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Introduction

• A large number of life insurance and pensions products have
mortality and longevity as a primary source of risk

• Inadequate reinsurance capacity on a global basis to e�ectively
address these risks

• Systematic mortality risk cannot be diversi�ed away by pooling

• Securitization as a new form of risk transfer (Blake et al. [10]) →
creation of a new life market, longevity index based products as
hedging instruments

• Risk-minimization: natural hedging method since the market
incompleteness is due to the presence of an additional orthogonal
source of randomness
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• Objective: study the problem of pricing and hedging life insurance
liabilities by means of the risk-minimization approach

• Trading in longevity index based products allowed

• 3 scenarios:
I Single life case: Biagini and Schreiber [4]
I Homogeneous portfolio with basis risk: Biagini et al. [6]
I Portfolio consisting of di�erent age cohorts: Biagini et al. [5]

• Main tools:
I Progressive enlargement of �ltration, reduced-form modeling from

credit risk → Bielecki and Rutkowski [7]
I Quadratic hedging: risk-minimization → Föllmer and Sondermann [15],

Møller [18] and Schweizer [19]
I A�ne processes → Du�e et al. [13], Du�e et al. [14]
I Random �eld theory → Adler [1], Goldstein [16], Kennedy [17]
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Risk-minimization (RM) for payment streams (Møller [18])

• Finite time horizon T > 0, �ltered prob. space
(
Ω,G, (Gt)t∈[0,T ],P

)
• Discounted asset price process S̄ (local martingale), discounted
payment stream A = (At)t∈[0,T ], G-adapted, square integrable

• An L2-strategy is a pair ϕ = (ξ, ξ0), such that ξ0 is a G-adapted
process and ξ is a G-predictable process belonging to L2(S̄), with

L2(S̄) :=

{
ξ : ξ G-predictable,

(
E
[∫ T

0
ξ′s d[S̄ ]s ξs

])1/2
<∞

}
, such

that the discounted value process Vt(ϕ) = ξt S̄t + ξ0t , t ∈ [0,T ] is
right-continuous and square integrable

• Cumulative cost process C (ϕ): Ct(ϕ) = Vt(ϕ)−
∫ t
0
ξs dS̄s + At

• Risk process R(ϕ): Rt(ϕ) = E[(CT (ϕ)− Ct(ϕ))2 |Gt ], t ∈ [0,T ]
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• An L2-strategy ϕ = (ξ, ξ0) is called risk-minimizing (rm), if for any
L2-strategy ϕ̃ = (ξ̃, ξ̃0) such that VT (ϕ̃) = VT (ϕ) = 0 P-a.s.,
ξ̃s = ξs for s ≤ t and ξ̃0s = ξ0s for s < t, we have

Rt(ϕ) ≤ Rt(ϕ̃), t ∈ [0,T ]

• GKW decomposition (Ansel and Stricker [3]):

E[AT |Gt ] = E[AT |G0] +

∫
]0,t]

ξAs dS̄s + LAt , t ∈ [0,T ], (1)

where ξA ∈ L2(S̄) and LA is a square integrable martingale null at 0
that is strongly orthogonal to the space of stochastic integrals

I2(S̄) :=
{∫

ξ dS̄
∣∣∣ ξ ∈ L2(S̄)

}
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Theorem (Møller [18])

The unique risk-minimizing L2-strategy ϕ = (ξ, ξ0) for A is given by

ξt = ξAt ,

ξ0t = E [AT |Gt ]− At − ξAt S̄t = Vt(ϕ)− ξAt S̄t ,

for t ∈ [0,T ] with cumulative cost and risk processes

Ct(ϕ) = E [AT |G0] + LAt ,

Rt(ϕ) = E
[(

LAT − LAt

)2∣∣∣∣Gt

]
,

where Vt(ϕ) = E[AT |Gt ]− At and ξ
A, LA are given by the GKW

decomposition of E[AT |Gt ] in (1)
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Introduction

• Joint work with Francesca Biagini

• Objective: study the problem of pricing and hedging life insurance
liabilities by means of the risk-minimization approach for the case of
one insured person

• Very general setting: general payo� structure, asset prices are local
martingales (jumps allowed), existence of intensity not required, no
independence assumption

• Main tools:
I Progressive enlargement of �ltration, reduced-form modeling from

credit risk → Bielecki and Rutkowski [7]
I Quadratic hedging: risk-minimization → Föllmer and Sondermann [15],

Møller [18] and Schweizer [19]
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The setting

• Finite time horizon T > 0, probability space (Ω,G,P)

• Background �ltration F = (Ft)t∈[0,T ]

• Financial market: bank account + one risky asset with discounted
asset price X local (P,F)-martingale → P ELMM

• Remaining lifetime: τ : Ω→ [0,T ] ∪ {∞}
• H = (Ht)t∈[0,T ], where Ht = σ{Hs : 0 ≤ s ≤ t} and Ht := 1{τ≤t}
• Progressive enlargement of �ltrations: G = F ∨H, G = GT

• Hypothesis (H): F-(local) martingales are G-(local) martingales

• Hazard process Γ of τ under P: Γt = − lnE[1{τ>t} |Ft ]

• Survivor/longevity index: Sµt = exp(−Γt), t ∈ [0,T ]
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• Systematic mortality risk component:
PT
t := E[1{τ>T} |Ft ] = E[SµT |Ft ] = PT

0 +
∫

]0,t] ζsP
T
s− dYs ,

t ∈ [0,T ], ζ F-predictable process, Y⊥X F-local martingale

• The martingale Mt = Ht − Γt∧τ , t ∈ [0,T ] associated with H is
strongly orthogonal to any F-local martingale

• Discounted life insurance payment process A = (At)t∈[0,T ]:

At = 1{τ≤t}Āτ + 1{t=T}1{τ>T}Ã, t ∈ [0,T ], (2)

Ā = (Āt)t∈[0,T ] F-predictable process, E
[
supt∈[0,T ] Ā

2
t

]
<∞, Ã

GT -measurable random variable, E[Ã2] <∞ → E[A2
t ] <∞
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Risk-minimization for life insurance liabilities

Theorem
The payment process A in (2) admits a RM strategy ϕ = (ξ, ξ0), where
ξt = 1{τ≥t}e

Γtξmt and ξ0t = Vt − ξtXt for t ∈ [0,T ], with

Vt = E[AT |Gt ]− At =

∫
]0,t]

1{τ≥s}e
Γs ξms dXs + Ct − At ,

Ct = m0 +

∫
]0,t]

1{τ≥s}e
Γsηms dYs +

∫
]0,t]

1{τ≥s}e
Γs dCm

s +

∫
]0,t]

ψM
s dMs ,

mt = E
[∫ T

0
Āse

−Γs dΓs

∣∣∣Ft

]
+ E[1{τ>T}Ã |Ft ],

= m0 +
∫

]0,t] ξ
m
s dXs +

∫
]0,t] η

m
s dYs + Cm

t , and

ψM
t = Āt − eΓt

(
E
[∫ T

t Āse
−Γs dΓs

∣∣∣Ft

]
+ E[1{τ>T}Ã |Ft ]

)
.
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Proof.
Compute GKW decomposition of AT - main steps:

• Split up on events {τ ≤ t} and {τ > t} for t ∈ [0,T ]:
E[AT |Gt ] = 1{τ≤t}E[1{τ≤T}Āτ |Gt ]︸ ︷︷ ︸

a)

+1{τ>t}E[1{τ>T}Ã |Gt ]︸ ︷︷ ︸
b)

• Compute a) and b) separately

• Gt → Ft (Bielecki and Rutkowski [7]), e.g. for b):
E[1{τ>T}Ã |Gt ] = 1{τ>t}e

Γt E[1{τ>T}Ã |Ft ]︸ ︷︷ ︸
m̃t

, t ∈ [0,T ]

• Find martingale decompositions in F, i.e. for b): m̃t = . . .,
for a): m̄ = . . ., m = m̃ + m̄ =

∫
· · · dX +

∫
· · · dY + Cm

• Determine orthogonal structure in G in terms of X , Y , Cm and M
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• The cost is generated by the following components:
I Cm, the orthogonal part due to the predictable decomposition of the

F-martingale m
I Y , the driving process of the conditional survival probability
I M, the compensated jump process of the time of death

• The integrals with respect to Y and M represent the systematic and
unsystematic component of the mortality risk

• Question:
Can we introduce mortality-linked products into the �nancial market,
that can be used to hedge the cost parts due to Y and M?

• Set Cm ≡ 0 and r ≡ 0 (constant bank account) for simplicity

Irene Schreiber Ludwig Maximilian University of Munich 16/52



Introduction RM theory Single life case Basis risk Dependent mortality risk References

Extending the �nancial market
How to eliminate the systematic risk:

• Zero-coupon longevity bond with maturity T (PT
t )t∈[0,T ]

pays out the longevity index at time T (Cairns et al. [11]):

PT
t = E[ e−ΓT |Gt ]

(H)
= E[ e−ΓT |Ft ] = E[1{τ>T} |Ft ]

= PT
0 +

∫
]0,t] ζsP

T
s− dYs , t ∈ [0,T ]

• Assume trading in PT is possible → eliminates the cost part
associated to the systematic mortality risk:

Vt =

∫
]0,t]

1{τ≥s}e
Γs ξms dXs +

∫
]0,t]

1{τ≥s}
eΓsηms
ζsPT

s−
dPT

s + Ct − At ,

Ct = m0 +

∫
]0,t]

ψM
s dMs , t ∈ [0,T ]
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How to eliminate the unsystematic risk:

• Pure endowment contract E = (Et)t∈[0,T ] that pays 1 at maturity T
if the individual survived: Et = E[1{τ>T} |Gt ], t ∈ [0,T ]

• Here E , PT and M are closely related to each other:

dMt =
1{τ≥t}
PT
t−

dPT
t − 1

PT
t−e

Γt
dEt , t ∈ [0,T ]

• Assume trading in E is possible → additionally eliminates the cost
part associated to the unsystematic mortality risk:

Vt = m0 +

∫
]0,t]

1{τ≥s}e
Γs ξms dXs

+

∫
]0,t]

1{τ≥s}

(
eΓsηms
ζsPT

s−
+
ψM
s

PT
s−

)
dPT

s −
∫

]0,t]

ψM
s

PT
s−e

Γs
dEs − At
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Example: unit-linked life insurance

• F = FW ∨ FWµ ∨ FQ , W and W µ independent Brownian motions,
Q compound Poisson process

• Jump di�usion model for the discounted asset price

dXt = σtXt dWt + Xt− dQ̃t , X0 = x , t ∈ [0,T ],

with σ = (σt)t∈[0,T ] bounded, F-adapted process,

Q̃t = Qt − βλt, Qt =
∑Nt

i=1 Yi , t ∈ [0,T ], N = (Nt)t∈[0,T ] Poisson
process with intensity λ > 0, Yi are i.i.d. independent of N with
Yi > −1 a.s., i ≥ 1, such that E[Y1] = β <∞ and E[Y 2

1 ] <∞
• Unit-linked term insurance contract → pays out the discounted asset
price in the case of death prior to maturity: AT = 1{τ≤T}Xτ
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• The hazard process admits the representation Γt =
∫ t
0
µs ds,

t ∈ [0,T ], where the mortality intensity µ is a non-negative
F-measurable process with

dµt = (a + bµt) dt + c
√
µt dW

µ
t , µ0 = 0, t ∈ [0,T ],

for b ∈ R and a, c ∈ R+

• Du�e et al. [14]: since µ is an a�ne process, for t ∈ [0,T ] we have

E[e−ΓT |Gt ] = e−ΓtE[e−
∫ T
t µs ds |FWµ

t ] = e−Γteα(t)+β(t)µt ,

where α(t) = 2a
c2

ln
(

2γe(γ−b)(T−t)/2

(γ−b)(eγ(T−t)−1)+2γ

)
,

β(t) = − 2(eγ(T−t)−1)

(γ−b)(eγ(T−t)−1)+2γ
and γ :=

√
b2 + 2c2
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• mt = E
[∫ T

0
Xse

−Γs dΓs

∣∣∣Ft

]
= x(1− eα(0)) +

∫
]0,t] e

−Γs (1− eα(s)+β(s)µs ) dXs

−
∫ t
0
c
√
µsβ(s)Xse

−Γs+α(s)+β(s)µs dW µ
s , t ∈ [0,T ]

• GKW decomposition of AT :

Vt = E[1{τ≤T}Xτ |Gt ]− At

=
∫

]0,t] 1{τ≥s}(1− eα(s)+β(s)µs ) dXs + Ct − At , t ∈ [0,T ]

Ct = x(1− eα(0))
−
∫ t
0
1{τ≥s}c

√
µsβ(s)Xse

α(s)+β(s)µs dW µ
s

+
∫

]0,t] Xse
α(s)+β(s)µsdMs , t ∈ [0,T ]
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Introduction

• Joint work with Francesca Biagini and Thorsten Rheinländer

• Objective: study the problem of pricing and hedging life insurance
liabilities of a homogeneous insurance portfolio by means of the
risk-minimization approach

• Consider a homogeneous insurance portfolio (all individuals are of the
same age at time 0), take basis risk into account

• Model the dependency between the index and the insurance portfolio
by means of a multidimensional a�ne mean-reverting di�usion process
with stochastic drift

• Additional tool: a�ne processes
I Du�e et al. [13], Du�e et al. [14]
I Bi�s [8], Dahl [12]
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The setting: insurance portfolio and mortality intensities

• Finite time horizon T > 0, probability space (Ω,G,P)

• Background �ltration F = (Ft)t∈[0,T ]

• Insurance portfolio: n individuals belonging to the same age cohort

• Remaining lifetimes τ j : Ω→ [0,T ] ∪ {∞}, j = 1, . . . , n

• H j
t = 1{τ j≤t}, j = 1, . . . , n, Nt =

∑n
j=1 1{τ j≤t}, t ∈ [0,T ]

• H = (Ht)t∈[0,T ], Ht = H1
t ∨ · · · ∨Hn

t , where H
j
t = σ{H j

s : 0 ≤ s ≤ t}
• Hazard process Γj of τ j under P: Γj

t = − lnE[1{τ j>t} |Ft ], we set

Γj = Γ, where Γt =
∫ t
0
µs ds, t ∈ [0,T ]
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• Similarly as in Bi�s [8] we assume that the mortality intensity µ is
given by the following set of stochastic di�erential equations:

dµt = γ1(µ̄t − µt)dt + σ1
√
µt dW

µ
t ,

dµ̄t = γ2(m(t)− µ̄t)dt + σ2
√
µ̄t dW

µ̄
t ,

for t ∈ [0,T ] where W µ and W µ̄ are independent Brownian motions
and µ0 = µ̄0 = 0, where γ1, γ2, σ1, σ2 > 0, and m : [0,T ]→ R+ is a
continuous deterministic function

• The process µ̄ represents the mortality intensity of the equivalent age
cohort of the population

• Survivor/longevity index: S µ̄t = exp
(
−
∫ t
0
µ̄s ds

)
, t ∈ [0,T ]
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The setting: �nancial market

• Bank account B : Bt = exp(rt), t ∈ [0,T ], r > 0

• Risky asset S with P-dynamics dSt = St (rdt + σ(t,St)dWt), S0 = s,
t ∈ [0,T ], Brownian motion W independent of (W µ,W µ̄)

• Longevity bond P with maturity T (Cairns et al. [11]): pays out the

value of the survivor index at T , i.e. Yt = E
[
S µ̄T
BT

∣∣∣Gt

]
, t ∈ [0,T ]

• X = S/B, Y = P/B are continuous (local) (P,F)-martingales →
�nancial market given by X ,Y is arbitrage-free
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The setting: combined model

• Background �ltration F = (Ft)t∈[0,T ], where

Ft = σ{(Ws ,W
µ
s ,W

µ̄
s ) : 0 ≤ s ≤ t}, t ∈ [0,T ]

• Enlarged �ltration G = F ∨H
• Hypothesis (H): all F-(local) martingales are G-(local) martingales

• For i 6= j , τ i , τ j are conditionally independent given FT , i.e.
E[1{τ i>t}1{τ j>s} |FT ] = E[1{τ i>t} |FT ]E[1{τ j>s} |FT ], 0 ≤ s, t ≤ T

• Fundamental martingales: the compensated process M j
t = H j

t − Γt∧τ j ,
t ∈ [0,T ] follows a G-martingale for each j = 1, . . . , n we de�ne
Mt =

∑n
j=1M

j
t

Irene Schreiber Ludwig Maximilian University of Munich 27/52
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• We consider the following life insurance payment streams:
I Pure endowment: Ape

t = (n − Nt)
C pe

Bt
1{t=T}

I Term insurance: Ati
t =

∫ t

0

C ti
s

Bs
dNs =

∑n
j=1

1{τ j≤t}
C ti
τ j

B
τ j

I Annuity: Aa
t =

∫ t

0
(n − Ns) 1

Bs
dC a

s =
∑n

j=1

∫ t

0
1{τ j>s}

1

Bs
dC a

s

where Cpe ∈ FT , C
pe ≥ 0, E[(Cpe)2] <∞, C ti ≥ 0 F-predictable,

E
[
supt∈[0,T ](C

ti
t )2
]
<∞, and C a ≥ 0 increasing F-adapted,

E
[
supt∈[0,T ](C

a
t )2
]
<∞

• Unit-linked products:
Cpe = f (ST ), C ti

t = f (St) and C a
t =

∫ t
0
f (Ss) ds for a function f that

satis�es su�cient regularity conditions
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RM for term insurance contracts with basis risk

Theorem
The process Ati admits a rm strategy ϕ = (ξ, ξ0) = (ξX , ξY , ξ0) given by

ξt = (ξXt , ξ
Y
t ) =

(
(n−Nt)eΓtψt

σ(t,Xt)Xt
,

(n−Nt)eΓt+rTψµ̄t
YtβT (t)σ2

√
µ̄t

)
,

ξ0t = V ti
t (ϕ)− ξXt Xt − ξYt Yt

for t ∈ [0,T ], with discounted value process
V ti
t (ϕ) = nUti

0 +
∫ t
0
ξXs dXs +

∫ t
0
ξYs dYs + Ltit − Ati

t , where

Ltit =
∫ t
0

(n−Ns)eΓsψµs dW
µ
s +
∫

]0,t]

(
C ti
s

Bs
− E

[∫ T
s

C ti
u

Bu
eΓs−Γu dΓu

∣∣∣Fs

])
dMs ,

Uti
t = E

[∫ T
0

C ti
s

Bs
e−Γs dΓs

∣∣∣Ft

]
= Uti

0 +
∫ t
0
ψsdWs+

∫ t
0
ψµs dW

µ
s +
∫ t
0
ψµ̄s dW

µ̄
s .

The optimal cost and risk processes are given by
C ti
t (ϕ) = nUti

0 + Ltit and Rti
t (ϕ) = E[(LtiT − Ltit )2 |Gt ] for t ∈ [0,T ].
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Proof.
Compute GKW decomposition of Ati

T - main steps:

• Gt → Ft :
E[Ati

T |Gt ] = nUti
0 +

∫ t
0

(n − Ns)eΓs dUti
s

+
∫

]0,t]

(
C ti
s

Bs
− E

[∫ T
s

C ti
u

Bu
eΓs−Γu dΓu

∣∣∣Fs

])
dMs , t ∈ [0,T ]

• Martingale representation theorem for Brownian �ltrations:
Uti
t = Uti

0 +
∫ t
0
ψs dWs +

∫ t
0
ψµs dW

µ
s +

∫ t
0
ψµ̄s dW

µ̄
s , t ∈ [0,T ], where

ψ, ψµ and ψµ̄ are F-predictable processes
• Dynamics of X and Y : dXt = d

(
St
Bt

)
= σ(t, St)Xt dWt and

dYt = Yte
−rTβT (t)σ2

√
µ̄t dW

µ̄
t for t ∈ [0,T ], where

∂tβ
T (t) = 1 + γ2β

T (t)− 1
2
σ22(βT (t))2, βT (T ) = 0

• Orthogonality and integrability
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Consider a unit-linked term insurance contract:
Ati ,f
t =

∫ t
0

f (Ss)
Bs

dNs =
∑n

i=1 1{τ i≤t}
f (S

τ i
)

B
τ i

, t ∈ [0,T ], where f : R+ → R+

is a Borel measurable function such that E
[
supt∈[0,T ] f (St)

2
]
<∞

Corollary

The process Ati ,f admits a rm strategy ϕ = (ξ, ξ0) = (ξX , ξY , ξ0) given by

ξXt = (n − Nt)e
Γt
∫ T
t F u

s (t,St)Z
µ,u
t du,

ξYt = (n−Nt)e
Γt+r(T−t)Y−1t βT (t)−1

∫ T
t F u(t,St)Z

u
t (β̂u2 (t)+βu2 (t)Ẑu

t ) du,
ξ0t = V ti

t (ϕ)− ξXt Xt − ξYt Yt , for t ∈ [0,T ], with discounted value process

V ti
t (ϕ) = nUti

0 +
∫ t
0
ξXs dXs +

∫ t
0
ξYs dYs + Ltit − Ati ,f

t .
The optimal cost and risk processes are given by
C ti
t (ϕ) = nUti

0 + Ltit and Rti
t (ϕ) = E[(LtiT − Ltit )2 |Gt ] for t ∈ [0,T ].
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Proof.

• Fubini's theorem: Uti
t = E

[∫ T
0

f (Su)
Bu

e−Γuµu du
∣∣∣Ft

]
=∫ T

0
E
[
f (Su)
Bu

∣∣∣Ft

]
E
[
e−Γuµu

∣∣∣Ft

]
du, t ∈ [0,T ]

• E
[
f (Su)
Bu

∣∣∣Ft

]
= F u(0,S0) +

∫ t
0
F u
s (s, Ss)σ(s,Ss)Xs1{s≤u} dWs for

0 ≤ t, u ≤ T , where F u(u, Su) = f (Su)

• Zµ,ut = E
[
e−Γuµu

∣∣∣Ft

]
=

Zµ,u0 +
∫ t
0
Zu
s

(
β̂u1 (s) + βu1 (s)Ẑu

s

)
σ1
√
µs1{s≤u} dW

µ
s +∫ t

0
Zu
s

(
β̂u2 (s) + βu2 (s)Ẑu

s

)
σ2
√
µ̄s1{s≤u} dW

µ̄
s , 0 ≤ t, u ≤ T

• The result follows by the stochastic Fubini theorem
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Agenda

Introduction

A review of risk-minimization for payment streams

Risk-minimization for life-insurance liabilities: the single life case

Risk-minimization with basis risk

Risk-minimization with dependent mortality risk
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Introduction

• Joint work with Francesca Biagini and Camila Botero

• Objective: study the problem of pricing and hedging life insurance
liabilities with dependent mortality risk by means of the
risk-minimization approach

• Consider a portfolio consisting of individuals of di�erent age cohorts
and take into account the cross-generational dependency structure

• Introduce a model for the mortality intensities that is consistent with
typical characteristics of historical mortality data

• Additional tool: random �eld theory
I Adler [1]
I Goldstein [16], Kennedy [17]
I Bi�s and Millossovich [9]
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Andreev [2]: Danish Female Mortality

Typical characteristics of the
Mortality Surface

• For �xed point in time:
increasing in age

• For �xed age:
decreasing in time

• Downward mortality
trend is not uniform
over age and time

→ Use random �elds to
model the mortality intensity

Irene Schreiber Ludwig Maximilian University of Munich 35/52



Introduction RM theory Single life case Basis risk Dependent mortality risk References

Random Fields

De�nition (Adler [1])

A real-valued random �eld is a collection of random variables (Xt)t∈I , with
index set I ⊆ RN , de�ned on a probability space (Ω,F,P) together with a
collection of distribution functions

Ft1,...,tn(b1, . . . , bn) = P (Xt1 ≤ b1, . . . ,Xtn ≤ bn) ,

for n ∈ N, bi ∈ R, ti ∈ I , i = 1, . . . , n. Given a square integrable random
�eld X = (Xt)t∈I , the mean function is de�ned as m(t) = E [Xt ], t ∈ I
and the covariance function is de�ned as c(s, t) = Cov (Xs ,Xt), s, t ∈ I . A
square integrable random �eld X is homogeneous or stationary if the mean
function is independent of t, i.e. m(t) = m, t ∈ I and the covariance
function c(s, t) is a function of t − s, s, t ∈ I , only. In this case we write
c(h) = c(0, h) for h ∈ I .
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Example (Adler [1])

• A Gaussian random �eld is a random �eld where all �nite-dimensional
distributions Ft1,...,tn , n ∈ N are multivariate normal. For N = 2 a
Brownian sheet W is a continuous version of a centered, Gaussian
�eld with covariance function c((s1, s2), (t1, t2)) = (s1 ∧ t1)(s2 ∧ t2)

• A χ2-�eld Y = (Yt)t∈I with parameter n ∈ N is de�ned as

Yt := (Z 1
t )2 + · · ·+ (Zn

t )2, t ∈ I

where Z 1, . . . ,Zn are independent, stationary centered Gaussian
random �elds with common covariance function c(h), h ∈ I and
variance c(0) = σ2
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The Setting: insurance portfolio and mortality intensities

• Finite time horizon T > 0, probability space (Ω,G,P)

• Background �ltration F = (Ft)t∈[0,T ]

• Insurance portfolio B : n individuals belonging to a set of age cohorts
B = {x1, . . . , xm} ⊆ I , I = [0, x∗]

• Borel function n· : B → N: # of insureds belonging to each age cohort

• Remaining lifetimes τ x ,j : Ω→ [0,T ] ∪ {∞}, x ∈ B , j = 1, . . . , nx

• H = (Ht)t∈[0,T ], Ht = ∨x∈BHx
t with Hx

t = H
x ,1
t ∨ · · · ∨H

x ,nx

t , where

H
x ,j
t = σ{Hx ,j

s : 0 ≤ s ≤ t} and Hx ,j
t = 1{τ x,j≤t}

• Finite measure ζ on (B,P(B)) allows us to di�erently weight the
subsets of B , i.e.

∫
B nx ζ(dx) =

∑m
i=1 n

xi ζ(xi ) provides us with the
weighted dimension of the portfolio B

Irene Schreiber Ludwig Maximilian University of Munich 38/52



Introduction RM theory Single life case Basis risk Dependent mortality risk References

• Death counting process belonging to the cohort class x :
Nx
t =

∑nx

j=1 1{τ x,j≤t}, t ∈ [0,T ], x ∈ B

• Hazard process Γx ,j of τ x ,j : Γx ,j
t = − lnE[1{τ x,j>t} |Ft ], t ∈ [0,T ], for

x ∈ B : Γx := Γx ,j , j = 1, . . . , nx , Γx admits a mortality intensity µx ,
i.e. Γx

t =
∫ t
0
µxs ds, t ∈ [0,T ] where µ = (µt,x)(t,x)∈[0,T ]×I , is a

random �eld generated by a Brownian sheet W = (Wt,x)(t,x)∈[0,T ]×I
• For �xed x ∈ I we assume that the process (µxt )t∈[0,T ] is an a�ne
di�usion process

• Fµ = (Fµt )t∈[0,T ], where F
µ
t = {Fµt,x : 0 ≤ x ≤ x∗} = ∨x∈IFµt,x and

F
µ
t,x = σ{Ws,v : 0 ≤ s ≤ t, 0 ≤ v ≤ x}

• Survivor indices: Sµ
x

t = exp
(
−
∫ t
0
µxs ds

)
, t ∈ [0,T ], x ∈ I
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The setting: �nancial market

• Bank account B : Bt = exp(rt), t ∈ [0,T ], r > 0

• Risky asset S with P-dynamics dSt = St
(
rdt + σ(t, St)dW

X
t

)
,

S0 = s, t ∈ [0,T ], Brownian motion W X independent of the
Brownian sheet W

• FX =
(
FX
t

)
t∈[0,T ]

, FX
t = σ{W X

s : 0 ≤ s ≤ t}
• Family of longevity bonds with maturity T (Cairns et al. [11]):

Y x
t = E

[
Sµ

x

T
BT

∣∣∣Gt

]
, t ∈ [0,T ], x ∈ I

• X := S
B , Y

x , x ∈ I are continuous (local) (P,F)-martingales →
�nancial market is arbitrage-free
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The setting: combined model

• Background �ltration F = FX ∨ Fµ, enlarged �ltration G = F ∨H
• Hypothesis (H): all F-(local) martingales are G-(local) martingales

• Remaining lifetimes are conditionally independent given FT

• Fundamental martingales: the compensated process
Mx ,j

t = Hx ,j
t − Γx

t∧τ x,j , t ∈ [0,T ] follows a G-martingale for each

x ∈ B , j = 1, . . . , nx we de�ne Mx
t =

∑nx

j=1M
x ,j
t

• Unit-linked life insurance liabilities:
I Pure endowment: Ape

t = f (St)
Bt

∑m
i=1

ζ(xi )
∑nxi

j=1
1{τ xi ,j>t}1{t=T}

I Term insurance: Ati
t =

∑m
i=1

ζ(xi )
∑nxi

j=1

f (S
τxi ,j

)

B
τxi ,j

1{τ xi ,j≤t}

I Annuity: Aa
t =

∑m
i=1

ζ(xi )
∑nxi

j=1

∫ t

0
1{τ xi ,j>s}

f (Ss )
Bs

ds
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RM for unit-linked term insurance (dependent mortality risk)

Theorem
The payment process Ati admits a rm strategy ϕ = (ξX , ξY , ξ0) with
discounted value process
V ti
t (ϕ) = E[Ati

T |G0] +
∫ t
0
ξXs dXs +

∫ t
0
ξYs dYs + Ltit − Ati

t , and
ξ0t = V ti

t (ϕ)− ξXt Xt − ξYt Yt ,

ξXt =
∑m

i=1 ζ(xi )(nxi − Nxi
t )eΓ

xi
t
∫ T
t Z̄ xi ,u

t F u
s (t, St) du, and the investment

in the family of (discounted) longevity bonds Y = (Y x1 , . . . ,Y xm) is given
by ξYt = (ξY

x1

t , . . . , ξY
xm

t ) with ξY
xi

t =

ζ(xi )(nxi − Nxi
t ) eΓ

xi
t er(T−t)

Z
xi ,T
t βxi ,T (t)

∫ T
t F u(t,St)Z

xi ,u
t (β̂xi ,u(t) + βxi ,u(t)Ẑ xi ,u

t ) du

and Ltit =
∑m

i=1 ζ(xi )
∫

]0,t]

(
f (Ss)
Bs
− E

[∫ T
s

f (Su)
Bu

eΓ
xi
s −Γ

xi
u dΓxi

u

∣∣∣Fs

])
dMxi

s ,

t ∈ [0,T ].
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Example: Gaussian intensity �eld model

• µt,x = µ̄(t, x) + Ot,x , t ∈ [0,T ], x ∈ I , where µ̄ is a deterministic
function and Ot,x = σ√

2θα
e−θte−αxWν1(t),ν2(x), t ∈ [0,T ], x ∈ I , with

ν1(t) = e2θt , ν2(x) = e2αx for α, θ > 0

• µ̄(t, x) = exp (a(x) + b(x)k(t)), t ∈ [0,T ], x ∈ I (Lee-Carter model)

• E[µt,x ] = µ̄(t, x) and Cov(µt,x , µs,y ) = σ2

2αθe
−θ|t−s|e−α|x−y |, as well

as Corr(µt,x , µs,y ) = e−θ|t−s|e−α|x−y |, t ∈ [0,T ], x , y ∈ I

• dµxt = θ
[(
µ̄(t, x) + ∂t µ̄(t,x)

θ

)
− µxt

]
dt + σ√

α
dW̃

ν2(x)
t , t ∈ [0,T ],

where W̃
ν2(x)
t :=

Wt,ν2(x)√
ν2(x)

, t ∈ [0,T ], is a standard Brownian motion

→ µx a�ne

• Sharp bracket: 〈µx , µy 〉t = σ2

α e−α|x−y |t, t ∈ [0,T ], x , y ∈ I
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Thank you very much for your attention → Questions?
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A�ne Di�usion Processes (Du�e et al. [14])

Let (Ω,F,F,P) be a �ltered probability space, F = (Ft)t∈[0,T ] satisfying
the usual conditions and let X be an n-dimensional F-Markov process
speci�ed as the strong solution to the following SDE:

dXt = δ(t,Xt)dt + σ(t,Xt)dWt ,

where W is an F-standard Brownian motion in Rn,
δ(t, x) = d0(t) + d1(t)x with d0 : [0,T ]→ Rn and d1 : [0,T ]→ Rn×n

continuous and (σ(t, x)σ(t, x)′)ij = (v0(t))ij + (v1(t))′ij x with

v0 : [0,T ]→ Rn×n and v1 : [0,T ]→ Rn×n×n also continuous. Let c ∈ C,
a, b ∈ Cn and Λ(t, x) = λ0(t) + λ1(t)′x for λ0 : [0,T ]→ R and
λ1 : [0,T ]→ Rn continuous. Under certain technical conditions for
0 ≤ t ≤ u ≤ T the following expression holds:
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E
[
e−

∫ u
t Λ(s,Xs)dsea

′Xu
(
b′Xu + c

) ∣∣∣Ft

]
= eα

u(t)+βu(t)′Xt

[
α̂u(t) + β̂u(t)′Xt

]
where αu and βu are functions solving the following ODEs:

∂tβ
u(t) = λ1(t)− d1(t)′βu(t)− 1

2
βu(t)′v1(t)βu(t),

∂tα
u(t) = λ0(t)− d0(t)′βu(t)− 1

2
βu(t)′v0(t)βu(t),

and α̂u and β̂u are functions solving the following ODEs:

∂t β̂
u(t) = −d1(t)′β̂u(t)− βu(t)′v1(t)β̂u(t),

∂t α̂
u(t) = −d0(t)′β̂u(t)− βu(t)′v0(t)β̂u(t),

for t ∈ [0, u] with boundary conditions αu(u) = 0, βu(u) = a and
β̂u(u) = b, α̂u(u) = c .
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Proof.
Compute GKW decomposition of Ati

T - main steps:

• E[Ati
T |Gt ] =

∑m
i=1 ζ(xi )

∑nxi
j=1 E

[
f (S

τxi ,j
)

B
τxi ,j

1{τ xi ,j≤T}

∣∣∣Gt

]
, t ∈ [0,T ]

• Gt → Ft :

E
[
f (S

τxi ,j
)

B
τxi ,j

1{τ xi ,j≤T}

∣∣∣Gt

]
= Uxi

0 +
∫ t
0
Lxi ,js dUxi

s +
∫

]0,t] · · · dM
xi ,j
s

• Uxi
t = E

[∫ T
0

f (Su)
Bu

e−Γ
xi
u dΓxi

u

∣∣∣Ft

]
=∫ T

0
E
[
f (Su)
Bu

∣∣∣FX
t

]
E
[
e−Γ

xi
u µxiu

∣∣∣Fµt ] du, t ∈ [0,T ], i = 1, . . . ,m

• For 0 ≤ t, u ≤ T , i = 1, . . . ,m: Z̄ xi ,u
t = E

[
e−Γ

xi
u µxiu

∣∣∣Fµt ] =

Z̄ xi ,u
0 +

∫ t
0
Z xi ,u
s σxis

[
β̂xi ,u(s) + βxi ,u(s)Ẑ xi ,u

s

]
1{s≤u}dW̃

ν2(xi )
s

• dY xi
t = Z

xi ,T
t
BT

σxit β
xi ,T (t)dW̃

ν2(xi )
t , t ∈ [0,T ], i = 1, . . . ,m
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Example: χ2-intensity �eld model

• µt,x = (c(t, x)Ot,x)2, t ∈ [0,T ], x ∈ I where c(t, x) is a continuously
di�erentiable function

• E [µt,x ] = c2(t, x)Cov(Ot,x ,Ot,x) = c2(t, x) σ2

2θα for t ∈ [0,T ] and
x ∈ I and Cov(µt,x , µs,y ) = 2c2(t, x)c2(s, y)Cov(Ot,x ,Os,y )2 =
σ4

2θ2α2
c2(t, x)c2(s, y)e−2θ|t−s|e−2α|x−y | i.e.

Corr(µt,x , µs,y ) = e−2θ|t−s|e−2α|x−y | for s, t ∈ [0,T ] and x , y ∈ I

• dµxt =

2
(
θ − ∂tc(t,x)

c(t,x)

)(
σ2

2α c̄(t, x)− µxt
)
dt +

√
4
ασ

2c2(t, x)µxt dW̃
ν2(x)
t for

t ∈ [0,T ], where c̄(t, x) = c3(t,x)
(θc(t,x)−∂tc(t,x)) → µx a�ne

• 〈µx , µy 〉t = 4σ2

α e−α|x−y |
∫ t
0
µxsµ

y
s c(s, x)c(s, y) ds, t ∈ [0,T ], x , y ∈ I
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