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Consider the following problem

minimize g(x(T ))

subject to
x′(t) ∈ F (t, x(t), x(t−∆)) a.e. ([t0, T ]),
x(t) = c(t) t ∈ [t0 −∆, t0),
x(t0) ∈ X0, x(T ) ∈ X1,

where X0, X1 ⊂ Rn are given subsets, F (., ., .) : R × Rn × Rn → P(Rn) is a
given set-valued map, g(.) : Rn → R is a given function, ∆ ∈ (0, T − t0) and
c(.) : [t0 −∆, t0)→ Rn is a given essentially bounded function.

We propose an approach concerning second-order optimality conditions for
this problem. The main idea is to reduce the (infinite-dimensional) optimal con-
trol problem to the finite-dimensional problem of minimizing the terminal payoff
on the intersection of the (known) target set with the (unknown) reachable set
and to use a general result from nonsmooth analysis.

In order to apply the general abstract optimality conditions we must check
a certain constraint qualification, so we are naturally led to study the interme-
diate tangent cone and Clarke tangent cone to the reachable set at the optimal
endpoint.
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