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Large trades can significantly impact prices
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Spreading the order can reduce the overall price impact

intraday
stock
price

time ¢



How to execute a single trade of selling X, shares?

Interesting because:
e Liquidity /market impact risk in its purest form
— development of realistic market impact models
— checking viability of these models
— building block for more complex problems
e Relevant in applications
— real-world tests of new models

e Interesting mathematics
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Resilience of the limit order book after market order
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Overview

1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience

3. Relations with Gatheral’s model
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Limit order book model without large trader

unaffected best bid price, BO AO unaffected best ask price
is martingale t



Limit order book model after large trades
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Limit order book model at large trade

§t = Q(Bt—l— — Bt)

By B; BY A? A,



Limit order book model at large trade

& = q(Biy — By)

By

sell order executed at average price / xqdx
By,

similarly for buy orders

------ i r==-
1 [ ]

By B; BY A A,



Limit order book model immediately after large trade




Resilience of the limit order book

Y : [0, 00[— [0, 1], ¥(0) = 1, decreasing

%’f - (At) + decay of previous trades

By Biiat BY



1. Linear impact, general resilience
Strategy:

N + 1 market orders: &,, shares placed at time ¢,, s.th.

a) 0=t <t1 <---<ty=T

(can also be stopping times)

b) &, is F;, -measurable and bounded from below,

N
c) we have Z§n = Xo

n=0

Sell order: &, <0
Buy order: &, >0



Actual best bid and ask prices

1
o

1
At = Ag + 5 Z ¢(t _tn)fn
£nso



Cost per trade

( Atn+
/ yqdy = g(Ame — Afn) for buy order &,, > 0
A

tn

Btn+
/ yqdy = g(Btsz — Bfn) for sell order &, <0

\“ Bt,, 2

(positive for buy orders, negative for sell orders)

Expected execution costs



A simplified model
No bid-ask spread

S? = unaffected price, is (continuous) martingale.

&;:$%%$§:§me—%y

t, <t

Trade &, moves price from S; to
1

Resulting cost:

ey [ dy=1157, ~5?]=1e1¢.9
n T S Yyq y_2 tn+ tn _2qn Nty

tn

(typically positive for buy orders, negative for sell orders)



Lemma 1. Suppose that S° = A°. Then, for any strategy &,

cn(€&) < cn(§) with equality if & > 0 for all k.

Thus: Enough to study the simplified model (as long as all trades &,

are positive)



Lemma 1. Suppose that S° = A°. Then, for any strategy &,

cn(€&) < cn(§) with equality if & > 0 for all k.

Thus: Enough to study the simplified model (as long as all trades &,

are positive)



Lemma 2. In the simplified model, the expected execution costs of a

strateqy &€ are

N
_ ~ 1
C&)=E| 3 en(6)| = 5 E[C{(©)] + XS},
n=0
where C’tw is the quadratic form
Z TnTmW([tn — tm]), xc RV t=(ty,...,tn).
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First Question:
What are the conditions on v under which the
(simplified) model is viable?

Requiring the absence of arbitrage opportunities in the
usual sense is not strong enough, as examples will show.

Second (Question:
Which strategies minimize the expected cost for
given X7

This is the optimal execution problem. It is very closely
related to the question of model viability.
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The usual concept of viability from Hubermann & Stanzl (2004):

Definition

A round trip is a strategy & with

N
Y &=Xo=0.
n=0

A market impact model admits
price manipulation strategies

if there is a round trip with negative expected execution costs.
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In the simplified model, the expected costs of a strategy & are
— 1

(&) = Q—QE[OQ”@)] + X059,
where
N
Cy(x)= > anzmh(tn —tml), @RV t=(to,... tn).
m,n=0

e There are no price manipulation strategies when Czp is nonnegative
definite for all t = (tg,...,tN);

e when the minimizer x* of C} (x) with > Ti = X exists, it yields
the optimal strategy in the simplified model; in particular, the

optimal strategy is then deterministic;

e when the minimizer &* has only nonnegative components, it yields
the optimal strategy in the order book model.
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Bochner’s theorem (1932):

C’;’b is always nonnegative definite (1 is “positive definite”) if and
only if (|- |) is the Fourier transform of a positive Borel measure
on R.

C’;’b is even strictly positive definite (¥ is “strictly positive definite”)
when the support of u is not discrete.
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Bochner’s theorem (1932):

Cz’b is always nonnegative definite (1 is “positive definite”) if and
only if (|- |) is the Fourier transform of a positive Borel measure
on R.

C;’b is even strictly positive definite (¥ is “strictly positive definite”)
when the support of u is not discrete.

e Seems to completely settle the question of model viability;

e for strictly positive definite 1), the optimal strategy is

Xo

T NP VESE|

M_l]_ for Mz’j :¢(|ti—tj|).
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Examples

Example 1: Exponential resilience
[Obizhaeva & Wang (2005), Alfonsi, Fruth, S. (2008)]

For the exponential resilience function

Y(t) =e ",

(|- |) is the Fourier transform of the positive measure

1L p
dt) = — dt
pldt) T p? + t2

Hence, v is strictly positive definite.
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Optimal strategies for exponential resilience ¢ (t) = ¢!

15
1
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0
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N= 15
15 15
1} 1
0.5 0.5 ‘ ‘
0 1 L gl
2 12 2 0 5 12
N= 25
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The optimal strategy can in fact be computed explicitly for any time
grid [Alfonsi, Fruth, A.S. (2008)]:

Letting
Xo Xo

TAf—1 an
1M 1 1—|—a1 + Zn 2 1+an
the initial market order of the optimal strategy is

Ao =

Y

\ Ao
Ty = :
0 14+ aq
the intermediate market orders are given by
1 n
x::)\()( _ _Gni ), n=1,...,N —1,
1 + An 1 -+ Un+41

and the final market order is
Ao
1+ apn .

all components of x* are strictly positive

TN =

18



For the equidistant time grid ¢,, = nT'/N the solution simplifies:
Xo

k *k
€T — ZL'N —
0 (N-1)(1—a)+2
and
* _ *k . *k
Ly — —TN_1 — 0(1_a)
1.5 1.5
1 1
0.5 0.5
0 0
-5 0 5 10 15 -5 0 5 10 15
N=10 N=15
1.5 1.5
1 1
0.5 | | 0.5 ‘ ‘
0 0
-5 0 5 10 15 -5 0 5 10 15
N= 20 N= 25



The symmetry of the optimal strategy is a general fact:

Proposition 3. Suppose that v s strictly positive definite and that
the time grid is symmetric, i.e.,

ti =ty —tn—; for all 1,
then the optimal strateqy is reversible, i.e.,

* % .
Ty =Ty, for all i.

19



Example 2: Linear resilience (t) =1 — pt for some p < 1/T

The optimal strategy is always of this form:

trading strategy

5

4,

trading sizes
N

-1 0 1 2 3 4 5 6
trading dates

It is independent of the underlying time grid and consists of two
symmetric trades of size Xo/2 at t =0 and t = T, all other trades are

Z€T0.

20



More generally: Convex resilience

Theorem 4.
[Carathéodory (1907), Toeplitz (1911), Young (1912)]

Y 18 convex, decreasing, nonnegative, and nonconstant —

W(|-|) is strictly positive definite.
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Example 3: Power law resilience ¢ (t) = (1 + §t)

2 2
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Example 4: Trigonometric resilience
The function

COS P
is the Fourier transform of the positive finite measure
1
B = 5(5—;0 +9p)
Since it is not strictly positive definite, we take
s

Y(t) = (1 —¢)cospt +ee " for some p < i

26



Trigonometric resilience () = 0.999 cos(t7/2T) + 0.001e~*

20 - - - 30

251

201

15+

10+

I
T

N=20 N=20
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Example 5: GGaussian resilience

The Gaussian resilience function

() =e"

is its own Fourier transform (modulo constants). The corresponding
quadratic form is hence positive definite.

Nevertheless.....
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Gaussian resilience () = e *", N = 10
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Gaussian resilience 1(t) = e, N = 15
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Gaussian resilience () = e~ *", N = 20

-2 0 2 4 6 8 10
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Gaussian resilience () = e~ ', N = 25
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Gaussian resilience () = e~ ', N = 25

20 T T T T T T

15

10

-10

-15

-20
2

= absence of price manipulation strategies is not enough
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Definition [Hubermann & Stanzl (2004)]
A market impact model admits

price manipulation strategies in the strong sense

if there is a round trip with negative expected liquidation costs.

Definition:

A market impact model admits
price manipulation strategies in the weak sense

if the expected liquidation costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.
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Question: When does the minimizer x* of
> wmimpy(|t —t;])  with ) a; = Xo
i i

have only nonnegative components?

Related to the positive portfolio problem in finance:
When are there no short sales in a Markowitz portfolio?

I.e. when is the solution of the following problem nonnegative

-

x' Mx —m'x — min for "1 = X,

where M is a covariance matrix of assets and m is the vector of

returns”?

Partial results, e.g., by Gale (1960), Green (1986), Nielsen (1987)

35



Proposition 5. [Alfonsi, A.S., Slynko (2009)]
When 1 is strictly positive definite and trading times are equidistant,
then

zy >0 and N > 0.

Proof relies on Trench algorithm for inverting the Toeplitz matrix

M;; =¢¥(li —j|/N), 1,7=0,...,N
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Theorem 6. [Alfonsi, A.S., Slynko (2009)]
e [f 1 1s convex then all components of ** are nonnegative.
o [f 1) 1s strictly convex, then all components are strictly positive.

o Conversely, * has negative components as soon as, €.q., 1 1S

strictly concave in a neighborhood of 0.
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Qualitative properties of optimal strategies?

41



Qualitative properties of optimal strategies?

Proposition 8. [Alfonsi, A.S., Slynko (2009)]

When 1 is convex and nonconstant, the optimal x* satisfies

* * * *
Ty > T and Tn_1 < TN

41



Proof: Equating the first and second equations in Mx* = Ayl gives

N N
> w(ty) =D aiy (|t — tal).
j=0 j=0

Thus,

> (zg —21)Y(t),

by convexity of . Therefore
(o —21)(1 —4(¢1)) =2 0
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Proposition 8. [Alfonsi, A.S., Slynko (2009)]

When 1 is convex and nonconstant, the optimal x* satisfies

* * * *
Ty > X1 and TN 1 < TN

What about other trades? General pattern?

trading strategy
9 T T

[ee]
T

~
T

[e)
T

[¢)]
T

trading sizes
N w L
T T T

—_
T

0
-20 0 20 40 60 80 100 120
trading dates
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No! Capped linear resilience ¢ (t) = (1 — pt)*,p =2/T

number of trading dates N=100, time horizon T=1, stock to buy X0=100
35 T T T T T T

30

25

20

15

trading sizes

10

_5 Il Il Il Il Il Il
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

trading dates
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Proposition 9. [Alfonsi, A.S., Slynko (2009)]
Suppose that (t) = (1 — kt/T)" and that k divides N. Then the

optimal strategy consists of k + 1 equal equidistant trades.

-y
o

1. © - N w e o [ ~ o] ©
T T T T T T T T T

N

0 2 4 6 8 10 12
N= 100, k=10

Proof relies on Trench algorithm
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When k£ does not divide NV, the

12

101

-2 0 2 4 6 8
N= 100, k=6

10 12

-2 0 2 4 6 8
N= 45, k=6

10 12

situation becomes more complicated:

12

101

-2 0 2 4 6 8
N= 100, k=15

-2 0 2 4 6 8

46

10 12

10 12
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1. Linear impact, general resilience

2. Nonlinear impact,
exponential resilience
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Limit order book model without large trader

f\/\

sellers’ ask offers

>

unaffected best bid price, BO AO unaffected best ask price
is martingale t



Limit order book model after large trades




Limit order book model at large trade

Dy
Ty = f(x)dx

B
DE




Limit order book model immediately after large trade




Limit order book model with resilience




f(x) = shape function = densities of bids for x < 0, asks for z > 0
BY = ‘unaffected’ bid price at time ¢, is martingale
B; = bid price after market orders before time ¢
DP = B; — B
If sell order of & < 0 shares is placed at time ¢:
D changes to Dy, , where
D},
/D 5 f(z)dz = &

and
Bt—l— :Bt+D£|_—DtB:Bg+D£|_7

—> nonlinear price impact
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AY = ‘unaffected’ ask price at time ¢, satisfies BY < A?
A; = bid price after market orders before time ¢
Dt = Ay — AY
If buy order of & > 0 shares is placed at time ¢:
D! changes to D;Y , where
D

/D ; f(x)dz = &

and

At—|— :At+Dz4+—Dz4:Ag+D24+7

For simplicity, we assume that the LOB has infinite depth, i.e.,
|F(z)| — oo as |z| — oo, where

Fz) == /O ) dy

49



If the large investor is inactive during the time interval [t,t + s,
there are two possibilities:

e Exponential recovery of the extra spread

DP = —Joer drpb for s < t.

e Exponential recovery of the order book volume
EP =e Js pr drpB for s < ¢,

where .

EP = (z) dx =: F(D?).
Dy

In both cases: analogous dynamics for D4 or E4
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Strategy:

N + 1 market orders: &,, shares placed at time 7,, s.th.

a) the (7,) are stopping times s.th. 0 =79 <7y < ---

b) &, is F, -measurable and bounded from below,

N
c) we have an = Xg
n=0

Will write
(1,€)

and optimize jointly over 7 and &.
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e When selling &, < 0 shares, we sell f(z)dx shares at price BY + x

with x ranging from Dﬁ to Di+ < Di, i.e., the costs are negative:

B
DTn+

DEZ |
c(ri€)i= [ B+ @) de =685, + [ 7 af(@)da

B B
DTn DTn

e When buying shares (&, > 0), the costs are positive:

%ﬁ£%=&Ai+/1 v f(x) da

e The expected costs for the strategy (7,€&) are

aneﬁ[fkana}

52



Instead of the 7, we will use
Tk
(1) g, ::/ psds, k=1,...,N.
Tk—1

The condition 0 =79 < 71 <--- <7y =T is equivalent to

o = (aq,...,ay) belonging to
T
0

A = {a = (a1,...,QN) ERf’ ZN:ozk—/ ,osds}.
k=1
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A simplified model without bid-ask spread
SY = unaffected price, is (continuous) martingale.

S, =S, + Dy,
where D and E are defined as follows:
Ey=Dy=0, E,=F(D,) ad D,=F1E,).
For n =0,..., N, regardless of the sign of &,
E,..=E,—¢& and D, =F YE, )=F1'F (D, —¢&).
For k=0,.... N —1,
By =e B =e “" (B — &)

The costs are

D7n+

on(r =680, + [ af(@)da

D

™
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Lemma 10. Suppose that S° = B°. Then, for any strategy &,
cn(&) < cn(&) with equality if & > 0 for all k.

Moreover,

N

C(7,8) =E| Y #u(r,6) | =E|[ C(a.€) | — X0}

n=0

where
N Dy
C — d
8= /D af(e)de

is a deterministic function of a« € A and € € RNVT1L,

Implies that is is enough to minimize C'(a, &) over a € A and

N
SE {a’}:(ﬂfo,...,flfj\]) ERN—i_l‘ Zl‘n:Xo}

n=0
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Theorem 11. Suppose f is increasing on R_ and decreasing on R .
Then there is a unique optimal strateqy (€°,7) consisting of

homogeneously spaced trading times,

Ti*—l—l 1 r
/ prdr:N/ prdr =: —loga,
Tr 0

and trades defined via

&) — aF~(ap)
1l—a

F1 (Xo — N (1—a)) = ¢

Y

and
G ==éva1 =& (1 —a),
as well as
v =Xo—§ - (V-1)§ (1 —a).
Moreover, & > 0 for all i.
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Taking X¢ | O yields:

Corollary 12. Both the original and simplified models admit neither

strong nor weak price manipulation strategies.
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Robustness of the optimal strategy
[Plots by C. Lorenz (2009)]
First figure:

aaaaaaaaaaaaaaaaa

Figure 1: f, F', F~!, G and optimal strategy
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LOB shape function f

optimal strategies & (blue)
14 T T T T T T T T T T T

red)

i

4.98
497
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491

Figure 4: f(x) = exp(—(|z| —1)?) + 0.1
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LOB shape function f F
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Figure 5: f(z) = % sin(m|z]) + 1
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LOB shape function f
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Figure 6: f(z) = % cos(m|z| + 3
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LOB shape function f
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LOB shape function f
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Figure 9: f random
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LOB shape function f F

optimal strategies & (blue), x
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Figure 10: f piecewise constant
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LOB shape function f F

optimal strategies & (blue), x
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Figure 11: f piecewise constant
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LOB shape function f F

optimal strategies & (blue), x_ (red) values of cost functional C(§) (blue), C(x ;) (red)
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Figure 12: f piecewise constant

69



LOB shape function f F
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Continuous-time limit of the optimal strategy

e [nitial block trade of size &;, where

&o
FE1(E))

F_l(Xo — & /OTPst) = F71(&) +

e Continuous trading in |0, T at rate
& = pebo

e Terminal block trade of size

T
f%zXo—ﬁa‘—fS/ o1 di
0
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Conclusion
e Market impact should decay as a convex function of time

e Eixponential or power law resilience leads to “bathtub solutions”

trading strategy
T T

trading sizes

Ho - N [N IS o ) ~ © ©
T T T T T T T T

0 0 20 40 60 80 100 120
trading dates

which are extremely robust

e Many open problems
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