Generalization of the Dybvig–Ingersoll–Ross Theorem and Asymptotic Minimality

Verena Goldammer

(Joint work with Uwe Schmock)

Financial and Actuarial Mathematics
Vienna University of Technology

PRisMa 2009 28.09.2009
References

Philip H. Dybvig, Jonathan E. Ingersoll, and Stephen A. Ross:

Friedrich Hubalek, Irene Klein, and Josef Teichmann:
Outline

1. Notation
2. Dybvig–Ingersoll–Ross Theorem
3. Examples
4. Asymptotic Minimality
Probabilistic Model and Zero-Coupon Bonds

Notation:

- Filtered probability space: \((\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) for discrete time \(t \in \mathbb{N}_0\) or for continuous time \(t \in [0, \infty)\)
- Maturity: \(T \in \mathbb{N}\) or \(T \in (0, \infty)\)
- Zero-coupon bond price process \(P(t, T)\): strictly positive, \(\mathbb{F}\)-adapted process with normalization \(P(T, T) = 1\).
Definition of Zero-Coupon Rates

Zero-coupon rates $R(t, T)$ (investment yields):

- **Continuous-time**: For $T > 0$ and $t \in [0, T)$

 $$R(t, T) = -\frac{\log P(t, T)}{T - t}$$

- **Discrete-time**: For $T \in \mathbb{N}$ and $t \in \{0, \ldots, T - 1\}$

 $$R(t, T) = P(t, T)^{-1/(T - t)} - 1$$
Interpretation of Zero-Coupon Rates

Representation of zero-coupon bond prices:

- Continuous-time: For $T > 0$ and $t \in [0, T)$
 \[P(t, T) = \exp(-(T - t)R(t, T)) \]

- Discrete-time: For $T \in \mathbb{N}$ and $t \in \{0, \ldots, T - 1\}$
 \[P(t, T) = \frac{1}{(1 + R(t, T))^{(T-t)}} \]

Interpretation:
If we invest 1 at time t in the T-bond, then this will accumulate at an average rate of $R(t, T)$ over the period.
Definition of Arbitrage-Free Forward Rates

Arbitrage-free forward rate $F(s, t, T)$:

- Continuous-time: For $T > 0$ and $s \leq t$ in $[0, T)$

$$F(s, t, T) = \frac{1}{T - t} \log \frac{P(s, t)}{P(s, T)}$$

- Discrete-time: For $T \in \mathbb{N}$ and $s \leq t$ in $\{0, \ldots, T - 1\}$

$$F(s, t, T) = \left(\frac{P(s, t)}{P(s, T)} \right)^{1/(T-t)} - 1$$

Interpretation:
In the forward contract we fix at time s the rate of interest $F(s, t, T)$ for a loan between times t and T.
Outline

1 Notation

2 Dybvig–Ingersoll–Ross Theorem
 • Original Version of the DIR Theorem
 • Dybvig–Ingersoll–Ross for Limit Superior

3 Examples

4 Asymptotic Minimality
Dybvig–Ingersoll–Ross Theorem

Dybvig–Ingersoll–Ross theorem (DIR):
Assume that the zero-coupon bond market is arbitrage-free.

- If for $s < t$ the long-term zero-coupon rates
 \[l(s) = \lim_{T \to \infty} R(s, T) \quad \text{and} \quad l(t) = \lim_{T \to \infty} R(t, T) \]
 exist almost surely, then $l(s) \leq l(t)$ almost surely.

- If for $s \leq t$ the long-term forward rate
 \[l_F(s, t) = \lim_{T \to \infty} F(s, t, T) \]
 exist a.s., then $l_F(s, t) = l(s)$ a.s. and it holds $l_F(s, s') \leq l_F(t, t')$ for all $s' \geq s$ and $t' \geq t$.
Why Should the Theorem Be True?

Economic interpretation of DIR:

- From time s to a later time t the information increases from \mathcal{F}_s to \mathcal{F}_t.
- More informed decision concerning the best zero-coupon bonds for long-term investment can be made at time t.
- The earnings during $[s, t]$ are negligible in the limit for $T \to \infty$.

\Rightarrow The long-term zero-coupon rates should never fall!
Disadvantage of Dybvig–Ingersoll–Ross theorem:

- Existence of the limit of the long-term zero-coupon and forward rates has to be shown in advance.
- There exist models, where these limits do not exist!

Our generalization:

Replace the limit by the limit superior of the long-term rates!
Definition of the Long-Term Rates

Long-term zero-coupon rate for $t \geq 0$:

$$l(t) := \limsup_{T \to \infty} R(t, T) = \lim_{n \to \infty} \text{ess sup}_{T > n \vee t} R(t, T)$$

Long-term forward rate for $0 \leq s \leq t$:

$$l_F(s, t) := \limsup_{T \to \infty} F(s, t, T) = \lim_{n \to \infty} \text{ess sup}_{T > n \vee t} F(s, t, T).$$

Definition of the essential supremum:

- \mathcal{X}: (uncountable) family of random variables
- $\text{ess sup} \mathcal{X}$: smallest random variable, dominating each random variable in \mathcal{X}
Why do we use the limit superior?

- Investor prefers long-term investments with high return.
- Prefers the limit superior of the zero-coupon rates
- Approximation of the limit superior is possible by choosing an appropriate bond maturity

Lemma (G. & Schmock)

Given $t \geq 0$, there exists a sequence of \mathcal{F}_t-measurable random maturities $T_n : \Omega \rightarrow (n \lor t, \infty)$, each one taking only a finite number of values, such that

$$l(t) = \lim_{n \to \infty} R(t, T_n).$$
Generalization of the DIR Theorem (Version 1)

Theorem (G. & Schmock)

If there exists a probability measure $\mathbb{Q}_{s,t}$ for $0 \leq s < t$ on (Ω, \mathcal{F}_t), equivalent to $\mathbb{P}|\mathcal{F}_t$, such that for large $T > t$

$$P(s, T) \geq P(s, t) \mathbb{E}_{\mathbb{Q}_{s,t}}[P(t, T)|\mathcal{F}_s] \quad \text{a.s.}$$

then

- $l(s) \leq l(t)$ a.s. and
- $l_F(s, s') \leq l_F(t, t')$ a.s. for all $s' \geq s$ and $t' \geq t$.

Remarks:

- If equality holds, then $\mathbb{Q}_{s,t}$ is called the **forward (time s)** risk neutral probability measure for maturity t.
- Hubalek et al. assume the existence of such a risk neutral measure. Their proof can be adapted for the limit superior.
No Arbitrage in the Limit

Assume for $0 \leq s < t$ and $n \in \mathbb{N}$:

- Maturities T_n: \mathcal{F}_s-measurable, finite number of values
- Portfolio compositions (ϕ_n, ψ_n): \mathcal{F}_s-measurable
- Portfolio value $u \in [s, t]$: $V_n(u) = \phi_n P(u, T_n) + \psi_n P(u, t)$

Arbitrage in the limit:

1. $V_n(s) = 0$, a.s. for all $n \in \mathbb{N}$
2. $\mathbb{P}(\lim \inf_{n \to \infty} V_n(t) > 0) > 0$
3. $\lim \inf_{n \to \infty} V_n(t) \geq 0$ a.s.
No Arbitrage in the Limit with Vanishing Risk

Assume for $0 \leq s < t$ and $n \in \mathbb{N}$:

- Maturities T_n: \mathcal{F}_s-measurable, finite number of values
- Portfolio compositions (ϕ_n, ψ_n): \mathcal{F}_s-measurable
- Portfolio value $u \in [s, t]$: $V_n(u) = \phi_n P(u, T_n) + \psi_n P(u, t)$

Arbitrage in the limit with vanishing risk:

1. $V_n(s) = 0$, a.s. for all $n \in \mathbb{N}$
2. $P(\liminf_{n \to \infty} V_n(t) > 0) > 0$
3. For each $\varepsilon > 0$ there ex. $n_\varepsilon \in \mathbb{N}$ s.t. $V_n(t) \geq -\varepsilon$ a.s. for all $n \geq n_\varepsilon$
Relation Between Notions of No Arbitrage

No arbitrage in the limit

in general \(\Downarrow\) \(\Uparrow\) \(\mathcal{F}_t\) finite

No arbitrage in the limit with vanishing risk

\(\uparrow\)

Forward (time s) risk neutral measure
Generalization of the DIR Theorem (Version 2)

Theorem (G. & Schmock)

If there is no arbitrage in the limit with vanishing risk for \(0 \leq s < t\), *then*

- \(l(s) \leq l(t)\) a.s.
- \(l_F(s, s') \leq l_F(t, t')\) a.s. for all \(s' \geq s\) and \(t' \geq t\)

Remarks:

- This DIR-version implies version 1 if the existence of a forward risk neutral measure is assumed.
- Dybvig et al. use the notion of no arbitrage in the limit with vanishing risk. Their proof can be adapted.
Outline

1. Notation
2. Dybvig–Ingersoll–Ross Theorem
3. Examples
 - Deterministic Model
 - Vasiček Model
4. Asymptotic Minimality
Model Class with Forward Risk Neutral Measures

Construction of forward risk neutral measure:

- Bank account: \((B_t)_{t \geq 0}\) strictly positive, \(\mathbb{F}\)-adapted, \(B_0 = 1\)
- Assume \(1/B_T\) is \(\mathbb{Q}\)-integrable for every \(T > 0\).
- Zero-coupon bond price

\[
P(t, T) = \mathbb{E}_\mathbb{Q}\left[\frac{B_t}{B_T} \mid \mathcal{F}_t \right], \quad t \in [0, T]
\]

- Density of forward risk neutral probability measure

\[
\frac{d\mathbb{Q}_{s,t}}{d\mathbb{Q}} = \frac{B_s}{P(s, t)B_t}, \quad s \in [0, t)
\]

\Rightarrow \quad \mathbb{E}_{\mathbb{Q}_{s,t}}[P(t, T)\mid \mathcal{F}_s] = \mathbb{E}_\mathbb{Q}\left[\frac{B_s}{P(s, t)B_t} \mathbb{E}_\mathbb{Q}\left[\frac{B_t}{B_T} \mid \mathcal{F}_t \right] \mid \mathcal{F}_s \right]

\[= \frac{P(s, T)}{P(s, t)}
\]
Short-Rate Models

Construction of short-rate models:

- Interest rate intensity: $\{r_t\}_{t \geq 0}$ is \mathbb{F}-progressive process with locally integrable paths
- Bank account:

 \[B_t = \exp\left(\int_0^t r_u \, du\right), \quad t \in [0, \infty). \]

If $1/B_T$ is \mathbb{Q}-integrable, then for all $0 \leq t \leq T$:

\[P(t, T) = \mathbb{E}_\mathbb{Q}\left[\exp\left(-\int_t^T r_u \, du\right) \mid \mathcal{F}_t\right]. \]

\[R(t, T) = -\frac{1}{T - t} \log \mathbb{E}_\mathbb{Q}\left[\exp\left(-\int_t^T r_u \, du\right) \mid \mathcal{F}_t\right] \]
A Deterministic Short-Rate Model

Define càdlàg interest rate intensity process

\[r_t = a + b \mathbb{1}_A(t), \quad a, b \in \mathbb{R} \text{ and } t \geq 0, \]

with the set

\[A = \left[\frac{1}{3}, 1 \right) \cup \bigcup_{k=0}^{\infty} \left[2^{2k+1}, 2^{2k+2} \right). \]

Visualization of \(A \):

![Visualization of A](image)
Deterministic Short-Rate Model \(r_t = a + b 1_A(t) \)

Zero-coupon rate for \(0 \leq t < T \):

\[
R(t, T) = -\frac{1}{T-t} \log \mathbb{E}_Q \left[\exp \left(-\int_t^T r_u du \right) \big| \mathcal{F}_t \right]
\]

\[
= a + \frac{b}{T-t} \int_t^T 1_A(u) du = a + b \frac{\lambda(A \cap [t, T])}{T-t}.
\]

Limit of zero-coupon rate does not exist:

- \(R(0, 2^{2n+1}) = a + \frac{b}{3} \) and \(R(0, 2^{2n+2}) = a + \frac{2b}{3} \) for \(n \in \mathbb{N} \).
- Every point in the interval \([a + \frac{b}{3}, a + \frac{2b}{3}] \) is an accumulation point of \(\{R(t, T)\}_{T>t} \) as \(T \to \infty \).
Zero-Coupon Rates for Model with $r_t = a + b 1_{A(t)}$

Figure: Zero-coupon rate $R(0, T)$ of the deterministic short rate model, with coefficients $a = 1$ and $b = 2$.
Generalized Vasiček Model

Short rate process: Solution of SDE

\[dr_t = \alpha(\mu_t - r_t)dt + \sigma_t \, dW_t, \quad t \geq 0, \]

where \(\alpha > 0, \mu, \sigma : [0, \infty) \to \mathbb{R} \) bounded and deterministic and \((W_t)_{t \geq 0}\) Brownian motion.

Zero-coupon rate for \(0 \leq t < T \):

\[
R(t, T) = r_t \frac{1 - e^{-\alpha(T-t)}}{\alpha(T-t)} + \frac{1}{T-t} \int_t^T (1 - e^{-\alpha(T-s)}) \mu_s \, ds
\]

\[- \frac{1}{2\alpha^2(T-t)} \int_t^T (1 - e^{-\alpha(T-s)})^2 \sigma_s^2 \, ds \]
Long-Term Rates in the Vasiček Model

Zero-coupon rate for $T \to \infty$:

$$R(t, T) = \frac{1}{T - t} \int_t^T \mu_s \, ds - \frac{1}{2\alpha^2(T - t)} \int_t^T \sigma_s^2 \, ds + O\left(\frac{1}{T}\right)$$

Limit of $R(t, T)$ does not exist:

- Choose $\mu_s = a + b 1_A(s)$ for $s \geq 0$, with the set A from deterministic example, and σ constant.
- Set μ const. For $a, b, c > 0$ with $a \geq b\sqrt{1 + c^2}$ and $s \geq 0$

$$\sigma_s^2 = a + b \sin(c \log(s + 1)) + bc \cos(c \log(s + 1))$$

$$\Rightarrow \quad l(t) = \mu - \frac{a - b}{2\alpha^2}, \quad \text{but } \liminf_{T \to \infty} R(t, T) = \mu - \frac{a + b}{2\alpha^2}$$
Zero-Coupon Rates for Vasiček Model

Set μ const., $\sigma_s^2 = a + b \sin(c \log(s + 1)) + bc \cos(c \log(s + 1))$

Figure: Zero-coupon rate $R(0, T)$ with $r_0 = 0.5$, $\mu = 2.3$, $\alpha = 3$, $a = b\sqrt{1 + c^2}$, $b = 1/(10\alpha^2)$, and $c = 5.5$.
Outline

1. Notation
2. Dybvig–Ingersoll–Ross Theorem
3. Examples
4. Asymptotic Minimality
Definition of Lower Envelope

Definition of lower \mathcal{G}-measurable envelope:

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space
- $\mathcal{G} \subset \mathcal{F}$ sub-σ-algebra
- X is \mathbb{R}-valued random variable

Define the **lower \mathcal{G}-measurable envelope:**

$$X_\mathcal{G} = \text{ess sup}\{Z : \Omega \to \mathbb{R} : \mathcal{G}\text{-measurable r.v., } Z \leq X\}$$
Definition of Asymptotic Minimality

Dybvig–Ingersoll–Ross theorem for $0 \leq s < t$:
No arbitrage in the limit with vanishing risk implies

$$l(s) \leq l(t) \text{ a.s.} \implies l(s) \leq l(t)\mathcal{F}_s \text{ a.s.}$$

Under which conditions holds asymptotic minimality,

$$l(s) = l(t)\mathcal{F}_s, \text{ a.s.}$$
Theorem (G. & Schmock)

Assume there is no arbitrage in the limit for $0 \leq s < t$ and $T_n : \Omega \rightarrow (n \wedge t, \infty)$ is \mathcal{F}_s-measurable with finitely many values for each $n \in \mathbb{N}$. Then

$$\left(\liminf_{n \to \infty} R(t, T_n) \right)_{\mathcal{F}_s} \leq l(s) \ a.s.$$

Corollary

Assume there is no arbitrage in the limit. Then

$$\left(\liminf_{T \to \infty} R(t, T) \right)_{\mathcal{F}_s} \leq l(s) \leq \left(\limsup_{T \to \infty} R(t, T) \right)_{\mathcal{F}_s} \ a.s.$$

If the limits exist a.s., then $l(s) = l(t)_{\mathcal{F}_s} \ a.s.$
Asymptotic Minimality for Limit Superior

Theorem (G. & Schmock)

Assume there is no arbitrage in the limit for $0 \leq s < t$ and $T_n : \Omega \rightarrow (n \land t, \infty)$ is \mathcal{F}_s-measurable with finitely many values for each $n \in \mathbb{N}$. Then

$$\left(\liminf_{n \to \infty} R(t, T_n) \right)_{\mathcal{F}_s} \leq l(s) \text{ a. s.}$$

Corollary

Assume there is no arbitrage in the limit. Then

$$\left(\liminf_{T \to \infty} R(t, T) \right)_{\mathcal{F}_s} \leq l(s) \leq \left(\limsup_{T \to \infty} R(t, T) \right)_{\mathcal{F}_s} \text{ a. s.}$$

If the limits exist a. s., then $l(s) = l(t)_{\mathcal{F}_s} \text{ a. s.}$
Results for Asymptotic Minimality

Relation between no arbitrage and asymptotic minimality:

- Limits exist and no arbitrage in the limit \(\Rightarrow \) Asymptotic minimality holds
- Limits exist and no arbitrage with vanishing risk \(\Rightarrow \) not sufficient for asymptotic minimality
- Limits and forward risk neutral measure exist \(\Rightarrow \) not sufficient
- No arbitrage in the limit \(\Rightarrow \) not sufficient
Reference

V. Goldammer and U. Schmock:
Generalization of the Dybvig–Ingersoll–Ross Theorem and Asymptotic Minimality.

Preprint available at:
www.fam.tuwien.ac.at/~schmock/Dybvig-Ingersoll-Ross.html

Thank you for your attention!