Introduction Multivariate Marginals Duality Applications	Summary
00 00 000	

Bounds for Functions of Multivariate Risks Bounding the Value-at-Risk for an aggregate risk

Paul Embrechts¹ Giovanni Puccetti²

¹Department of Mathematics ETH Zurich, CH-8092 Zurich, Switzerland

²Department of Mathematics for Decisions, University of Firenze, 50134 Firenze, Italy

Journal of Multivariate Analysys, in press

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks ETHZ Zurich, DMD Firenze

Introduction	Multivariate Marginals	Duality	Applications	Summary
00	0	000		
The problem at hand				

The problem at hand

We consider an insurance company holding a portfolio

 $X := (X_1, \ldots, X_n)$

of *n* one-period risks on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.

Typically, the statistics gathered by the insurer give information about the **marginal** distribution functions (dfs) of the risks,

 $F_1,\ldots,F_n,$

but not about their **joint df**, i.e. the way the risks are **interrelated**.

Given a measurable **non-decreasing** function $\psi : \mathbb{R}^n \to \mathbb{R}$, the aggregate loss which the insurer will bear is

 $\psi(X) = \psi(X_1, \ldots, X_n).$

Introduction	Multivariate Marginals	Duality	Applications	Summary
00	000	000		
The problem at hand				

The problem at hand

We consider an insurance company holding a portfolio

 $X := (X_1, \ldots, X_n)$

of *n* one-period risks on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.

Typically, the statistics gathered by the insurer give information about the **marginal** distribution functions (dfs) of the risks,

 $F_1,\ldots,F_n,$

but not about their joint df, i.e. the way the risks are interrelated.

Given a measurable **non-decreasing** function $\psi : \mathbb{R}^n \to \mathbb{R}$, the aggregate loss which the insurer will bear is

 $\psi(X)=\psi(X_1,\ldots,X_n).$

Introduction	Multivariate Marginals	Duality	Applications	Summary
00	0 00	000		
The problem at hand				

The problem at hand

We consider an insurance company holding a portfolio

 $X := (X_1, \ldots, X_n)$

of *n* one-period risks on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$.

Typically, the statistics gathered by the insurer give information about the **marginal** distribution functions (dfs) of the risks,

 $F_1,\ldots,F_n,$

but not about their joint df, i.e. the way the risks are interrelated.

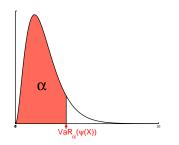
Given a measurable **non-decreasing** function $\psi : \mathbb{R}^n \to \mathbb{R}$, the aggregate loss which the insurer will bear is

$$\psi(X) = \psi(X_1, \ldots, X_n).$$

Introduction	Multivariate Marginals	Duality	Applications	Summary
0 ● 0		0 000		
Value-at-Risk				

Value-at-Risk for the aggregate loss

The Value-at-Risk at probability level α for $\psi(X)$ is the maximum aggregate loss which can occur with probability $\alpha, \alpha \in [0, 1]$.



Calculating all the VaRs (quantiles) for the aggregate loss $\psi(X)$ is equivalent to inverting its distribution function $F(x) := \mathbb{P}[\psi(X) < x] \ x \in \mathbb{R}$

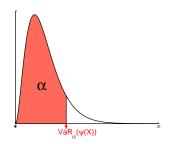
P. Embrechts and G. Puccetti

ETHZ Zurich, DMD Firenze

Introduction	Multivariate Marginals	Duality	Applications	Summary
0 ● 0		0 000		
Value-at-Risk				

Value-at-Risk for the aggregate loss

The Value-at-Risk at probability level α for $\psi(X)$ is the maximum aggregate loss which can occur with probability $\alpha, \alpha \in [0, 1]$.

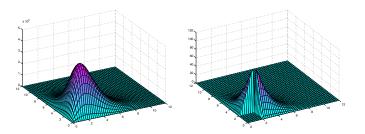


Calculating all the VaRs (quantiles) for the aggregate loss $\psi(X)$ is equivalent to inverting its distribution function $F(x) := \mathbb{P}[\psi(X) < x], x \in \mathbb{R}$.

P. Embrechts and G. Puccetti

ETHZ Zurich, DMD Firenze

Introduction	Multivariate Marginals	Duality	Applications	Summary
0 0 0		000		
Value-at-Risk				



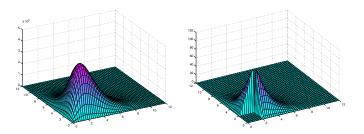
The distribution function *F* for the aggregate loss $\psi(X)$ cannot be determined without further information.

Moreover, note that there exists a df for $\psi(X) = \sum_{i=1}^{n} X_i$ having the given marginals F_1, \ldots, F_n such that

$$\sum_{i=1}^{n} \operatorname{VaR}_{\alpha}(X_{i}) < \operatorname{VaR}_{\alpha}\left(\sum_{i=1}^{n} X_{i}\right)$$

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

Introduction	Multivariate Marginals	Duality	Applications	Summary
0 0 0		000		
Value-at-Risk				



The distribution function *F* for the aggregate loss $\psi(X)$ cannot be determined without further information.

Moreover, note that there exists a df for $\psi(X) = \sum_{i=1}^{n} X_i$ having the given marginals F_1, \ldots, F_n such that

$$\sum_{i=1}^{n} \operatorname{VaR}_{\alpha}(X_{i}) < \operatorname{VaR}_{\alpha}\left(\sum_{i=1}^{n} X_{i}\right)$$

P. Embrechts and G. Puccetti

	Multivariate Marginals	Duality	Applications	Summary
	•			
00	00	000		
Mathematical Problems				

Mathematical problems with univariate marginals

Therefore, we have to search for the worst-possible $\operatorname{VaR}_{\alpha}(\psi(X))$ on

 $\mathfrak{F}(F_1,\ldots,F_n),$

the set of dfs having F_1, \ldots, F_n as fixed marginals.

Since bounding the VaR for the aggregate loss means bounding its distribution (tail) function from below (above), the problem at hand becomes determining

 $m_{\psi}(s) := \inf\{\mathbb{P}[\psi(X_1, \dots, X_n) < s] : X_i \sim F_i, 1 \le i \le n\}, s \in \mathbb{R},$ $M_{\psi}(s) := \sup\{\mathbb{P}[\psi(X_1, \dots, X_n) \ge s] : X_i \sim F_i, 1 \le i \le n\}, s \in \mathbb{R},$

for a function $\psi : \mathbb{R}^n \to \mathbb{R}$.

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

ETHZ Zurich, DMD Firenze

	Multivariate Marginals	Duality	Applications	Summary
	•			
00	00	000		
Mathematical Problems				

Mathematical problems with multivariate marginals

Therefore, we have to search for the worst-possible $\operatorname{VaR}_{\alpha}(\psi(X))$ on

 $\mathfrak{F}(F_1,\ldots,F_n),$

the set of dfs having F_1, \ldots, F_n as fixed marginals.

Since bounding the VaR for the aggregate loss means bounding its distribution (tail) function from below (above), the problem at hand becomes determining

$$m_{\psi}(\vec{s}) := \inf\{\mathbb{P}[\psi(\vec{X}_{1}, \dots, \vec{X}_{n}) < \vec{s}] : \vec{X}_{i} \sim F_{i}, 1 \le i \le n\}, \vec{s} \in \mathbb{R}^{k}, M_{\psi}(\vec{s}) := \sup\{\mathbb{P}[\psi(\vec{X}_{1}, \dots, \vec{X}_{n}) \ge \vec{s}] : \vec{X}_{i} \sim F_{i}, 1 \le i \le n\}, \vec{s} \in \mathbb{R}^{k},$$

for a function $\psi : (\mathbb{R}^k)^n \to \mathbb{R}^k$.

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

ETHZ Zurich, DMD Firenze

	Multivariate Marginals	Duality	Applications	Summary
0 00	o ●o	000		
Why working with multivariate marginals				

Why working with multivariate marginals

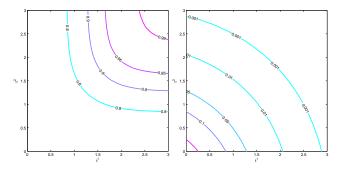
Assuming multivariate marginals allows not only to fix the univariate df of every component of the single multivariate policies, but also the dependence **within** the single risks.

insurance line
$$1 \rightarrow \psi\left(\underbrace{\begin{pmatrix} X_1^1 \\ \vdots \\ X_1^k \end{pmatrix}}_{\text{policy 1}}, \dots, \underbrace{\begin{pmatrix} X_n^1 \\ \vdots \\ X_n^k \end{pmatrix}}_{\text{policy n}}\right) = \begin{pmatrix} X_1^1 + \dots + X_n^1 \\ \vdots \\ X_1^k + \dots + X_n^k \end{pmatrix}$$

P. Embrechts and G. Puccetti

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 0	000		
Why working with multivariate marginals				

With a multivariate aggregate loss, the definition of VaR does not make sense, since one should invert a distribution function $F : \mathbb{R}^n \to [0, 1].$



An intuitive and immediate measure of the risk involved in a multivariate loss df *F* is represented by the α -level sets of its df and of its tail \overline{F} .

P. Embrechts and G. Puccetti

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		
Duality				

Duality

$m_{\psi}(s)$ and $M_{\psi}(s)$ are two **linear problems** over a convex feasible space of measures. Therefore, they admit a **dual representation**.

Main Duality Theorem (Ramachandran and Rüschendorf (1995))

$$m_{\psi}(\vec{s}) = \sup \left\{ \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} f_{i} dF_{i} : f_{i} \in L^{1}(F_{i}), i \in N \text{ with} \right.$$
$$\left. \sum_{i=1}^{n} f_{i}(\vec{x}_{i}) \leq 1_{(-\infty,\vec{s})}(\psi(\vec{x})) \text{ for all } \vec{x} \in (\mathbb{R}^{k})^{n} \right\},$$

 $M_{\psi}(\vec{s})$ admits an analogous representation.

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

ETHZ Zurich, DMD Firenze

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		
Duality		000		

Duality

 $m_{\psi}(s)$ and $M_{\psi}(s)$ are two **linear problems** over a convex feasible space of measures. Therefore, they admit a **dual representation**.

Main Duality Theorem (Ramachandran and Rüschendorf (1995))

$$m_{\psi}(\vec{s}) = \sup \left\{ \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} f_{i} dF_{i} : f_{i} \in L^{1}(F_{i}), i \in N \text{ with} \right.$$
$$\left. \sum_{i=1}^{n} f_{i}(\vec{x}_{i}) \leq 1_{(-\infty,\vec{s})}(\psi(\vec{x})) \text{ for all } \vec{x} \in (\mathbb{R}^{k})^{n} \right\},$$

 $M_{\psi}(\vec{s})$ admits an analogous representation.

ETHZ Zurich DMD Firenze

P. Embrechts and G. Puccetti

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		
Results	00	000		

- When k = 1 and n = 2; see Embrechts and Puccetti (2005).
- For $\psi = +$, Li, Scarsini, and Shaked (1996) give $m_{\psi}(\vec{s})$ for n = 2 and arbitrary *k*.
- When *n* > 2, the only explicit solution known is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	0 000		
Results				

- When k = 1 and n = 2; see Embrechts and Puccetti (2005).
- For $\psi = +$, Li, Scarsini, and Shaked (1996) give $m_{\psi}(\vec{s})$ for n = 2 and arbitrary *k*.
- When *n* > 2, the only explicit solution known is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	0 000		
Results				

- When k = 1 and n = 2; see Embrechts and Puccetti (2005).
- For $\psi = +$, Li, Scarsini, and Shaked (1996) give $m_{\psi}(\vec{s})$ for n = 2 and arbitrary *k*.
- When *n* > 2, the only explicit solution known is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

	Multivariate Marginals	Duality	Applications	Summary
0	0 00	0 000		
Results				

- When k = 1 and n = 2; see Embrechts and Puccetti (2005).
- For $\psi = +$, Li, Scarsini, and Shaked (1996) give $m_{\psi}(\vec{s})$ for n = 2 and arbitrary *k*.
- When *n* > 2, the only explicit solution known is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

	Multivariate Marginals	Duality	Applications	Summary
			0000	
		000		
Results				

The basic idea in the dual approach

If $\hat{\mathbf{f}} = (\hat{f}_1, \dots, \hat{f}_n)$ and $\hat{\mathbf{g}} = (\hat{g}_1, \dots, \hat{g}_n)$ are two set of functions which are admissible for the corresponding dual problems, we have

$$\mathbb{P}[\psi(\vec{X}) < \vec{s}] \ge m_{\psi}(\vec{s}) \ge \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} \hat{f}_{i} dF_{i},$$
$$\mathbb{P}[\psi(\vec{X}) \ge \vec{s}] \le M_{\psi}(\vec{s}) \le \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} \hat{g}_{i} dF_{i}.$$

Therefore, even if we do not solve the dual problems, dual admissible functions provide bounds on the solutions which are conservative from a risk management viewpoint.

ETHZ Zurich DMD Firenze

P. Embrechts and G. Puccetti

	Multivariate Marginals	Duality	Applications	Summary
00	00	000		
Results				

Dual bounds

We call *dual bounds* those bounds obtained by choosing *piecewise-linear* dual choices.

The dual bounds:

- **are better** than the bounds generally used in the literature; see Denuit, Genest, and Marceau (1999) and Embrechts, Höing, and Juri (2003).
- can be given also for non-homogemeous portfolios of risk; see Embrechts and Puccetti (2005)

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		
Results				

Dual bounds

We call *dual bounds* those bounds obtained by choosing *piecewise-linear* dual choices.

The dual bounds:

- **are better** than the bounds generally used in the literature; see Denuit, Genest, and Marceau (1999) and Embrechts, Höing, and Juri (2003).
- can be given also for non-homogemeous portfolios of risk; see Embrechts and Puccetti (2005)

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		
Results				

Dual bounds

We call *dual bounds* those bounds obtained by choosing *piecewise-linear* dual choices.

The dual bounds:

- **are better** than the bounds generally used in the literature; see Denuit, Genest, and Marceau (1999) and Embrechts, Höing, and Juri (2003).
- can be given also for non-homogemeous portfolios of risk; see Embrechts and Puccetti (2005)

o o o o o o	
Bounds on Value-at-Risk	

Bounds on Value-at-Risk

	$VaR_{\alpha}($	$\sum_{i=1}^{10} X_i)$	$VaR_{\alpha}($	$\sum_{i=1}^{100} X_i$	$VaR_{\alpha}($	$\sum_{i=1}^{1000} X_i$)
α	dual	standard	dual	standard	dual	standard
0.90	0.669	1.485	11.039	149.850	150.162	14998.500
0.95	1.353	2.985	22.227	229.850	301.823	29998.500
0.99	2.985	14.985	111.731	1499.850	1515.111	149998.500
0.999	68.382	149.985	1118.652	14999.850	15164.604	1499998.500

Table: Upper bounds for $\operatorname{VaR}_{\alpha}(\sum_{i=1}^{n} X_i)$ of three Pareto portfolios of different dimensions. Data in thousands.

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

	Multivariate Marginals	Duality	Applications	Summary		
			0000			
00	00	000				
Bounds on Value-at-Risk						

Bounds on Value-at-Risk

We can obtain the above table also for Moscadelli (2004)'s OR-portfolio.

α	comonotonic value	dual bound	standard bound
0.99	2.8924×10^{4}	1.4778×10^5	2.6950×10^{5}
0.995	6.7034×10^{4}	3.3922×10^{5}	6.1114×10^{5}
0.999	4.8347×10^{5}	2.3807×10^{6}	4.1685×10^{6}
0.9999	8.7476×10^{6}	4.0740×10^{7}	6.7936×10^7

Table: Range for VaR_{α} $\left(\sum_{i=1}^{8} X_i\right)$ for the data underlying Moscadelli (2004).

P. Embrechts and G. Puccetti

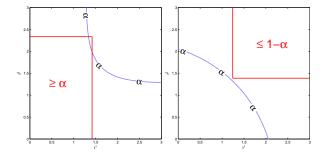
Bounds for Functions of Multivariate Risks

ETHZ Zurich, DMD Firenze

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 0	000	0000	
		000		
Bounds on Value-at-Risl	C C			

Multivariate Value-at-Risk

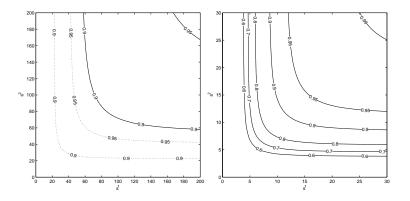
The LO-VaR_{α} for m_{ψ} (left) and the UO-VaR_{α} for M_{ψ} (right) provide conservative estimates of the α -VaRs for the aggregate loss $\psi(\vec{X})$ over $\Im(F_1, \ldots, F_n)$.



P. Embrechts and G. Puccetti

ETHZ Zurich, DMD Firenze

Introduction O OO	Multivariate Marginals 0 00	Duality 0 000	Applications 000●	
Bounds on Value-at-Risk				



Worst-possible LO-VaRs for the sum of two bivariate Pareto ($\theta = 1.2$ for the dotted line) (left) and Log-Normal (right) distributed risks.

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		
Summary				

Bounding the df for a non-decreasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation we can improve the standard bounds obtained from elementary probability

	Multivariate Marginals	Duality	Applications	Summary
0 00	0 00	000		<u> </u>
Summary	00	000		

Bounding the df for a non-decreasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation we can improve the standard bounds obtained from elementary probability

	Multivariate Marginals	Duality	Applications	Summary
0	0 00	0000		0
Summary				

Bounding the df for a non-decreasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation we can improve the standard bounds obtained from elementary probability

	Multivariate Marginals	Duality	Applications	Summary
0	0 00	0000		0
Summary				

Bounding the df for a non-decreasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

l

using the dual formulation we can improve the standard bounds obtained from elementary probability

	Multivariate Marginals	Duality	Applications	Summary
00	00	000		•
Acknowledgements				

Acknowledgements

The second author would like to thank <u>Marco Scarsini</u> for helpful discussions, and <u>RiskLab, ETH Zurich</u> for financial support.

ETHZ Zurich, DMD Firenze

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

	Multivariate Marginals	Duality	Applications	Summary
00	00	000		•
Acknowledgements				

Acknowledgements

The second author would like to thank *Marco Scarsini* for helpful discussions, and *RiskLab, ETH Zurich* for financial support.

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks ETHZ Zurich, DMD Firenze

For Further Reading I

- Denuit, M., C. Genest, and É. Marceau (1999). Stochastic bounds on sums of dependent risks. *Insurance Math. Econom.* 25(1), 85–104.
- Embrechts, P., A. Höing, and A. Juri (2003). Using copulae to bound the Value-at-Risk for functions of dependent risks. *Finance Stoch.* 7(2), 145–167.
- Embrechts, P. and G. Puccetti (2005). Bounds for functions of dependent risks. *Finance Stoch.* to appear
- Embrechts, P. and G. Puccetti (2005). Aggregating risk capital, with an application to operational risk. *Preprint, ETH Zurich*
- Li, H., M. Scarsini, and M. Shaked (1996). Bounds for the distribution of a multivariate sum. In Distributions with Fixed Marginals and Related Topics, Volume 28, pp. 198–212. Hayward, CA: Inst. Math. Statist.
- Moscadelli, M. (2004). The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Preprint, Banca d'Italia.
- Ramachandran, D. and L. Rüschendorf (1995). A general duality theorem for marginal problems. *Probab. Theory Related Fields* 101(3), 311–319.
- Rüschendorf, L. (1982). Random variables with maximum sums. Adv. in Appl. Probab. 14(3), 623–632.

ETHZ Zurich. DMD Firenze

P. Embrechts and G. Puccetti