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Abstract

A peacock is a family of probability measures with finite mean that increases in convex order. It
is a classical result, in the discrete time case due to Strassen, that any peacock is the family of one-
dimensional marginals of a martingale. We study the problem whether a given sequence of probability
measures can be approximated by a peacock. In our main results, the approximation quality is measured
by the infinity Wasserstein distance. Existence of a peacock within a prescribed distance is reduced to a
countable collection of rather explicit conditions. This result has a financial application (developed in a
separate paper), as it allows to check European call option quotes for consistency. The distance bound on
the peacock then takes the role of a bound on the bid–ask spread of the underlying. We also solve the
approximation problem for the stop-loss distance, the Lévy distance, and the Prokhorov distance.
c⃝ 2018 Elsevier B.V. All rights reserved.

1. Introduction

A celebrated result, first proved by Strassen in 1965,1 states that, for a given sequence of
probability measures (µn)n∈N, there exists a martingale M = (Mn)n∈N such that the law of
Mn is µn for all n, if and only if all µn have finite mean and (µn)n∈N is increasing in convex
order (see Definition 2.1). Such sequences, and their continuous time counterparts, are nowadays
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1 See Theorem 8 in [36]. (Another result from that paper, relative to the usual stochastic order instead of the convex
order, is also sometimes referred to as Strassen’s theorem; see [23].)
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referred to as peacocks, a pun on the French acronym PCOC, for “Processus Croissant pour
l’Ordre Convexe” [15]. For further references on Strassen’s theorem and its predecessors, see
the appendix of [6], p. 380 of Dellacherie and Meyer [8], and [1]. A constructive proof, and
references to earlier constructive proofs, are given in Müller and Rüschendorf [27].

The theorem gave rise to plenty of generalizations, one of the most famous being Kellerer’s
theorem [19,20]. It states that, for a peacock (µt )t≥0 with index set R+, there is a Markov
martingale M = (Mt )t≥0 such that Mt ∼ µt for all t ≥ 0. Several proofs and ramifications
of Kellerer’s theorem can be found in the literature. Hirsch and Roynette [16] construct
martingales as solutions of stochastic differential equations and use an approximation argument.
Lowther [25,26] shows that under some regularity assumptions there exists an ACD martingale
with marginals (µt )t≥0. Here, ACD stands for “almost-continuous diffusion”, a condition
implying the strong Markov property and stochastic continuity. Beiglböck, Huesmann and
Stebegg [2] use a certain solution of the Skorokhod problem, which is Lipschitz–Markov, to
construct a martingale which is Markov. The recent book by Hirsch, Profeta, Roynette, and
Yor [15] contains a wealth of constructions of peacocks and associated martingales.

The main question that we consider in this paper is the following: given ϵ > 0, a metric d
on M – the set of all probability measures on R with finite mean – and a sequence of measures
(µt )t∈T in M, when does a sequence (νt )t∈T in M exist, such that d(µt , νt ) ≤ ϵ and such that the
sequence (νt )t∈T is a peacock? Here T is either N or the interval [0, 1]. Once we have constructed
a peacock, we know, from the results mentioned above, that there is a martingale (with certain
properties) with these marginals. We thus want to find out when there is a martingale M such that
the law of Mt is close to µt for all t . We will state necessary and sufficient conditions when d
is the infinity Wasserstein distance, the stop-loss distance, the Prokhorov distance, and the Lévy
distance.

The infinity Wasserstein distance is a natural analogue of the p-Wasserstein distance. Besides
the dedicated probability metrics literature (e.g., [32,33]), it has been studied in an optimal
transport setting in [5]. It also has applications in graph theory, where it is referred to as the
bottleneck distance (see p. 216 of [10]). A well-known alternative representation of the infinity
Wasserstein distance shows some similarity to the Lévy distance. The stop-loss distance was
introduced by Gerber in [11] and has been studied in actuarial science (see for instance [7,18]).

For both of these metrics, we translate existence of a peacock within ϵ-distance into a more
tractable condition: There has to exist a real number (with the interpretation of the desired
peacock’s mean) that satisfies a countable collection of finite-dimensional conditions, each
explicitly expressed in terms of the call functions x ↦→

∫
(y−x)+µt (dy) of the given sequence of

measures. For the infinity Wasserstein distance, the existence proof is not constructive, as it uses
Zorn’s lemma. For the stop-loss distance, the problem is much simpler, and our proof is short
and constructive. Note, though, that the result about the infinity Wasserstein distance admits a
financial application, which was the initial motivation for this work. The problem is similar to the
one considered by Davis and Hobson [6]: given a set of European call option prices with different
maturities on the same underlying, we want to know when there is a model which is consistent
with these prices. In contrast to Davis and Hobson we allow a bid–ask spread, bounded by some
constant, on the underlying. This application will be developed in the companion paper [12].

Our proof approach is similar for both metrics: we will construct minimal and maximal
elements (with respect to the convex order) in closed balls, and then use these elements to derive
our conditions. In the case of the infinity Wasserstein distance, we will make use of the lattice
structure of certain subsets of closed balls.

The Lévy distance was first introduced by Lévy in 1925 (see [22]). Its importance is partially
due to the fact that dL metrizes weak convergence of measures on R. The Prokhorov distance,
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first introduced in [31], is a metric on measures on an arbitrary separable metric space, and is
often referred to as a generalization of the Lévy metric, since dP metrizes weak convergence on
any separable metric space. For these two metrics, peacocks within ϵ-distance always exist, and
can be explicitly constructed.

The definition of the infinity Wasserstein distance yields a coupling representation, and it is
a natural question whether – assuming the existence of a peacock nearby – there is a filtered
probability space on which the coupling can be realized with a martingale. For finite sequences
of measures with finite support, we show in Theorem 9.2 that this is true, thus extending (a
special case of) Strassen’s theorem in a novel direction.

The structure of the paper is as follows. Section 2 specifies our notation and introduces the
most important definitions. Section 3 contains our main result on approximation by peacocks
using the infinity Wasserstein distance. Its proof is given in Section 4, and a continuous time
version can be found in Section 5. In Section 6 we will treat the approximation problem for the
stop-loss distance. After collecting some well-known facts on the Lévy and Prokhorov distances
in Section 7, we will prove a criterion for approximation by peacocks under these metrics in
Section 8. Section 9 presents our novel extension of (a special case of) Strassen’s theorem, and
some related open problems that we propose to tackle in future work.

2. Notation and preliminaries

Let M denote the set of all probability measures on R with finite mean. We start with the
definition of convex order.

Definition 2.1. Let µ, ν be two measures in M. Then we say that µ is smaller in convex order
than ν, in symbols µ ≤c ν, if for every convex function φ : R → R we have

∫
φ dµ ≤

∫
φ dν,

whenever both integrals are finite.2 A family of measures (µt )t∈T in M, where T ⊆ [0, ∞), is
called peacock, if µs ≤c µt for all s ≤ t in T (see Definition 1.3 in [15]).

Intuitively, µ ≤c ν means that ν is more dispersed than µ, as convex integrands tend to
emphasize the tails. By choosing φ(x) = x resp. φ(x) = −x , we see that µ ≤c ν implies that
µ and ν have the same mean. As mentioned in the introduction, Strassen’s theorem asserts the
following:

Theorem 2.2 (Strassen [36]). For any peacock with T = N, there is a martingale whose family
of one-dimensional marginal laws coincides with it.

The converse implication is of course true as well, as a trivial consequence of Jensen’s
inequality. As mentioned in the introduction, the equivalence also holds for time index set
T = R+ [16,19,20]. For µ ∈ M and x ∈ R we define

Rµ(x) =

∫
R

(y − x)+µ(dy) and Fµ(x) = µ
(
(−∞, x]

)
.

2 The apparently stronger requirement that the inequality
∫

φ dµ ≤
∫

φ dν holds for convex φ whenever it makes
sense, i.e., as long as both sides exist in (−∞, ∞], leads to an equivalent definition. This can be seen by the following
argument, similar to Remark 1.1 in [15]: Assume that the inequality holds if both sides are finite, and let φ (convex)
be such that

∫
φ dµ = ∞. We have to show that then

∫
φ dν = ∞. Since φ is the envelope of the affine functions it

dominates, we can find convex φn with φn ↑ φ pointwise, and such that each φn is C2 and φ′′
n has compact support. By

monotone convergence, we then have
∫

φ dν = lim
∫

φn dν ≥ lim
∫

φn dµ =
∫

φ dµ = ∞. Note that the convexity of
φ guarantees that

∫
φ dν > −∞.



S. Gerhold and I.C. Gülüm / Stochastic Processes and their Applications 129 (2019) 2406–2436 2409

We call Rµ the call function of µ, as in financial terms it is the (undiscounted) price of a
call option with strike x , written on an underlying with risk-neutral law µ at maturity. (It is
also known as integrated survival function [27].) The mean of a measure µ will be denoted by
Eµ =

∫
y µ(dy). The following proposition summarizes important properties of call functions.

All of them are well known. In particular, the equivalence in part (iv) has been used a lot to
investigate the convex order; see, e.g., [29].

Proposition 2.3. Let µ, ν be two measures in M. Then:

(i) Rµ is convex, decreasing and strictly decreasing on {Rµ > 0}. Hence the right derivative
of Rµ always exists and is denoted by R′

µ.
(ii) limx→∞ Rµ(x) = 0 and limx→−∞(Rµ(x) + x) = Eµ. In particular, if µ([a, ∞)) = 1 for

a > −∞, then Eµ = Rµ(a) + a.
(iii) R′

µ(x) = −1 + Fµ(x) and Rµ(x) =
∫

∞

x (1 − Fµ(y)) dy, for all x ∈ R.
(iv) µ ≤c ν holds if and only if Rµ(x) ≤ Rν(x) for all x ∈ R and Eµ = Eν.
(v) For x1 ≤ x2 ∈ R, we have Rµ(x2) − Rµ(x1) =

∫ x2
x1

R′
µ(y) dy.

Conversely, if a function R : R → R satisfies (i) and (ii), then there exists a probability measure
µ ∈ M with finite mean such that Rµ = R.

As for (v), note that R′
µ is increasing, thus integrable, and that the fundamental theorem

of calculus holds for right derivatives. See [4] for a short proof. The other assertions of
Proposition 2.3 are proved in [16], Proposition 2.1, and [15], Exercise 1.7. For a metric d on
M, denote by Bd (µ, ϵ) the closed ball with respect to d, with center µ and radius ϵ. Then our
main question is:

Problem 2.4. Given ϵ > 0, a metric d on M, and a sequence (µn)n∈N in M, when does there
exist a peacock (νn)n∈N with νn ∈ Bd (µn, ϵ) for all n?

Note that this can also be phrased as

d∞

(
(µn)n∈N, (νn)n∈N

)
≤ ϵ,

where

d∞

(
(µn)n∈N, (νn)n∈N

)
= sup

n∈N
d(µn, νn)

defines a metric on MN (with possible value infinity). For some results on this kind of infinite
product metric, we refer to [3]. Clearly, a solution to Problem 2.4 settles the case of finite
sequences (µn)n=1,...,n0 , too, by extending the sequence with µn := µn0 for n > n0.

To fix ideas, consider the case where the given sequence (µn)n=1,2 has only two elements. We
want to find measures νn ∈ Bd (µn, ϵ), n = 1,2, such that ν1 ≤c ν2. Intuitively, we want ν1 to be
as small as possible and ν2 to be as large as possible, in the convex order. Recall that a peacock
has constant mean, which is fixed as soon as ν1 is chosen. We will denote the set of probability
measures on R with mean m ∈ R by Mm . These considerations lead us to the following problem.

Problem 2.5. Suppose that a metric d on M, a measure µ ∈ M and two numbers ϵ > 0 and
m ∈ R are given. When are there two measures µmin, µmax

∈ Bd (µ, ϵ) ∩ Mm such that

µmin
≤c ν ≤c µmax, for all ν ∈ Bd (µ, ϵ) ∩ Mm ?
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We now recall the definition of the infinity Wasserstein distance3 W ∞, and its connection to
call functions.

Definition 2.6. The infinity Wasserstein distance is the mapping W ∞
: M × M → [0, ∞]

defined by

W ∞(µ, ν) = inf ∥X − Y∥∞ ,

where the infimum is taken over all probability spaces (Ω ,F ,P) and random pairs (X, Y ) with
marginals given by µ and ν.

For various other probability metrics and their relations, see [13,32]. We will use the words
“metric” and “distance” for mappings M × M → [0, ∞] in a loose sense. Since all our results
concern concrete metrics, there is no need to give a general definition (as, e.g., Definition 1 in
Zolotarev [37]). The metric W ∞ has the following representation in terms of call functions (see,
e.g., [24], p. 127):

W ∞(µ, ν) = inf
{

h > 0 : R′

µ(x − h) ≤ R′

ν(x) ≤ R′

µ(x + h), ∀x ∈ R
}
. (2.1)

By (2.1) and Proposition 2.3(iii), W ∞ can also be written as

W ∞(µ, ν) = inf
{

h > 0 : Fµ(x − h) ≤ Fν(x) ≤ Fµ(x + h), ∀x ∈ R
}
.

We will see below (Proposition 3.2) that, when d is the infinity Wasserstein distance, Problem 2.5
has a solution (µmin, µmax) if and only if |m−Eµ| ≤ ϵ. As an easy consequence, given (µn)n=1,2,
the desired “close” peacock (νn)n=1,2 exists if and only if there is an m with |m − Eµ1| ≤ ϵ,
|m − Eµ2| ≤ ϵ such that the corresponding measures µmin

1 , µmax
2 satisfy µmin

1 ≤c µmax
2 . Then,

(ν1, ν2) = (µmin
1 , µmax

2 ) is a possible choice.
Besides the infinity Wasserstein distance, we will solve Problems 2.4 and 2.5 also for the

stop-loss distance (Proposition 6.1), for index sets N and [0, 1] (see Theorems 3.5, 5.1, 6.3,
and 6.5). For the Lévy distance and the Prokhorov distance we will use different techniques and
solve Problem 2.4 for index set N (see Corollary 8.4 and Theorem 8.5).

3. Approximation by peacocks: infinity Wasserstein distance (discrete time)

We now start to investigate the interplay between the infinity Wasserstein distance and the
convex order. Recall that Mm denotes the set of probability measures on R with mean m. It is a
well known fact that the ordered set (Mm, ≤c) is a lattice for all m ∈ R, with least element δm
(Dirac delta). See for instance [21,28]. The lattice property means that, given any two measures
µ, ν ∈ Mm , there is a unique supremum, denoted by µ ∨ ν, and a unique infimum, denoted by
µ ∧ ν, with respect to convex order. It is easy to prove that the corresponding call functions are
Rµ∨ν = Rµ ∨ Rν and Rµ∧ν = conv(Rµ, Rν). Here and in the following conv(Rµ, Rν) denotes
the convex hull of Rµ and Rν , i.e., the largest convex function that is majorized by Rµ ∧ Rν .

In the following we will denote balls with respect to W ∞ by B∞. The next lemma shows
that (B∞(µ, ϵ) ∩ Mm, ≤c) is a sublattice of (Mm, ≤c), which will be important afterwards.
Recall that two measures can be comparable w.r.t. convex order only if their means agree. This
accounts for the relevance of sublattices of the form (B∞(µ, ϵ) ∩ Mm, ≤c) for our problem: If
a peacock (νn)n∈N satisfying νn ∈ B∞(µn, ϵ) for all n ∈ N exists, then we necessarily have
νn ∈ B∞(µn, ϵ) ∩ Mm , n ∈ N, with Eν1 = Eν2 = · · · = m.

3 The name “infinite Wasserstein distance” is also in use, but “infinity Wasserstein distance” seems to make more
sense (cf. “infinity norm”).
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Lemma 3.1. Let ϵ > 0 and µ, ν1, ν2 ∈ M such that Eν1 = Eν2 = m. Then if ν1, ν2 ∈

B∞(µ, ϵ) ∩ Mm we have ν1 ∨ ν2 ∈ B∞(µ, ϵ) ∩ Mm and ν1 ∧ ν2 ∈ B∞(µ, ϵ) ∩ Mm .

Proof. Denote the call functions of ν1 and ν2 with R1 and R2. We start with ν1 ∨ ν2. It is easy
to check that R : x ↦→ R1(x) ∨ R2(x) is a call function satisfying R′(x) ∈ {R′

1(x), R′

2(x)} for
all x ∈ R. By Proposition 2.3(ii), it is also clear that ν1 ∨ ν2 ∈ Mm . This proves the assertion.

As for the infimum, we will first assume that there exists x0 ∈ R such that R1(x) ≤ R2(x)
for x ≤ x0 and R2(x) ≤ R1(x) for x ≥ x0. Then there exist x1 ≤ x0 and x2 ≥ x0 such that the
convex hull of R1 and R2 can be written as (see [30])

conv(R1, R2)(x) =

⎧⎪⎨⎪⎩
R1(x), x ≤ x1,

R1(x1) +
R2(x2) − R1(x1)

x2 − x1
(x − x1), x ∈ [x1, x2],

R2(x), x ≥ x2.

Now observe that for all x ∈ [x1, x2)

R′

µ(x − ϵ) ≤ R′

2(x) ≤ R′

2(x2−)

≤
R2(x2) − R1(x1)

x2 − x1

≤ R′

1(x1) ≤ R′

1(x) ≤ R′

µ(x + ϵ),

and hence conv(R1, R2)′(x) ∈ [R′
µ(x − ϵ), R′

µ(x + ϵ)]. Therefore ν1 ∧ ν2 ∈ B∞(µ, ϵ) ∩ Mm .
For the general case, note that for all x ∈ R we have by [30] that either conv(R1, R2)(x) =

Rµ(x) ∧ Rν(x), or that x lies in an interval I such that conv(R1, R2) is affine on I . If the latter
condition is the case, then we can derive bounds for the right-derivative conv(R1, R2)′(x), x ∈ I ,
exactly as before. The situation is clear if either conv(R1, R2)(x) = R1(x) or conv(R1, R2)(x) =

R2(x). □

We now show that the sublattice (B∞(µ, ϵ)∩Mm, ≤c) contains a least and a greatest element
with respect to the convex order. This is the subject of the following proposition, which solves
Problem 2.5 for the infinity Wasserstein distance. As for the assumption m ∈ [Eµ − ϵ,Eµ + ϵ]
in Proposition 3.2, it is necessary to ensure that B∞(µ, ϵ) ∩ Mm is not empty. Indeed, if
W ∞(µ1, µ2) ≤ ϵ for some µ1, µ2 ∈ M, then by (2.1), Proposition 2.3(ii), (v), and the continuity
of call functions, we obtain

Rµ1 (x + ϵ) ≤ Rµ2 (x) ≤ Rµ1 (x − ϵ), x ∈ R. (3.1)

By part (ii) of Proposition 2.3, it follows that |Eµ1 − Eµ2| ≤ ϵ.

Proposition 3.2. Given ϵ > 0, a measure µ ∈ M and m ∈ [Eµ− ϵ,Eµ+ ϵ], there exist unique
measures S(µ), T (µ) ∈ B∞(µ, ϵ) ∩ Mm such that

S(µ) ≤c ν ≤c T (µ) for all ν ∈ B∞(µ, ϵ) ∩ Mm .

The call functions of S(µ) and T (µ) are explicitly given by

Rmin
µ (x) = RS(µ)(x) =

(
m + Rµ(x − ϵ) −

(
Eµ + ϵ

))
∨ Rµ(x + ϵ), (3.2)

Rmax
µ (x) = RT (µ)(x) = conv

(
m + Rµ(· + ϵ) −

(
Eµ − ϵ

)
, Rµ(· − ϵ)

)
(x). (3.3)

To highlight the dependence on ϵ and m we will sometimes write S(µ; m, ϵ) and Rmin
µ ( · ; m, ϵ),

respectively T (µ; m, ϵ) and Rmax
µ ( · ; m, ϵ).
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Fig. 1. Illustration of the function Rmin
µ = RS(µ) (lower solid curve): to the left of v, RS(µ) is as steep as possible and to

the right of v, RS(µ) is as small as possible.

Proof. We define Rmin
µ and Rmax

µ by the right hand sides of (3.2) resp. (3.3), and argue that the
associated measures S(µ) and T (µ) have the stated property. Clearly Rmin

µ is a call function, and
we have

ERmin
µ = lim

x→−∞

(
m + Rµ(x − ϵ) −

(
Eµ + ϵ

)
+ x

)
∨

(
Rµ(x + ϵ) + x

)
= m ∨

(
Eµ − ϵ

)
= m.

From the convexity of Rµ we can deduce the existence of v ∈ R ∪ {±∞} such that

Rmin
µ (x) =

{
m + Rµ(x − ϵ) −

(
ERµ + ϵ

)
, x ≤ v,

Rµ(x + ϵ) x ≥ v.

Hence we get that (Rmin
µ )′(x) ∈ [R′

µ(x −ϵ), R′
µ(x +ϵ)] for all x . By (2.1), the measure associated

with Rmin
µ lies in B∞(µ, ϵ) ∩ Mm . To the left of v, Rmin

µ is as steep as possible (where steepness
refers to the absolute value of the right derivative), and to the right of v it is as flat as possible
(see Fig. 1). From this and convexity, it is easy to see that S(µ) is a least element.

Similarly we can show that ERmax
µ = m, and thus it suffices to show that

(Rmax
µ )′(x) ∈ [R′

µ(x − ϵ), R′

µ(x + ϵ)].

But this can be done exactly as in Lemma 3.1. □

Remark 3.3. It is not hard to show that

Rmax
µ (x) =

⎧⎪⎪⎨⎪⎪⎩
m + Rµ(x + ϵ) −

(
Eµ − ϵ

)
, x ≤ x1,

Rµ(x1 + ϵ) +

(
Eµ − ϵ

)
− m

2ϵ

(
x − x1 − 2ϵ

)
, x ∈ [x1, x1 + 2ϵ],

Rµ(x − ϵ), x ≥ x1 + 2ϵ,

where

x1 = inf
{

x ∈ R : R′

µ(x + ϵ) ≥ −
m −

(
Eµ − ϵ

)
2ϵ

}
.
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Before formulating our first main theorem, we recall that a peacock is a sequence of
probability measures with finite mean and increasing w.r.t. convex order (Definition 2.1). We
now give a simple reformulation of this property. For a given sequence of call functions (Rn)n∈N,
define, for N ∈ N and x1, . . . , xN ∈ R,

ΦN (x1, . . . , xN ) = R1(x1) +

N∑
n=2

(
Rn(xn) − Rn(xn−1)

)
− RN+1(xN ). (3.4)

Proposition 3.4. A sequence of call functions (Rn)n∈N with constant mean defines a peacock if
and only if ΦN (x1, . . . , xN ) ≤ 0 for all N ∈ N and x1, . . . , xN ∈ R.

Proof. According to Proposition 2.3(iv), we need to check whether the sequence of call functions
increases. Let n ∈ N be arbitrary. If we set the nth component of (x1, . . . , xn+1) to an arbitrary
x ∈ R and let all others tend to ∞, we get

Φn+1(∞, . . . ,∞, x, ∞) = Rn(x) − Rn+1(x).

The sequence of call functions thus increases, if Φ is always non-positive. Conversely, assume
that (Rn)n∈N increases. Then, for N ∈ N and x1, . . . , xN ∈ R,

ΦN (x1, . . . , xN ) ≤ R1(x1) +

N∑
n=2

Rn+1(xn) −

N∑
n=2

Rn(xn−1) − RN+1(xN )

= R1(x1) +

N+1∑
n=3

Rn(xn−1) −

N∑
n=2

Rn(xn−1) − RN+1(xN )

= R1(x1) − R2(x1) ≤ 0. □

We now extend the definition of ΦN for x1, . . . , xN ∈ R, m ∈ R, and ϵ > 0 as follows, using
the notation from Proposition 3.2:

ΦN (x1, . . . , xN ; m, ϵ) = Rmin
1 (x1; m, ϵ)

+

N∑
n=2

(
Rn(xn + ϵσn) − Rn(xn−1 + ϵσn)

)
−Rmax

N+1(xN ; m, ϵ). (3.5)

Here, Rmin
1 is the call function of S(µ1; m, ϵ), Rmax

N+1 is the call function of T (µN+1; m, ϵ), and

σn = sgn(xn−1 − xn) =

⎧⎨⎩1, if xn−1 > xn,

0, if xn−1 = xn,

−1, if xn−1 < xn,

(3.6)

depends on xn−1 and xn . Clearly, for ϵ = 0 and Eµ1 = Eµ2 = · · · = m, we recover (3.4):

ΦN (x1, . . . , xN ; m, 0) = ΦN (x1, . . . , xN ), N ∈ N, x1, . . . , xN ∈ R. (3.7)

The following theorem gives an equivalent condition for the existence of a peacock within W ∞-
distance ϵ of a given sequence of measures, thus solving Problem 2.4 for the infinity Wasserstein
distance, and is our first main result. Note that the functions ΦN defined in (3.5) have explicit
expressions in terms of the given call functions, as Rmin and Rmax are explicitly given by (3.2)
and (3.3). The existence criterion we obtain is thus rather explicit; the existence proof is not
constructive, though, as mentioned in the introduction.
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Theorem 3.5. Let ϵ > 0 and (µn)n∈N be a sequence in M such that

I :=

⋂
n∈N

[Eµn − ϵ,Eµn + ϵ]

is not empty. Denote by (Rn)n∈N the corresponding call functions, and define ΦN by (3.5). Then
there exists a peacock (νn)n∈N such that

W ∞(µn, νn) ≤ ϵ, for all n ∈ N, (3.8)

if and only if for some m ∈ I and for all N ∈ N, x1, . . . , xN ∈ R, we have

ΦN (x1, . . . , xN ; m, ϵ) ≤ 0. (3.9)

In this case it is possible to choose Eν1 = Eν2 = · · · = m.

The proof of Theorem 3.5 is given in Section 4, building on Theorem 4.1 and Corollary 4.2
below. In view of our intended application (see [12]), we now give an alternative formulation
of Theorem 3.5, which avoids the existential quantification “for some m ∈ I ”. Note that the
expressions inside the suprema in (3.10)–(3.12) are similar to ΦN , defined in (3.5). Corollary 3.6
is proved towards the end of Section 4.

Corollary 3.6. Let ϵ > 0 and (µn)n∈N be a sequence in M such that

I :=

⋂
n∈N

[Eµn − ϵ,Eµn + ϵ]

is not empty. Denote by (Rn)n∈N the corresponding call functions. Then there exists a peacock
(νn)n∈N such that (3.8) holds if and only if

sup
N1∈N

x1,...,xN1
∈R

{
R1(x1 + ϵ) +

N1∑
n=2

Rn(xn + ϵσn)

− Rn(xn−1 + ϵσn) − RN1+1(xN − ϵ)
}

≤ 0, (3.10)

sup
N1∈N

x1,...,xN1
∈R

{
R1(x1 − ϵ) +

N1∑
n=2

Rn(xn + ϵσn) − Rn(xn−1 + ϵσn)

− RN1+1(xN + ϵ) + EµN1+1 − Eµ1

}
≤ 2ϵ, (3.11)

sup
N1∈N

x1,...,xN1
∈R

{
R1(x1 + ϵ) +

N1∑
n=2

Rn(xn + ϵσn) − Rn(xn−1 + ϵσn)

− RN1+1(xN1 + ϵ) + EµN1+1

}
+

sup
N2∈N

y1,...,yN2
∈R

{
R1(y1 − ϵ) +

N2∑
n=2

Rn(yn + ϵσn) − Rn(yn−1 + ϵσn)

− RN2+1(yN2 − ϵ) − Eµ1

}
≤ 2ϵ. (3.12)

For ϵ = 0, condition (3.9) is equivalent to the sequence of call functions (Rn) being increasing,
see Proposition 3.4. For ϵ > 0, analogously to the proof of Proposition 3.4, we see that
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Fig. 2. The call functions of µ1 (lower solid curve) and µ2 (upper solid curve) from Example 3.7, for m = 4 and ϵ = 1.
The call function of ν1 is the call function of µ1 shifted to the right by one. Similarly, shifting the call function of µ2 by
one to the left yields the call function of ν2.

(3.9) implies

Rn(x + ϵ) ≤ Rn+1(x − ϵ), x ∈ R, n ∈ N. (3.13)

It is clear that (3.13) is necessary for the existence of the peacock (νn)n∈N, since, by (3.1) and
Proposition 2.3(iv),

Rn(x + ϵ) ≤ Rνn (x) ≤ Rνn+1 (x) ≤ Rn+1(x − ϵ), x ∈ R, n ∈ N.

On the other hand, it is easy to show that (3.13) is not sufficient for (3.9):

Example 3.7. Fix m > 1 and ϵ = 1 and define two measures

µ1 =
2

m + 1
δ0 +

m − 1
m + 1

δm+1, µ2 = δm+1,

where δ denotes the Dirac delta. It is simple to check that (3.13) is satisfied, i.e.

Rµ1 (x + ϵ) ≤ Rµ2 (x − ϵ), x ∈ R.

Now assume that we want to construct a peacock (νn)n=1,2 such that W ∞(µn, νn) ≤ 1. Then the
only possible mean for this peacock is m, since Eµ1 = m − 1 and Eµ2 = m + 1 (see the remark
before Proposition 3.2). Therefore the peacock has to satisfy νn ∈ B∞(µn, 1) ∩ Mm , n = 1,2,
and the only possible choice is

ν1 =
2

m + 1
δ1 +

m − 1
m + 1

δm+2, ν2 = δm .

But since Rν1 (x) > Rν2 (x) for x ∈ (1, m + 2), (νn)n=1,2 is not a peacock; see Fig. 2.

If the sequence (µn)n=1,2 has just two elements, then it suffices to require (3.9) only for N = 1.
It then simply states that there is an m ∈ I such that Rmin

1 (x; m, ϵ) ≤ Rmax
2 (x; m, ϵ) for all x ,

which is clearly necessary and sufficient for the existence of (νn)n=1,2.
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Example 3.8. Unsurprisingly, the peacock from Theorem 3.5 is in general not unique: Let ϵ > 0
and consider the constant sequences Rn(x) = (−x)+, n ∈ N, and

Pn(x, c) =

⎧⎪⎨⎪⎩
−x, x ≤ −ϵ,

ϵ −
ϵ(x + ϵ)

c + ϵ
, −ϵ ≤ x ≤ c,

0, x ≥ c.

Then, for any c ∈ [0, ϵ], it is easy to verify that the sequence of call functions Pn(·, c) defines a
peacock satisfying (3.8).

4. Proof and ramifications of Theorem 3.5

The following theorem furnishes the main step for the induction proof of Theorem 3.5, given
at the end of the present section. In each induction step, the next element of the desired peacock
should be contained in a certain ball, it should be larger in convex order than the previous element
(ν in Theorem 4.1), and it should be as small as possible in order not to hamper the existence of
the subsequent elements. This leads us to search for a least element of the set Aν

µ defined in (4.1).
The conditions defining this least element translate into inequalities on the corresponding call
function. Part (ii) of Theorem 4.1 states that, at each point of the real line, at least one of the
latter conditions becomes an equality.

Theorem 4.1. Let µ, ν be two measures in M such that the set

Aν
µ :=

{
θ ∈ B∞(µ; ϵ) : ν ≤c θ

}
(4.1)

is not empty.

(i) The set Aν
µ contains a least element Sν(µ) with respect to ≤c, i.e. for every θ ∈ Aν

µ we have

ν ≤c Sν(µ) ≤c θ.

Equivalently, if

Rν(x) ≤ RT (µ;Eν,ϵ)(x), x ∈ R,

where T (µ) was defined in (3.3), there exists a pointwise smallest call function R∗ which is
greater than Rν and satisfies
(R∗)′(x) ∈ [R′

µ(x − ϵ), R′
µ(x + ϵ)] for all x ∈ R.

(ii) The call function R∗ is a solution of the following variational type inequality:

min
{

R∗(x) − Rν(x), (R∗)′(x) − R′

µ(x − ϵ),

R′

µ(x + ϵ) − (R∗)′(x)
}

= 0, x ∈ R. (4.2)

Proof. The equivalence in (i) follows from Proposition 2.3(iv); note that the existence of
T (µ;Eν, ϵ) follows from Aν

µ ̸= ∅. We now argue that Sν(µ) exists. An easy application of Zorn’s
lemma shows that there exist minimal elements in Aν

µ. If θ1 and θ2 are two minimal elements of
Aν

µ then, according to Lemma 3.1, the measure θ1 ∧ θ2 lies in B∞(ν, ϵ) ∩ MEν . Moreover, the
convex function Rν nowhere exceeds Rθ1 and Rθ2 , and hence we have Rν ≤ conv(Rθ1 ∧ Rθ2 ) =

Rθ1∧θ2 . Therefore θ1 ∧ θ2 lies in Aν
µ. Now clearly θ1 ∧ θ2 ≤c θ1 and θ1 ∧ θ2 ≤c θ2, and from the

minimality we can conclude that θ1 ∧ θ2 = θ1 = θ2.
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Now let θ∗ be the unique minimal element and let θ ∈ Aν
µ be arbitrary. Exactly as before we

can show that θ∗
∧ θ lies in Aν

µ. Moreover θ∗
= θ∗

∧ θ ≤c θ and therefore θ∗ is the least element
of Aν

µ.
It remains to show (ii). We set

R∗(x) = inf
{

Rθ (x) : θ ∈ Aν
µ

}
. (4.3)

Clearly R∗ is a decreasing function with limx→∞ R∗(x) = 0 and limx→−∞ R∗(x) + x = Eν.
We will show that R∗ is convex, which is equivalent to the convexity of the epigraph E of
R∗. Pick two points (x1, y1), (x2, y2) ∈ E . Then there exist measures θ1, θ2 ∈ Aν

µ such that
Rθ1 (x1) ≤ y1 and Rθ2 (x2) ≤ y2. Using Lemma 3.1 once more, we get that θ := θ1 ∧ θ2 ∈ Aν

µ

and Rθ (xi ) ≤ yi , i = 1,2. Therefore, the whole segment with endpoints (x1, y1) and (x2, y2) lies
in the epigraph of Rθ and hence in E . This implies that R∗ is a call function, and as we already
know that Aν

µ has a least element Sν(µ), the measure associated to R∗ has to be Sν(µ). Also, we
can therefore conclude that the infimum in (4.3) is attained for all x .

Now assume that (4.2) is wrong. Since all functions appearing in (4.2) are right-continuous,
there must then exist an open interval (a, b) where (4.2) does not hold, i.e. R∗(x) > Rν(x) and
(R∗)′(x) ∈ (R′

µ(x − ϵ), R′
µ(x + ϵ)) for all x ∈ (a, b).

Case 1: There exists an open interval I ⊆ (a, b) where R∗ is strictly convex. Then we can
pick x1 ∈ I and h1 > 0 such that x1 + h1 ∈ I and such that the tangent

P1(x) := R∗(x1) + (R∗)′(x1)(x − x1), x ∈ [x1, x1 + h1]

satisfies Rν(x) < P1(x) < R∗(x) for x ∈ (x1, x1 + h1]. Also, since (R∗)′(x1) > R′
µ(x1 − ϵ)

and since R′
µ is right-continuous, we can choose h1 small enough to guarantee (R∗)′(x1) ≥

R′
µ(x1 + h1 − ϵ). Next pick x2 ∈ (x1, x1 + h1), such that R′

µ(· + ϵ) is continuous at x2 and set

P2(x) := R∗(x2) + (R∗)′(x2)(x − x2), x ∈ [x2 − h2, x2].

We can choose h2 small enough to ensure that Rν(x) < P2(x) < R∗(x) and (R∗)′(x2) ≤

R′
µ(x2 − h2 + ϵ). Also, if x1 and x2 are close enough together, then there is an intersection

of P1 and P2 in (x1, x2). Now the function

R̃(x) :=

{
P1(x) ∨ P2(x), x ∈ [x1, x2],
R∗(x), otherwise,

is a call function which is strictly smaller than R∗ and satisfies R̃′(x) ∈ [R′
µ(x − ϵ), R′

µ(x + ϵ)]
for all x ∈ R. This is a contradiction to (4.3). See Fig. 3 for an illustration.

Case 2: If there is no open interval in (a, b) where R∗ is strictly convex, then R∗ has to be
affine on some closed interval I ⊆ (a, b) (see p. 7 in [34]). Therefore, there exist k, d in R such
that

R∗(x) = kx + d, x ∈ I.

By Proposition 2.3(ii), the slope k has to lie in the open interval (−1, 0), since R∗ is greater than
Rν on I . We set

a1 := sup
{

x ∈ R : (R∗)′(x) < k
}

> −∞,

b1 := inf
{

x ∈ R : (R∗)′(x) > k
}

< ∞;

the finiteness of these quantities follows from Proposition 2.3(ii). From the convexity of Rν

and the fact that Rν ≤ R∗, we get that R∗(x) > Rν(x) for all x ∈ (a1, b1), as well as
(R∗)′(x) > R′

µ(x − ϵ) for all x ∈ (a1, b) and (R∗)′(x) < R′
µ(x + ϵ) for all x ∈ (a, b1). We
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Fig. 3. Case 1 of the proof of Theorem 4.1. If R∗ is strictly convex, then we can deform it using two appropriate tangents,
contradicting minimality of the associated measure.

now define lines P1 and P2, with analogous roles as in Case 1. Their definitions depend on the
behavior of (R∗)′ at a1 and b1.

If (R∗)′(a1−) < k, then we set x1 = a1 and P1(x) = R∗(x1) + k1(x − x1) for x ≥ x1, with an
arbitrary k1 ∈ ((R∗)′(x1−), k); see Fig. 4.

If, on the other hand, (R∗)′(a1−) = k, then we can find x1 < a1 such that R∗(x1) > Rν(x1)
and (R∗)′(x1) > R′

µ(x1 − ϵ). In this case we define

P1(x) := R∗(x1) + (R∗)′(x1)(x − x1), x ≥ x1.

Similarly, if (R∗)′(b1) > k, then we define x2 = b1 and P2(x) = R∗(x2) + k2(x − x2) for
x ≤ x2 and for k2 ∈ (k, (R∗)′(b1)), and otherwise we can find x2 > b1 such that R∗(x2) > Rν(x2)
and (R∗)′(x2) < R′

µ(x2 + ϵ). We then set

P2(x) := R∗(x2) + (R∗)′(x2)(x − x2), x ≤ x2.

We can choose h1, h2 > 0, d̃ < d and k1, k2 such that the function

R̃(x) :=

⎧⎪⎪⎨⎪⎪⎩
P1(x), x ∈ [x1, x1 + h1],
kx + d̃, x ∈ [x1 + h1, x2 − h2]
P2(x), x ∈ [x2 − h2, x2],
R∗(x), otherwise,

is a call function which is strictly smaller that R∗ but not smaller than Rν . Also, if h1 and h2 are
small enough we have R̃′(x) ∈ [R′

µ(x − ϵ), R′
µ(x + ϵ)] for all x ∈ R, which is a contradiction

to (4.3). □

In part (i) of Theorem 4.1, we showed that Aν
µ has a least element. The weaker statement

that it has an infimum follows from [21], p. 162; there it is shown that any subset of the lattice
(Mm, ≤c) has an infimum. (The stated requirement that the set be bounded from below is always
satisfied, as the Dirac delta δm is the least element of (Mm, ≤c).) This infimum is, of course,
given by the least element Sν(µ) that we found.

If ν = δm , then Sν(µ) = S(µ), the least element from Proposition 3.2. In this case we have

(R∗)′(x) =

{
R′

µ(x − ϵ), x < x∗,

R′

µ(x + ϵ), x ≥ x∗,
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Fig. 4. Case 2 of the proof of Theorem 4.1, with (R∗)′(a1−) < k and (R∗)′(b1) = k.

where x∗ is the unique solution of

m + Rµ(x − ϵ) −
(
Eµ + ϵ

)
= Rµ(x + ϵ).

The following corollary establishes an alternative representation of the inequality (4.2), which
we will use to prove Theorem 3.5. Note that, in general, (4.2) has more than one solution, not all
of which are call functions. However, R∗ is always a solution.

Corollary 4.2. Assume that the conditions from Theorem 4.1 hold and denote the call function
of Sν(µ) by R∗. Then for all x ∈ R there exists y ∈ R ∪ {±∞} such that

R∗(x) = Rν(y) − Rµ(y + ϵσ ) + Rµ(x + ϵσ ),

where σ = sgn(y − x). Here and in the following we set R(∞) = 0 for all call functions R and

R1(−∞ ± ϵ) − R2(−∞ ± ϵ) := lim
x→−∞

(R1(x ± ϵ) − R2(x ± ϵ)),

for call functions R1 and R2.

Proof. By Theorem 4.1 we know that R∗ is a solution of (4.2). Let x be an arbitrary real
number. If R∗(x) = Rν(x), then the above relation clearly holds for y = x . Otherwise, we
have R∗(x) > Rν(x), and one of the other two expressions on the left hand side of (4.2) must
vanish at x . First we assume that (R∗)′(x) = R′

µ(x + ϵ). Define

y := inf{z ≥ x : (R∗)′(z) < R′

µ(z + ϵ)}.

If y < ∞, then by definition (R∗)′(y) < R′
µ(y + ϵ). By (4.2), we have R∗(y) = Rν(y). It follows

that

R∗(z) =R∗(y) +

∫ z

y
(R∗)′(x) dx = Rν(y) +

∫ z

y
R′

µ(x + ϵ) dx =

Rν(y) − Rµ(y + ϵ) + Rµ(z + ϵ), for all z ∈ [x, y].

If y = ∞, then this equation, i.e. R∗(z) = Rµ(z + ϵ), z ≥ x , also holds.
If, on the other hand, (R∗)′(x) = R′

µ(x − ϵ), then we similarly define y := sup{z ≤

x : (R∗)′(z) > R′
µ(z−ϵ)}. If y > −∞ then (R∗)′(y−) > R′

µ((y−ϵ)−) and hence R∗(y) = Rν(y)
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by (4.2). Therefore we can write

R∗(z) = Rν(y) − Rµ(y − ϵ) + Rµ(z − ϵ), for all z ∈ [y, x].

If y = −∞ then (R∗)′(z) = R′
µ(z − ϵ) for all z ≤ x . The above equation holds if we take the

limit y → ∞ on the right hand side. □

Corollary 4.3. Using Proposition 3.2 and Theorem 4.1, for a given sequence of measures
(µn)n∈N in M, we inductively define the measures

θ1 = S(µ1; m, ϵ), θk = Sθk−1 (µk), k ≥ 2,

if the sets{
ν ∈ B∞(µk, ϵ) : θk−1 ≤c ν

}
are not empty. Then the following relation holds:

Rθn (x) = Rθn−1 (y) − Rµn (y + ϵσ ) + Rµn (x + ϵσ ),

where n ≥ 2, y ∈ R ∪ {±∞} depends on x and σ = sgn(y − x).

Proof. The result follows by simply applying Theorem 4.1 and Corollary 4.2 with ν = θn−1 and
µ = µn . □

The next corollary will be useful later on in Theorem 9.2 and is an easy consequence of (4.2).

Corollary 4.4. Let µ, ν be as in Theorem 4.1 and additionally assume that both measures have
finite support. Then Sν(µ) has finite support too.

Proof. By (iii) of Proposition 2.3, the finiteness of the support of a measure θ is equivalent to
R′

θ having a finite range. Therefore, we can partition the real line into a finite number of intervals
I1, . . . , IN such that for all n ∈ {1, . . . N } the functions R′

ν, R′
µ(. − ϵ) and R′

µ(. + ϵ) are constant
on In . Since RSν (µ) solves (4.2), we can conclude that R′

Sν (µ) takes at most three distinct values
on each In . Hence, R′

Sν (µ) is piecewise constant and Sν(µ) has finite support. □

We can now prove Theorem 3.5, our main result on approximation by peacocks. We first prove
the “if” direction, which, unsurprisingly, is the more difficult one.

Proof of Theorem 3.5. Suppose that (3.9) holds for some m ∈ I and all N ∈ N, x1, . . . , xN ∈ R.
We will inductively construct a sequence (Pn)n∈N of call functions, which will correspond to the
measures (νn)n∈N. Define P1 = Rmin

1 ( . ; m, ϵ). For N = 1, (3.9) guarantees that Rmin
1 (x) ≤

Rmax
2 (x). Note that the continuity of the Rn guarantee that (3.9) also holds for xn ∈ {±∞}, if we

set sgn(∞−∞) = sgn(−∞+∞) = 0. We can now use Theorem 4.1 together with Corollary 4.2,
with Rν = Rmin

1 and Rµ = R2, to construct a call function P2, which satisfies

P2(x) = Rmin
1 (x1) + R2(x + ϵσ ) − R2(x1 + ϵσ ), x ∈ R,

where σ = sgn(x1 − x), and x1 depends on x . If we use (3.9) we get that

Rmin
1 (x1) + R2

(
x + ϵσ2

)
− R2

(
x1 + ϵσ2

)
≤ Rmax

n (x; m, ϵ), n ≥ 3, x1, x ∈ R.

Hence P2(x) ≤ Rmax
n (x) for all x ∈ R and for all n ≥ 3. Now suppose that we have already

constructed a finite sequence (P1, . . . , PN ) such that Pn ≤ Pn+1, 1 ≤ n < N , and such that
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PN ≤ Rmax
n for all x ∈ R and for all n ≥ N + 1. Then by induction we know that for all x ∈ R

there exists (x1, . . . , xN−1) such that

PN (x) = Rmin
1 (x1) +

N−1∑
n=2

(
Rn

(
xn + ϵσn

)
− Rn

(
xn−1 + ϵσn

))
+RN

(
x + ϵσN

)
− RN

(
xN−1 + ϵσN

)
,

with σN = sgn(xN−1 − x). In particular, we have PN ≤ Rmax
N+1. We can therefore again use

Corollary 4.2, with Rµ = RN+1 and Rν = PN , to construct a call function PN+1, such that

PN+1(x) = Rmin
1 (x1) +

N∑
n=2

(
Rn

(
xn + ϵσn

)
− Rn

(
xn−1 + ϵσn

))
+RN+1

(
x + ϵσN+1

)
− RN+1

(
xN + ϵσN+1

)
,

where σN+1 = sgn(xN − x) and (x1, . . . , xN ) depend on x . Assumption (3.9) guarantees that
PN+1 ≤ Rmax

n for all n ≥ N + 1.
We have now constructed a sequence of call functions, such that Pn ≤ Pn+1. Their associated

measures, which we will denote by νn , satisfy W ∞(µn, νn) ≤ ϵ and νn ≤c νn+1. Thus we have
constructed a peacock with mean m.

We proceed to the proof of the (easier) “only if” direction of Theorem 3.5. Thus, assume that
(νn)n∈N is a peacock such that W ∞(µn, νn) ≤ ϵ and set m = Eν1. Denote the call function of νn

by Pn . We will show by induction that (3.9) holds. For N = 1 we have

Rmin
1 (x; m, ϵ) ≤ P1(x) ≤ P2(x) ≤ Rmax

2 (x; m, ϵ), x ∈ R,

by Proposition 3.2.
For N = 2 and x1 ≤ x2 we have

Rmin
1 (x1; m, ϵ) + R2(x2 − ϵ) − R2(x1 − ϵ) ≤ P2(x1) +

∫ x2

x1

R′

2(z − ϵ) dz

≤ P2(x1) +

∫ x2

x1

P ′

2(z) dz

= P2(x2) ≤ P3(x2) ≤ Rmax
3 (x2; m, ϵ).

Similarly, if x2 ≤ x1,

Rmin
1 (x1; m, ϵ) + R2(x2 + ϵ) − R2(x1 + ϵ) ≤ P2(x1) −

∫ x1

x2

R′

2(z + ϵ) dz

≤ P2(x1) −

∫ x1

x2

P ′

2(z) dz

= P2(x2) ≤ P3(x2) ≤ Rmax
3 (x2; m, ϵ).

If (3.9) holds for N − 1 and xN−1 ≤ xN , then

Rmin
1 (x1; m, ϵ) +

N∑
n=2

(
Rn

(
xn + ϵσn

)
− Rn

(
xn−1 + ϵσn

))
≤ PN−1(xN−1) + RN

(
xN − ϵ

)
− RN

(
xN−1 − ϵ

)
≤ PN (xN−1) +

∫ xN

xN−1

P ′

N (z) dz
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≤ PN+1(xN ) ≤ Rmax
N+1(xN ; m, ϵ).

The case where xN−1 ≥ xN can be dealt with similarly. □

Proof of Corollary 3.6. First, by going through the proof of Theorem 3.5 a second time, we see
that Rmax

N+1(xN ; m, ϵ), in the definition of ΦN can be replaced by

R̃max
N+1(xN ; m, ϵ) :=

(
m + RN+1(xN + ϵ) −

(
Eµ − ϵ

))
∧ RN+1(xN − ϵ),

which is Rmax
N+1(xN ; m, ϵ) without the convex envelope.

Next, we can split up (3.9) into four inequalities according to the different components of
R̃max

N+1 and Rmin
1 . In two of these inequalities m does not appear, and these are exactly equations

(3.10) and (3.11). The remaining two inequalities are given by

R1(x1 − ϵ) + m − (Eµ1 + ϵ) +

N∑
n=2

Rn
(
xn + ϵσn

)
− Rn

(
xn−1 + ϵσn

)
− RN+1(xN + ϵ) ≤ 0,

R1(x1 + ϵ) +

N∑
n=2

Rn
(
xn + ϵσn

)
− Rn

(
xn−1 + ϵσn

)
−

(
RN+1(xN + ϵ) + m − (EµN+1 − ϵ)

)
≤ 0.

In particular, m can only exist if

sup
N1∈N

x1,...,xN1
∈R

{
R1(x1 + ϵ) +

N1∑
n=2

Rn(xn + ϵσn) − Rn(xn−1 + ϵσn)

− RN1+1(xN1 + ϵ) + EµN1+1

}
− ϵ ≤

inf
N2∈N

y1,...,yN2
∈R

{
− R1(y1 − ϵ) −

N2∑
n=2

Rn(yn + ϵσn) − Rn(yn−1 + ϵσn)

+ RN2+1(yN2 − ϵ) + Eµ1

}
+ ϵ, (4.4)

in which case m can be chosen arbitrarily from the closed interval with bounds given by the left
hand side resp. right hand side of (4.4). A simple modification of (4.4) yields (3.12). □

Remark 4.5. In Theorem 3.5, it is actually not necessary that the balls centered at the
measures µn are all of the same size. The theorem easily generalizes to the following result:
For m ∈ R, a sequence of non-negative numbers (ϵn)n∈N, and a sequence of measures (µn)n∈N in
M, define

ΦN (x1, . . . , xN ; m, ϵ1, . . . , ϵN+1) = Rmin
1 (x1; m, ϵ1)

+

N∑
n=2

(
Rn(xn + ϵnσn) − Rn(xn−1 + ϵnσn)

)
−Rmax

N+1(xN ; m, ϵN+1),
N ∈ N, x1, . . . , xN ∈ R, (4.5)
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with σn defined in (3.6), and assume that

I :=

⋂
n∈N

[Eµn − ϵn,Eµn + ϵn]

is not empty. Then there exists a peacock (νn)n∈N such that

W ∞(µn, νn) ≤ ϵn, for all n ∈ N,

if and only if for some m ∈ I and for all N ∈ N, x1, . . . , xN ∈ R, we have

ΦN (x1, . . . , xN ; m, ϵ1, . . . , ϵN+1) ≤ 0.

To prove this result, simply replace ϵ by ϵn in the proof of Theorem 3.5.

Remark 4.6. If a probability metric is comparable with the infinity Wasserstein distance, then
our Theorem 3.5 implies a corresponding result about that metric (but, of course, not an “if and
only if” condition). Denote by W p the p-Wasserstein distance (p ≥ 1), defined by

W p(µ, ν) = inf
(
E[|X − Y |

p]
)1/p

, µ, ν ∈ M.

The infimum is taken over all probability spaces (Ω ,F ,P) and random pairs (X, Y ) with
marginals given by µ and ν. Clearly, we have that for all µ, ν ∈ M and p ≥ 1

W ∞(µ, ν) ≥ W p(µ, ν).

Hence, given a sequence (µn)n∈N, (3.9) is a sufficient condition for the existence of a peacock
(νn)n∈N, such that W p(µn, νn) ≤ ϵ for all n ∈ N. But since the balls with respect to W p are in
general strictly larger than the balls with respect to W ∞, we cannot expect (3.9) to be necessary.

5. Approximation by peacocks: infinity Wasserstein distance (continuous time)

In this section we will formulate a version of Theorem 3.5 for continuous index sets. We
generalize the definition of ΦN from (3.5) as follows. For finite sets T = {t1, . . . , tN+1} ⊆ [0, 1]
with t1 < t2 < · · · < tN+1, we set

ΦT (x1, . . . , xN ; m, ϵ) = Rmin
t1

(x1; m, ϵ)

+

N∑
n=2

(
Rtn (xn + ϵσn) − Rtn−1 (xn + ϵσn)

)
−Rmax

tN+1
(xN ; m, ϵ). (5.1)

Here, Rmin
t1

is the call function of S(µt1; m, ϵ), Rmax
tN+1

is the call function of T (µtN+1; m, ϵ), and
σn = sgn(xn−1 − xn) depends on xn−1 and xn . Using ΦT , we can now formulate a necessary
and sufficient condition for the existence of a peacock within ϵ-distance. The continuity
assumption (5.2) occurs in the proof in a natural way; we do not know to which extent it can
be relaxed.

Theorem 5.1. Assume that (µt )t∈[0,1] is a family of measures in M such that

I :=

⋂
t∈[0,1]

[Eµt − ϵ,Eµt + ϵ]
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is not empty and such that

lim
s↑t

µs = µt weakly, t ∈ [0, 1]. (5.2)

Then there exists a peacock (νt )t∈[0,1] with

W ∞
(
µt , νt

)
≤ ϵ, for all t ∈ [0, 1],

if and only if there exists m ∈ I such that for all finite sets T = {t1, . . . , tN+1} ⊂ Q ∩ [0, 1] with
t1 < t2 < · · · < tN+1, and for all x1, . . . , xN ∈ R we have that

ΦT (x1, . . . , xN ; m, ϵ) ≤ 0. (5.3)

In this case it is possible to choose Eνt = m for all t ∈ [0, 1].

Proof. By Theorem 3.5, condition (5.3) is clearly necessary for the existence of such a peacock.
In order to show that it is sufficient, fix m ∈ I such that (5.3) holds. We will first construct νq for
q ∈ D, where

D = {a2−b
∈ [0, 1] : a, b ∈ N0}.

For n ∈ N, define measures (recall the notation from Theorem 4.1)

θ
(n)
0 = µ0 and θ

(n)
k = S

θ
(n)
k−1

(µk21−n ), 1 ≤ k ≤ 2n−1.

Condition (5.3) guarantees that these measures exist. Obviously,

θ
(n)
k ≤c θ

(n)
k+1, n ∈ N, 0 ≤ k < 2n−1. (5.4)

We show by induction on k that

θ
(n)
k ≤c θ

(n+1)
2k , n ∈ N, 0 ≤ k ≤ 2n−1. (5.5)

For k = 1, we have

θ
(n)
1 = Sµ0 (µ21−n )

≤c S
θ

(n+1)
1

(µ21−n ) = θ
(n+1)
2 , n ∈ N.

For k ≥ 1, we obtain

θ
(n)
k+1 = S

θ
(n)
k

(µ(k+1)21−n )

≤c S
θ

(n+1)
2k

(µ(k+1)21−n )

≤c S
θ

(n+1)
2k+1

(µ(k+1)21−n ) = θ
(n+1)
2k+2 , n ∈ N,

where the first “≤c” follows from the induction hypothesis and the definition of S·(·). Thus, (5.5)
is true.

For q = a2−b
∈ D, define

ν(n)
q = θ

(n)
a2n−b−1 ∈ B∞(µq , ϵ), n > b.

By (5.5), we have ν(n)
q ≤c ν(n+1)

q , n > b. Let Rn be the call function associated to ν(n)
q . Then we

have

RS(µq ;m,ϵ) ≤ Rn ≤ Rn+1 ≤ RT (µq ;m,ϵ), n > b, (5.6)
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and thus the bounded and increasing sequence (Rn) converges pointwise to a function R. As a
limit of decreasing convex functions, R is also decreasing and convex and together with (5.6) we
see that R is a call function with limx→−∞ = R(x) + x = m. Therefore R can be associated to a
measure νq ∈ Mm .

Next, we will show that νq ∈ B∞(µq , ϵ). From the convexity of the Rn we get that

R′(x) = lim
h↓0

lim
n→∞

Rn(x + h) − Rn(x)
h

≥ lim
h↓0

lim
n→∞

R′

n(x + h)

≥ lim
h↓0

lim
n→∞

R′

µq
(x + h − ϵ) = R′

µq
(x − ϵ),

and similarly

R′(x) = lim
h↓0

lim
n→∞

Rn(x + h) − Rn(x)
h

≤ lim
h↓0

lim
n→∞

R′

n(x)

≤ lim
n→∞

R′

µq
(x + ϵ) = R′

µq
(x + ϵ),

thus W ∞(νq , µq ) ≤ ϵ.
For two elements q < q ′ of D, it is an immediate consequence of (5.4) that ν(n)

q ≤c ν
(n)
q ′ for

large n, and therefore νq ≤c νq ′ . It follows that (νt )t∈D is a peacock. Now pick t ∈ [0, 1] \ D
and a sequence D ∋ qn ↗ t . The sequence of call functions corresponding to νqn increases
and converges to a call function, which is clearly independent of the choice of qn . Denote the
associated measure by νt ; it satisfies Eνt = m. Fix x ∈ R and define

H = {h ∈ R : Fµt continuous at x + h − ϵ}.

Note that (0, ∞) \ H is countable. We obtain

R′

νt
(x) = lim

h↓0
lim

n→∞

Rνqn (x + h) − Rνqn (x)
h

≥ lim
h↓0

lim
n→∞

R′

νqn
(x + h)

≥ lim
h↓0

lim
n→∞

R′

µqn
(x + h − ϵ)

= lim
h↓0,h∈H

lim
n→∞

R′

µqn
(x + h − ϵ)

= lim
h↓0

R′

µt
(x + h − ϵ) = R′

µt
(x − ϵ),

where the last but one equality follows from (5.2). Similarly we see that R′
νt

(x) ≤ R′
µt

(x + ϵ).
We have shown that νt ∈ B∞(µt , ϵ) for all t ∈ [0, 1]. From the definition of νt we have νq ≤c νt

for q < t, q ∈ D and νt ≤c νp for p > t, p ∈ D. This implies νs ≤c νt for all 0 ≤ s ≤ t ≤ 1,
and thus (νt )t∈[0,1] is a peacock with mean m. □

6. Approximation by peacocks: stop-loss distance

The stop-loss distance [7,11,18] is defined as

dSL(µ, ν) = sup
x∈R

⏐⏐Rµ(x) − Rν(x)
⏐⏐, µ, ν ∈ M.
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We will denote closed balls with respect to dSL by BSL. In the following proposition, we use the
same notation for least elements as in the case of the infinity Wasserstein distance; no confusion
should arise.

Proposition 6.1. Given ϵ > 0, a measure µ ∈ M and m ∈ [Eµ − ϵ,Eµ + ϵ], there exists a
unique measure S(µ) ∈ BSL(µ, ϵ) ∩ Mm , such that

S(µ) ≤c ν, for all ν ∈ BSL(µ, ϵ) ∩ Mm .

The call function of S(µ) is given by

Rmin
µ (x) = RS(µ)(x) =

(
m − x

)+
∨

(
Rµ(x) − ϵ

)
. (6.1)

To highlight the dependence on ϵ and m we will sometimes write S(µ; m, ϵ) or Rmin
µ ( · ; m, ϵ).

Proof. It is easy to check that RS(µ) defines a call function, and by (ii) of Proposition 2.3 we
have

ERS(µ) = lim
x→−∞

RS(µ)(x) + x

= lim
x→−∞

(
m ∨

(
Rµ(x) + x − ϵ

))
= m ∨

(
Eµ − ϵ

)
= m.

The rest is clear. □

Remark 6.2. The set BSL(µ, ϵ) ∩ Mm does not contain a greatest element. To see this, take an
arbitrary ν ∈ BSL(µ, ϵ) ∩ Mm and define x0 ∈ R as the unique solution of Rν(x) =

1
2ϵ. Then

for n ∈ N define new call functions

Rn(x) =

{
(x − x0)

Rν(x0 + n) − Rν(x0)
n

+ Rν(x0), x ∈ [x0, x0 + n],

Rν(x), otherwise.

It is easy to check that Rn is indeed a call function and the associated measures θn lie in
BSL(µ, ϵ) ∩ Mm . Furthermore, from the convexity of Rν we can deduce that Rν ≤ Rn ≤ Rn+1,
and hence ν ≤c θn ≤c θn+1. The call functions Rn converge to a function R which is not a call
function since R(x) = Rν(x0) =

ϵ
2 for all x ≥ x0. Therefore no greatest element can exist.

However, it is true that a measure ν is in BSL(µ, ϵ) if and only if Rmin
µ ( . ;Eν, ϵ) ≤ Rν ≤ Rµ + ϵ.

Theorem 6.3. Let (µn)n∈N be a sequence in M such that

I :=

⋂
n∈N

[Eµn − ϵ,Eµn + ϵ],

is not empty. Denote by (Rn)n∈N the corresponding call functions. Then there exists a pea-
cock (νn)n∈N such that

dSL(µn, νn) ≤ ϵ, n ∈ N, (6.2)

if and only if

Rk(x) ≤ Rn(x) + 2ϵ, for all k ≤ n and x ∈ R. (6.3)
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Proof. We first argue that (6.3) is equivalent to the assertion

There is m ∈ I such that Rmin
k (x; m, ϵ) ≤ Rn(x) + ϵ, for all k ≤ n and x ∈ R, (6.4)

where Rmin
k denotes the call function of S(µk; m, ϵ). Indeed, by (6.1), (6.4) clearly implies (6.3),

and the converse implication follows from the obvious estimate (m − x)+ ≤ Rn(x) + ϵ, valid for
arbitrary m ∈ I .

Now suppose that (6.4) holds. We will define the measures νn via their call functions Pn .
Define P1(x) = Rmin

1 (x; m, ϵ) and

Pn(x) = max
{

Pn−1(x), Rmin
n (x; m, ϵ)

}
, n ≥ 2. (6.5)

It is easily verified that Pn is a call function and satisfies

Rmin
n (x) ≤ Pn(x) ≤ Rn(x) + ϵ, x ∈ R, (6.6)

and therefore νn , the measure associated to Pn , satisfies νn ∈ BSL(µn, ϵ). Furthermore Pn ≤

Pn+1, and thus (νn)n∈N is a peacock with mean m.
Now assume that (νn)n∈N is a peacock such that dSL(µn, νn) ≤ ϵ. We will denote the call

function of νn by Pn and set m = Eν1 ∈ I . Then for k ≤ n and x ∈ R we get with Proposition 6.1

Rmin
k (x; m, ϵ) ≤ Pk(x) ≤ Pn(x) ≤ Rn(x) + ϵ. □

Note that (6.4) trivially holds for k = n. Moreover, unwinding the recursive definition (6.5)
and using (6.1), we see that Pn has the explicit expression

Pn(x) = max{(m − x)+, R1(x) − ϵ, . . ., Rn(x) − ϵ}, x ∈ R, n ∈ N.

The following proposition shows that the peacock from Theorem 6.3 is never unique.

Proposition 6.4. In the setting of Theorem 6.3, suppose that (6.4) holds. Then there are infinitely
many peacocks satisfying (6.2).

Proof. Define Pn as in the proof of Theorem 6.3, and fix x0 ∈ R with P1(x0) < ϵ. For arbitrary
c ∈ (0, 1), we define

G(x) =

{
P1(x0), x ≤ x0,

P1(x0) + cP ′

1(x0)(x − x0), x ≥ x0.

Thus, in a right neighborhood of x0, the graph of G is a line that lies above P1. We then put
P̃n = Pn ∨ G, for n ∈ N. It is easy to see that (P̃n) is an increasing sequence of call functions
with mean m, and thus defines a peacock. Moreover, we have

P̃n ≤ (Rn + ϵ) ∨ G ≤ Rn + ϵ,

by (6.6) and the fact that G ≤ ϵ. The lower estimate P̃n ≥ Pn ≥ Rn − ϵ is also obvious. □

Theorem 6.3 easily extends to continuous index sets.

Theorem 6.5. Assume that (µt )t∈[0,1] is a family of measures in M such that

I :=

⋂
t∈[0,1]

[Eµt − ϵ,Eµt + ϵ]

is not empty. Denote the call function of µt by Rt . Then there exists a peacock (νt )t∈[0,1] with

dSL(
µt , νt

)
≤ ϵ, for all t ∈ [0, 1],
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if and only if

Rs(x) ≤ Rt (x) + 2ϵ, for all 0 ≤ s < t ≤ 1 and x ∈ R. (6.7)

Proof. As in the discrete case (Theorem 6.3), (6.7) is equivalent to the statement

There is m ∈ I such that Rmin
s (x; m, ϵ) ≤ Rt (x) + ϵ,

for all 0 ≤ s < t ≤ 1 and x ∈ R. (6.8)

If (6.8) holds, then we set

Pt (x) = sup
s≤t

Rmin
s (x; m, ϵ), t ∈ [0, 1].

Then Pt is a call function which satisfies Rmin
t (x; m, ϵ) ≤ Pt (x) ≤ Rt (x) + ϵ for x ∈ R. The rest

can be done as in the proof of Theorem 6.3. □

7. Lévy distance and Prokhorov distance: preliminaries

The Lévy distance is a metric on the set of all measures on R, defined as

dL(µ, ν) = inf
{

h > 0 : Fµ(x − h) − h ≤ Fν(x) ≤ Fµ(x + h) + h, ∀x ∈ R
}
.

Its importance is partially due to the fact that dL metrizes weak convergence of measures on R.
The Prokhorov distance is a metric on measures on an arbitrary separable metric space (S, ρ).
For measures µ, ν on S it can be written as

dP(µ, ν) = inf
{

h > 0 : ν(A) ≤ µ(Ah) + h, for all closed sets A ⊆ S
}
,

where Ah
=

{
x ∈ S : infa∈Aρ(x, a) ≤ h

}
. The Prokhorov distance is often referred to as a

generalization of the Lévy metric, since dP metrizes weak convergence on any separable metric
space. Note, though, that dL and dP do not coincide when (S, ρ) = (R, | . |). It is easy to see
([17], p. 36) that the Prokhorov distance of two measures on R is an upper bound for their Lévy
distance:

Lemma 7.1. Let µ and ν be two probability measures on R. Then dL(µ, ν) ≤ dP(µ, ν).

For further information concerning these metrics, their properties and their relations to other
metrics, we refer the reader to [17] (p.27 ff). Now we define slightly different distances dL

p and
dP

p on the set of probability measures on R, which in general are not metrics in the classical sense
(recall the remark after Definition 2.6). These distances are useful for two reasons: First, it will
turn out that balls with respect to dL and dP can always be written as balls w.r.t. dL

p and dP
p , see

Lemma 7.2. Second, the function dP
p has a direct link to minimal distance couplings which are

especially useful for applications, see Proposition 7.4. For p ∈ [0, 1] we define

dL
p (µ, ν) := inf

{
h > 0 : Fµ(x − h) − p ≤ Fν(x) ≤ Fµ(x + h) + p, ∀x ∈ R

}
(7.1)

and

dP
p(µ, ν) := inf

{
h > 0 : ν(A) ≤ µ(Ah) + p, for all closed sets A ⊆ S

}
. (7.2)

It is easy to show (using complements) that dP
p(µ, ν) = dP

p(ν, µ) (see e.g. Proposition 1 in [9]).
Note that dP

p(µ, ν) = 0 does not imply that µ = ν. We will refer to dL
p as the modified Lévy
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distance, and to dP
p as the modified Prokhorov distance.4 The following Lemma explains the

connection between the Lévy distance dL and the modified Lévy distance dL
p , resp. the Prokhorov

distance dP and the modified Prokhorov distance dP
p .

Lemma 7.2. Let µ ∈ M. Then for every ϵ ∈ [0, 1] we have

BL(µ, ϵ) = BL
ϵ (µ, ϵ) and BP(µ, ϵ) = BP

ϵ (µ, ϵ).

Proof. For ν ∈ M, the assertion ν ∈ BP(µ, ϵ) is equivalent to

µ(A) ≤ ν
(

Aϵ+δ
)
+ ϵ + δ, δ > 0, A ⊆ R closed, (7.3)

whereas ν ∈ BP
ϵ (µ, ϵ) means that

µ(A) ≤ ν
(

Aϵ+δ
)
+ ϵ, δ > 0, A ⊆ R closed. (7.4)

Obviously, (7.4) implies (7.3). Now suppose that (7.3) holds, and let δ ↓ 0. Notice that Aϵ+δ1 ⊆

Aϵ+δ2 for δ1 ≤ δ2. The continuity of ν then gives

µ(A) ≤ ν
(

Aϵ
)
+ ϵ ≤ ν

(
Aϵ+δ

)
+ ϵ δ > 0, A ⊆ R closed,

and thus BP(µ, ϵ) = BP
ϵ (µ, ϵ). Replacing A by intervals (−∞, x] for x ∈ R in (7.3) and (7.4)

proves that BL(µ, ϵ) = BL
ϵ (µ, ϵ). □

Similarly to Lemma 7.1 we can show that the modified Lévy distance of two measures never
exceeds the modified Prokhorov distance.

Lemma 7.3. Let µ and ν be two probability measures on R and let p ∈ [0, 1]. Then

dL
p (µ, ν) ≤ dP

p(µ, ν).

Proof. We set ϵ = dP
p(µ, ν). Then for any x ∈ R and all n ∈ N we have

Fν(x) = ν
(
(−∞, x]

)
≤ µ

((
−∞, x + ϵ +

1
n

])
+ p

= Fµ

(
x + ϵ +

1
n

)
+ p,

and by the symmetry of dP the above relation also holds with µ and ν interchanged. This implies
that dL

p (µ, ν) ≤ ϵ. □

The following coupling representation of dP
p was first proved by Strassen and was then

extended by Dudley [9,36].

Proposition 7.4. Given measures µ, ν on R, p ∈ [0, 1], and ϵ > 0 there exists a probability
space (Ω ,F ,P) with random variables X ∼ µ and Y ∼ ν such that

P
(⏐⏐X − Y

⏐⏐ > ϵ
)

≤ p, (7.5)

if and only if

dP
p(µ, ν) ≤ ϵ. (7.6)

4 Note that our definition of the modified Prokhorov distance does not agree with the Prokhorov-type metric πλ

from [32] and [33].
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8. Approximation by peacocks: Prokhorov distance and Lévy distance

In this section we will prove peacock approximation results, first for the modified Prokhorov
distance and later on for the modified Lévy distance, the Prokhorov distance, and the Lévy
distance. It turns out that Problem 2.4 always has a solution for these distances, regardless of
the size of ϵ. In the following we denote the quantile function of a measure µ ∈ M by Gµ, i.e.

Gµ(p) = inf
{

x ∈ R : Fµ(x) ≥ p
}
, p ∈ [0, 1].

Proposition 8.1. Let µ ∈ M, p ∈ (0, 1], and m ∈ R. Then the set

BP
p(µ, 0) ∩ Mm

is not empty. Moreover, this set contains at least one measure with bounded support.

Proof. The statement is clear for p = 1, and so we focus on p ∈ (0, 1). Given a measure µ we
set I = [Gµ

( p
4

)
, Gµ

(
1 −

p
4

)
). We will first define a measure η with bounded support which lies

in BP
p(µ, 0), and then we will modify it to obtain a measure θ with mean m. We set

Fη(x) :=

⎧⎪⎪⎨⎪⎪⎩
0, x < Gµ

( p
4

)
,

Fµ(x), x ∈ I,

1, x ≥ Gµ

(
1 −

p
4

)
,

which is clearly a distribution function of a measure η. Note that η has bounded support, so in
particular η has finite mean. Next we define

θ =

(
1 −

p
2

)
η +

p
2

δw,

where w is chosen such that Eθ = m. Since η has bounded support, we can deduce that θ also
has bounded support. Now for every closed set A ⊆ R we have

θ (A) ≤
(
1 −

p
2

)
η(A) +

p
2

≤
(
1 −

p
2

)
η
(

A ∩ int(I )
)
+ p

≤ µ(A) + p,

where int(I ) denotes the interior of I . For the last inequality, note that µ and η are equal on
int(I ). The last equation implies that θ ∈ BP

p(µ, 0) ∩ Mm . □

Note that in Proposition 8.1 it is not important that µ has finite mean. The statement is true
for all measures on R. The same is true for all subsequent results of this section.

Proposition 8.2. Let ν ∈ M be a measure with bounded support and p ∈ (0, 1). Then for all
measures µ ∈ M there exists a measure θ ∈ BP

p(µ, 0) with bounded support such that ν ≤c θ .

Proof. Fix µ, ν ∈ M and p ∈ (0, 1), and set m = Eν. Then, by Proposition 8.1, there is a
measure θ0 ∈ BP

p/2(µ, 0) ∩ Mm which has bounded support. For n ∈ N we define

θn =
(
1 −

p
2

)
θ0 +

p
4

δm−n +
p
4

δm+n.
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These measures have bounded support and mean m. Furthermore, for A ⊆ R closed, we have

θn(A) ≤
(
1 −

p
2

)
θ0(A) +

p
2

≤ θ0(A) +
p
2

≤ µ(A) + p, n ∈ N,

and hence νn ∈ BP
p(µ, 0) for all n ∈ N. Now observe that for all n ∈ N and x ∈ [m − n, m + n]

we have

Rθn (x) =
(
1 −

p
2

)
Rθ0 (x) +

p
4

(
m + n − x

)
, (8.1)

which tends to infinity as n tends to infinity. Outside of the support of θn (i.e. outside the interval
[m −n, m +n]) the call function of θn equals the call function of the Dirac measure δm with mass
at m. Therefore there has to exist n0 ∈ N such that ν ≤c θn0 . □

In Proposition 8.2 it is important that p > 0. For p = 0 the limit in (8.1) is finite.

Theorem 8.3. Let (µn)n∈N be a sequence in M, ϵ > 0, and p ∈ (0, 1]. Then, for all m ∈ R
there exists a peacock (νn)n∈N with mean m such that

dP
p(µn, νn) ≤ ϵ.

Proof. If p = 1 then BP
p(µ, 0) contains all probability measures on R, which is easily seen

from the definition of dP
p , and the result is trivial. So we consider the case p < 1. Since

BP
p(µ, 0) ⊆ BP

p(µ, ϵ), it suffices to prove the statement for ϵ = 0. By Proposition 8.1, there
exists a measure ν1 ∈ BP

p(µ1, 0) ∩ Mm with bounded support. By Proposition 8.2 there exists
a measure ν2 ∈ BP

p(µ2, 0) such that ν1 ≤c ν2. Since ν2 has again finite support, we can proceed
inductively to finish the proof. □

Setting ϵ = p ∈ (0, 1] in the previous result, we obtain the following corollary.

Corollary 8.4. Let (µn)n∈N be a sequence in M and ϵ > 0. Then, for all m ∈ R there exists a
peacock (νn)n∈N with mean m such that

dP(µn, νn) ≤ ϵ.

Proof. By Lemma 7.2 we have BP(µ, ϵ) = BP
ϵ (µ, ϵ) for all µ ∈ M and ϵ ∈ [0, 1]. The result

now easily follows from Theorem 8.3. □

Since balls with respect to the modified Prokhorov metric are smaller than balls with respect
to the Lévy metric, we get the following corollary.

Theorem 8.5. Let (µn)n∈N be a sequence in M, ϵ > 0, and p ∈ (0, 1]. Then, for all m ∈ R
there exists a peacock (νn)n∈N with mean m such that

dL
p (µn, νn) ≤ ϵ.

In particular, there exists a peacock (νn)n∈N with mean m such that

dL(µn, νn) ≤ ϵ.

Proof. Fix ϵ > 0 and p ∈ (0, 1], and let (νn)n∈N be the peacock from Theorem 8.3 resp.
Corollary 8.4. Then by Lemma 7.3 resp. Lemma 7.1, we have νn ∈ BL

p (µn, ϵ) resp. νn ∈ BL

(µn, ϵ) for all n ∈ N. □
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For µ ∈ M, ϵ ≥ 0, p ∈ (0, 1), and m ∈ R, the set BL
p (µ, ϵ) ∩ Mm always contains a least

element with respect to ≤c, with an explicit call function. See Section 2.4.3 in [14].

9. A variant of Strassen’s theorem

So far, we discussed the problem of approximating a given sequence of measures (µn) by
a peacock (νn). If the distance is measured by W ∞, then the existence of such a peacock has
two consequences: First, there is a probability space with a martingale M∗ with marginals (νn)
(by Strassen’s theorem). Second, the definition of W ∞ implies that for each ϵ′ > ϵ there is a
probability space supporting processes M̂ and X̂ satisfying P̂[|M̂n − X̂n| > ϵ′] = 0 for all n.
It is now a natural question whether a martingale M with marginals (νn) can be found such that
there is an adapted process X satisfying P[|Mn − Xn| > ϵ′] = 0. We answer this question
affirmatively for finite sequences of measures with finite support. This restriction suffices for
the financial application that motivated our study (see [12]), and it allows to replace “for all
ϵ′ > ϵ . . .P[|Mn − Xn| > ϵ′] = 0” simply by P[|Mn − Xn| > ϵ] = 0. The result (Theorem 9.2)
is a consequence of Theorem 3.5 and the following lemma.

Lemma 9.1. Let ϵ > 0. Let (νn)n=1,...,n0 be a peacock, and (µn)n=1,...,n0 be a sequence of
measures in M. Assume that there is a finite filtered probability space (Ω∗,F∗, (F∗

n )1≤n≤n0 ,P∗)
with a martingale M∗ satisfying M∗

n ∼ νn for 1 ≤ n ≤ n0.
Assume further that there is a finite probability space (Ω̂ , F̂ , P̂) supporting two processes M̂

and X̂ satisfying M̂n ∼ νn , X̂n ∼ µn for 1 ≤ n ≤ n0 and

P̂[|M̂n − X̂n| > ϵ] = 0, n = 1, . . . , n0. (9.1)

Then there is a finite filtered probability space (Ω ,F , (Fn)1≤n≤n0 ,P) with processes M and X
combining all properties mentioned, i.e.:

• M is a martingale
• X is adapted
• Mn ∼ νn , Xn ∼ µn , n = 1, . . . , n0,
• P[|Mn − Xn| > ϵ] = 0, n = 1, . . . , n0.

Proof. Let n′
∈ {1, . . . , n0} and assume, inductively, that we have already constructed a

filtered probability space (Ω ,F , (Fn),P) that satisfies the requirements, where the conditions
concerning X hold for n < n′, i.e. there are processes M = (Mn)1≤n≤n0 and X = (Xn)1≤n<n′

such that

• M is a martingale
• X is adapted
• Mn ∼ νn, n = 1, . . . , n0,
• Xn ∼ µn, 1 ≤ n < n′,
• P[|Mn − Xn| > ϵ] = 0, 1 ≤ n < n′.

Note that in case n′
= 1 (induction base) we may simply take (Ω ,F , (Fn),P) = (Ω∗,F∗, (F∗

n ),
P∗). Let z ∈ R be an arbitrary member of the image of Mn′ , and define

U := A1 ∪ · · · ∪ Am := (Mn′ )−1(z),

where A1, . . . , Am are (distinct) atoms of Fn′ . We denote the preimage of z in Ω̂ by

{ω̂1, . . . , ω̂l} := M̂−1
n′ (z).
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As Mn′ ∼ µn′ ∼ M̂n′ , we have

P[U ] = P[A1 ∪ · · · ∪ Am] = P̂[{ω̂1, . . . , ω̂l}]. (9.2)

To make room for an appropriate Xn′ on a new filtered probability space, whose constituents will
be denoted by Ω ′, F ′ etc., we divide each “old” atom

Ar =: {ωr1, . . . , ωrkr }, 1 ≤ r ≤ m,

into l “new” atoms

A(i)
r := {ω

(i)
r1 , . . . , ω

(i)
rkr

}, 1 ≤ r ≤ m, 1 ≤ i ≤ l.

Then, define

Ω ′
:= (Ω \ U ) ∪

⋃
1≤r≤m
1≤i≤l

A(i)
r

and F ′
:= 2Ω

′

. We let P′
:= P on Ω \ U and

P′[ω(i)
r j ] :=

P[ωr j ] P̂[ω̂i ]∑l
i ′=1 P̂[ω̂i ′ ]

, 1 ≤ r ≤ m, 1 ≤ i ≤ l, 1 ≤ j ≤ kr .

The sigma-algebra F ′

n′ is generated by the atoms of Fn′ , but with each atom Ar replaced by the
atoms A(1)

r , . . . , A(l)
r . Similarly, we define F ′

n for n < n′ and n > n′. E.g., if A1 decomposes
into atoms A1 = B ∪ B̃ in Fn′+1, then we replace B and B̃ by B ∩ A(1)

1 , . . . , B ∩ A(l)
1 and

B̃ ∩ A(1)
1 , . . . , B̃ ∩ A(l)

1 , respectively, and so on. Clearly, this defines a filtered probability space
(Ω ′,F ′, (F ′

n),P′). On this space, we define M ′ like M , forgetting that the atoms A1, . . . , Am
were split: M ′

n := Mn for all n on Ω \ U and

M ′

n(ω(i)
r j ) := Mn(ωr j ), 1 ≤ r ≤ m, 1 ≤ i ≤ l, 1 ≤ j ≤ kr , 1 ≤ n ≤ n0.

Thus, the adapted process M ′ has the same marginal laws as M . Now we verify that M ′ is a
martingale. Let n1 > n′. (The cases of time points n1, n2 in other positions relative to n′ work
very similarly, but need additional cumbersome notation.) First, let A′ be any atom of F ′

n′ distinct
from A(1)

r , . . . , A(l)
r , 1 ≤ r ≤ m. Then we compute

E′[M ′

n1
|A′] =

∑
ω∈A′ M ′

n1
(ω)P′[ω]

P′[A′]

=

∑
ω∈A′ Mn1 (ω)P[ω]

P[A′]
= E[Mn1 |A

′] = Mn′ (A′) = M ′

n′ (A′).

For r ∈ {1, . . . , m} and i ∈ {1, . . . , l}, we have

E′[M ′

n1
|A(i)

r ] =

∑kr
j=1 M ′

n1
(ω(i)

r j )P′[ω(i)
r j ]∑kr

j=1 P′[ω(i)
r j ]

=

∑kr
j=1 Mn1 (ωr j )P[ωr j ]∑kr

j=1 P[ωr j ]

= E[Mn1 |Ar ] = Mn′ (Ar ) = M ′

n′ (A(i)
r ).

Therefore, M ′ is a martingale. Now we define the process (X ′
n)1≤n<n′ as X on Ω \ U , and

X ′

n(ω(i)
r j ) := Xn(ωr j ), 1 ≤ r ≤ m, 1 ≤ i ≤ l, 1 ≤ j ≤ kr , 1 ≤ n < n′.
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As for n′, we put

X ′

n′ (ω(i)
r j ) := X̂n′ (ω̂i ), 1 ≤ r ≤ m, 1 ≤ i ≤ l, 1 ≤ j ≤ kr . (9.3)

To make the definition complete, let X ′

n′ := Mn′ on Ω \ U , although this is of no relevance,
because this definition will be overwritten when we continue the construction for the next
element of the image of Mn′ . As the right hand side of (9.3) is independent of j , the process
(X ′

n)1≤n≤n′ is adapted to (F ′
n)1≤n≤n′ . We now show that the random variables

X ′

n′ |U and X̂n′ |{ω̂1,...,ω̂l }

have the same law. Indeed, for 1 ≤ i ≤ l we have

P′
[
X ′

n′ |U = X̂n′ (ω̂i )
]

=

m∑
r=1

kr∑
j=1

∑
i ′: X ′

n′ (ω
(i ′)
r j )=X̂n′ (ω̂i )

P′[ω(i ′)
r j ]

=

m∑
r=1

kr∑
j=1

∑
i ′: X̂n′ (ω̂i ′ )=X̂n′ (ω̂i )

P̂[ω̂i ′ ]P[ωr j ]∑l
i ′′=1 P̂[ω̂i ′′ ]

=
1∑l

i ′′=1 P̂[ω̂i ′′ ]

m∑
r=1

kr∑
j=1

P[ωr j ]
∑

i ′: X̂n′ (ω̂i ′ )=X̂n′ (ω̂i )

P̂[ω̂i ′ ]

= P̂
[
X̂n′ |{ω̂1,...,ω̂l } = X̂n′ (ω̂i )

]
,

where we used (9.2) in the last inequality. It remains to verify

P′[|M ′

n − X ′

n| > ϵ] = 0, 1 ≤ n ≤ n′.

From the definition of M ′ and X ′, this is clear for n < n′, and for n = n′ it is obvious that
|M ′

n − X ′
n| ≤ ϵ on Ω \ U . For an arbitrary element ω

(i)
r j , we have

|M ′

n′ (ω(i)
r j ) − X ′

n′ (ω(i)
r j )| = |Mn′ (ωr j ) − X̂n′ (ω̂i )|

= |M̂n′ (ω̂i ) − X̂n′ (ω̂i )| ≤ ϵ.

The last inequality follows from (9.1), as we may assume w.l.o.g. that P̂ puts mass on all elements
of Ω̂ .

Recall that U was defined as the preimage of z. Repeating the procedure we just described for
all values in the range of Mn′ completes the induction step. □

For the formulation of the main result of this section, recall the definition of ΦN in (3.5).
Theorem 9.2 holds for ϵ = 0, too; then it is just a special case of Strassen’s theorem (recall
Proposition 3.4 and (3.7)).

Theorem 9.2 (A Variant of Strassen’s Theorem). Let ϵ > 0 and (µn)n=1,...,n0 be a sequence of
measures in M with finite support such that

I :=

⋂
1≤n≤n0

[Eµn − ϵ,Eµn + ϵ] ̸= ∅.

Then the following conditions are equivalent:

(i) For some m ∈ I and for all 1 ≤ N < n0 and x1, . . . , xN ∈ R, we have

ΦN (x1, . . . , xN ; m, ϵ) ≤ 0.



S. Gerhold and I.C. Gülüm / Stochastic Processes and their Applications 129 (2019) 2406–2436 2435

(ii) There is a filtered probability space (Ω ,F , (Fn)1≤n≤n0 ,P) supporting two processes M and
X such that

– M is a martingale w.r.t. (Fn)1≤n≤n0

– X is adapted to (Fn)1≤n≤n0

– Mn ∼ νn, n = 1, . . . , n0,
– Xn ∼ µn, n = 1, . . . , n0,
– P[|Mn − Xn| > ϵ] = 0, n = 1, . . . , n0.

Proof. Suppose that (ii) holds. Since P[|Mn − Xn| > ϵ] = 0, we have W ∞(µn, νn) ≤ ϵ. As M
is a martingale, (νn) is a peacock, and so (i) follows from (the easy implication of) Theorem 3.5.

Now assume that (i) holds. Then Theorem 3.5 yields a peacock (νn)1≤n≤n0 satisfying
W ∞(µn, νn) ≤ ϵ for 1 ≤ n ≤ n0. Using Corollary 4.4, we see that the finiteness of the support of
the µn implies that we can choose (νn)1≤n≤n0 with finite support, too. From Strassen’s theorem
we get a filtered probability space (Ω∗,F∗, (F∗

n ),P∗) with a martingale M∗ satisfying M∗
n ∼ νn

for 1 ≤ n ≤ n0. Moreover, as W ∞(µn, νn) ≤ ϵ, there is a probability space (Ω̂ , F̂ , P̂) with two
processes M̂ and X̂ satisfying M̂n ∼ νn , X̂n ∼ µn for all n and

P̂[|M̂n − X̂n| > ϵ] = 0, n = 1, . . . , n0.

(This is an easy consequence of Proposition 7.4 and the finiteness of the supports of µn and νn .)
We may assume that both Ω∗ and Ω̂ are finite. Indeed, we may clearly replace them by the finite
sets

all intersections of sets from {(M∗

n )−1(z) : z ∈ supp(νn), 1 ≤ n ≤ n0}

respectively

all intersections of sets from {M̂−1
n (z) : z ∈ supp(νn), 1 ≤ n ≤ n0}

and {X̂−1
n (z) : z ∈ supp(µn), 1 ≤ n ≤ n0}

and update the sigma-algebras and the filtration of Ω∗ accordingly. The assertion then follows
from Lemma 9.1. □

In future work, we intend to prove an appropriate version of Theorem 9.2 (possibly featuring
dP

0 or dP
p instead of W ∞) for infinite sequences of general probability measures. Also, a natural

problem is to extend our peacock approximation results to other distances, such as the p-
Wasserstein distance W p (p ≥ 1). Note that a related problem (involving the sum of the W 2-
distances of all sequence elements) has been solved in [35].
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