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1. Non-Life (NL) Insurance and Claims Reserving

NL insurance company: accounting year I + 1 = 2009

budget statement at 1/1/2009
profit & loss (P&L) statement at 31/12/2009

Budget P&L

1/1/2009 31/12/2009

premium earned 4’000’000 4’020’000

claims incurred current accident year -3’300’000 -3’340’000

loss experience prior accident years 0 -40’000
administrative expenses -1’000’000 -1’090’000

investment income 500’000 510’000

income before taxes 200’000 60’000
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Questions and Terminology

• What is the position “loss experience prior accident years”?

• Why do we predict it by 0?

• What is the uncertainty in this prediction?

• What are (best estimate) claims reserves?

• Long term view versus the short term view

These questions can not be answered with simple concepts.
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NL Claims Settlement Process

accident date claims payments reopening
reporting date claims closing claims closingpayments
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Often it takes several years until a claim is finally settled. Reasons:

1. Reporting delay: time lag between accident date and reporting

date (notification at insurance company)

2. Settlement delay: time interval between reporting date and final

settlement (severity of claim, recovery process, court decisions, etc.)

3. Reopenings due to new (unexpected) claim developments
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Conclusions: Claims Reserving

• Every claim generates a (random) future payment cashflow.

• The claims reserves should suffice to meet this future cashflow

=⇒ claims reserving is a prediction problem.

• Determine the prediction uncertainty:

deterministic claims reserves ⇐⇒ stochastic claims payments
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Prediction Uncertainty

• X future cashflow (random variable) to be predicted.

• D information available at time I.

• Assume X̂ is a D-measurable predictor for X.

The (conditional) mean square error of prediction (MSEP) is

defined by

msepX|D
(
X̂

)
= E

[(
X − X̂

)2
∣∣∣∣D]

.

MSEP is the most common uncertainty measure in practice.
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2. Claims Development Result and Solvency
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• incremental payments in accounting year k ≥ 0 are denoted by Xk

• cumulative payments are denoted by Cj =
∑j

k=0 Xk

• ultimate (total) claim is denoted by CJ

• observations at time k are denoted by Dk = {Cj : j ≤ k}
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Ultimate Claims Prediction

Goal: Predict the ultimate claim CJ based on Dk, k ≤ J .

At time k, we use the (minimum variance) predictor

Ĉ
(k)
J = E [CJ | Dk] .

First Consequences:

• Ĉ
(k)
J minimizes the conditional MSEP.

• R̂(k) = Ĉ
(k)
J − Ck are the “best-estimate reserves” at time k.

• Ĉ
(0)
J , Ĉ

(1)
J , Ĉ

(2)
J , . . . is a martingale.
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Time Series Ultimate Claims Prediction
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Classical Uncertainty View

Ĉ
(k)
J minimizes the conditional MSEP:

msepCJ |Dk

(
Ĉ

(k)
J

)
= E

[(
CJ − Ĉ

(k)
J

)2
∣∣∣∣Dk

]
= Var (CJ | Dk) .

Henceforth, we obtain the prediction variance.

• Classical long term view: Study this prediction variance:

E.g. Mack (1993), England-Verrall (2002), W.-Merz (2008).

• This is not the Solvency View (short term view) for the P&L

position “loss experience prior accident years”.
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P&L Position “Loss Experience Prior Accident Years”

The Claims Development Result (CDR) at time k is given by

CDR(k) = Ĉ
(k−1)
J − Ĉ

(k)
J . (1)

• This is the incorporation of the latest information Dk available at

time k, i.e. update of information Dk−1 �→ Dk.

• CDR exactly corresponds to “loss experience prior accident years”.

• Under Solvency 2 we need to study the uncertainty in this position:

Question: Do we have sufficient provisions at time k

to cover possible shortfalls in CDR?
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Time Series of Claims Development Results

Short term view: changes over the next accounting year:
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Therefore: study the Claims Development Result (CDR).

c©2009 (Mario Wüthrich, ETH Zurich) 13



Properties of Claims Development Results

We have (martingale property)

E [CDR(k)| Dk−1] = 0. (2)

Moreover, this implies

CDR(1), CDR(2), . . . are uncorrelated (not independent).

This immediately implies that

msepCJ |D0

(
Ĉ

(0)
J

)
= Var (CJ | D0) (3)

= Var

⎛⎝∑
k≥1

CDR(k)

∣∣∣∣∣∣D0

⎞⎠ =
∑
k≥1

Var (CDR(k)| D0) .
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Budget and P&L Statement

Equation (2) implies prediction 0 of the CDR:

Budget P&L

1/1/2009 31/12/2009

premium earned 4’000’000 4’020’000

claims incurred current accident year -3’300’000 -3’340’000

loss experience prior accident years 0 -40’000
administrative expenses -1’000’000 -1’090’000

investment income 500’000 510’000

income before taxes 200’000 60’000

Prediction Uncertainty in accounting year k: study

msepCDR(k)|Dk−1
(0) = Var (CDR(k)| Dk−1) .
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3. Bayesian Chain-Ladder Method

We use the following notation:

• accident years are denoted by i ∈ {0, . . . , I}

• development years are denoted by j ∈ {0, . . . , J}

• accounting years are given by i + j = k (constant)

• incremental payments are denoted by Xi,j

• cumulative payments are denoted by

Ci,j =
j∑

l=0

Xi,l.

c©2009 (Mario Wüthrich, ETH Zurich) 16

Loss Development Triangle at Time I

accident development years j

year i 0 1 2 3 4 . . . j . . . J

0

1
... observations D0
...

i
...
...

I − 2 to be predicted Dc
0

I − 1

I

• observations: Dk = {Ci,j : i + j ≤ I + k}

• to be predicted: Dc
k = {Ci,j : i + j > I + k, i ≤ I}
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Example 1: Cumulative Payments

0 1 2 3 4 5 6 7 8 9

0 5’946975 9’668212 10’563929 10’771690 10’978394 11’040518 11’106331 11’121181 11’132310 11’148124
1 6’346756 9’593162 10’316383 10’468180 10’536004 10’572608 10’625360 10’636546 10’648192
2 6’269090 9’245313 10’092366 10’355134 10’507837 10’573282 10’626827 10’635751
3 5’863015 8’546239 9’268771 9’459424 9’592399 9’680740 9’724068
4 5’778885 8’524114 9’178009 9’451404 9’681692 9’786916
5 6’184793 9’013132 9’585897 9’830796 9’935753
6 5’600184 8’493391 9’056505 9’282022
7 5’288066 7’728169 8’256211
8 5’290793 7’648729
9 5’675568

Observed historical cumulative payments at time I = 9

D0 = {Ci,j : i + j ≤ 9} .
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Bayesian CL Model Assumptions

• Conditional on F = (F0, . . . , FJ−1) we have

� different accident years i are independent;

� {Ci,j}j≥0 is a Markov process with

E [Ci,j|Ci,j−1,F] = Fj−1 Ci,j−1, for all i, j.

Var (Ci,j|Ci,j−1,F) = σ2
j−1(Fj−1) Ci,j−1, for all i, j.

• The components of F are independent.

Note that the CL factors F are part of the model which allows for

Bayesian inference and parameter uncertainty study within the
model.
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Properties of the Bayesian CL Model

Theorem 1. The posteriors of F, given Dk, are independent.

Theorem 2. The minimum variance predictor for Ci,J is given by

Ĉ
(k)
i,J = E [Ci,J | Dk] = Ci,I−i+k

J−1∏
j=I−i+k

E [Fj| Dk] .

Theorem 3. The prediction uncertainties msepCi,J |D0

(
Ĉ

(0)
i,J

)
and

msepCDRi(1)|D0
(0) can be calculated analytically.

See Gisler-W. (2008) and Bühlmann et al. (2009).
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Estimation of CL Factors

We choose a non-informative prior distribution for F.

In that case we obtain at time k

f̂
(k)
j = E [Fj| Dk] =

∑(I−j−1+k)∧I
i=0 Ci,j+1∑(I−j−1+k)∧I

i=0 Ci,j

.

Henceforth, the CL predictor for Ci,J at time k is given by

Ĉ
(k)
i,J = E [Ci,J | Dk] = Ci,I−i+k

J−1∏
j=I−i+k

f̂
(k)
j .
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Prediction Uncertainty (Linear Approximation)

m̂sepCi,J |D0

(
Ĉ

(0)
i,J

)
=

(
Ĉ

(0)
i,J

)2

×
[

J−1∑
j=I−i

σ̂2
j/

(
f̂

(0)
j

)2

Ĉ
(0)
i,j

+
J−1∑

j=I−i

σ̂2
j/

(
f̂

(0)
j

)2

∑I−j−1
l=0 Cl,j

]
,

m̂sepCDRi(1)|D0
(0) =

(
Ĉ

(0)
i,J

)2

×
[
σ̂2

I−i/
(
f̂

(0)
I−i

)2

Ĉ
(0)
i,I−i

+
σ̂2

I−i/
(
f̂

(0)
I−i

)2

∑i−1
k=0 Ck,j

+
J−1∑

j=I−i+1

CI−j,j∑I−j
l=0 Cl,j

σ̂2
j/

(
f̂

(0)
j

)2

∑I−j−1
l=0 Cl,j

]
.

See Gisler-W. (2008), Merz-W. (2008) and Bühlmann et al. (2009).
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Example 1, revisited

i CL reserves bR(0)
i m̂sepCDRi(1)|D0

(0)1/2 m̂sepCi,J |D0

“ bC(0)
i,J

”1/2

1 15’126 267 1.8% 267 1.8%
2 26’257 884 3.4% 914 3.5%
3 34’538 2’948 8.5% 3’058 8.9%
4 85’302 7’018 8.2% 7’628 8.9%
5 156’494 32’470 20.7% 33’341 21.3%
6 286’121 66’178 23.1% 73’467 25.7%
7 449’167 50’296 11.2% 85’398 19.0%
8 1’043’242 104’311 10.0% 134’337 12.9%
9 3’950’815 385’773 9.8% 410’817 10.4%

cov. 94’134 116’810

Total 6’047’061 420’220 6.9% 462’960 7.7%

We see that the ratio is around 90%.
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More Examples

CL reserves bR(0) m̂sepCDR(1)|D0
(0)1/2 m̂sepCJ |D0

“ bC(0)
J

”1/2

Example 2 (commercial liability) 646’496 19’300 3.0% 31’344 4.8%

Example 3 (Merz-W. (2008)) 2’237’826 81’080 3.6% 108’401 4.8%

We see that the ratio is around 60%
in Example 2.

We see that the ratio is around 75%
in Example 3.
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Example: Italian MTPL (37 Companies)

company business msep total runoff msep CDR(1)
msep CDR(1)

msep total runoff
volume (in % reserves) (in % reserves) (in %)

1 100.0 4.03 3.24 80.4
2 100.0 2.90 2.36 81.4
3 100.0 2.41 1.98 82.3
4 100.0 3.45 2.85 82.6
5 61.8 3.66 3.04 82.9
6 56.9 5.54 4.50 81.2
7 53.0 4.52 3.70 81.8
8 49.4 4.60 3.82 83.1
9 46.2 5.61 4.59 81.8
10 41.6 5.32 4.36 82.0
...

...
...

...
30 3.5 18.02 14.78 82.0
31 3.4 17.23 13.92 80.8
32 2.6 18.73 14.89 79.5
33 2.5 23.11 19.10 82.6
34 2.2 20.83 17.53 84.2
35 2.0 17.01 13.87 81.5
36 1.8 26.16 21.54 82.4
37 1.8 27.79 22.25 80.1

Total 0.96 0.78 81.8

For more explanation see Bühlmann et al. (2009).
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4. Conclusions

• In all examples considered: the ratio between one-year CDR risk and

full run-off risk was within the intervall [50%, 95%] (range between

liability insurance and property insurance).

This is also supported by the AISAM-ACME field study 2007.

• We have measured risk with the help of the conditional MSEP. For

Value-at-Risk or Expected Shortfall considerations fit distribution

with appropriate moments (= proxy).

• A full distributional approach can only be solved numerically, e.g.

Markov chain Monte Carlo (MCMC) methods (Bayesian models).
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Conclusions

• Dependence is not appropriately modelled. Especially, accounting
year dependence and claims inflation needs special care (MCMC

methods).

• The one-year CDR view needs a Cost-of-Capital charge (risk
margin) for the risk that is beyond the one-year time horizon,

market-value margin, see Salzmann-W. (2009).

• Discounting and financial risk is not considered. First results on

this topic are obtained in W.-Bühlmann (2009).
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credibility formula for chain ladder factors and the claims development result. Astin

Bulletin 39/1, 275-306.
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[4] Salzmann, R., Wüthrich, M.V. (2009). Cost-of-capital margin for a general insurance runoff.

Submitted preprint.
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