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Introduction

e A large number of life insurance and pensions products have
mortality and longevity as a primary source of risk

e Inadequate reinsurance capacity on a global basis to effectively
address these risks
e Systematic mortality risk cannot be diversified away by pooling

e Securitization as a new form of risk transfer (Blake et al. [10]) —
creation of a new life market, longevity index based products as
hedging instruments

e Risk-minimization: natural hedging method since the market
incompleteness is due to the presence of an additional orthogonal
source of randomness
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Objective: study the problem of pricing and hedging life insurance
liabilities by means of the risk-minimization approach

Trading in longevity index based products allowed
e 3 scenarios:

» Single life case: Biagini and Schreiber [4]
» Homogeneous portfolio with basis risk: Biagini et al. [6]
» Portfolio consisting of different age cohorts: Biagini et al. [5]

Main tools:
» Progressive enlargement of filtration, reduced-form modeling from
credit risk — Bielecki and Rutkowski [7]
» Quadratic hedging: risk-minimization — F6llmer and Sondermann [15],
Mgller [18] and Schweizer [19]
» Affine processes — Duffie et al. [13], Duffie et al. [14]
» Random field theory — Adler [1], Goldstein [16], Kennedy [17]
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Risk-minimization (RM) for payment streams (Mgller [18])

o Finite time horizon T > 0, filtered prob. space (2,3, (S¢)tepo, 77, P)

e Discounted asset price process S (local martingale), discounted
payment stream A = (At).e[o, 7], G-adapted, square integrable

o An [2-strategy is a pair ¢ = (£,£9), such that €0 is a G-adapted
process and ¢ is a G-predictable process belonging to L%(S), with

L?(S) = {f & G-predictable, (IE [fOT ¢ d[S]s stI/z < oo}, such

that the discounted value process V;(p) = &S; + &2, t € [0, T] is
right-continuous and square integrable

e Cumulative cost process C(p): Ce(p) = fo £dSs + A

* Risk process R(): Ri(p) = E[(Cr(p) — Ct(gp)) |G¢], t€[0,T]

Irene Schreiber Ludwig Maximilian University of Munich 7/52
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e An L2-strategy ¢ = gf,fo) is called risk-minimizing (rm), if for any
éz—strategy o= (§,§°)~such that V7 ($) = Vr(¢) =0 P-ass,,
£ =& for s < tand €2 = €0 for s < t, we have
Re(p) < Re(#), t€[0,T]

o GKW decomposition (Ansel and Stricker [3]):

E[Ar| S = E[AT | So] + /] s el e T, )
0,t

where ¢4 € [2(S) and LA is a square integrable martingale null at 0
that is strongly orthogonal to the space of stochastic integrals

2(5) = {Jed5|¢ e 12(5)}

Irene Schreiber Ludwig Maximilian University of Munich 8/52
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Theorem (Mgller [18])
The unique risk-minimizing L?-strategy o = (&,£%) for A is given by

G=6&,
& =E[A7]Ge] — Ac — £25: = Vi(p) — €25,

for t € [0, T| with cumulative cost and risk processes

9t:| )

where Vi(p) = E[AT | G:] — Ac and €4, LA are given by the GKW
decomposition of E[At | G¢] in (1)

Ce(p) = E[A7|So] + L7,
Rl = | (14 - 1£)°

Irene Schreiber Ludwig Maximilian University of Munich 9/52
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e Joint work with Francesca Biagini

¢ Objective: study the problem of pricing and hedging life insurance
liabilities by means of the risk-minimization approach for the case of
one insured person

o Very general setting: general payoff structure, asset prices are local

martingales (jumps allowed), existence of intensity not required, no
independence assumption

Main tools:

» Progressive enlargement of filtration, reduced-form modeling from
credit risk — Bielecki and Rutkowski [7]

» Quadratic hedging: risk-minimization — F6llmer and Sondermann [15],
Mgiller [18] and Schweizer [19]

Irene Schreiber Ludwig Maximilian University of Munich 11/52
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The setting

e Finite time horizon T > 0, probability space (22,9, P)
e Background filtration F = (F+) ¢ 7

e Financial market: bank account + one risky asset with discounted
asset price X local (P, F)-martingale — P ELMM

e Remaining lifetime: 7 :Q — [0, T] U {oo}

o H = (H¢),ep, 1), where He =0{Hs : 0 < s <t} and H; := 1<y
o Progressive enlargement of filtrations: G=FV H, § =G+

e Hypothesis (H): F-(local) martingales are G-(local) martingales
 Hazard process I of 7 under P: 't = —InE[L( 4y | T4

e Survivor/longevity index: Si' = exp(—T;), t € [0, T]

Irene Schreiber Ludwig Maximilian University of Munich 12/52
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e Systematic mortality risk component:
Pl = E[lrsry [Tl = E[SH[Fe] = PJ + flg q GPLdYs,
t €0, T], ¢ F-predictable process, Y L X F-local martingale

e The martingale My = Hy — T'tar, t € [0, T] associated with H is
strongly orthogonal to any [F-local martingale

* Discounted life insurance payment process A = (At):eo,T]:
Ar = ﬂ{rgt}/_\r + ]l{t:T}]l{r>T}Aa te 0, 7],

A= (At)ecfo, 1) F-predictable process, E [SUPte[o,T] /_\f] <00, A

Gr-measurable random variable, E[A?] < co — E[A?] < oo

Irene Schreiber Ludwig Maximilian University of Munich
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Single life case

(e]e] [e]e]e} 000@0000000 0000000000 00000000000

Risk-minimization for life insurance liabilities
Theorem

The payment process A in (2) admits a RM strategy o = (&,£°), where
& = Lo et and & = Ve — X, for t € [0, T, with

Vi — E[A7| Ge] — A — /] R
0

Ce = mg + / I sqenldYs +/ Lisspe*dCl + M ams,
10,] 10,¢] 10,¢]
my = E [fOT AeTsdr, ’ S"t] +E[Ls Al F),
= mg + f]o,t] ErdXs + f]07t] ndYs + C", and
M = A, — el <]E [ftT Ase T dl, ?t} +E[1syAl :ﬂ]).
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Proof.
Compute GKW decomposition of A7 - main steps:

e Split up on events {7 <t} and {7 >t} for t € [0, T]:

E[AT|G¢] = Liz<n E[Lr< 1) A7 | Gt + Lirs ) E[L s 7y A Gil
a) b)

Compute a) and b) separately

S¢ — F: (Bielecki and Rutkowski [7]), e.g. for b):
E[li;>7)AlS) = Lo e E[ls Al Fe], te 0, T]
—_———

m¢
Find martingale decompositions in I, i.e. for b): m; = ...,
fora) m=...m=m+m=[---dX+ [---dY + C™
e Determine orthogonal structure in G in terms of X, Y, C™ and M

Ol

Irene Schreiber Ludwig Maximilian University of Munich 15/52
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e The cost is generated by the following components:
» C™, the orthogonal part due to the predictable decomposition of the
F-martingale m
» Y, the driving process of the conditional survival probability
» M, the compensated jump process of the time of death
e The integrals with respect to Y and M represent the systematic and
unsystematic component of the mortality risk

e Question:
Can we introduce mortality-linked products into the financial market,
that can be used to hedge the cost parts due to Y and M?

e Set C"™ =0 and r = 0 (constant bank account) for simplicity

Irene Schreiber Ludwig Maximilian University of Munich 16/52
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Extending the financial market
How to eliminate the systematic risk:
e Zero-coupon longevity bond with maturity T (P ).e[o,7]
pays out the longevity index at time T (Cairns et al. [11]):
H
PT =E[e7|G] © Ele~" | 5] = E[L(omy | 5]
=Py + fo.qCPLdYs, t€[0,T]
e Assume trading in PT is possible — eliminates the cost part
associated to the systematic mortality risk:

vt:/ 1{T>S}er5§;”dXs+/ Lirss) oo 775 dPT+Ct—At,
10, 10,t] (s P

Cr = mg + YpMdM,, telo, T]
10,]

Irene Schreiber Ludwig Maximilian University of Munich
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How to eliminate the unsystematic risk:
e Pure endowment contract E = (Et).cjo, 7] that pays 1 at maturity T
if the individual survived: E; = E[1(;~7y|G:], t € [0, T]
e Here E, PT and M are closely related to each other:
M, = zz2 dPT — i A, t€[0,T]

I3
e Assume trading in E is possible — additionally eliminates the cost

part associated to the unsystematic mortality risk:

V, = mg + / Lis>qe &l dX,
g

ersnm wM ’L/JM
+/ Iy, <5+ 5>dPT—/ —— _JE, - A
10,¢] tr=s} R B s 10, PL_es f

Irene Schreiber Ludwig Maximilian University of Munich 18/52
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Example: unit-linked life insurance

o F=FWv FW" Vv FQ W and WH independent Brownian motions,
Q® compound Poisson process

e Jump diffusion model for the discounted asset price
AX; = o Xe AW + X, dQ:, Xo=x, tel0,T],

with 0 = (0+t)¢epo, 7] bounded, F-adapted process,

Qr = Q¢ — BAt, Qr = E,Ail Yi, t €[0, T], N = (Nt)¢epo, 1] Poisson
process with intensity A > 0, Y; are i.i.d. independent of N with

Y; > —1as., i > 1, such that E[Y;] = 8 < 0o and E[Y?] < oo

e Unit-linked term insurance contract — pays out the discounted asset
price in the case of death prior to maturity: A7 = L <7} X7

Irene Schreiber Ludwig Maximilian University of Munich 19/52
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e The hazard process admits the representation 'y = fot s ds,
t € [0, T], where the mortality intensity p is a non-negative
F-measurable process with

dpe = (a+ bue) dt + c\/pe dWY, o =0, telo,T],

forbe R and a,c € Ry

e Duffie et al. [14]: since u is an affine process, for t € [0, T] we have

Ele "7 |Ge] = e E[e /i #eds | W] = e DA

223 2ve(7=b)(T—1)/2
where a(t) = 25 In (('y—b)(e’Y(T*t)—l)—s—%/ :

B(t) = - 2(eT70-1) and v := /b2 +2c2

v—b)(e?(T=8)—1)+2y

Irene Schreiber Ludwig Maximilian University of Munich 20/52
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:

o mi=E [ XeeTdr, | 5]
= x(1— ea(O)) + f]o,t] e’rS(l _ ea(s)+[3(s)us) dX,
— Jo c/sB(s)Xse TS +BEm qWt | t e [0, T]

e GKW decomposition of At:
Vi= E[]]'{TST}XT ’ 9t] — A¢
= f]O f ]]_{7.25}(1 — eOz(SHB(S)#s)dXS +C— A, tel0,T]
Ct = X(]. — e“ ( ))

— Jo Lirzsycy/sB(s) Xse®E) s qW/f
+ Jio.q Xse (5)+5(5)“5dl\/l s, telo0,T]

Irene Schreiber Ludwig Maximilian University of Munich 21/52
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Introduction

e Joint work with Francesca Biagini and Thorsten Rheinlander

e Objective: study the problem of pricing and hedging life insurance
liabilities of a homogeneous insurance portfolio by means of the
risk-minimization approach

e Consider a homogeneous insurance portfolio (all individuals are of the
same age at time 0), take basis risk into account

® Model the dependency between the index and the insurance portfolio
by means of a multidimensional affine mean-reverting diffusion process
with stochastic drift

e Additional tool: affine processes

» Duffie et al. [13], Duffie et al. [14]
» Biffis [8], Dahl [12]

Irene Schreiber Ludwig Maximilian University of Munich 23/52
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The setting: insurance portfolio and mortality intensities

e Finite time horizon T > 0, probability space (2, G, P)
e Background filtration F = (F¢),c(o 7
e Insurance portfolio: n individuals belonging to the same age cohort
o Remaining lifetimes 7/ : Q — [0, T|U {oc}, j=1,...,n
o Hi=lpich j=1,....,n Ne=3" 1icy, t €0, T]
o H = (He)eepo, 17 He = HEV - VHY, where 36, = o{HL : 0 < s < t}
e Hazard process [ of 7/ under P: [, = —In E[liisey | Fel, we set
[/ =T, where Iy = [ psds, t € [0, T]

Irene Schreiber Ludwig Maximilian University of Munich 24/52
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e Similarly as in Biffis [8] we assume that the mortality intensity y is
given by the following set of stochastic differential equations:

dpe = i (fie — pe)dt + o/ AWE,
dfie = v2(m(t) — fie)dt + o2/Tie AWY,
for t € [0, T] where WH and W# are independent Brownian motions

and po = fig = 0, where 1, 72, 01, 02 > 0,and m: [0, T] - Ry is a
continuous deterministic function

e The process [i represents the mortality intensity of the equivalent age
cohort of the population

e Survivor/longevity index: SP = exp (— fot iis ds), tel0,T]

Irene Schreiber Ludwig Maximilian University of Munich 25/52
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The setting: financial market

Bank account B: B; =exp(rt), t €[0,T], r >0

Risky asset S with P-dynamics dS; = S; (rdt + o(t, S¢)dW;), So = s,
t € [0, T], Brownian motion W independent of (W*, WH)

Longevity bond P with maturity T (Cairns et al. [11]): pays out the
ANE N

X =5/B, Y = P/B are continuous (local) (P, F)-martingales —
financial market given by X, Y is arbitrage-free

; ; . Sk
value of the survivor index at T, i.e. Yy =E [B;

Irene Schreiber Ludwig Maximilian University of Munich 26/52
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The setting: combined model

* Background filtration F = (F}).c[o, 77, where
Fe = o{(Ws, WIS WEY:0< s < t}, te 0, T]

e Enlarged filtration G =F VH

e Hypothesis (H): all F-(local) martingales are G-(local) martingales

e For i #j, 7,7/ are conditionally independent given 7, i.e.
El s liriss) | FT] =Elisg | FT]E[lisg [F7]. 0<s,t < T

o Fundamental martingales: the compensated process M) = H. — T, ;,
t € [0, T] follows a G-martingale for each j = 1,..., n we define
M; = 2}121 My

Irene Schreiber Ludwig Maximilian University of Munich 27/52
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e We consider the following life insurance payment streams:
» Pure endowment: AP® = (n— Nt) %iEIL{t:T} |
t Cs cti.

» Term insurance: Al = =3 Liric g2
= i
» Annuity: A7 = fo dCa = J'-7:1 fot]l{,rj>s}3i dcz

where CP¢ € F, CP¢ > 0, E[(C”e) ] < 0o, Ct > 0 F-predictable,
E [supte[O,T](Cf")z] < 00, and C? > 0 increasing [F-adapted,
E [SUPte[O,T](Cf)z} <0

e Unit-linked products:

CPe = f(S7), CI' = f(S;) and C7 = 0 s) ds for a function f that
satisfies sufficient regularity conditions

Irene Schreiber Ludwig Maximilian University of Munich 28/52
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RM for term insurance contracts with basis risk

Theorem
The process At admits a rm strategy o = (£,£9) = (£X,¢€Y,£0) given by

. - (n Nt)ertd)t n Nt rt+rTwH
t == (gt ) t ) - a(t,Xe)Xe ° YeBT(t)o2/Iit

& = V(o) — X = &Y,

for t € [0, T], with discounted value process '

VE(p) = nU§ + Jo 6X dXs + Jo €7 dYs + LY — A, where

Lf = fy(n—No)eT=yt AW+ [, , (G —E [ [ e Tuar, |5]) am,,

Uf =E [ | = Vg i s Wi [ AW+ [ W
The optimal cost and risk processes are given by
CEi(p) = nUg + LE and RE() = E[(LE — LEY? | Ge] for t € [0, T].

Irene Schreiber Ludwig Maximilian University of Munich 29/52
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Proof.
Compute GKW decomposition of A% - main steps:
e G; - Fi:

E[AT | Ge] = nU§ + [y (n— No)e" dU¥
o T Ci r.—
+fog (5 —E[f] FeTTvar, |5,]) am, teo,T]

e Martingale representation theorem for Brownian filtrations:

UF = U§ + [ s AWs + [o b dWE + [T oE dWE, t € [0, T], where

1, Y* and * are F-predictable processes
e Dynamics of X and Y: dX; =d (%) = o(t, S¢:) X dW; and

dY; = Yee T BT (t)oa/fir AW/ for t € [0, T], where

087 (t) =1+ 7287 (1) — 303(B7(1))%, BT(T) =
e Orthogonality and integrability

Irene Schreiber Ludwig Maximilian University of Munich 30/52
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Consider a unit-linked term insurancef cSontract
AP = [ T8 ANy = S0y 1 ricry 52, t €0, T, where £ 1Ry — Ry

is a Borel measurable function such that E {SUPte[o,T] f(S:)?| < o0

Corollary
The process Ati’f admits a rm strategy ¢ = (&,£%) = (€X,£Y,€°) given by
X = (n— Ny)e™ [T Fu(t, St)Z’“”’”du

«St = (n—N. )ert” (T=0Y 18T (e)72 [T Fu(t, S)ZE(B3(6)+ 5 (£)2¢) du,
€0 = V(o) — XX, — £ Y, for t € [0, T], with discounted value process
VE(p) = nU§ + [y € dX + f5 &F dYe + LE — AP

The optimal cost and risk processes are given by

Cli(p) = nUE + LY and RE (o) = E[(LY — L¥)?|G,] for t € [0, T].

Irene Schreiber Ludwig Maximilian University of Munich 31/52
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Proof.
e Fubini’'s theorem: Utt" =E [fOT f(BS:)e*r“,tJ,u du‘fﬂ} =

JTE [% Cﬂ} E {e’r“uu :ﬂ} du, t € [0, T]

o £ [“TSUU) ) ?t} - Fu(07 50) + fot Fsu(57 55)0(57 SS)XS:H'{SSU} dWs for
0<t,u<T,where F¥(u,S,) = f(S,)

« Z}"=E {e‘r“ﬂu ‘ ?t} =
Z + Jy 22 (B(s) + BU()ZE ) o1 B sy AW +
I ze (B;(s) + ﬂg(s)fs“) oo /il sy AWE, 0 <t u< T

e The result follows by the stochastic Fubini theorem

Irene Schreiber Ludwig Maximilian University of Munich 32/52
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Introduction

e Joint work with Francesca Biagini and Camila Botero

e Objective: study the problem of pricing and hedging life insurance
liabilities with dependent mortality risk by means of the
risk-minimization approach

e Consider a portfolio consisting of individuals of different age cohorts
and take into account the cross-generational dependency structure

e Introduce a model for the mortality intensities that is consistent with
typical characteristics of historical mortality data

e Additional tool: random field theory

> Adler [1]
» Goldstein [16], Kennedy [17]
» Biffis and Millossovich [9]

Irene Schreiber Ludwig Maximilian University of Munich 34/52
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Random Fields

Definition (Adler [1])

A real-valued random field is a collection of random variables (X;)¢c/, with
index set | C RN, defined on a probability space (Q, F,P) together with a
collection of distribution functions

Ftl,...,tn(b17- cey bn) = P(th S b]_, 500 ,th S bn),

forneN, bjeR, t;el,i=1,...,n Given a square integrable random
field X = (Xt)tes, the mean function is defined as m(t) = E[X¢], t € |
and the covariance function is defined as c(s, t) = Cov (X, X¢), s, t € [. A
square integrable random field X is homogeneous or stationary if the mean
function is independent of ¢, i.e. m(t) = m, t € | and the covariance
function c(s, t) is a function of t — s, s, t € I, only. In this case we write
c(h) = ¢(0, h) for h € I.

Irene Schreiber Ludwig Maximilian University of Munich 36/52
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Example (Adler [1])

e A Gaussian random field is a random field where all finite-dimensional
distributions F;,  t,, n € N are multivariate normal. For N =2 a
Brownian sheet W is a continuous version of a centered, Gaussian
field with covariance function c((s1,s2), (t1,t2)) = (s1 A t1)(s2 A t2)

o A \2-field Y = (Y:)tes with parameter n € N is defined as
Yei=(Z2) + -+ (Z0), tel

where Z1, ... Z" are independent, stationary centered Gaussian
random fields with common covariance function c(h), h € | and
variance c(0) = o2

Irene Schreiber Ludwig Maximilian University of Munich 37/52
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The Setting: insurance portfolio and mortality intensities

e Finite time horizon T > 0, probability space (22,5, P)

e Background filtration F = (F¢).c(o 7

e Insurance portfolio B: n individuals belonging to a set of age cohorts
B={x,....xm} €I, I =]0,x%]

e Borel function n" : B — N: # of insureds belonging to each age cohort

o Remaining lifetimes 7/ : Q — [0, TJU {0}, x€ B, j=1,...,n"

o H = (He)eeqo, 17 He = VxesE with 3 = FH V- VHE™, where
I = o{Hs? : 0 <s<t}and H{Y = 1 jcy

e Finite measure ¢ on (B, P(B)) allows us to differently weight the
subsets of B, i.e. [z n*((dx) =Y ", n((x;) provides us with the
weighted dimension of the portfolio B

Irene Schreiber Ludwig Maximilian University of Munich 38/52
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e Death counting process belonging to the cohort class x:
NY = Z}’Zl Lixi<s, t€[0,T], x€ B

o Hazard process ™4 of 7%J: [ = —|n E[L{rxisey | Fel, t €0, T], for
X € B: =0, j=1,...,n% ' admits a mortality intensity ;*,

ie. IY = [y uids, t € [0, T] where 1t = (pue.x)(tx)c[o, 7]/ 1S @
random field generated by a Brownian sheet W = (W x)(¢,x)e[0, T]x/

e For fixed x € | we assume that the process (17)¢cpo, 77 is an affine
diffusion process

o F¥ = (F})icp, 7], where Ty = {Th, 1 0 < x < x*} = Ve Tt and
?ﬁx:U{Ws,viOSSSt, OSVSX}

e Survivor indices: S = exp (— fot T ds), tel0, T], xel
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The setting: financial market

e Bank account B: By =exp(rt), t €[0,T], r >0

e Risky asset S with P-dynamics dS; = S; (rdt + o(t, S)dW{Y),
So = s, t € [0, T], Brownian motion WX independent of the
Brownian sheet W

o« FX = (%Le[o,n' FX=o{WX:0<s<t}

e Family of longevity bonds with maturity T (Cairns et al. [11]):
Y;:E[ﬁ‘gt} telo,T], xel

e X := 32, Y¥, x €[ are continuous (local) (P, F)-martingales —

financial market is arbitrage-free
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The setting: combined model

Background filtration F = FX \/ F#, enlarged filtration G = F v H
Hypothesis (H): all F-(local) martingales are G-(local) martingales

Remaining lifetimes are conditionally independent given Fr

Fundamental martingales: the compensated process
M = H —T% t € [0, T] follows a G-martingale for each

EATXA !

x€B,j=1,...,n we define I\/ltX:ZJ'.';1 M
Unit-linked life insurance liabilities:

» Pure endowment: Af® = fgtf) S C(a) ZJ"; Lirnisey Lie=T}

» Term insurance: AY =37 1C(X,)Z " (STXi‘j)l{rifgt}

Xj

> Annuity: A7 =37, C(6) 3~ s o Lirii A )dS
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RM for unit-linked term insurance (dependent mortality risk)

Theorem

The payment process A" admits a rm strategy ¢ = (£%,¢Y, %) with
discounted value process

Vii(¢) = EIAT | ol +foy£s AXs + fo & dYs + Lf = AY, and
& = Vii(p) - Xr

& =" C(Xi)( NX’ ft ZIUFE(t, St) du, and the investment
in the family of (i d/scounted) longevity bonds Y = (Y*,...,Y*™) is given
b.ygt_(y:lv"'vé-t m)W’thftI:

& ST Fu(t, S)Z5H(B5u(t) + B4 (£) Z5) du

Gl — W) 0
i T £(S0) 151 jrx »

and L = T ¢ f]O,t]( € [ e ary | 7] ) amez,

teo,T].
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Example: Gaussian intensity field model

® trx = f(t,x)+ Orx, t €0, T], x € I, where [ is a deterministic
function and Oy = \/gefae_ete_axwyl(t),yz(x), t€[0,T], x €/, with
v1(t) = e, vy(x) = e2* for o, § > 0

e ji(t,x) =exp(a(x) + b(x)k(t)), t € [0, T], x € | (Lee-Carter model)

e Eluex] = f(t, x) and Cov(purx, fis,y) = ﬁe%'t*'e*a‘x*y', as well
as Corr(fie x, j1sy) = e t=sle=obx=vl t c [0, T], x,y €/

o s =0 | (Alt,x) + 25)) — ] de+ ZaW*®, e o, T,

W, : : :
where W2 .= i((x) t € [0, T], is a standard Brownian motion
V2 X

— p* affine
e Sharp bracket: (u*, 1Y), = %e”"'xﬂ"t, tel0,T], x,y el
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Thank you very much for your attention — Questions?

Irene Schreiber

Ludwig Maximilian University of Munich
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Affine Diffusion Processes (Duffie et al. [14])

Let (Q,F,F,P) be a filtered probability space, F = (?f)te[O,T] satisfying
the usual conditions and let X be an n-dimensional F-Markov process
specified as the strong solution to the following SDE:

dXt = (S(t, Xt)dt 4F O'(t, Xt)th,

where W is an F-standard Brownian motion in R”,

o(t, x) = do(t) + di(t)x with do : [0, T] = R" and d; : [0, T] = R™"
continuous and (a(t,x)a(t,x)); = (vo(t))y + (va(t)); x with

vo : [0, T] = R™" and vy : [0, T] — R"*"™*" also continuous. Let ¢ € C,
a,b e C" and A(t,x) = Xo(t) + A1(t)'x for Ao : [0, T] — R and

A1 : [0, T] — R” continuous. Under certain technical conditions for

0 <t<u<T the following expression holds:
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E [em [ MeXNeedXs (X, 4 ¢) | | = e/ (OOFBUO % [G4(2) + Bo(e) X;]

where a¥ and Y are functions solving the following ODEs:
0:Y(t) = M(t) — du()'B°(t) — %ﬁu(t)%(t)ﬁ”(t%
Ora(t) = Xo(t) — do(t)'B"(t) — %5”(f)’Vo(t)ﬁ”(f)7

and & and 3" are functions solving the following ODEs:

0eB(t) = = () B*(1) — B(t) wa(

a“(t) = —do(t)' () — B(t) wo()B*(2),
(u

for t € [0, u] with boundary conditions o¥(u) =0, 3

BU(u) = b, &“(u) = c.
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Proof.
Compute GKW decomposition of A} - main steps:

m n*i (s X )
* EIAY] 9 = Y7, C00) D7 E [ 5220 ey | G2 £ € 0, T]
e G; 7(>53rt )
E [ B2 uery |Gt = U+ Jy L AUz + fip - M

.« UN = E[f”(;u) —FUdFX'
B[ G| E [

e For0<t,u<T,i=1,...,m: Zf”“:E[e*ru

?] =

t}du, tel0, T, i=1,...,m
} -
Z(;(i,u+f0t Z;(i’uUXf |:l3x,-,u( ) + BXiu(s ) :|]1{S<u}dWV2(XI)

X, X"’ X
.« AV} =& o7

T()dW ) e elo, T], i=1,.
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Example: y?-intensity field model

o pitx = (c(t,x)0:x)?, t € [0, T], x € I where c(t, x) is a continuously
differentiable function
o E[pex] = (£, x)Cov( Ot x, Ot x) = (t, x) 2 for t € [0, T] and
x € | and Cov(pex, tis,y) = 2c2(t,x)c2(s,y)Cov(Ot7X, Os7y)2 =
%62(1“,x)c2(s,y)e‘29|t_5‘e_2a‘x_)’| i.e.
Corr(puex, pis,y) = e~ 2lt=sle=2a=vl for 5 ¢t € [0, T] and x,y € /
[ ] d/’Li‘( =
(0 — atc(”)) (gaE( , X) — )dt—l— 70 2c2(t, x)p )ngT/tyz(X) for

(tx)
t € [0, T], where ¢(t,x) = % — w* affine

o (¥, ), =2 em b [ Xl (s, x)c(s, y)ds, t € [0, T], x,y € |
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