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The problem at hand

The problem at hand

We consider an insurance company holding a portfolio

X := (X1, . . . ,Xn)

of n one-period risks on some probability space (Ω,A, P).

Typically, the statistics gathered by the insurer give information about
themarginal distribution functions (dfs) of the risks,

F1, . . . ,Fn,

but not about theirjoint df, i.e. the way the risks areinterrelated.

Given a measurablenon-decreasing functionψ : Rn → R,
the aggregate loss which the insurer will bear is

ψ(X) = ψ(X1, . . . ,Xn).
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Value-at-Risk

Value-at-Risk for the aggregate loss

The Value-at-Risk at probability levelα for ψ(X) is the maximum
aggregate loss which can occur with probabilityα, α ∈ [0, 1].

000000 30

α 

VaRα(ψ(X)) 

Calculating all the VaRs (quantiles) for the aggregate lossψ(X) is
equivalent to inverting its distribution function

F(x) := P[ψ(X) < x], x ∈ R.
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Value-at-Risk
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The distribution functionF for the aggregate lossψ(X) cannot be
determined without further information.

Moreover, note that there exists a df forψ(X) =
∑n

i=1 Xi having the
given marginalsF1, . . . ,Fn such that

n∑

i=1

VaRα (Xi) < VaRα





n∑

i=1

Xi




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Mathematical Problems

Mathematical problems with univariate marginals

Therefore, we have to search for the worst-possible VaRα(ψ(X)) on

F(F1, . . . ,Fn),

the set of dfs havingF1, . . . ,Fn as fixed marginals.

Since bounding the VaR for the aggregate loss means boundingits
distribution (tail) function from below (above), the problem at hand
becomes determining

mψ(s) := inf {P[ψ(X1, . . . ,Xn) < s] : Xi v Fi, 1 ≤ i ≤ n}, s ∈ R,

Mψ(s) := sup{P[ψ(X1, . . . ,Xn) ≥ s] : Xi v Fi, 1 ≤ i ≤ n}, s ∈ R,

for a functionψ : Rn → R.
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Mathematical Problems

Mathematical problems with multivariate marginals

Therefore, we have to search for the worst-possible VaRα(ψ(X)) on

F(F1, . . . ,Fn),

the set of dfs havingF1, . . . ,Fn as fixed marginals.

Since bounding the VaR for the aggregate loss means boundingits
distribution (tail) function from below (above), the problem at hand
becomes determining

mψ(~s) := inf {P[ψ(~X1, . . . , ~Xn) < ~s] : ~Xi v Fi, 1 ≤ i ≤ n},~s ∈ Rk,

Mψ(~s) := sup{P[ψ(~X1, . . . , ~Xn) ≥ ~s] : ~Xi v Fi, 1 ≤ i ≤ n},~s ∈ Rk,

for a functionψ : (Rk)n → Rk.
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Why working with multivariate marginals

Why working with multivariate marginals

Assuming multivariate marginals allows not only to fix the univariate
df of every component of the single multivariate policies, but also the

dependencewithin the single risks.

insurance line 1→
...

insurance linek→

ψ

(





X1
1
...

Xk
1





︸ ︷︷ ︸

policy 1

, . . . ,





X1
n
...

Xk
n





︸ ︷︷ ︸

policy n

)

=





X1
1 + · · · + X1

n
...

Xk
1 + · · · + Xk

n




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Why working with multivariate marginals

With a multivariate aggregate loss, the definition of VaR does not
make sense, since one should invert a distribution function
F : Rn → [0, 1].
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An intuitive and immediate measure of the risk involved in a
multivariate loss dfF is represented by
theα-level sets of its df and of its tailF.
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Duality

Duality

mψ(s) andMψ(s) are twolinear problems over a convex feasible
space of measures. Therefore, they admit adual representation.

Main Duality Theorem (Ramachandran and Rüschendorf (1995))

mψ(~s) = sup
{ n∑

i=1

∫

Rk
fidFi : fi ∈ L1(Fi), i ∈ N with

n∑

i=1

fi(~xi) ≤ 1(−∞,~s)(ψ(~x)) for all ~x ∈ (Rk)n
}

,

Mψ(~s) admits an analogous representation.
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Results

Known solutions

mψ(~s) andMψ(~s), as well as their dual counterparts, are very difficult
to solve. Solutions under general marginal dfs are known only in few
cases.

• Whenk = 1 andn = 2; see Embrechts and Puccetti (2005).

• Forψ = +, Li, Scarsini, and Shaked (1996) givemψ(~s) for n = 2
and arbitraryk.

• Whenn > 2, the only explicit solution known is given
in Rüschendorf (1982) for the sum of risks uniformly distributed
on the unit interval and in our paper for the sum of risks
uniformly distributed on the unit hypercube.

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounds for Functions of Multivariate Risks



Introduction Multivariate Marginals Duality Applications Summary

Results

Known solutions

mψ(~s) andMψ(~s), as well as their dual counterparts, are very difficult
to solve. Solutions under general marginal dfs are known only in few
cases.

• Whenk = 1 andn = 2; see Embrechts and Puccetti (2005).

• Forψ = +, Li, Scarsini, and Shaked (1996) givemψ(~s) for n = 2
and arbitraryk.

• Whenn > 2, the only explicit solution known is given
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Results

The basic idea in the dual approach

If f̂ = (f̂1, . . . , f̂n) andĝ = (ĝ1, . . . , ĝn) are two set of functions which
are admissible for the corresponding dual problems, we have

P[ψ(~X) < ~s] ≥ mψ(~s) ≥
n∑

i=1

∫

Rk
f̂idFi,

P[ψ(~X) ≥ ~s] ≤ Mψ(~s) ≤
n∑

i=1

∫

Rk
ĝidFi.

Therefore, even if we do not solve the dual problems,
dual admissible functions provide bounds on the solutions which

are conservative from a risk management viewpoint.
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Results

Dual bounds

We calldual bounds those bounds obtained by choosing
piecewise-linear dual choices.

The dual bounds:

• are better than the bounds generally used in the literature;
see Denuit, Genest, and Marceau (1999) and Embrechts, Höing,
and Juri (2003).

• can be given also for non-homogemeous portfolios of risk;
see Embrechts and Puccetti (2005)
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Bounds on Value-at-Risk

Bounds on Value-at-Risk

VaRα(
∑10

i=1 Xi) VaRα(
∑100

i=1 Xi) VaRα(
∑1000

i=1 Xi)

α dual standard dual standard dual standard

0.90 0.669 1.485 11.039 149.850 150.162 14998.500
0.95 1.353 2.985 22.227 229.850 301.823 29998.500
0.99 2.985 14.985 111.731 1499.850 1515.111 149998.500
0.999 68.382 149.985 1118.652 14999.850 15164.604 1499998.500

Table:Upper bounds for VaRα(
∑n

i=1 Xi) of three Pareto portfolios of different
dimensions. Data in thousands.
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Bounds on Value-at-Risk

Bounds on Value-at-Risk

We can obtain the above table also for Moscadelli (2004)’s
OR-portfolio.

α comonotonic value dual bound standard bound

0.99 2.8924× 104 1.4778× 105 2.6950× 105

0.995 6.7034× 104 3.3922× 105 6.1114× 105

0.999 4.8347× 105 2.3807× 106 4.1685× 106

0.9999 8.7476× 106 4.0740× 107 6.7936× 107

Table:Range for VaRα
(∑8

i=1 Xi

)

for the data underlying Moscadelli (2004).
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Bounds on Value-at-Risk

Multivariate Value-at-Risk

The LO-VaRα for mψ (left) and the UO-VaRα for Mψ (right) provide
conservative estimates of theα-VaRs for the aggregate lossψ(~X) over

F(F1, . . . ,Fn).
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Summary

Summary

Bounding the df for a non-decreasing function of dependent random
vectors having fixed marginals

↓

general optimal solution is difficult to find whenn > 2

↓

using the dual formulationwe can improve the standard bounds
obtained from elementary probability

↓

dual bounds can be computed for large heterogenous portfolios
(operational risk)
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