Problem of random summation and its role in risk aggregation models

Gregory Temnov

School of Mathematical Sciences University College Cork

Oct 14, 2011 PRisMa Day, TU Wien

Problem of random summation and its role in risk aggregation models

N(t) Y_i i=1

- Y_j are assumed to be *iid* random variables
- *N*(*t*) is a counting process

Initial approach

PhD topic: Insurance models with stochastic premium

$$S(t) = u + ct - \sum_{j=1}^{N(t)} Y_j$$

$$\Psi(u) = \mathbf{P}\left(\inf\{S(t)\} < 0 \mid S(0) = u\right)$$

Proposed model:

$$S(t) = u + \sum_{i=1}^{\widetilde{N}(t)} X_i - \sum_{j=1}^{N(t)} Y_j$$

 G. Temnov. (2004). Risk process with random income. Journal of Mathematical Sciences. 121 (2), 236 - 244.

Solution to ruin problems

Solution to classical ruin problem : Pollaczek - Khinchine Formula

$$\Psi_{cl}(z) = \left(1 - \frac{\lambda_1 a_X}{c}\right) \sum_{k=0}^{\infty} \left(\frac{\lambda_1 a_X}{c}\right)^k \left(1 - \widetilde{F}_X^{*k}(z)\right),\tag{1}$$

where

$$\widetilde{F}_X(x) = \frac{1}{a_X} \int_0^x (1 - F_X(y)) dy, \ x \ge 0,$$
 (2)

Case with stochastic income:

$$\Psi(z) = q \sum_{k=0}^{\infty} (1-q)^{k} (1-F_{h}^{*k}(z));$$

$$\ln \frac{1}{1-(1-q)\widehat{f}_{h}(s)} = \sum_{n=1}^{\infty} \frac{1}{n} \int_{0+}^{\infty} e^{isx} dW^{n*}(x);$$

$$W(x) = \frac{1}{1+\lambda_{2}/\lambda_{1}} \sum_{k=0}^{\infty} \left(\frac{\lambda_{2}/\lambda_{1}}{1+\lambda_{2}/\lambda_{1}}\right)^{k} F_{X}(x) * \overline{G}_{Y}^{*k}(x), \ \overline{G}_{Y}(x) = 1 - \frac{1}{G_{Y}(-x-0)}.$$
Economic

Work with PRiSMa-Lab

Initial task :

Operational risk measurement

The common scheme: for each BL L_i (i = 1, ..., m) :

- Modelling loss severity (single-loss df) $F(x) = \mathbf{P}(X_1^L < x)$
- Modelling loss frequency $\mathcal{L} = \mathbf{P} \left(N^L = n \right)$

• Loss aggregation
$$S_L = \sum_{j=1}^{N^L} X_j^L \Rightarrow F^{S_L} = ?$$

• Basic measure in the capital allocation problem

 $\operatorname{VaR}_{\alpha}(S_L) = \inf\{s \in \mathbb{R} : \mathbf{P}(S_L > s) \le 1 - \alpha\}, \text{ OpRisk: } \alpha = 0.999$

Edaeworth

Operational risk measurement - from basic to advanced

- Methodology; numerical techniques: analyzing accuracy, speed ...
- Finding an optimal scheme

Taking into account factors that affect regularity of data:

- Peculiarity of severity distributions (e.g., presence of outlying data points)
- Inflation, trends and other scaling factors
- Dependence between different types of risks

Loss aggregation and ch.f.

$$S_{N(t)} = \sum_{k=1}^{N(t)} X_k, \quad \mathbf{P}(X_k < x) =: F_X(x), \quad \mathbf{P}(N(t) = k) =: \alpha_k$$
(3)
$$h(x) = \sum_k \alpha_k x^k, \quad \mathbf{P}(X_k < x) =: F_X(x), \quad \mathbf{P}(N(t) = k) =: \alpha_k$$
(3)

Characteristic function (ch.f.)

$$\widehat{f}_{X}(u) = \int_{-\infty}^{\infty} e^{iux} dF_{X}(x); \quad \widehat{g}_{S}(u) = h\left(\widehat{f}_{X}(u)\right) = \sum_{k} a_{k} \widehat{f}_{X}^{k}(u)$$

$$g_{5}(x) = \sum_{k} a_{k} f_{X}^{*k}(x).$$
(4)
Poisson: $g_{5}(u) = \sum_{k} \frac{(\lambda t \widehat{f}_{X}(u))^{k} e^{\lambda t}}{k!} = \exp\left[\lambda t (\widehat{f}_{X}(u) - 1)\right]$
(5)

Edgewo

Aggregate loss distribution

Edgewor

Aggregate loss – error bounds

Edgewor

Quantile as a function of the model parameters

If Y = H(X), where contin. rv X and Y, cdf F_Y ; pdf f_X

$$F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}[H(X) \le y] = \int_{x: H(x) \le y} f_X(x) dx.$$

$$F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}[H(X_1, \dots, X_n) \le y] = \int \dots \int_{x: H(x) \le y} f_X(x_1, \dots, x_n) dx_1, \dots, x_n$$

 $Q_{\theta} \equiv Q(\theta) : (\alpha, \sigma); \ Q_{\theta} : \Omega \in \mathbb{R}^2 \longrightarrow \mathbb{R}.$ $T_{Q}(y) = \mathbf{P}[Q_{\theta}(\alpha, \sigma) \leq y] = \int \dots \int_{\theta \leq \sigma(\theta) \leq y} T_{\theta}(\alpha, \sigma) d\alpha d\sigma$ On the other hand, $0.95 = \int \dots \int_{\theta \in \Omega} T_{\theta}(\alpha, \sigma) d\alpha d\sigma$. $\int \ldots \int_{\theta \in \Omega_{0.95}} T_{\theta}(\alpha, \sigma) d\alpha d\sigma > \int \ldots \int_{\theta \in \alpha} \int_{\theta \in \alpha} T_{\theta}(\alpha, \sigma) d\alpha d\sigma,$ for such $q_1 = \inf\{q \in \mathbb{R} : Q(\theta) = q, \theta \in \Theta (\Theta \subset \Omega)\}$ and $q_2 = \sup\{q \in \mathbb{R} : Q(\theta) = q, \theta \in \Theta (\Theta \subset \Omega)\}.$ Edgewo 10 of 25

Quantile as a function of the model parameters

Tranfering confidence set for parameters into conf.int. for 0.999-quantile

Confidence intervals for the quantile

Line N	Parameters / Error bounds	VaR	lower	upper
		(FFT)	bound	bound
Line 1	$\xi = 1.12 \; (0.95 , 1.29)$	656.12	115	3738
	eta= 7460 (6326 $,$ 8594)			
Line 4	$\xi = 0.52 \; (0.58 , 0.46)$	27.3	18	44
	$eta = 1.38 \cdot 10^6 \; (1.21 , 1.55) \cdot 10^6$			
Line 7	$\xi = 1.2 \ (1.1 \ , \ 1.3)$	209.47	94	468
	eta = 15600 (14352 $,16848$)			

Table: VaR bounds from confidence intervals

Bayesian inference and and MCMC for modelling VaR (accounting for uncertainty)

$$\pi_{\theta \mid X}(\theta \mid \mathbf{x}) = \frac{f_{X \mid \theta}(\mathbf{x} \mid \theta) \pi(\theta)}{\int f_{X \mid \theta}(\mathbf{x} \mid \theta) \pi(\theta) d\theta},$$
(6)

 $\pi_{\theta \mid X}(\theta \mid \mathbf{x})$ — posterior, $\pi(\theta)$ — prior

Even in the case of Pareto $(F(x) = 1 - (1 + \frac{x}{\beta})^{-1/\xi})$ and Poisson joint model, $\pi_{\theta \mid X}(\theta \mid \mathbf{x}) = \operatorname{explicit}(\pi(\theta))$ is not always possible

Quantiles of the full predictive distribution

A sample from the predictive distribution is considered is simulated by MCMC. As the size **N** of the observed sample $\mathbf{X} = \{X_i\}_{i=1,...,N}$ increases, asymptotically, $h(z \mid \mathbf{X}) \xrightarrow[N \to \infty]{} g(z \mid \overline{\theta})$

Varying threshold

$$\pi_{\Theta \mid \mathbf{x}}(\theta \mid \mathbf{x}) \propto f_{\mathbf{x} \mid \Theta}(\mathbf{x} \mid \theta) \pi(\theta).$$
$$f_{\mathbf{x} \mid \Theta}(\mathbf{x} \mid \theta) = \prod_{i=1}^{N} f^{(\mathcal{T})}(X_i \mid L_{t_i}, \alpha) g_{\lambda_i}(\tau_i \mid \sigma), \ f^{(\mathcal{T})}(\cdot) = \frac{f(X_i \mid \alpha)}{1 - F(L_i \mid \alpha)}$$

Influence of the inflation

Investigations of mis-specified models

Peter Grandits & GT, 2010

$$\widetilde{G}_{lpha,\sigma}(y) = 1 - \left(1 + rac{y}{\sigma}
ight)^{-lpha}, \quad l_{lpha,\sigma}(\mathbf{Y}) = rac{lpha^n}{\sigma^n} \prod_{i=1}^n \left(1 + rac{Y_i}{\sigma}
ight)^{-lpha - 1}$$

The system of ML equations

$$\begin{cases}
\widehat{\alpha}_{n} - \frac{n}{\sum\limits_{i=1}^{n}\ln\left(1 + \frac{\tilde{Y}_{i}}{\tilde{\sigma}_{n}}\right)} = 0, \\
\frac{1}{\sum\limits_{i=1}^{n}\ln\left(1 + \frac{\tilde{Y}_{i}}{\tilde{\sigma}_{n}}\right)} \sum\limits_{i=1}^{n} \frac{\tilde{Y}_{i}}{\tilde{\sigma}_{n}^{2} + \hat{\sigma}_{n}\tilde{Y}_{i}} + \frac{1}{n}\sum\limits_{i=1}^{n} \frac{\tilde{Y}_{i}}{\hat{\sigma}_{n}^{2} + \hat{\sigma}_{n}\tilde{Y}_{i}} - \frac{1}{\hat{\sigma}_{n}} = 0.
\end{cases}$$
(8)

Edaewo

Inflation incoming $Y_i \rightarrow \widetilde{Y}_i \equiv Y_i q^i = Y_i e^{\frac{rTi}{n}}$

r yearly inflation rate (if you do not take into account inflation at all) or an error in the estimation of inflation

Results: Influence of inflation and trends

Inflation

$$Y_{i} = X_{i}e^{\frac{rTi}{n}}$$

$$\begin{cases}
\Delta \alpha_{r} = 0, \\
\Delta \sigma_{r} = \frac{r\sigma^{*}T}{2}.
\end{cases}$$

$$\begin{cases}
\Delta \alpha_{r} = \sigma^{*}\frac{(\alpha^{*} + 1)(\alpha^{*})^{2}}{\sigma^{*}}A\frac{rT_{max}}{2} \\
\Delta \sigma_{r} = \sigma^{*}\frac{rT_{max}}{2} + (\alpha^{*} + (1 + \alpha^{*})^{2})A\frac{rT_{max}}{2}.
\end{cases}$$
P. Grandits, GT, 2010
P. Grandits, R. Kainhofer & GT, 2010
Ecgeworth

Influence of inflation : case with positive threshold

$$\overline{\alpha}_r(0) = \frac{(\alpha^*)^2 \cdot T}{2} \cdot \frac{A_2 C_1 - A_1 C_2}{(\alpha^*)^2 A_1^2 - A_2}$$
$$\overline{\sigma}_r(0) = \frac{\sigma^* \cdot T}{2} \cdot \frac{\alpha^* A_1 C_1 - C_2}{(\alpha^*)^2 A_1^2 - A_2}$$

$$A_{1} := \left(\frac{\sigma^{*}}{\sigma^{*}+L}\right) \cdot \frac{1}{\alpha^{*}+1}$$

$$A_{2} := \left(\frac{\sigma^{*}}{\sigma^{*}+L}\right)^{2} \cdot \frac{\alpha^{*}}{\alpha^{*}+2}$$

$$C_{1} := A_{1} + \frac{L}{L+\sigma^{*}}$$

$$C_{2} := A_{2} + \frac{\alpha^{*}L}{\sigma^{*}} \left(\frac{\sigma^{*}}{L+\sigma^{*}}\right)^{2}$$

Inflation and threshold - Illustration of the impact

Infl. rate 0.03, period 5 years, true param. (1,3) True quantile 2999, True **aggregate** quantile 11374 ($\lambda = 7$)

Misconsideration			Resulting effects			
Trunc. before scaling	Loss scaling	Threshold scaling	α	σ	Quantile	Aggregate quantile
Х	Х	Х	0.94	4.16	6075.4	23242
X		X	0.94	3.78	5520	19730
X	X		1	3.75	3748	15200
	Х	Х	1	3.4	3399	13720gewp

Actuarial and Financial data : difference and similarities

Financial data:

- Evidence of stability ("scale-invariance", "self-similarity")
- Relevance of the whole distribution

Actuarial data :

• "Heavy-tailedness", relevance of the right tail

Similarities :

• Aggregation of Actuarial data and Increments of Financial data

Extensions of Stable distribution

Regular stability

 $X_1 + \cdots + X_n = S_n \stackrel{d}{=} b_n X + a_n$; Characteristic function $e^{\lambda(-it)^{\gamma}} =: f_{St}(t)$

Stability under random summation

$$X \stackrel{d}{=} X_1^{(n)} + \cdots + X_{\nu_n}^{(n)}$$
; Characteristic function $\mathcal{L}\gamma(-\ln f_{St}(t))$

Discrete stability

"Binomial operation" $\alpha \circ X = \sum_{j=1}^{X} B_j$, where $B_j \sim \text{Bernoulli}(\alpha)$ and X is some *discrete* r.v. $(X \in \mathbf{Z}_+)$ Then the r.v. X is discrete stable if

$$X \stackrel{d}{=} rac{1}{N^{1/\gamma}} \circ (X_1 + \cdots + X_N)$$
; Ch. f. $e^{\lambda (e^{it} - 1)^{\gamma}}$

Discrete models for financial data (random summation revisited)

Recall: characteristic function of a Poisson process

$$g(t) = \exp\{\lambda(e^{it}-1)\},\;.$$

"Discrete Brownian Motion"

Its characteristic function is

$$g(t) = \exp\{\lambda_1(e^{ia_1t}-1) + \lambda_2(e^{ia_2t}-1)\}$$
.

Advantages :

- Explicit link both with random summation and with regular Brownian Motion
- Simple analytic results for first hitting time etc.

Real data example

Simulated "Discrete Br. Motion"

Thanks

Thank you very much for your attention!

