle those that are now below their redistribution part.
In Figure 5, after settling “small” claims in the first step, the collective account
has 100− 4− 6− 20 = 70 shares on its disposal. The redistribution indices of the
remaining two claims, amounting to 35 and 50 shares, equaled to 0.2 in the first
step and should be adjusted due to the new claim number of 2. Therefore, the new
redistribution indices are given by 0.5 yielding 35 shares. Thus, one claim can be
completely covered.
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Figure 5: Redistribution of the shares from the collective account by a recursive proce-
dure.

� Proceed until all remaining claims exceed their redistribution part and eventually
settle them.
In our example, the collective account has now 35 shares. The new redistribution
index of the claim amounting to 50 is now 1. This contract gets just 35 shares
from the collective account which is now empty.

The above procedure serves just as an example and targets to showcase a possibility to
handle the individual claims. Therefore, the presented numbers cannot be considered
as realistic quantities. Also, it should be noted that redistributing all shares from the
collective account between individual accounts might leave the next retiring cohort with
small amounts of capital resulting from the collective account compared to the amount
of premia they paid in if the size of the collective is not large enough. This would clearly
violate the concept of fairness and require intergenerational smoothing mechanisms.
On the one hand, the procedure of getting help from the collective account is a question
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of product design but on the other hand, it should also be in line with the regulations in
place to achieve/provide intergenerational fairness and fulfil sustainability requirements.
The above described recursion could also be applied on the returns of the collective
account so that the main capital remains untouched. However, this procedure will con-
tradict the primary mission of the collective account – to serve as a backup for the
individual accounts.

Concerning the mathematical implementation of the scenarios described above, the
method is similar to the one described in Section 3.2. Neither the value function nor the
optimal strategy can be calculated explicitly.

4 Conclusions

The life insurance companies are continuously creating new products to cope up not only
with longevity but also with the period of protracted low interest rates. It is well-known
that low interest rates affect investment opportunities and, in particular, have a signif-
icant adverse effect on insurers whose liabilities includes some benefit promises such as
guarantees.
With the aim of offering an adequate level of benefits to the policyholders and at the
same time preserving the long-term solvency of the plan, this paper analyses a new
pension design applied to the accumulation phase from a mathematical point of view.
Under the proposed design, we seek to maximise the accumulated capital at retirement
by investing the premia into two funds: an individual and a collective. The collective
fund acts as a buffer where some units are transferred to (from) the individual account
when the performance of the individual fund is below (above) a particular barrier.
We prove that, in the case of symmetric corridor boundaries for the corridor [−k, k] and
if the collective account never ruins, the optimal k for the exchange of units between
the individual and the collective account is given either by the lowest barrier allowed
by the profitability condition or by 1. If the barriers are asymmetric, we might have
cases where no satisfactory results are obtained because the profitability condition is not
fulfilled.
In order to incorporate the possible risk into the target functional to maximise, we in-
clude a penalty function given by the expected realised volatility of the fund. We also
show that in some occasions the maximum might not be unique. However, as the indi-
vidual account is the main basis to calculate the initial pension, we choose the barrier
that optimises the expected value of the individual account for the policyholder.
Due to the lack of analysis in both academia research and practice, this paper also
analyses the possibility of not having enough units to be transferred to the individual
account. The first solution analysed in this paper is the non-transfer of any units if the
number of units is not enough to cover all claims. Due to the cross dependence among
all individuals we make a precise error analysis where the same barrier is used by every
policyholder. The same barrier is a suboptimal strategy but the explicit solution of an
optimal k would require lot of computation and the improvement for the policyholder
would be negligible, i.e. the maximised amount at retirement would barely increase.
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Secondly, we describe a redistribution index that could cover some of the deficit of the
individual claims and could be applied through a recursive procedure.
This paper presents an innovative and attractive way to smooth the volatility of the fund
in the accumulation phase. Hence, the proposed product design should be beneficial to
both the life insurers − as there are no benefit promises – and policyholders – as the
amount of accumulated capital is more secure than in the case of risky investments and
much higher than in the case of non-risky investments.
Finally, based on the model presented, at least three important directions for future
research can be identified. First, another challenge in the accumulation phase is the
maximisation of the retirement capital through an optimal splitting strategy of the pre-
mia into the two funds, i.e. individual and collective. Another avenue for future research
would be to explore the redistribution index so that it ensures the intergenerational fair-
ness among the members’ plan. Third, it would be interesting to set up bounds for the
pension amount during the retirement phase so that the retirees have a stable benefit
level over time.
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