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Large trades can significantly impact prices 
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Spreading the order can reduce the overall price impact 
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How to execute a single trade of selling X0 shares?

Interesting because:

• Liquidity/market impact risk in its purest form

– development of realistic market impact models

– checking viability of these models

– building block for more complex problems

• Relevant in applications

– real-world tests of new models

• Interesting mathematics
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Limit order book before market order
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Limit order book after market order
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Resilience of the limit order book after market order

buyers’ bid offers sellers’ ask offers

new best
ask price

new best
bid price



Overview

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience

3. Relations with Gatheral’s model
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Limit order book model without large trader

unaffected best ask priceunaffected best bid price,
is martingale

buyers’ bid offers sellers’ ask offers



Limit order book model after large trades

actual best ask priceactual best bid price



Limit order book model at large trade
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Limit order book model immediately after large trade



Resilience of the limit order book
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1. Linear impact, general resilience
Strategy:

N + 1 market orders: ξn shares placed at time tn s.th.

a) 0 = t0 ≤ t1 ≤ · · · ≤ tN = T

(can also be stopping times)

b) ξn is Ftn-measurable and bounded from below,

c) we have
N∑

n=0

ξn = X0

Sell order: ξn < 0

Buy order: ξn > 0
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Actual best bid and ask prices

Bt = B0
t +

1
q

∑

tn<t
ξn<0

ψ(t− tn)ξn

At = A0
t +

1
q

∑

tn<t
ξn>0

ψ(t− tn)ξn
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Cost per trade

cn(ξ) =






∫ Atn+

Atn

yq dy =
q

2
(A2

tn+ −A2
tn

) for buy order ξn > 0

∫ Btn+

Btn

yq dy =
q

2
(B2

tn+ −B2
tn

) for sell order ξn < 0

(positive for buy orders, negative for sell orders)

Expected execution costs

C(ξ) = E
[ N∑

n=0

cn(ξ)
]
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A simplified model

No bid-ask spread

S0
t = unaffected price, is (continuous) martingale.

St = S0
t +

1
q

∑

tn<t

ξnψ(t− tn).

Trade ξn moves price from Stn to

Stn+ = Stn +
1
q
ξn.

Resulting cost:

cn(ξ) :=
∫ Stn+

Stn

yq dy =
q

2
[
S2

tn+ − S2
tn

]
=

1
2q

ξ2
n + ξnStn

(typically positive for buy orders, negative for sell orders)
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Lemma 1. Suppose that S0 = A0. Then, for any strategy ξ,

cn(ξ) ≤ cn(ξ) with equality if ξk ≥ 0 for all k.

Thus: Enough to study the simplified model (as long as all trades ξn

are positive)

9



Lemma 1. Suppose that S0 = A0. Then, for any strategy ξ,

cn(ξ) ≤ cn(ξ) with equality if ξk ≥ 0 for all k.

Thus: Enough to study the simplified model (as long as all trades ξn
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Lemma 2. In the simplified model, the expected execution costs of a
strategy ξ are

C(ξ) = E
[ N∑

n=0

cn(ξ)
]

=
1
2q

E
[
Cψ

t (ξ) ] + X0S
0
0 ,

where Cψ
t is the quadratic form

Cψ
t (x) =

N∑

m,n=0

xnxmψ(|tn − tm|), x ∈ RN+1, t = (t0, . . . , tN ).
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First Question:
What are the conditions on ψ under which the
(simplified) model is viable?

Requiring the absence of arbitrage opportunities in the
usual sense is not strong enough, as examples will show.

Second Question:
Which strategies minimize the expected cost for
given X0?

This is the optimal execution problem. It is very closely
related to the question of model viability.
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The usual concept of viability from Hubermann & Stanzl (2004):

Definition
A round trip is a strategy ξ with

N∑

n=0

ξn = X0 = 0.

A market impact model admits

price manipulation strategies

if there is a round trip with negative expected execution costs.
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In the simplified model, the expected costs of a strategy ξ are

C(ξ) =
1
2q

E
[
Cψ

t (ξ) ] + X0S
0
0 ,

where

Cψ
t (x) =

N∑

m,n=0

xnxmψ(|tn − tm|), x ∈ RN+1, t = (t0, . . . , tN ).

• There are no price manipulation strategies when Cψ
t is nonnegative

definite for all t = (t0, . . . , tN );

• when the minimizer x∗ of Cψ
t (x) with

∑
i xi = X0 exists, it yields

the optimal strategy in the simplified model; in particular, the
optimal strategy is then deterministic;

• when the minimizer x∗ has only nonnegative components, it yields
the optimal strategy in the order book model.
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Bochner’s theorem (1932):
Cψ

t is always nonnegative definite (ψ is “positive definite”) if and
only if ψ(| · |) is the Fourier transform of a positive Borel measure µ

on R.

Cψ
t is even strictly positive definite (ψ is “strictly positive definite”)

when the support of µ is not discrete.
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Bochner’s theorem (1932):
Cψ

t is always nonnegative definite (ψ is “positive definite”) if and
only if ψ(| · |) is the Fourier transform of a positive Borel measure µ

on R.

Cψ
t is even strictly positive definite (ψ is “strictly positive definite”)

when the support of µ is not discrete.

• Seems to completely settle the question of model viability;

• for strictly positive definite ψ, the optimal strategy is

ξ∗ = x∗ =
X0

1"M−11
M−11 for Mij = ψ(|ti − tj |).
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Examples

Example 1: Exponential resilience
[Obizhaeva & Wang (2005), Alfonsi, Fruth, S. (2008)]

For the exponential resilience function

ψ(t) = e−ρt,

ψ(| · |) is the Fourier transform of the positive measure

µ(dt) =
1
π

ρ

ρ2 + t2
dt

Hence, ψ is strictly positive definite.
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Optimal strategies for exponential resilience ψ(t) = e−ρt

!! " # $!
"

"%#

$

$%#

&'($"

!! " # $!
"

"%#

$

$%#

&'($#

!! " # $!
"

"%#

$

$%#

&'(!"

!! " # $!
"

"%#

$

$%#

&'(!#

17



The optimal strategy can in fact be computed explicitly for any time
grid [Alfonsi, Fruth, A.S. (2008)]:
Letting

λ0 =
X0

1"M−11
=

X0

2
1+a1

+
∑N

n=2
1−an
1+an

,

the initial market order of the optimal strategy is

x∗0 =
λ0

1 + a1
,

the intermediate market orders are given by

x∗n = λ0

( 1
1 + an

− an+1

1 + an+1

)
, n = 1, . . . , N − 1,

and the final market order is

x∗N =
λ0

1 + aN
.

all components of x∗ are strictly positive
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For the equidistant time grid tn = nT/N the solution simplifies:

x∗0 = x∗N =
X0

(N − 1)(1− a) + 2

and
x∗1 = · · · = x∗N−1 = ξ∗0(1− a).
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The symmetry of the optimal strategy is a general fact:

Proposition 3. Suppose that ψ is strictly positive definite and that
the time grid is symmetric, i.e.,

ti = tN − tN−i for all i,

then the optimal strategy is reversible, i.e.,

x∗ti
= x∗tN−i

for all i.
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Example 2: Linear resilience ψ(t) = 1− ρt for some ρ ≤ 1/T

The optimal strategy is always of this form:

!! " ! # $ % & '
!!
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#
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,-
.
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,2
0
1

()*+,-./1()*(0.3

It is independent of the underlying time grid and consists of two
symmetric trades of size X0/2 at t = 0 and t = T , all other trades are
zero.
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More generally: Convex resilience

Theorem 4.
[Carathéodory (1907), Toeplitz (1911), Young (1912)]

ψ is convex, decreasing, nonnegative, and nonconstant =⇒
ψ(| · |) is strictly positive definite.
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Example 3: Power law resilience ψ(t) = (1 + βt)−α
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Example 4: Trigonometric resilience
The function

cos ρx

is the Fourier transform of the positive finite measure

µ =
1
2
(δ−ρ + δρ)

Since it is not strictly positive definite, we take

ψ(t) = (1− ε) cos ρt + εe−t for some ρ ≤ π

2T
.
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Trigonometric resilience ψ(t) = 0.999 cos(tπ/2T ) + 0.001e−t
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Example 5: Gaussian resilience

The Gaussian resilience function

ψ(t) = e−t2

is its own Fourier transform (modulo constants). The corresponding
quadratic form is hence positive definite.

Nevertheless.....
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Gaussian resilience ψ(t) = e−t2 , N = 10
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Gaussian resilience ψ(t) = e−t2 , N = 15
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Gaussian resilience ψ(t) = e−t2 , N = 20
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Gaussian resilience ψ(t) = e−t2 , N = 25
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Gaussian resilience ψ(t) = e−t2 , N = 25
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⇒ absence of price manipulation strategies is not enough
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Definition [Hubermann & Stanzl (2004)]
A market impact model admits

price manipulation strategies in the strong sense

if there is a round trip with negative expected liquidation costs.

Definition:
A market impact model admits

price manipulation strategies in the weak sense

if the expected liquidation costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.

34



Question: When does the minimizer x∗ of
∑

i,j

xixjψ(|ti − tj |) with
∑

i

xi = X0

have only nonnegative components?

Related to the positive portfolio problem in finance:
When are there no short sales in a Markowitz portfolio?

I.e. when is the solution of the following problem nonnegative

x"Mx−m"x→ min for x"1 = X0,

where M is a covariance matrix of assets and m is the vector of
returns?

Partial results, e.g., by Gale (1960), Green (1986), Nielsen (1987)
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Proposition 5. [Alfonsi, A.S., Slynko (2009)]
When ψ is strictly positive definite and trading times are equidistant,
then

x∗0 > 0 and x∗N > 0.

Proof relies on Trench algorithm for inverting the Toeplitz matrix

Mij = ψ(|i− j|/N), i, j = 0, . . . , N
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Theorem 6. [Alfonsi, A.S., Slynko (2009)]

• If ψ is convex then all components of x∗ are nonnegative.

• If ψ is strictly convex, then all components are strictly positive.

• Conversely, x∗ has negative components as soon as, e.g., ψ is
strictly concave in a neighborhood of 0.
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Qualitative properties of optimal strategies?
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Qualitative properties of optimal strategies?

Proposition 8. [Alfonsi, A.S., Slynko (2009)]
When ψ is convex and nonconstant, the optimal x∗ satisfies

x∗0 ≥ x∗1 and x∗N−1 ≤ x∗N

41



Proof: Equating the first and second equations in Mx∗ = λ01 gives
N∑

j=0

x∗jψ(tj) =
N∑

j=0

x∗jψ(|tj − t1|).

Thus,

x∗0 − x∗1 =
N∑

j=0, j $=1

x∗jψ(|tj − t1|)−
N∑

j=1

x∗jψ(tj)

= x∗0ψ(t1)− x∗1ψ(t1) +
N∑

j=2

x∗j
[
ψ(tj − t1)− ψ(tj)

]

≥ (x∗0 − x∗1)ψ(t1),

by convexity of ψ. Therefore

(x0 − x1)(1− ψ(t1)) ≥ 0
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Proposition 8. [Alfonsi, A.S., Slynko (2009)]
When ψ is convex and nonconstant, the optimal x∗ satisfies

x∗0 ≥ x∗1 and x∗N−1 ≤ x∗N

What about other trades? General pattern?
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No! Capped linear resilience ψ(t) = (1− ρt)+, ρ = 2/T
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Proposition 9. [Alfonsi, A.S., Slynko (2009)]
Suppose that ψ(t) = (1− kt/T )+ and that k divides N . Then the
optimal strategy consists of k + 1 equal equidistant trades.
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Proof relies on Trench algorithm
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When k does not divide N , the situation becomes more complicated:
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1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience
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Limit order book model without large trader

buyers’ bid offers sellers’ ask offers

unaffected best ask priceunaffected best bid price,
is martingale



Limit order book model after large trades



Limit order book model at large trade



Limit order book model immediately after large trade



Limit order book model with resilience



f(x) = shape function = densities of bids for x < 0, asks for x > 0

B0
t = ‘unaffected’ bid price at time t, is martingale

Bt = bid price after market orders before time t

DB
t = Bt −B0

t

If sell order of ξt ≤ 0 shares is placed at time t:

DB
t changes to DB

t+, where

∫ DB
t+

DB
t

f(x)dx = ξt

and
Bt+ := Bt + DB

t+ −DB
t = B0

t + DB
t+,

=⇒ nonlinear price impact
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A0
t = ‘unaffected’ ask price at time t, satisfies B0

t ≤ A0
t

At = bid price after market orders before time t

DA
t = At −A0

t

If buy order of ξt ≥ 0 shares is placed at time t:

DA
t changes to DA

t+, where
∫ DA

t+

DA
t

f(x)dx = ξt

and
At+ := At + DA

t+ −DA
t = A0

t + DA
t+,

For simplicity, we assume that the LOB has infinite depth, i.e.,
|F (x)|→∞ as |x|→∞, where

F (x) :=
∫ x

0
f(y) dy.
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If the large investor is inactive during the time interval [t, t + s[,
there are two possibilities:

• Exponential recovery of the extra spread

DB
t = e−

∫ t
s ρr drDB

s for s < t.

• Exponential recovery of the order book volume

EB
t = e−

∫ t
s ρr drEB

s for s < t,

where

EB
t =

∫ 0

DB
t

f(x) dx =: F (DB
t ).

In both cases: analogous dynamics for DA or EA
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Strategy:

N + 1 market orders: ξn shares placed at time τn s.th.

a) the (τn) are stopping times s.th. 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T

b) ξn is Fτn-measurable and bounded from below,

c) we have
N∑

n=0

ξn = X0

Will write
(τ , ξ)

and optimize jointly over τ and ξ.
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• When selling ξn < 0 shares, we sell f(x) dx shares at price B0
τn

+ x

with x ranging from DB
τn

to DB
τn+ < DB

τn
, i.e., the costs are negative:

cn(τ , ξ) :=
∫ DB

τn+

DB
τn

(B0
τn

+ x)f(x) dx = ξnB0
τn

+
∫ DB

τn+

DB
τn

xf(x) dx

• When buying shares (ξn > 0), the costs are positive:

cn(τ , ξ) := ξnA0
τn

+
∫ DA

τn+

DA
τn

xf(x) dx

• The expected costs for the strategy (τ , ξ) are

C(τ , ξ) = E
[ N∑

n=0

cn(τ , ξ)
]
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Instead of the τk, we will use

(1) αk :=
∫ τk

τk−1

ρsds, k = 1, . . . , N.

The condition 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T is equivalent to
α := (α1, . . . ,αN ) belonging to

A :=
{
α := (α1, . . . ,αN ) ∈ RN

+

∣∣∣
N∑

k=1

αk =
∫ T

0
ρs ds

}
.
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A simplified model without bid-ask spread
S0

t = unaffected price, is (continuous) martingale.

Stn = S0
tn

+ Dn

where D and E are defined as follows:

E0 = D0 = 0, En = F (Dn) and Dn = F−1(En).

For n = 0, . . . , N , regardless of the sign of ξn,

En+ = En − ξn and Dn+ = F−1(En+) = F−1 (F (Dn)− ξn) .

For k = 0, . . . , N − 1,

Ek+1 = e−αk+1Ek+ = e−αk+1(Ek − ξk)

The costs are

cn(τ , ξ) = ξnS0
τn

+
∫ Dτn+

Dτn

xf(x) dx

54



Lemma 10. Suppose that S0 = B0. Then, for any strategy ξ,

cn(ξ) ≤ cn(ξ) with equality if ξk ≥ 0 for all k.

Moreover,

C(τ , ξ) := E
[ N∑

n=0

cn(τ , ξ)
]

= E
[
C(α, ξ)

]
−X0S

0
0

where

C(α, ξ) :=
N∑

n=0

∫ Dn+

Dn

xf(x) dx

is a deterministic function of α ∈ A and ξ ∈ RN+1.

Implies that is is enough to minimize C(α, ξ) over α ∈ A and

ξ ∈
{
x = (x0, . . . , xN ) ∈ RN+1

∣∣
N∑

n=0

xn = X0

}
.

55



Theorem 11. Suppose f is increasing on R− and decreasing on R+.
Then there is a unique optimal strategy (ξ∗, τ ∗) consisting of
homogeneously spaced trading times,

∫ τ∗i+1

τ∗i

ρr dr =
1
N

∫ T

0
ρr dr =: − log a,

and trades defined via

F−1 (X0 −Nξ∗0 (1− a)) =
F−1(ξ∗0)− aF−1(aξ∗0)

1− a
,

and
ξ∗1 = · · · = ξ∗N−1 = ξ∗0 (1− a) ,

as well as
ξ∗N = X0 − ξ∗0 − (N − 1)ξ∗0 (1− a) .

Moreover, ξ∗i > 0 for all i.
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Taking X0 ↓ 0 yields:

Corollary 12. Both the original and simplified models admit neither
strong nor weak price manipulation strategies.
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Robustness of the optimal strategy
[Plots by C. Lorenz (2009)]
First figure:

f(x) =
1

1 + |x|

Figure 1: f , F , F−1, G and optimal strategy
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Figure 2: f(x) = |x|
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Figure 3: f(x) = 1
8x2
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Figure 4: f(x) = exp(−(|x|− 1)2) + 0.1
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Figure 5: f(x) = 1
2 sin(π|x|) + 1
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Figure 6: f(x) = 1
2 cos(π|x| + 1

2 )
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Figure 7: f random
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Figure 8: f random
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Figure 9: f random
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Figure 10: f piecewise constant
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Figure 11: f piecewise constant
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Figure 12: f piecewise constant
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Figure 13: f piecewise constant
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Continuous-time limit of the optimal strategy

• Initial block trade of size ξ∗0 , where

F−1
(
X0 − ξ∗0

∫ T

0
ρs ds

)
= F−1(ξ∗0) +

ξ∗0
f(F−1(ξ∗0))

• Continuous trading in ]0, T [ at rate

ξ∗t = ρtξ
∗
0

• Terminal block trade of size

ξ∗T = X0 − ξ∗0 − ξ∗0

∫ T

0
ρt dt
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Conclusion

• Market impact should decay as a convex function of time

• Exponential or power law resilience leads to “bathtub solutions”
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which are extremely robust

• Many open problems
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