

Risk-Minimization for Life Insurance Liabilities

Irene Schreiber (LMU Munich)

October 16, 2012

FAM Research Seminar (TU Vienna)

${\sf Agenda}$

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk

${\sf Agenda}$

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk

Introduction

- A large number of life insurance and pensions products have mortality and longevity as a primary source of risk
- Inadequate reinsurance capacity on a global basis to effectively address these risks
- Systematic mortality risk cannot be diversified away by pooling
- Securitization as a new form of risk transfer (Blake et al. [10]) \rightarrow creation of a new life market, longevity index based products as hedging instruments
- Risk-minimization: natural hedging method since the market incompleteness is due to the presence of an additional orthogonal source of randomness

- Objective: study the problem of pricing and hedging life insurance liabilities by means of the risk-minimization approach
- Trading in longevity index based products allowed
- 3 scenarios:
 - Single life case: Biagini and Schreiber [4]
 - ► Homogeneous portfolio with basis risk: Biagini et al. [6]
 - Portfolio consisting of different age cohorts: Biagini et al. [5]
- Main tools:
 - ► Progressive enlargement of filtration, reduced-form modeling from credit risk → Bielecki and Rutkowski [7]
 - Quadratic hedging: risk-minimization \rightarrow Föllmer and Sondermann [15], Møller [18] and Schweizer [19]
 - Affine processes \rightarrow Duffie et al. [13], Duffie et al. [14]
 - Random field theory \rightarrow Adler [1], Goldstein [16], Kennedy [17]

${\sf Agenda}$

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk

Risk-minimization (RM) for payment streams (Møller [18])

- Finite time horizon T > 0, filtered prob. space $(\Omega, \mathcal{G}, (\mathcal{G}_t)_{t \in [0, T]}, \mathbb{P})$
- Discounted asset price process \bar{S} (local martingale), discounted payment stream $A = (A_t)_{t \in [0, T]}$, \mathbb{G} -adapted, square integrable
- An L^2 -strategy is a pair $\varphi = (\xi, \xi^0)$, such that ξ^0 is a \mathbb{G} -adapted process and ξ is a \mathbb{G} -predictable process belonging to $L^2(\bar{S})$, with $L^2(\bar{S}) := \left\{ \xi : \xi \mathbb{G}$ -predictable, $\left(\mathbb{E} \left[\int_0^T \xi'_s d[\bar{S}]_s \xi_s \right] \right)^{1/2} < \infty \right\}$, such that the discounted value process $V_t(\varphi) = \xi_t \bar{S}_t + \xi_t^0$, $t \in [0, T]$ is right-continuous and square integrable
- Cumulative cost process $C(\varphi)$: $C_t(\varphi) = V_t(\varphi) \int_0^t \xi_s \, \mathrm{d}\bar{S}_s + A_t$
- Risk process $R(\varphi)$: $R_t(\varphi) = \mathbb{E}[(C_T(\varphi) C_t(\varphi))^2 | \mathfrak{G}_t], t \in [0, T]$

• An L^2 -strategy $\varphi = (\xi, \xi^0)$ is called *risk-minimizing* (rm), if for any L^2 -strategy $\tilde{\varphi} = (\tilde{\xi}, \tilde{\xi}^0)$ such that $V_T(\tilde{\varphi}) = V_T(\varphi) = 0$ P-a.s., $\tilde{\xi}_s = \xi_s$ for $s \leq t$ and $\tilde{\xi}_s^0 = \xi_s^0$ for s < t, we have

 $R_t(\varphi) \leq R_t(\tilde{\varphi}), \quad t \in [0, T]$

• GKW decomposition (Ansel and Stricker [3]):

$$\mathbb{E}[A_T \mid \mathfrak{G}_t] = \mathbb{E}[A_T \mid \mathfrak{G}_0] + \int_{]0,t]} \xi_s^A \,\mathrm{d}\bar{S}_s + \mathcal{L}_t^A, \quad t \in [0,T], \quad (1)$$

where $\xi^A \in L^2(\bar{S})$ and L^A is a square integrable martingale null at 0 that is strongly orthogonal to the space of stochastic integrals $\mathfrak{I}^2(\bar{S}) := \left\{ \int \xi \, \mathrm{d}\bar{S} \, \Big| \, \xi \in L^2(\bar{S}) \right\}$

Theorem (Møller [18])

The unique risk-minimizing L²-strategy $\varphi = (\xi, \xi^0)$ for A is given by

$$\begin{split} \xi_t &= \xi_t^A, \\ \xi_t^0 &= \mathbb{E}\left[A_T | \mathcal{G}_t\right] - A_t - \xi_t^A \bar{S}_t = V_t(\varphi) - \xi_t^A \bar{S}_t, \end{split}$$

for $t \in [0,\,T]$ with cumulative cost and risk processes

$$C_t(\varphi) = \mathbb{E} \left[A_T | \mathcal{G}_0 \right] + L_t^A,$$

$$R_t(\varphi) = \mathbb{E} \left[\left(L_T^A - L_t^A \right)^2 \middle| \mathcal{G}_t \right],$$

where $V_t(\varphi) = \mathbb{E}[A_T | \mathfrak{G}_t] - A_t$ and ξ^A , L^A are given by the GKW decomposition of $\mathbb{E}[A_T | \mathfrak{G}_t]$ in (1)

${\sf Agenda}$

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk

Introduction

- Joint work with Francesca Biagini
- Objective: study the problem of pricing and hedging life insurance liabilities by means of the risk-minimization approach for the case of one insured person
- Very general setting: general payoff structure, asset prices are local martingales (jumps allowed), existence of intensity not required, no independence assumption
- Main tools:
 - ► Progressive enlargement of filtration, reduced-form modeling from credit risk → Bielecki and Rutkowski [7]
 - ▶ Quadratic hedging: risk-minimization → Föllmer and Sondermann [15], Møller [18] and Schweizer [19]

The setting

- Finite time horizon T > 0, probability space $(\Omega, \mathcal{G}, \mathbb{P})$
- Background filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]}$
- Financial market: bank account + one risky asset with discounted asset price X local (ℙ, ℙ)-martingale → ℙ ELMM
- Remaining lifetime: $\tau : \Omega \rightarrow [0, T] \cup \{\infty\}$
- $\mathbb{H} = (\mathfrak{H}_t)_{t \in [0,T]}$, where $\mathfrak{H}_t = \sigma\{H_s : 0 \leq s \leq t\}$ and $H_t := \mathbb{1}_{\{\tau \leq t\}}$
- Progressive enlargement of filtrations: $\mathbb{G} = \mathbb{F} \vee \mathbb{H}, \ \mathcal{G} = \mathcal{G}_T$
- Hypothesis (H): \mathbb{F} -(local) martingales are \mathbb{G} -(local) martingales
- Hazard process Γ of τ under \mathbb{P} : $\Gamma_t = -\ln \mathbb{E}[\mathbb{1}_{\{\tau > t\}} | \mathfrak{F}_t]$
- Survivor/longevity index: $S_t^{\mu} = \exp(-\Gamma_t)$, $t \in [0, T]$

- Systematic mortality risk component: $P_t^T := \mathbb{E}[\mathbb{1}_{\{\tau > T\}} | \mathcal{F}_t] = \mathbb{E}[S_T^{\mu} | \mathcal{F}_t] = P_0^T + \int_{]0,t]} \zeta_s P_{s-}^T \, \mathrm{d}Y_s,$ $t \in [0, T], \zeta \text{ \mathbb{F}-predictable process, } Y \perp X \text{ \mathbb{F}-local martingale}$
- The martingale $M_t = H_t \Gamma_{t \wedge \tau}, t \in [0, T]$ associated with H is strongly orthogonal to any \mathbb{F} -local martingale
- Discounted life insurance payment process $A = (A_t)_{t \in [0,T]}$:

$$A_t = \mathbb{1}_{\{\tau \le t\}} \bar{A}_{\tau} + \mathbb{1}_{\{t=T\}} \mathbb{1}_{\{\tau > T\}} \tilde{A}, \quad t \in [0, T],$$

$$(2)$$

 $\bar{A} = (\bar{A}_t)_{t \in [0,T]} \mathbb{F}$ -predictable process, $\mathbb{E}\left[\sup_{t \in [0,T]} \bar{A}_t^2\right] < \infty$, \tilde{A} \mathcal{G}_T -measurable random variable, $\mathbb{E}[\tilde{A}^2] < \infty \to \mathbb{E}[A_t^2] < \infty$

Risk-minimization for life insurance liabilities

Theorem

The payment process A in (2) admits a RM strategy $\varphi = (\xi, \xi^0)$, where $\xi_t = \mathbb{1}_{\{\tau \ge t\}} e^{\Gamma_t} \xi_t^m$ and $\xi_t^0 = V_t - \xi_t X_t$ for $t \in [0, T]$, with

$$\begin{split} V_t &= \mathbb{E}[A_T \mid \mathcal{G}_t] - A_t = \int_{]0,t]} \mathbb{1}_{\{\tau \ge s\}} e^{\Gamma_s} \xi_s^m \, \mathrm{d}X_s + C_t - A_t, \\ C_t &= m_0 + \int_{]0,t]} \mathbb{1}_{\{\tau \ge s\}} e^{\Gamma_s} \eta_s^m \, \mathrm{d}Y_s + \int_{]0,t]} \mathbb{1}_{\{\tau \ge s\}} e^{\Gamma_s} \, \mathrm{d}C_s^m + \int_{]0,t]} \psi_s^M \, \mathrm{d}M_s, \end{split}$$

$$m_{t} = \mathbb{E}\left[\int_{0}^{T} \bar{A}_{s} e^{-\Gamma_{s}} d\Gamma_{s} \middle| \mathcal{F}_{t}\right] + \mathbb{E}[\mathbb{1}_{\{\tau > T\}} \tilde{A} \middle| \mathcal{F}_{t}],$$

$$= m_{0} + \int_{]0,t]} \xi_{s}^{m} dX_{s} + \int_{]0,t]} \eta_{s}^{m} dY_{s} + C_{t}^{m}, \text{ and}$$

$$\psi_{t}^{M} = \bar{A}_{t} - e^{\Gamma_{t}} \left(\mathbb{E}\left[\int_{t}^{T} \bar{A}_{s} e^{-\Gamma_{s}} d\Gamma_{s} \middle| \mathcal{F}_{t}\right] + \mathbb{E}[\mathbb{1}_{\{\tau > T\}} \tilde{A} \middle| \mathcal{F}_{t}]\right).$$

Irene Schreiber

Proof.

Compute GKW decomposition of A_T - main steps:

- Split up on events $\{\tau \leq t\}$ and $\{\tau > t\}$ for $t \in [0, T]$: $\mathbb{E}[A_{T} \mid \mathfrak{G}_{t}] = \underbrace{\mathbb{1}_{\{\tau \leq t\}} \mathbb{E}[\mathbb{1}_{\{\tau \leq T\}} \overline{A}_{\tau} \mid \mathfrak{G}_{t}]}_{a)}_{a)} + \underbrace{\mathbb{1}_{\{\tau > t\}} \mathbb{E}[\mathbb{1}_{\{\tau > T\}} \widetilde{A} \mid \mathfrak{G}_{t}]}_{b)}$
- Compute a) and b) separately
- $\mathfrak{G}_t \to \mathfrak{F}_t$ (Bielecki and Rutkowski [7]), e.g. for b): $\mathbb{E}[\mathbb{1}_{\{\tau > T\}} \tilde{A} | \mathfrak{G}_t] = \mathbb{1}_{\{\tau > t\}} e^{\Gamma_t} \underbrace{\mathbb{E}[\mathbb{1}_{\{\tau > T\}} \tilde{A} | \mathfrak{F}_t]}_{\tilde{m}_t}, \quad t \in [0, T]$
- Find martingale decompositions in \mathbb{F} , i.e. for b): $\tilde{m}_t = \dots$, for a): $\bar{m} = \dots$, $m = \tilde{m} + \bar{m} = \int \cdots dX + \int \cdots dY + C^m$
- Determine orthogonal structure in $\mathbb G$ in terms of X, Y, C^m and M

- The cost is generated by the following components:
 - C^m , the orthogonal part due to the predictable decomposition of the \mathbb{F} -martingale m
 - ► Y, the driving process of the conditional survival probability
 - ► *M*, the compensated jump process of the time of death
- The integrals with respect to Y and M represent the systematic and unsystematic component of the mortality risk
- Question:

Can we introduce mortality-linked products into the financial market, that can be used to hedge the cost parts due to Y and M?

• Set $C^m \equiv 0$ and $r \equiv 0$ (constant bank account) for simplicity

Extending the financial market

How to eliminate the systematic risk:

- Zero-coupon longevity bond with maturity $T(P_t^T)_{t \in [0,T]}$ pays out the longevity index at time T (Cairns et al. [11]): $P_t^T = \mathbb{E}[e^{-\Gamma_T} | \mathcal{G}_t] \stackrel{(H)}{=} \mathbb{E}[e^{-\Gamma_T} | \mathcal{F}_t] = \mathbb{E}[\mathbb{1}_{\{\tau > T\}} | \mathcal{F}_t]$ $= P_0^T + \int_{]0,t]} \zeta_s P_{s-}^T \, \mathrm{d}Y_s, \ t \in [0,T]$
- Assume trading in P^T is possible → eliminates the cost part associated to the systematic mortality risk:

$$\begin{split} V_t &= \int_{]0,t]} \mathbb{1}_{\{\tau \geq s\}} e^{\Gamma_s} \xi_s^m \, \mathrm{d}X_s + \int_{]0,t]} \mathbb{1}_{\{\tau \geq s\}} \frac{e^{\Gamma_s} \eta_s^m}{\zeta_s P_{s-}^T} \, \mathrm{d}P_s^T + C_t - A_t, \\ C_t &= m_0 + \int_{]0,t]} \psi_s^M \, \mathrm{d}M_s, \quad t \in [0,T] \end{split}$$

How to eliminate the unsystematic risk:

- Pure endowment contract $E = (E_t)_{t \in [0,T]}$ that pays 1 at maturity T if the individual survived: $E_t = \mathbb{E}[\mathbb{1}_{\{\tau > T\}} | \mathcal{G}_t], t \in [0,T]$
- Here E, P^T and M are closely related to each other: $\mathrm{d}M_t = \frac{\mathbb{1}_{\{\tau \ge t\}}}{P_{t-}^T} \mathrm{d}P_t^T - \frac{1}{P_{t-}^T \mathrm{e}^{\Gamma_t}} \mathrm{d}E_t, \quad t \in [0, T]$
- Assume trading in E is possible → additionally eliminates the cost part associated to the unsystematic mortality risk:

$$\begin{split} V_t &= m_0 + \int_{]0,t]} \mathbb{1}_{\{\tau \ge s\}} e^{\Gamma_s} \xi_s^m \, \mathrm{d}X_s \\ &+ \int_{]0,t]} \mathbb{1}_{\{\tau \ge s\}} \left(\frac{e^{\Gamma_s} \eta_s^m}{\zeta_s P_{s-}^T} + \frac{\psi_s^M}{P_{s-}^T} \right) \, \mathrm{d}P_s^T - \int_{]0,t]} \frac{\psi_s^M}{P_{s-}^T e^{\Gamma_s}} \, \mathrm{d}E_s - A_t \end{split}$$

Example: unit-linked life insurance

- $\mathbb{F} = \mathbb{F}^W \vee \mathbb{F}^{W^{\mu}} \vee \mathbb{F}^Q$, W and W^{μ} independent Brownian motions, Q compound Poisson process
- Jump diffusion model for the discounted asset price

$$\mathrm{d}X_t = \sigma_t X_t \,\mathrm{d}W_t + X_{t-} \,\mathrm{d}\widetilde{Q}_t, \quad X_0 = x, \quad t \in [0, T],$$

with $\sigma = (\sigma_t)_{t \in [0,T]}$ bounded, \mathbb{F} -adapted process, $\widetilde{Q}_t = Q_t - \beta \lambda t, \ Q_t = \sum_{i=1}^{N_t} Y_i, \ t \in [0, T], \ N = (N_t)_{t \in [0, T]}$ Poisson process with intensity $\lambda > 0$, Y_i are i.i.d. independent of N with $Y_i > -1$ a.s., $i \ge 1$, such that $\mathbb{E}[Y_1] = \beta < \infty$ and $\mathbb{E}[Y_1^2] < \infty$

• Unit-linked term insurance contract \rightarrow pays out the discounted asset price in the case of death prior to maturity: $A_T = \mathbb{1}_{\{\tau < T\}} X_{\tau}$

• The hazard process admits the representation $\Gamma_t = \int_0^t \mu_s \, \mathrm{d}s$, $t \in [0, T]$, where the mortality intensity μ is a non-negative \mathbb{F} -measurable process with

$$\mathrm{d}\mu_t = (\mathbf{a} + b\mu_t)\,\mathrm{d}t + c\sqrt{\mu_t}\,\mathrm{d}W^{\mu}_t, \quad \mu_0 = 0, \quad t \in [0, T],$$

for $b\in\mathbb{R}$ and $a,c\in\mathbb{R}_+$

• Duffie et al. [14]: since μ is an affine process, for $t \in [0, T]$ we have

$$\mathbb{E}[e^{-\Gamma_{T}} \mid \mathfrak{G}_{t}] = e^{-\Gamma_{t}} \mathbb{E}[e^{-\int_{t}^{T} \mu_{s} \, \mathrm{d}s} \mid \mathfrak{F}_{t}^{W^{\mu}}] = e^{-\Gamma_{t}} e^{\alpha(t) + \beta(t)\mu_{t}},$$

where
$$\alpha(t) = \frac{2a}{c^2} \ln\left(\frac{2\gamma e^{(\gamma-b)(T-t)/2}}{(\gamma-b)(e^{\gamma(T-t)}-1)+2\gamma}\right)$$
,
 $\beta(t) = -\frac{2(e^{\gamma(T-t)}-1)}{(\gamma-b)(e^{\gamma(T-t)}-1)+2\gamma}$ and $\gamma := \sqrt{b^2 + 2c^2}$

•
$$m_t = \mathbb{E}\left[\int_0^T X_s e^{-\Gamma_s} \mathrm{d}\Gamma_s \middle| \mathcal{F}_t\right]$$

= $x(1 - e^{\alpha(0)}) + \int_{]0,t]} e^{-\Gamma_s}(1 - e^{\alpha(s) + \beta(s)\mu_s}) \mathrm{d}X_s$
 $-\int_0^t c\sqrt{\mu_s}\beta(s)X_s e^{-\Gamma_s + \alpha(s) + \beta(s)\mu_s} \mathrm{d}W_s^{\mu}, \quad t \in [0, T]$

• GKW decomposition of A_T :

$$\begin{split} V_t &= \mathbb{E}[\mathbbm{1}_{\{\tau \leq T\}} X_\tau \,|\, \mathcal{G}_t] - A_t \\ &= \int_{]0,t]} \mathbbm{1}_{\{\tau \geq s\}} (1 - e^{\alpha(s) + \beta(s)\mu_s}) \,\mathrm{d}X_s + C_t - A_t, \quad t \in [0, T] \\ C_t &= x(1 - e^{\alpha(0)}) \\ &- \int_0^t \mathbbm{1}_{\{\tau \geq s\}} c \sqrt{\mu_s} \beta(s) X_s e^{\alpha(s) + \beta(s)\mu_s} \,\mathrm{d}W_s^\mu \\ &+ \int_{]0,t]} X_s e^{\alpha(s) + \beta(s)\mu_s} \mathrm{d}M_s, \quad t \in [0, T] \end{split}$$

${\sf Agenda}$

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk

Introduction

- Joint work with Francesca Biagini and Thorsten Rheinländer
- Objective: study the problem of pricing and hedging life insurance liabilities of a homogeneous insurance portfolio by means of the risk-minimization approach
- Consider a homogeneous insurance portfolio (all individuals are of the same age at time 0), take basis risk into account
- Model the dependency between the index and the insurance portfolio by means of a multidimensional affine mean-reverting diffusion process with stochastic drift
- Additional tool: affine processes
 - ▶ Duffie et al. [13], Duffie et al. [14]
 - Biffis [8], Dahl [12]

The setting: insurance portfolio and mortality intensities

- Finite time horizon T>0, probability space $(\Omega, \mathcal{G}, \mathbb{P})$
- Background filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$
- Insurance portfolio: *n* individuals belonging to the same age cohort
- Remaining lifetimes $au^j:\Omega o [0,T]\cup\{\infty\},\,j=1,\ldots,n$

•
$$H_t^j = \mathbb{1}_{\{\tau^j \le t\}}, \ j = 1, \dots, n, \ N_t = \sum_{j=1}^n \mathbb{1}_{\{\tau^j \le t\}}, \ t \in [0, T]$$

- $\mathbb{H} = (\mathcal{H}_t)_{t \in [0,T]}, \ \mathcal{H}_t = \mathcal{H}_t^1 \lor \cdots \lor \mathcal{H}_t^n$, where $\mathcal{H}_t^j = \sigma\{\mathcal{H}_s^j : 0 \le s \le t\}$
- Hazard process Γ^{j} of τ^{j} under \mathbb{P} : $\Gamma^{j}_{t} = -\ln \mathbb{E}[\mathbb{1}_{\{\tau^{j} > t\}} | \mathcal{F}_{t}]$, we set $\Gamma^{j} = \Gamma$, where $\Gamma_{t} = \int_{0}^{t} \mu_{s} \, \mathrm{d}s$, $t \in [0, T]$

• Similarly as in Biffis [8] we assume that the mortality intensity μ is given by the following set of stochastic differential equations:

$$d\mu_t = \gamma_1(\bar{\mu}_t - \mu_t)dt + \sigma_1\sqrt{\mu_t} dW_t^{\mu},$$

$$d\bar{\mu}_t = \gamma_2(m(t) - \bar{\mu}_t)dt + \sigma_2\sqrt{\bar{\mu}_t} dW_t^{\bar{\mu}},$$

for $t \in [0, T]$ where W^{μ} and $W^{\bar{\mu}}$ are independent Brownian motions and $\mu_0 = \bar{\mu}_0 = 0$, where $\gamma_1, \gamma_2, \sigma_1, \sigma_2 > 0$, and $m : [0, T] \to \mathbb{R}_+$ is a continuous deterministic function

• The process $\bar{\mu}$ represents the mortality intensity of the equivalent age cohort of the population

• Survivor/longevity index: $S^{ar{\mu}}_t = \exp\left(-\int_0^t ar{\mu}_s \, \mathrm{d}s\right)$, $t \in [0, T]$

The setting: financial market

- Bank account B: $B_t = \exp(rt)$, $t \in [0, T]$, r > 0
- Risky asset S with \mathbb{P} -dynamics $dS_t = S_t (r dt + \sigma(t, S_t) dW_t)$, $S_0 = s$, $t \in [0, T]$, Brownian motion W independent of $(W^{\mu}, W^{\bar{\mu}})$
- Longevity bond P with maturity T (Cairns et al. [11]): pays out the value of the survivor index at T, i.e. $Y_t = \mathbb{E} \begin{bmatrix} S_T^{\bar{\mu}} \\ B_T \end{bmatrix} G_t$, $t \in [0, T]$
- X = S/B, Y = P/B are continuous (local) (𝒫,𝑘)-martingales → financial market given by X, Y is arbitrage-free

The setting: combined model

- Background filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]}$, where $\mathcal{F}_t = \sigma\{(W_s, W_s^{\mu}, W_s^{\bar{\mu}}) : 0 \le s \le t\}, t \in [0, T]$
- Enlarged filtration $\mathbb{G}=\mathbb{F}\vee\mathbb{H}$
- Hypothesis (H): all \mathbb{F} -(local) martingales are \mathbb{G} -(local) martingales
- For $i \neq j, \tau^i, \tau^j$ are conditionally independent given $\mathcal{F}_{\mathcal{T}}$, i.e. $\mathbb{E}[\mathbb{1}_{\{\tau^i > t\}} \mathbb{1}_{\{\tau^j > s\}} | \mathcal{F}_{\mathcal{T}}] = \mathbb{E}[\mathbb{1}_{\{\tau^i > t\}} | \mathcal{F}_{\mathcal{T}}] \mathbb{E}[\mathbb{1}_{\{\tau^j > s\}} | \mathcal{F}_{\mathcal{T}}], \ 0 \leq s, t \leq \mathcal{T}$
- Fundamental martingales: the compensated process $M_t^j = H_t^j \Gamma_{t \wedge \tau^j}$, $t \in [0, T]$ follows a G-martingale for each $j = 1, \ldots, n$ we define $M_t = \sum_{j=1}^n M_t^j$

• We consider the following life insurance payment streams:

- Pure endowment: $A_t^{pe} = (n N_t) \frac{C^{pe}}{B_t} \mathbb{1}_{\{t=T\}}$
- Term insurance: $A_t^{ti} = \int_0^t \frac{C_s^{ti}}{B_s} dN_s = \sum_{j=1}^n \mathbb{1}_{\{\tau^j \le t\}} \frac{C_{\tau^j}^{ti}}{B_{\tau^j}}$
- Annuity: $A_t^a = \int_0^t (n N_s) \frac{1}{B_s} dC_s^a = \sum_{j=1}^n \int_0^t \mathbb{1}_{\{\tau^j > s\}} \frac{1}{B_s} dC_s^a$
- where $C^{pe} \in \mathcal{F}_{\mathcal{T}}, \ C^{pe} \ge 0, \ \mathbb{E}[(C^{pe})^2] < \infty, \ C^{ti} \ge 0 \ \mathbb{F}$ -predictable, $\mathbb{E}\left[\sup_{t \in [0,\mathcal{T}]} (C_t^{ti})^2\right] < \infty$, and $C^a \ge 0$ increasing \mathbb{F} -adapted, $\mathbb{E}\left[\sup_{t \in [0,\mathcal{T}]} (C_t^a)^2\right] < \infty$
- Unit-linked products: $C^{pe} = f(S_T), C_t^{ti} = f(S_t) \text{ and } C_t^a = \int_0^t f(S_s) ds \text{ for a function } f \text{ that}$ satisfies sufficient regularity conditions

RM for term insurance contracts with basis risk

Theorem

The process A^{ti} admits a rm strategy $\varphi = (\xi, \xi^0) = (\xi^X, \xi^Y, \xi^0)$ given by $\xi_t = (\xi_t^X, \xi_t^Y) = \left(\frac{(n-N_t)e^{\Gamma_t}\psi_t}{\sigma(t,X_t)X_t}, \frac{(n-N_t)e^{\Gamma_t+rT}\psi_t^{\tilde{\mu}}}{Y_t\beta^T(t)\sigma_2\sqrt{\mu}t}\right),$ $\xi^0_t = V^{ti}_t(\varphi) - \xi^X_t X_t - \xi^Y_t Y_t$ for $t \in [0, T]$, with discounted value process $V_t^{ti}(\varphi) = nU_0^{ti} + \int_0^t \xi_s^X dX_s + \int_0^t \xi_s^Y dY_s + L_t^{ti} - A_t^{ti}$, where $L_t^{ti} = \int_0^t (n - N_s) e^{\Gamma_s} \psi_s^{\mu} \, \mathrm{d}W_s^{\mu} + \int_{]0,t]} \left(\frac{C_s^{ti}}{B_s} - \mathbb{E} \left[\int_s^T \frac{C_u^{ti}}{B_u} e^{\Gamma_s - \Gamma_u} \, \mathrm{d}\Gamma_u \, \Big| \, \mathfrak{F}_s \right] \right) \, \mathrm{d}M_s,$ $U_t^{ti} = \mathbb{E}\left[\int_0^T \frac{C_s^{ti}}{B_s} e^{-\Gamma_s} \,\mathrm{d}\Gamma_s \,\Big|\,\mathcal{F}_t\right] = U_0^{ti} + \int_0^t \psi_s \mathrm{d}W_s + \int_0^t \psi_s^{\mu} \mathrm{d}W_s^{\mu} + \int_0^t \psi_s^{\bar{\mu}} \mathrm{d}W_s^{\bar{\mu}}.$ The optimal cost and risk processes are given by $C_t^{ti}(\varphi) = nU_0^{ti} + L_t^{ti}$ and $R_t^{ti}(\varphi) = \mathbb{E}[(L_T^{ti} - L_t^{ti})^2 | \mathcal{G}_t]$ for $t \in [0, T]$.

Proof.

Compute GKW decomposition of A_T^{ti} - main steps:

$$\begin{array}{l} \bullet \ \mathcal{G}_t \to \mathcal{F}_t: \\ \mathbb{E}[A_T^{ti} \mid \mathcal{G}_t] = nU_0^{ti} + \int_0^t (n - N_s) e^{\Gamma_s} \,\mathrm{d}U_s^{ti} \\ + \int_{]0,t]} \left(\frac{C_s^{ti}}{B_s} - \mathbb{E}\left[\int_s^T \frac{C_u^{ti}}{B_u} e^{\Gamma_s - \Gamma_u} \,\mathrm{d}\Gamma_u \, \Big| \, \mathcal{F}_s \right] \right) \,\mathrm{d}M_s, \quad t \in [0,T] \end{array}$$

- Martingale representation theorem for Brownian filtrations: $U_t^{ti} = U_0^{ti} + \int_0^t \psi_s \, \mathrm{d}W_s + \int_0^t \psi_s^{\mu} \, \mathrm{d}W_s^{\mu} + \int_0^t \psi_s^{\bar{\mu}} \, \mathrm{d}W_s^{\bar{\mu}}, \ t \in [0, T], \text{ where } \psi, \ \psi^{\mu} \text{ and } \psi^{\bar{\mu}} \text{ are } \mathbb{F}\text{-predictable processes}$
- Dynamics of X and Y: $dX_t = d\left(\frac{S_t}{B_t}\right) = \sigma(t, S_t)X_t dW_t$ and $dY_t = Y_t e^{-rT}\beta^T(t)\sigma_2\sqrt{\overline{\mu_t}} dW_t^{\overline{\mu}}$ for $t \in [0, T]$, where $\partial_t\beta^T(t) = 1 + \gamma_2\beta^T(t) \frac{1}{2}\sigma_2^2(\beta^T(t))^2$, $\beta^T(T) = 0$
- Orthogonality and integrability

Consider a unit-linked term insurance contract: $A_t^{i,f} = \int_0^t \frac{f(S_s)}{B_s} \, \mathrm{d}N_s = \sum_{i=1}^n \mathbb{1}_{\{\tau^i \leq t\}} \frac{f(S_{\tau^i})}{B_{\tau^i}}, \ t \in [0, T], \text{ where } f : \mathbb{R}_+ \to \mathbb{R}_+$ is a Borel measurable function such that $\mathbb{E}\left[\sup_{t \in [0, T]} f(S_t)^2\right] < \infty$

Corollary

The process $A^{ti,f}$ admits a rm strategy $\varphi = (\xi, \xi^0) = (\xi^X, \xi^Y, \xi^0)$ given by $\xi_t^X = (n - N_t)e^{\Gamma_t} \int_t^T F_s^u(t, S_t)Z_t^{\mu,u} du$, $\xi_t^Y = (n - N_t)e^{\Gamma_t + r(T-t)}Y_t^{-1}\beta^T(t)^{-1} \int_t^T F^u(t, S_t)Z_t^u(\hat{\beta}_2^u(t) + \beta_2^u(t)\hat{Z}_t^u) du$, $\xi_t^0 = V_t^{ti}(\varphi) - \xi_t^X X_t - \xi_t^Y Y_t$, for $t \in [0, T]$, with discounted value process $V_t^{ti}(\varphi) = nU_0^{ti} + \int_0^t \xi_s^X dX_s + \int_0^t \xi_s^Y dY_s + L_t^{ti} - A_t^{ti,f}$. The optimal cost and risk processes are given by $C_t^{ti}(\varphi) = nU_0^{ti} + L_t^{ti}$ and $R_t^{ti}(\varphi) = \mathbb{E}[(L_T^{ti} - L_t^{ti})^2 | \mathfrak{G}_t]$ for $t \in [0, T]$.

Proof.

- Fubini's theorem: $U_t^{ti} = \mathbb{E}\left[\int_0^T \frac{f(S_u)}{B_u} e^{-\Gamma_u} \mu_u \,\mathrm{d}u \middle| \mathcal{F}_t\right] =$ $\int_{0}^{T} \mathbb{E}\left[\frac{f(S_{u})}{B_{u}}\middle|\mathcal{F}_{t}\right] \mathbb{E}\left[e^{-\Gamma_{u}}\mu_{u}\middle|\mathcal{F}_{t}\right] \mathrm{d}u, \ t \in [0, T]$ • $\mathbb{E}\left[\frac{f(S_u)}{B_u}\middle|\mathcal{F}_t\right] = F^u(0,S_0) + \int_0^t F_s^u(s,S_s)\sigma(s,S_s)X_s\mathbb{1}_{\{s\leq u\}} \,\mathrm{d}W_s$ for $0 \le t$, $u \le T$, where $F^u(u, S_u) = f(S_u)$ • $Z_t^{\mu,u} = \mathbb{E}\left[e^{-\Gamma_u}\mu_u \middle| \mathcal{F}_t\right] =$ $Z_0^{\mu,u} + \int_0^t Z_s^u \left(\hat{\beta}_1^u(s) + \beta_1^u(s) \hat{Z}_s^u \right) \sigma_1 \sqrt{\mu_s} \mathbb{1}_{\{s \le u\}} \, \mathrm{d}W_s^\mu +$ $\int_0^t Z_s^u \left(\hat{\beta}_2^u(s) + \beta_2^u(s) \hat{Z}_s^u \right) \sigma_2 \sqrt{\bar{\mu}_s} \mathbb{1}_{\{s \leq u\}} \operatorname{d} W_s^{\bar{\mu}}, \, 0 \leq t, \, u \leq T$
- The result follows by the stochastic Fubini theorem

Agenda

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk

Introduction

- Joint work with Francesca Biagini and Camila Botero
- Objective: study the problem of pricing and hedging life insurance liabilities with *dependent* mortality risk by means of the risk-minimization approach
- Consider a portfolio consisting of individuals of different age cohorts and take into account the cross-generational dependency structure
- Introduce a model for the mortality intensities that is consistent with typical characteristics of historical mortality data
- Additional tool: random field theory
 - Adler [1]
 - Goldstein [16], Kennedy [17]
 - Biffis and Millossovich [9]

Andreev [2]: Danish Female Mortality

Typical characteristics of the Mortality Surface

- For fixed point in time: increasing in age
- For fixed age: decreasing in time
- Downward mortality trend is *not* uniform over age and time
- \rightarrow Use random fields to model the mortality intensity

Random Fields

Definition (Adler [1])

A real-valued random field is a collection of random variables $(X_t)_{t \in I}$, with index set $I \subseteq \mathbb{R}^N$, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ together with a collection of distribution functions

$$F_{t_1,\ldots,t_n}(b_1,\ldots,b_n) = \mathbb{P}\left(X_{t_1} \leq b_1,\ldots,X_{t_n} \leq b_n\right),$$

for $n \in \mathbb{N}$, $b_i \in \mathbb{R}$, $t_i \in I$, i = 1, ..., n. Given a square integrable random field $X = (X_t)_{t \in I}$, the mean function is defined as $m(t) = \mathbb{E}[X_t]$, $t \in I$ and the covariance function is defined as $c(s, t) = \text{Cov}(X_s, X_t)$, $s, t \in I$. A square integrable random field X is homogeneous or stationary if the mean function is independent of t, i.e. m(t) = m, $t \in I$ and the covariance function c(s, t) is a function of t - s, $s, t \in I$, only. In this case we write c(h) = c(0, h) for $h \in I$.

Example (Adler [1])

• A Gaussian random field is a random field where all finite-dimensional distributions $F_{t_1,...,t_n}$, $n \in \mathbb{N}$ are multivariate normal. For N = 2 a Brownian sheet W is a continuous version of a centered, Gaussian field with covariance function $c((s_1, s_2), (t_1, t_2)) = (s_1 \wedge t_1)(s_2 \wedge t_2)$

• A χ^2 -field $Y = (Y_t)_{t \in I}$ with parameter $n \in \mathbb{N}$ is defined as

$$Y_t := (Z_t^1)^2 + \dots + (Z_t^n)^2, \quad t \in I$$

where Z^1, \ldots, Z^n are independent, stationary centered Gaussian random fields with common covariance function c(h), $h \in I$ and variance $c(0) = \sigma^2$

The Setting: insurance portfolio and mortality intensities

- Finite time horizon $\mathcal{T}>0$, probability space $(\Omega, \mathcal{G}, \mathbb{P})$
- Background filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$
- Insurance portfolio *B*: *n* individuals belonging to a set of age cohorts $B = \{x_1, \ldots, x_m\} \subseteq I, I = [0, x^*]$
- Borel function $n^{\cdot}:B
 ightarrow\mathbb{N}$: # of insureds belonging to each age cohort
- Remaining lifetimes $au^{x,j}:\Omega o [0,T] \cup \{\infty\}$, $x \in B$, $j=1,\ldots,n^x$
- $\mathbb{H} = (\mathcal{H}_t)_{t \in [0,T]}$, $\mathcal{H}_t = \bigvee_{x \in B} \mathcal{H}_t^x$ with $\mathcal{H}_t^x = \mathcal{H}_t^{x,1} \lor \cdots \lor \mathcal{H}_t^{x,n^x}$, where $\mathcal{H}_t^{x,j} = \sigma \{ \mathcal{H}_s^{x,j} : 0 \le s \le t \}$ and $\mathcal{H}_t^{x,j} = \mathbb{1}_{\{\tau^{x,j} \le t\}}$
- Finite measure ζ on $(B, \mathcal{P}(B))$ allows us to differently weight the subsets of B, i.e. $\int_B n^x \zeta(dx) = \sum_{i=1}^m n^{x_i} \zeta(x_i)$ provides us with the weighted dimension of the portfolio B

- Death counting process belonging to the cohort class x: $N_t^x = \sum_{j=1}^{n^x} \mathbb{1}_{\{\tau^{x,j} \le t\}}, \ t \in [0, T], \ x \in B$
- Hazard process $\Gamma^{x,j}$ of $\tau^{x,j}$: $\Gamma_t^{x,j} = -\ln \mathbb{E}[\mathbb{1}_{\{\tau^{x,j} > t\}} | \mathcal{F}_t]$, $t \in [0, T]$, for $x \in B$: $\Gamma^x := \Gamma^{x,j}$, $j = 1, \ldots, n^x$, Γ^x admits a mortality intensity μ^x , i.e. $\Gamma_t^x = \int_0^t \mu_s^x ds$, $t \in [0, T]$ where $\mu = (\mu_{t,x})_{(t,x) \in [0, T] \times I}$, is a random field generated by a Brownian sheet $W = (W_{t,x})_{(t,x) \in [0, T] \times I}$
- For fixed x ∈ I we assume that the process (μ^x_t)_{t∈[0,T]} is an affine diffusion process
- $\mathbb{F}^{\mu} = (\mathcal{F}^{\mu}_t)_{t \in [0, T]}$, where $\mathcal{F}^{\mu}_t = \{\mathcal{F}^{\mu}_{t, x} : 0 \le x \le x^*\} = \bigvee_{x \in I} \mathcal{F}^{\mu}_{t, x}$ and $\mathcal{F}^{\mu}_{t, x} = \sigma\{W_{s, v} : 0 \le s \le t, \ 0 \le v \le x\}$
- Survivor indices: $S_t^{\mu^{\times}} = \exp\left(-\int_0^t \mu_s^{\times} \mathrm{d}s\right), \ t \in [0, T], \ x \in I$

The setting: financial market

- Bank account B: $B_t = \exp(rt)$, $t \in [0, T]$, r > 0
- Risky asset S with P-dynamics $dS_t = S_t (rdt + \sigma(t, S_t)dW_t^X)$, $S_0 = s, t \in [0, T]$, Brownian motion W^X independent of the Brownian sheet W

•
$$\mathbb{F}^{X} = \left(\mathcal{F}_{t}^{X}\right)_{t \in [0,T]}, \ \mathcal{F}_{t}^{X} = \sigma\{W_{s}^{X} : 0 \leq s \leq t\}$$

- Family of longevity bonds with maturity T (Cairns et al. [11]): $Y_t^{\times} = \mathbb{E} \left[\frac{S_T^{\mu^{\times}}}{B_T} \middle| \mathfrak{G}_t \right], t \in [0, T], x \in I$
- $X := \frac{S}{B}$, Y^{x} , $x \in I$ are continuous (local) (\mathbb{P}, \mathbb{F})-martingales \rightarrow financial market is arbitrage-free

The setting: combined model

- Background filtration $\mathbb{F} = \mathbb{F}^X \vee \mathbb{F}^\mu$, enlarged filtration $\mathbb{G} = \mathbb{F} \vee \mathbb{H}$
- Hypothesis (H): all \mathbb{F} -(local) martingales are \mathbb{G} -(local) martingales
- Remaining lifetimes are conditionally independent given $\mathcal{F}_{\mathcal{T}}$
- Fundamental martingales: the compensated process $M_t^{x,j} = H_t^{x,j} \Gamma_{t\wedge\tau^{x,j}}^x$, $t \in [0, T]$ follows a \mathbb{G} -martingale for each $x \in B$, $j = 1, \ldots, n^x$ we define $M_t^x = \sum_{j=1}^{n^x} M_t^{x,j}$
- Unit-linked life insurance liabilities:
 - ► Pure endowment: $A_t^{pe} = \frac{f(S_t)}{B_t} \sum_{i=1}^m \zeta(x_i) \sum_{j=1}^{n^{x_i}} \mathbb{1}_{\{\tau^{x_i, j} > t\}} \mathbb{1}_{\{t=T\}}$
 - Term insurance: $A_t^{ti} = \sum_{i=1}^m \zeta(x_i) \sum_{j=1}^{n^{x_i}} \frac{f(S_{\tau^{x_i,j}})}{B_{\tau^{x_i,j}}} \mathbb{1}_{\{\tau^{x_i,j} \le t\}}$
 - Annuity: $A_t^a = \sum_{i=1}^m \zeta(x_i) \sum_{j=1}^{n^{x_i}} \int_0^t \mathbb{1}_{\{\tau^{x_i, j} > s\}} \frac{f(S_s)}{B_s} \mathrm{d}s$

RM for unit-linked term insurance (dependent mortality risk)

Theorem

The payment process A^{ti} admits a rm strategy $\varphi = (\xi^X, \xi^Y, \xi^0)$ with discounted value process $V_t^{ti}(\varphi) = \mathbb{E}[A_T^{ti} \mid \mathcal{G}_0] + \int_0^t \xi_s^X \, \mathrm{d}X_s + \int_0^t \xi_s^Y \, \mathrm{d}Y_s + L_t^{ti} - A_t^{ti}$, and $\xi^0_t = V^{ti}_t(\varphi) - \xi^X_t X_t - \xi^Y_t Y_t,$ $\xi_t^X = \sum_{i=1}^m \zeta(x_i) (n^{x_i} - N_t^{x_i}) e^{\Gamma_t^{x_i}} \int_t^T \bar{Z}_t^{x_i, u} F_s^u(t, S_t) \, \mathrm{d}u, \text{ and the investment}$ in the family of (discounted) longevity bonds $Y = (Y^{x_1}, \ldots, Y^{x_m})$ is given by $\xi_t^{Y} = (\xi_t^{Y^{x_1}}, \dots, \xi_t^{Y^{x_m}})$ with $\xi_t^{Y^{x_i}} =$ $\zeta(x_{i})(n^{x_{i}}-N_{t}^{x_{i}})\frac{e^{\int_{t}^{x_{i}}e^{r(T-t)}}}{Z_{*}^{x_{i},T}\beta^{x_{i},T}(t)}\int_{t}^{T}F^{u}(t,S_{t})Z_{t}^{x_{i},u}(\hat{\beta}^{x_{i},u}(t)+\beta^{x_{i},u}(t)\hat{Z}_{t}^{x_{i},u})\,\mathrm{d}u$ and $L_t^{ti} = \sum_{i=1}^m \zeta(x_i) \int_{[0,t]} \left(\frac{f(S_s)}{B_s} - \mathbb{E} \left[\int_s^T \frac{f(S_u)}{B_u} e^{\sum_{i=1}^{x_i} - \sum_{u=1}^{x_i} d\sum_{u=1}^{x_i} dF_s} \right] \right) dM_s^{x_i}$ $t \in [0, T].$

Example: Gaussian intensity field model

- $\mu_{t,x} = \overline{\mu}(t,x) + O_{t,x}$, $t \in [0, T]$, $x \in I$, where $\overline{\mu}$ is a deterministic function and $O_{t,x} = \frac{\sigma}{\sqrt{2\theta\alpha}} e^{-\theta t} e^{-\alpha x} W_{\nu_1(t),\nu_2(x)}, t \in [0, T], x \in I$, with $\nu_1(t) = e^{2\theta t}, \ \nu_2(x) = e^{2\alpha x}$ for $\alpha, \ \theta > 0$ • $\overline{\mu}(t,x) = \exp(a(x) + b(x)k(t)), t \in [0, T], x \in I$ (Lee-Carter model) • $\mathbb{E}[\mu_{t,x}] = \bar{\mu}(t,x)$ and $\operatorname{Cov}(\mu_{t,x},\mu_{s,y}) = \frac{\sigma^2}{2c^{\theta}}e^{-\theta|t-s|}e^{-\alpha|x-y|}$, as well as $Corr(\mu_{t,x}, \mu_{s,y}) = e^{-\theta |t-s|} e^{-\alpha |x-y|}, t \in [0, T], x, y \in I$ • $\mathrm{d}\mu_t^{\mathsf{x}} = \theta \left[\left(\bar{\mu}(t, \mathsf{x}) + \frac{\partial_t \bar{\mu}(t, \mathsf{x})}{\theta} \right) - \mu_t^{\mathsf{x}} \right] \mathrm{d}t + \frac{\sigma}{\sqrt{\alpha}} \mathrm{d}\tilde{W}_t^{\nu_2(\mathsf{x})}, \ t \in [0, T],$ where $\tilde{W}_t^{\nu_2(x)} := \frac{W_{t,\nu_2(x)}}{\sqrt{\mu_1(x)}}, t \in [0, T]$, is a standard Brownian motion $\rightarrow \mu^{x}$ affine
- Sharp bracket: $\langle \mu^x, \mu^y \rangle_t = \frac{\sigma^2}{\alpha} e^{-\alpha |x-y|} t$, $t \in [0, T]$, $x, y \in I$

Irene Schreiber

Ludwig Maximilian University of Munich

Thank you very much for your attention \rightarrow Questions?

References |

- R. J. Adler. *The Geometry of Random Fields*. John Wiley, Chichester, 1981.
- [2] K. Andreev. Demographic surfaces: estimation, assessment and presentation, with application to Danish mortality, 1835-1995. PhD thesis, University of southern Denmark, Odense, 1999.
- [3] J. P. Ansel and C. Stricker. Décomposition de Kunita-Watanabe. In Séminaire de Probabilités XXVII, Lecture Notes in Mathematics Volume 1557. Springer, 1993.
- [4] F. Biagini and I. Schreiber. Risk-minimization for life insurance liabilities. Preprint, University of Munich, 2012.

References II

- [5] F. Biagini, C. Botero, and I. Schreiber. Risk-minimization for life insurance liabilities with dependent mortality risk. Preprint, University of Munich, 2012.
- [6] F. Biagini, T. Rheinländer, and I. Schreiber. Risk-minimization for life insurance liabilities with basis risk. Preprint, University of Munich and London School of Economics and Political Science, 2012.
- [7] T. R. Bielecki and M. Rutkowski. *Credit Risk: Modeling, Valuation and Hedging*. Springer Finance, 2004.
- [8] E. Biffis. Affine processes for dynamic mortality and actuarial valuations. *Insurance: Mathematics & Economics*, 37(3):443-468, 2005.
- [9] E. Biffis and P. Millossovich. A bidimensional approach to mortality risk. *Decisions in Economics an Finance*, 29(2):71–94, 2006.

References III

- [10] D. Blake, A. J. G. Cairns, and K. Dowd. The birth of the life market. *Asia-Pacific Journal of Risk and Insurance*, 3(1):6–36, 2008.
- [11] A. J. G. Cairns, D. Blake, and K. Dowd. Pricing death: Frameworks for the valuation and securitization of mortality risk. ASTIN Bulletin, 36(1):79-120, 2006.
- [12] M. Dahl. Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts. *Insurance: Mathematics & Economics*, 35(1):113–136, 2004.
- [13] D. Duffie, J. Pan, and K. Singleton. Transform analysis and asset pricing for affine jump-diffusions. *Econometrica*, 68:1343-1376, 2000.
- [14] D. Duffie, D. Filipović, and W. Schachermayer. Affine processes and applications in finance. *Annals of Applied Probability*, 13(3): 984–1053, 2003.

References IV

- [15] H. Föllmer and D. Sondermann. Hedging of non-redundant contingent claims. In A. Mas-Colell and W. Hildenbrand, editors, *Contributions to Mathematical Economics*, pages 205–223. North Holland, 1986.
- [16] R. S. Goldstein. The term structure of interest rates as a random field. *Review of Financial Studies*, 13(2):365–384, 2000.
- [17] D. Kennedy. The term structure of interest rates as a Gaussian random field. *Mathematical Finance*, 4:247–258, 1994.
- [18] T. Møller. Risk-minimizing hedging strategies for insurance payment processes. *Finance and Stochastics*, 4(5):419–446, 2001.
- [19] M. Schweizer. A guided tour through quadratic hedging approaches. In E. Jouini, J. Cvitanic, and M. Musiela, editors, *Option Pricing, Interest Rates and Risk Management*, pages 538–574. Cambridge University Press, 2001.

Affine Diffusion Processes (Duffie et al. [14])

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space, $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ satisfying the usual conditions and let X be an n-dimensional \mathbb{F} -Markov process specified as the strong solution to the following SDE:

$$\mathrm{d}X_t = \delta(t, X_t)\mathrm{d}t + \sigma(t, X_t)\mathrm{d}W_t,$$

where W is an \mathbb{F} -standard Brownian motion in \mathbb{R}^n , $\delta(t,x) = d_0(t) + d_1(t)x$ with $d_0: [0,T] \to \mathbb{R}^n$ and $d_1: [0,T] \to \mathbb{R}^{n \times n}$ continuous and $(\sigma(t,x)\sigma(t,x)')_{ii} = (v_0(t))_{ij} + (v_1(t))'_{ii} x$ with $v_0: [0, T] \to \mathbb{R}^{n \times n}$ and $v_1: [0, T] \to \mathbb{R}^{n \times n \times n}$ also continuous. Let $c \in \mathbb{C}$, $a, b \in \mathbb{C}^n$ and $\Lambda(t, x) = \lambda_0(t) + \lambda_1(t)'x$ for $\lambda_0 : [0, T] \to \mathbb{R}$ and $\lambda_1: [0, T] \to \mathbb{R}^n$ continuous. Under certain technical conditions for 0 < t < u < T the following expression holds:

$$\mathbb{E}\left[e^{-\int_t^u \Lambda(s,X_s) \mathrm{d}s} e^{a' X_u} \left(b' X_u + c\right) \ \Big| \ \mathfrak{F}_t\right] = e^{\alpha^u(t) + \beta^u(t)' X_t} \left[\hat{\alpha}^u(t) + \hat{\beta}^u(t)' X_t\right]$$

where α^{u} and β^{u} are functions solving the following ODEs:

$$\partial_t \beta^u(t) = \lambda_1(t) - d_1(t)' \beta^u(t) - \frac{1}{2} \beta^u(t)' v_1(t) \beta^u(t), \partial_t \alpha^u(t) = \lambda_0(t) - d_0(t)' \beta^u(t) - \frac{1}{2} \beta^u(t)' v_0(t) \beta^u(t),$$

and $\hat{\alpha}^{u}$ and $\hat{\beta}^{u}$ are functions solving the following ODEs:

$$\begin{split} \partial_t \hat{\beta}^u(t) &= -d_1(t)' \hat{\beta}^u(t) - \beta^u(t)' v_1(t) \hat{\beta}^u(t), \\ \partial_t \hat{\alpha}^u(t) &= -d_0(t)' \hat{\beta}^u(t) - \beta^u(t)' v_0(t) \hat{\beta}^u(t), \end{split}$$

for $t \in [0, u]$ with boundary conditions $\alpha^u(u) = 0$, $\beta^u(u) = a$ and $\hat{\beta}^u(u) = b$, $\hat{\alpha}^u(u) = c$.

Irene Schreiber

Proof.

Compute GKW decomposition of A_T^{ti} - main steps:

•
$$\mathbb{E}[A_T^{ti} \mid \mathcal{G}_t] = \sum_{i=1}^m \zeta(x_i) \sum_{j=1}^{n^{x_i}} \mathbb{E}\left[\frac{f(S_{\tau^{x_i,j}})}{B_{\tau^{x_i,j}}} \mathbb{1}_{\{\tau^{x_i,j} \leq T\}} \mid \mathcal{G}_t\right], t \in [0, T]$$

Example: χ^2 -intensity field model

- $\mu_{t,x} = (c(t,x)O_{t,x})^2$, $t \in [0, T]$, $x \in I$ where c(t,x) is a continuously differentiable function
- $\mathbb{E}[\mu_{t,x}] = c^2(t,x) \operatorname{Cov}(O_{t,x}, O_{t,x}) = c^2(t,x) \frac{\sigma^2}{2\theta\alpha}$ for $t \in [0, T]$ and $x \in I$ and $\operatorname{Cov}(\mu_{t,x}, \mu_{s,y}) = 2c^2(t,x)c^2(s,y) \operatorname{Cov}(O_{t,x}, O_{s,y})^2 = \frac{\sigma^4}{2\theta^2\alpha^2}c^2(t,x)c^2(s,y)e^{-2\theta|t-s|}e^{-2\alpha|x-y|}$ i.e. $\operatorname{Corr}(\mu_{t,x}, \mu_{s,y}) = e^{-2\theta|t-s|}e^{-2\alpha|x-y|}$ for $s, t \in [0, T]$ and $x, y \in I$
- $d\mu_t^{x} = 2\left(\theta \frac{\partial_t c(t,x)}{c(t,x)}\right) \left(\frac{\sigma^2}{2\alpha} \bar{c}(t,x) \mu_t^{x}\right) dt + \sqrt{\frac{4}{\alpha} \sigma^2 c^2(t,x) \mu_t^{x}} d\tilde{W}_t^{\nu_2(x)}$ for $t \in [0, T]$, where $\bar{c}(t,x) = \frac{c^3(t,x)}{(\theta c(t,x) \partial_t c(t,x))} \rightarrow \mu^{x}$ affine • $\langle \mu^{x}, \mu^{y} \rangle_t = \frac{4\sigma^2}{\alpha} e^{-\alpha|x-y|} \int_0^t \mu_s^{x} \mu_s^{y} c(s,x) c(s,y) ds$, $t \in [0, T]$, $x, y \in I$