Modelling the Claims Development Result for Solvency Purposes

Mario V. Wüthrich ETH Zurich

Financial and Actuarial Mathematics Vienna University of Technology October 6, 2009

www.math.ethz.ch/~wueth

©2009 (Mario Wüthrich, ETH Zurich)

Collaboration

Joint work with:

- Michael Merz (University of Hamburg)
- Hans Bühlmann (ETH Zurich)
- Massimo De Felice (University of Rome)
- Alois Gisler (ETH Zurich)
- Franco Moriconi (University of Perugia)

Overview

- 1. Non-Life (NL) Insurance and Claims Reserving
- 2. Claims Development Result and Solvency
- 3. Bayesian Chain-Ladder Method
- 4. Conclusions

©2009 (Mario Wüthrich, ETH Zurich)

2

1. Non-Life (NL) Insurance and Claims Reserving

NL insurance company: accounting year I + 1 = 2009

budget statement at 1/1/2009 profit & loss (P&L) statement at 31/12/2009

	Budget	P&L
	1/1/2009	31/12/2009
premium earned	4'000'000	4'020'000
claims incurred current accident year	-3'300'000	-3'340'000
loss experience prior accident years	0	-40'000
administrative expenses	-1'000'000	-1'090'000
investment income	500'000	510'000
income before taxes	200'000	60'000

Questions and Terminology

- What is the position "loss experience prior accident years"?
- Why do we predict it by 0?
- What is the uncertainty in this prediction?
- What are (best estimate) claims reserves?
- Long term view versus the short term view

These questions can not be answered with simple concepts.

©2009 (Mario Wüthrich, ETH Zurich)

NL Claims Settlement Process

Often it takes several years until a claim is finally settled. Reasons:

- 1. **Reporting delay**: time lag between accident date and reporting date (notification at insurance company)
- 2. **Settlement delay**: time interval between reporting date and final settlement (severity of claim, recovery process, court decisions, etc.)
- 3. Reopenings due to new (unexpected) claim developments

Conclusions: Claims Reserving

• Every claim generates a (random) future payment cashflow.

• The claims reserves should suffice to meet this future cashflow

 \implies claims reserving is a prediction problem.

• Determine the **prediction uncertainty**:

deterministic claims reserves \iff stochastic claims payments

©2009 (Mario Wüthrich, ETH Zurich)

Prediction Uncertainty

- X future cashflow (random variable) to be predicted.
- \mathcal{D} information available at time I.
- Assume \widehat{X} is a \mathcal{D} -measurable predictor for X.

The (conditional) **mean square error of prediction (MSEP)** is defined by

$$\operatorname{msep}_{X|\mathcal{D}}\left(\widehat{X}\right) = E\left[\left(X - \widehat{X}\right)^2 \middle| \mathcal{D}\right].$$

MSEP is the most common uncertainty measure in practice.

2. Claims Development Result and Solvency

- incremental payments in accounting year $k \ge 0$ are denoted by X_k
- cumulative payments are denoted by $C_j = \sum_{k=0}^j X_k$
- ultimate (total) claim is denoted by C_J
- observations at time k are denoted by $\mathcal{D}_k = \{C_j : j \leq k\}$

©2009 (Mario Wüthrich, ETH Zurich)

Ultimate Claims Prediction

Goal: Predict the ultimate claim C_J based on \mathcal{D}_k , $k \leq J$.

At time k, we use the (minimum variance) predictor

$$\widehat{C}_J^{(k)} = E\left[C_J \middle| \mathcal{D}_k\right].$$

First Consequences:

- $\widehat{C}_{J}^{(k)}$ minimizes the conditional MSEP.
- $\widehat{R}^{(k)} = \widehat{C}_J^{(k)} C_k$ are the "best-estimate reserves" at time k.
- $\widehat{C}_J^{(0)}, \ \widehat{C}_J^{(1)}, \ \widehat{C}_J^{(2)}, \dots$ is a martingale.

Classical Uncertainty View

 $\widehat{C}_{J}^{(k)}$ minimizes the conditional MSEP:

$$\operatorname{msep}_{C_J|\mathcal{D}_k}\left(\widehat{C}_J^{(k)}\right) = E\left[\left(C_J - \widehat{C}_J^{(k)}\right)^2 \middle| \mathcal{D}_k\right] = \operatorname{Var}\left(C_J|\mathcal{D}_k\right).$$

Henceforth, we obtain the **prediction variance**.

• Classical long term view: Study this prediction variance:

E.g. Mack (1993), England-Verrall (2002), W.-Merz (2008).

• This is **not** the **Solvency View (short term view)** for the P&L position "loss experience prior accident years".

P&L Position "Loss Experience Prior Accident Years"

The **Claims Development Result (CDR)** at time k is given by

$$CDR(k) = \widehat{C}_J^{(k-1)} - \widehat{C}_J^{(k)}.$$
(1)

- This is the incorporation of the latest information D_k available at time k, i.e. update of information D_{k-1} → D_k.
- CDR exactly corresponds to "loss experience prior accident years".
- Under **Solvency 2** we need to study the **uncertainty** in this position:

Question: Do we have sufficient provisions at time k to cover possible shortfalls in CDR?

©2009 (Mario Wüthrich, ETH Zurich)

12

Time Series of Claims Development Results

Therefore: study the Claims Development Result (CDR).

Properties of Claims Development Results

We have (martingale property)

$$E\left[\operatorname{CDR}(k)|\mathcal{D}_{k-1}\right] = 0.$$
(2)

Moreover, this implies

 $CDR(1), CDR(2), \ldots$ are **uncorrelated** (not independent).

This immediately implies that

$$\operatorname{msep}_{C_J | \mathcal{D}_0} \left(\widehat{C}_J^{(0)} \right) = \operatorname{Var} \left(C_J | \mathcal{D}_0 \right)$$

$$= \operatorname{Var} \left(\left| \sum_{k \ge 1} \operatorname{CDR}(k) \right| \mathcal{D}_0 \right) = \sum_{k \ge 1} \operatorname{Var} \left(\operatorname{CDR}(k) | \mathcal{D}_0 \right).$$
(3)

©2009 (Mario Wüthrich, ETH Zurich)

Budget and P&L Statement

Equation (2) implies prediction 0 of the CDR:

	Budget	P&L
	1/1/2009	31/12/2009
premium earned	4'000'000	4'020'000
claims incurred current accident year	-3'300'000	-3'340'000
loss experience prior accident years	0	-40'000
administrative expenses	-1'000'000	-1'090'000
investment income	500'000	510'000
income before taxes	200'000	60'000

Prediction Uncertainty in accounting year k: study

 $\operatorname{msep}_{\operatorname{CDR}(k)|\mathcal{D}_{k-1}}(0) = \operatorname{Var}\left(\operatorname{CDR}(k)|\mathcal{D}_{k-1}\right).$

3. Bayesian Chain-Ladder Method

We use the following notation:

- accident years are denoted by $i \in \{0, \dots, I\}$
- development years are denoted by $j \in \{0, \dots, J\}$
- accounting years are given by i + j = k (constant)
- incremental payments are denoted by $X_{i,j}$
- cumulative payments are denoted by

$$C_{i,j} = \sum_{l=0}^{j} X_{i,l}.$$

©2009 (Mario Wüthrich, ETH Zurich)

Loss Development Triangle at Time I

accident	development years j								
year i	0	1	2	3	4		j		J
0									
1								Γ	
:			0	bservati	ions \mathcal{D}_0				
÷									
i									
÷							-		
:				Γ					
I-2			Γ			to be	predicted ?	${\cal D}_0^c$	
I-1		Γ							
I	ΙΓ								

- observations: $\mathcal{D}_k = \{C_{i,j}: i+j \leq I+k\}$
- to be predicted: $\mathcal{D}_k^c = \{C_{i,j}: i+j > I+k, i \leq I\}$

Example 1: Cumulative Payments

	0	1	2	3	4	5	6	7	8	9
0	5'946975	9'668212	10'563929	10'771690	10'978394	11'040518	11'106331	11'121181	11'132310	11'148124
1	6'346756	9'593162	10'316383	10'468180	10'536004	10'572608	10'625360	10'636546	10'648192	
2	6'269090	9'245313	10'092366	10'355134	10'507837	10'573282	10'626827	10'635751		
3	5'863015	8'546239	9'268771	9'459424	9'592399	9'680740	9'724068			
4	5'778885	8'524114	9'178009	9'451404	9'681692	9'786916				
5	6'184793	9'013132	9'585897	9'830796	9'935753					
6	5'600184	8'493391	9'056505	9'282022						
7	5'288066	7'728169	8'256211							
8	5'290793	7'648729								
9	5'675568									

Observed historical **cumulative payments** at time I = 9

$$\mathcal{D}_0 = \{ C_{i,j} : i+j \le 9 \}.$$

©2009 (Mario Wüthrich, ETH Zurich)

Bayesian CL Model Assumptions

- Conditional on $\mathbf{F} = (F_0, \ldots, F_{J-1})$ we have
 - \star different accident years *i* are independent;
 - $\star \{C_{i,j}\}_{j\geq 0}$ is a Markov process with

$$E[C_{i,j}|C_{i,j-1},\mathbf{F}] = F_{j-1} C_{i,j-1},$$
 for all i, j .

$$Var(C_{i,j}|C_{i,j-1}, \mathbf{F}) = \sigma_{j-1}^2(F_{j-1}) C_{i,j-1}, \quad \text{for all } i, j.$$

• The components of **F** are independent.

Note that the CL factors **F** are part of the model which allows for **Bayesian inference** and **parameter uncertainty study within the model**.

Properties of the Bayesian CL Model

Theorem 1. The posteriors of \mathbf{F} , given \mathcal{D}_k , are **independent**.

Theorem 2. The minimum variance predictor for $C_{i,J}$ is given by

$$\widehat{C}_{i,J}^{(k)} = E\left[C_{i,J} \middle| \mathcal{D}_k\right] = C_{i,I-i+k} \prod_{j=I-i+k}^{J-1} E\left[F_j \middle| \mathcal{D}_k\right].$$

Theorem 3. The prediction uncertainties $\operatorname{msep}_{C_{i,J}|\mathcal{D}_0}\left(\widehat{C}_{i,J}^{(0)}\right)$ and $\operatorname{msep}_{\operatorname{CDR}_i(1)|\mathcal{D}_0}(0)$ can be calculated analytically.

See Gisler-W. (2008) and Bühlmann et al. (2009).

©2009 (Mario Wüthrich, ETH Zurich)

Estimation of CL Factors

We choose a non-informative prior distribution for \mathbf{F} .

In that case we obtain at time k

$$\widehat{f}_{j}^{(k)} = E[F_{j} | \mathcal{D}_{k}] = \frac{\sum_{i=0}^{(I-j-1+k)\wedge I} C_{i,j+1}}{\sum_{i=0}^{(I-j-1+k)\wedge I} C_{i,j}}.$$

Henceforth, the **CL** predictor for $C_{i,J}$ at time k is given by

$$\widehat{C}_{i,J}^{(k)} = E\left[C_{i,J} \middle| \mathcal{D}_k\right] = C_{i,I-i+k} \prod_{j=I-i+k}^{J-1} \widehat{f}_j^{(k)}.$$

Prediction Uncertainty (Linear Approximation)

$$\widehat{\mathrm{msep}}_{C_{i,J}|\mathcal{D}_{0}}\left(\widehat{C}_{i,J}^{(0)}\right) = \left(\widehat{C}_{i,J}^{(0)}\right)^{2} \\ \times \left[\sum_{j=I-i}^{J-1} \frac{\widehat{\sigma}_{j}^{2} / \left(\widehat{f}_{j}^{(0)}\right)^{2}}{\widehat{C}_{i,j}^{(0)}} + \sum_{j=I-i}^{J-1} \frac{\widehat{\sigma}_{j}^{2} / \left(\widehat{f}_{j}^{(0)}\right)^{2}}{\sum_{l=0}^{I-j-1} C_{l,j}}\right],$$

$$\widehat{\mathrm{msep}}_{\mathrm{CDR}_{i}(1)|\mathcal{D}_{0}}(0) = \left(\widehat{C}_{i,J}^{(0)}\right)^{2} \times \left[\frac{\widehat{\sigma}_{I-i}^{2} / \left(\widehat{f}_{I-i}^{(0)}\right)^{2}}{\widehat{C}_{i,I-i}^{(0)}} + \frac{\widehat{\sigma}_{I-i}^{2} / \left(\widehat{f}_{I-i}^{(0)}\right)^{2}}{\sum_{k=0}^{i-1} C_{k,j}} + \sum_{j=I-i+1}^{J-1} \frac{C_{I-j,j}}{\sum_{l=0}^{I-j} C_{l,j}} \frac{\widehat{\sigma}_{j}^{2} / \left(\widehat{f}_{j}^{(0)}\right)^{2}}{\sum_{l=0}^{I-j-1} C_{l,j}}\right].$$

See Gisler-W. (2008), Merz-W. (2008) and Bühlmann et al. (2009). (Mario W "uthrich, ETH Zurich)

Example 1, revisited

i	CL reserves $\widehat{R}_i^{(0)}$	$\widehat{\mathrm{msep}}_{\mathrm{CDF}}$	$R_i(1) \mathcal{D}_0(0)^{1/2}$	$\widehat{\mathrm{msep}}_{C_{i,J} }$	$_{\mathcal{D}_0} \left(\widehat{C}_{i,J}^{(0)} \right)^{1/2}$
1	15'126	267	1.8%	267	1.8%
2	26'257	884	3.4%	914	3.5%
3	34'538	2'948	8.5%	3'058	8.9%
4	85'302	7'018	8.2%	7'628	8.9%
5	156'494	32'470	20.7%	33'341	21.3%
6	286'121	66'178	23.1%	73'467	25.7%
7	449'167	50'296	11.2%	85'398	19.0%
8	1'043'242	104'311	10.0%	134'337	12.9%
9	3'950'815	385'773	9.8%	410'817	10.4%
COV.		94'134		116'810	
Total	6'047'061	420'220	6.9%	462'960	7.7%

We see that the ratio is around 90%.

More Examples

	CL reserves $\widehat{R}^{(0)}$	$\widehat{\mathrm{msep}}_{\mathrm{CDR}(1)} \mathcal{D}_{t}$	$(0)^{1/2}$	$\widehat{\operatorname{msep}}_{C_J \mathcal{D}_0}\left(\widehat{C}\right)$	$\binom{(0)}{J}^{1/2}$
Example 2 (commercial liability)	646'496	19'300	3.0%	31'344	4.8%
Example 3 (Merz-W. (2008))	2'237'826	81'080	3.6%	108'401	4.8%

We see that the ratio is around 60% in Example 2.

We see that the ratio is around 75% in Example 3.

©2009 (Mario Wüthrich, ETH Zurich)

Example: Italian MTPL (37 Companies)

company	business	msep total runoff	msep CDR(1)	msep CDR(1)
	volume	(in % reserves)	(in % reserves)	(in %)
1	100.0	4.03	3.24	80.4
2	100.0	2.90	2.36	81.4
3	100.0	2.41	1.98	82.3
4	100.0	3.45	2.85	82.6
5	61.8	3.66	3.04	82.9
6	56.9	5.54	4.50	81.2
7	53.0	4.52	3.70	81.8
8	49.4	4.60	3.82	83.1
9	46.2	5.61	4.59	81.8
10	41.6	5.32	4.36	82.0
:		:	:	:
30	3.5	18.02	14.78	82.0
31	3.4	17.23	13.92	80.8
32	2.6	18.73	14.89	79.5
33	2.5	23.11	19.10	82.6
34	2.2	20.83	17.53	84.2
35	2.0	17.01	13.87	81.5
36	1.8	26.16	21.54	82.4
37	1.8	27.79	22.25	80.1
Total		0.96	0.78	81.8

For more explanation see Bühlmann et al. (2009).

4. Conclusions

• In all examples considered: the ratio between one-year CDR risk and full run-off risk was within the intervall [50%, 95%] (range between liability insurance and property insurance).

This is also supported by the AISAM-ACME field study 2007.

- We have measured risk with the help of the conditional MSEP. For Value-at-Risk or Expected Shortfall considerations fit distribution with appropriate moments (= proxy).
- A full distributional approach can only be solved numerically, e.g. Markov chain Monte Carlo (MCMC) methods (Bayesian models).

©2009 (Mario Wüthrich, ETH Zurich)

Conclusions

- Dependence is not appropriately modelled. Especially, accounting year dependence and claims inflation needs special care (MCMC methods).
- The one-year CDR view needs a **Cost-of-Capital charge (risk** margin) for the risk that is beyond the one-year time horizon, market-value margin, see Salzmann-W. (2009).
- **Discounting and financial risk** is not considered. First results on this topic are obtained in W.-Bühlmann (2009).

References

- Bühlmann, H., De Felice, M., Gisler, A., Moriconi, F., Wüthrich, M.V. (2009). Recursive credibility formula for chain ladder factors and the claims development result. Astin Bulletin 39/1, 275-306.
- [2] Gisler, A., Wüthrich, M.V. (2008). Credibility for the chain ladder reserving method. Astin Bulletin 38/2, 565-600.
- [3] Merz, M., Wüthrich, M.V. (2008). Modelling the claims development result for solvency purposes. CAS E-Forum, Fall 2008, 542-568.
- [4] Salzmann, R., Wüthrich, M.V. (2009). Cost-of-capital margin for a general insurance runoff. Submitted preprint.
- [5] Wüthrich, M.V., Bühlmann, H. (2009). The one-year runoff uncertainty for discounted claims reserves. To appear in Giornale dell Istituto Italiano degli Attuari.
- [6] Wüthrich, M.V., Merz, M. (2008). Stochastic Claims Rerserving Methods in Insurance. *Wiley Finance.*

©2009 (Mario Wüthrich, ETH Zurich)