An Implementation of the LIBOR Market Model for Pricing Exotic Constant Maturity Swaps

Stefan Gerhold

September 26, 2006

Overview

 ÖBFA (Austrian Federal Financing Agency) has a portfolio of exotic swaps

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- First goal: Implement a pricing engine
- Needed for collateral management
- Less exact pricing required than for trading

The Libor Market Model (Brace et al. 1997)

- Based on observable market rates
- Models a discretization of the yield curve
- Recovers Black's formula for caplets
- Transparent modelling of correlation of different points on the yield curve

Industry standard for pricing exotic interest rate derivatives

Forward Rates in the LMM

- Fix a tenor structure $T_0 < \cdots < T_M$
- ▶ Let F_k(t) = F(t; T_{k-1}, T_k) be the simply compounded interest rate prevailing at time t for borrowing from T_{k-1} to T_k
- ► For each modelled rate, reset T_{k-1} and maturity T_k are fixed, while time t increases

▶ Example: If $T_k - T_{k-1} = 3$ months, then $F_k(T_{k-1})$ is the 3-months-EURIBOR at T_{k-1} . At smaller time *t*, it is a forward 3-months-EURIBOR.

Forward Rates and Forward Measures

The LMM models a vector of spanning forward rates

►
$$F_k(t) = \frac{1}{T_k - T_{k-1}} \left(\frac{B(t, T_{k-1})}{B(t, T_k)} - 1 \right)$$
, with $B(\cdot, \cdot) = \text{zero coupon}$
bond

- Hence $F_k(t)$ is a martingale under the T_k -forward measure
- $F_k(t)$ is not a martingale under other T-forward measures
- Drift of $F_k(t)$ under T_j is a rational function of the other rates

An Example

- A structured note with 27 semi-annual coupons
- ► Coupon at time T_k is $\begin{cases}
 EUR6M + const & \text{if EUR10Y} > EUR2Y \\
 0 & \text{otherwise}
 \end{cases}$
- EUR6M= 6 months EURIBOR, EUR2Y = 2 years Euro swap rate

- Coupon at T_k depends on F_k, \ldots, F_{k+19} at T_{k-1}
- Additionally, there is a floor on the whole structure

Volatility Calibration

- ÖBFA provides cap volatilities for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y
- Volatilities for intermediate maturities are interpolated from market data
- We assume that caps on EUR3M have the same vol as caps on EUR6M

Bootstrap caplet volatilities

Volatility Calibration

• Volatility of $F_k(t)$ is (following Rebonato)

$$\sigma_k(t) = \phi_k(a + b(T_{k-1} - t))e^{-c(T_{k-1} - t)} + d$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Parameters a, b, c, d are found by minimization with Mathematica
- Fairly good fit to swaption volatility surface

Correlation Calibration

- Parametric structure $\rho_{ij} = \ell + (1 \ell) e^{-\theta |i-j|}$
- Best fit to historical data for $\ell = 0.49$, $\theta = 0.13$
- Positive correlations
- Decrease when moving away from main diagonal
- Could also be calibrated to swaption volatility matrix

Monte Carlo Simulation

Use dynamics of F under terminal measure

$$\frac{\mathrm{d}F_k(t)}{F_k(t)} = \mu(F_{k+1}(t), \dots, F_M(t)) \,\mathrm{d}t + \sigma_k(t) \,\mathrm{d}W_k(t)$$

- \blacktriangleright W Brownian motion with instantaneous correlation matrix ho
- $W(t + \Delta t) W(t) \sim \sqrt{\Delta t} \mathcal{N}(0, \rho)$
- Parameters: Number of time discretization points, number of Monte Carlo trials, number of factors

Parameters of the Monte Carlo Simulation

Simulation was done with the full number of factors (46)

- 3 discretization steps per interest period
- 5000 Monte Carlo trials
- Computation time pprox 40 min

Comparison of the Valuations

Old ÖBFA valuation (green), new ÖBFA valuation (blue), UBS valuation (red)

Comparison of the Valuations with higher long term correlation

Now $\ell = 0.6$. Old ÖBFA valuation (green), new ÖBFA valuation (blue), UBS valuation (red)

Conclusion

- Previous ÖBFA evaluations had problems, in particular with path dependence
- We can reproduce the counterpart evaluation for several structured notes
- Model choices seem to be sufficient for collateral management

- Mathematica + UnRisk provide comfortable implementation
- Next step: early exercise products