1. Consider a derivative with payoff

\[X = \begin{cases}
0 & \text{if } S_T < A, \\
S_T - A & \text{if } A \leq S_T \leq B, \\
C - S_T & \text{if } B \leq S_T \leq C, \\
0 & \text{if } S_T > C.
\end{cases} \]

Here \(S \) is the price of the underlying, and \(A, C \) are real numbers with \(0 < A < C \) and \(B = \frac{1}{2}(A + C) \).

(a) Draw a payoff diagram and show that this contingent claim can be replicated by a static portfolio of European call options.

(b) Suppose that we want to replicate \(X \) in the Black-Scholes model by investing only in the bank account and the stock. How many units of stock are in a replicating portfolio at time \(0 \leq t \leq T \)? (Express the answer in terms of the distribution function of the standard normal distribution.)

2. Determine the price of the “cash or nothing” option with strike \(K \) and payoff

\[1_{\{S_T \geq K\}} \]

in the Black-Scholes model.

3. Let \(c(t, S_t) \) and \(p(t, S_t) \) denote the prices of a European call and a put option with maturity \(T \), underlying \(S \) (non-dividend-paying), and strike \(K \), respectively. Prove the following assertions, assuming a constant interest rate \(r \). Do not use a portfolio argument or the Black-Scholes formula, but the risk-neutral pricing formula.

(a) (Put-call parity)

\[c(0, S_0) - p(0, S_0) = S_0 - e^{-rT}K, \]

(b)

\[(S_0 - e^{-rT}K)_+ \leq c(0, S_0) \leq S_0. \]

(Hint: You may use (a) to prove the lower estimate in (b).)