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• One of the main problems in credit portfolio management is the

occurrence of many joint defaults of different counterparties over a

fixed time horizon T .

• In the measurement of the expected credit loss of a portfolio it is then
very important to take into account the dependence between

individual risks.

• In this paper we present two models for several groups of firms that

express dependence in terms of the ratings of the considered firms,

in a monotone way.

• This means that defaults in the better ratings have a contagion effect
in defaults in the worser ratings. Moreover there is also a dependence

effect between defaults of firms in the same rating class.
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In the following, (Ω,F , P) denotes a probability space with σ-algebra F
and probability measure P. The Xi’s and Xi’s denote respectively

random variables and random vectors on this space.

The finite set (X1, X2, . . . , Xn) of random variables is said to be

exchangeable if the joint distribution is invariant under all n-permutations:

(X1, X2, . . . , Xn)
d
= (Xπ(1), Xπ(2), . . . , Xπ(n)), (1)

for every permutation π of (1, 2, . . . , n).
An infinite sequence of random variables (Xn)n≥1 is said to be

exchangeable if (X1, X2, . . . , Xn) is exchangeable for each n ≥ 2.
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Theorem 1 (De Finetti Theorem). Let (Xn)n≥1 be an exchangeable sequence
of random vectors on (Ω,F , P). Then there exists a sub-σ-algebra of F
conditioned on which the Xn are independent and identically distributed.

Corollary 1. Let (Xn)n≥1 be an exchangeable sequence where the Xi’s take
only values in {e1, . . . , ed} ⊆ R

d . Then there exists a random vector

(P1, . . . , Pd) taking values in ∆d = {(p1, . . . , pd) ∈ [0, 1]d|
∑d

j=1 pj = 1}
such that:

1. for every l ∈ N
d
0 such that

∑d

j=1 lj = n it is

P

[
n∑

i=1

Xi = l

∣∣∣∣P1, . . . , Pd

]
a.s.
=

n!

(l1!)(l2!) · · · (ld!)
P l1

1 P l2
2 · · ·P ld

d

2. for 1 ≤ j ≤ d,

Pj
a.s.
= lim

n→∞

1

n

n∑

i=1

Xi,j .
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• We are given k homogeneous groups of ni , 1 ≥ i ≥ k companies, with
credit ratings r1 ≻ r2 ≻ · · · ≻ rk.

• Consider an urn which contains bj > 0 balls of different colours for every
1 ≤ j ≤ k + 1.

• Draw randomly a ball from the urn: if its rating is rj , and the ball has a
colour from 1, . . . , j then the firm defaults. If the colour is from
j + 1, . . . , k + 1 it does not default.

• Return the ball in the urn together with other c > 0 balls of the same colour.
• The random vector Xn = (Xn,1, . . . Xn,k+1)

T ∈ {0, 1}k+1 indicating the
colour of the ball of the nth draw is defined in the following way:

Xn,j :=

{
1 if the nth ball drawn has colour j

0 otherwise.

• Then the vector Pn = (Pn,1, . . . , Pn,k+1)
T of the conditional probabilities

that the nth ball drawn has colour 1 ≤ j ≤ k + 1 given the previous draws
is:

Pn,j := P[Xn = ej |X1, . . . ,Xn−1].
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Proposition 1. The sequence of random vectors (Xn)n≥1 is

exchangeable: in fact for every n ≥ 1 we have that

P[X1 = ej1 , . . . ,Xn = ejn ] =

∏k+1
j=1

∏ln,j−1
i=0 (bj + ic)

b(b + c) · · · (b + (n − 1)c)
(2)

where ln =
∑n

i=1 eji
.

Proposition 2. The sequence of random vectors (Pn)n≥1 is a

convergent martingale w.r.t. the filtration Fn = σ(X1, . . . ,Xn−1)
(F1 = {∅, Ω}). In fact for every 1 ≤ j ≤ k + 1 the sequence

(Pn,j)n≥1 is a bounded martingale, and hence almost surely convergent

to the limit random variable

Pj
a.s.
= lim

n→∞
Pn,j = lim

n→∞

bj + c(
∑n−1

i=1 Xi,j)

b + c(n − 1)
= lim

n→∞

1

n

n∑

i=1

Xi,j .
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• Let Nj denotes the number of defaults within the group of companies

with rating rj , and n = n1 + · · · + nk be the total number of

considered firms.

• To determine the joint distribution of the random vector
(N1, N2, . . . , Nk)

T, since the sequence (Xn)n≥1 is exchangeable,

it does not matter in which order we draw the ball for the companies,

hence we can choose a special order to facilitate calculations; that is

we first consider the firms with the best rating, than the next lower,

and so on.

• We can use then corollary 1 to compute the distribution:
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P[N1 = l1, . . . , Nk = lk]

= P

2

4

n1
X

i=1

Xi,1 = l1, . . . ,

n1+···+nk
X

i=n1+···+nk−1+1

(Xi,1 + · · · + Xi,k) = lk

3

5

= E

»

P

» n1
X

i=1

Xi,1 = l1,

n1+···+nk
X

i=n1+···+nk−1+1

(Xi,1 + · · · + Xi,k) = lk

˛

˛

˛

˛

P1, . . . , Pk+1

––

= E

»

P

» n1
X

i=1

Xi,1 = l1

˛

˛

˛

˛

P1, . . . , Pk+1

–

P

» n1+n2
X

i=n1+1

(Xi,1 + Xi,2) = l2

˛

˛

˛

˛

P1, . . . , Pk+1

–

· · ·P

» n1+···+nk
X

i=n1+···+nk−1+1

(Xi,1 + · · · + Xi,k) = lk

˛

˛

˛

˛

P1, . . . , Pk+1

––

= E

»

“n1

l1

”

P
l1
1 (1 − P1)n1−l1

“n2

l2

”

(P1 + P2)l2 (1 − P1 − P2)
n2−l2

· · ·

“nk

lk

”

(P1 + · · · + Pk)lk (1 − P1 − · · · − Pk)nk−lk

–

(3)
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• We see then that this model belongs to class of Bernoulli mixture

models:

Definition 1. The random vector Y follows a Bernoulli mixture model

with factor vector Ψ if there exists a random vector

Ψ = (Ψ1, . . . , Ψp) and functions Qi : R → [0, 1] such that

conditional on Ψ the vector Y is a vector of independent Bernoulli
random variables with default probabilities

P[Yi = 1|Ψ = ψ] = Qi(ψ).

• It follows immediately that for y = (y1, . . . , yn)T ∈ {0, 1}n

P[Y = y|Ψ = ψ] =
n∏

i=1

Qi(ψ)yi(1 − Qi(ψ))1−yi (4)

and to obtain the unconditional joint probability we have to take the

expectation w.r.t. the df of Ψ.
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• It is then necessary to compute the distribution of (P1, . . . , Pk+1).
Using previous results we can compute generalized moments:

E[P l1
1 P l2

2 · · ·P
lk+1

k+1 ]

= E

[
P

[ k+1⋂

j=1




l0+···+lj⋂

i=l0+···+lj−1+1

{Xi = ej}




∣∣∣∣P1, . . . , Pk+1

]]

= P




(

l1⋂

i=1

{Xi = e1}

)
⋂

· · ·
⋂



l1+···+lk+1⋂

i=l1+···+lk+1

{Xi = ek+1}









=

∏k+1
j=1

∏ln,j−1
i=0 (bj + ic)

b(b + c) · · · (b + (n − 1)c)
=

Γ( b
c
)

Γ( b
c

+ n)

k+1∏

j=1

Γ
(

bj

c
+ lj

)

Γ
(

bj

c

)

=
Γ(α)

Γ(α + n)

k+1∏

j=1

Γ(αj + lj)

Γ(αj)
αj =

bj

c
, α =

∑

j

αj

(5)
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• Since the random vector (P1, . . . , Pk+1) has bounded support its

moments determine the distribution function, so it has to be Dirichlet

distributed Dk+1(α1, . . . , αk+1) with density

fk+1(p1, . . . , pk+1) =
Γ(

Pk+1
j=1 αj)

Qk+1
j=1 Γ(αj)

∏k+1
j=1 p

αj−1
j , with the constraint

∑k+1
j=1 pj = 1 and parameters α1, . . . , αk+1 > 0.

• We can then compute explicitely the joint distribution, using the fact
that for 0 < a < 1 and s, t > 0, and m ∈ N0

∫ 1−a

0

ps−1(a + p)m(1 − a − p)t−1dp

=
m∑

j=0

(
m

j

)
am−j(1 − a)s+j+t−1B(s + j, t).

(6)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) and Γ(x) =

∫ +∞

0 tx−1e−td t.
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P[N1 = l1, . . . , Nk = lk]

= E

»

“n1

l1

”

P
l1
1 (1 − P1)n1−l1

“n2

l2

”

(P1 + P2)
l2 (1 − P1 − P2)

n2−l2 · · ·

· · ·

“nk

lk

”

(P1 + · · · + Pk)lk (1 − P1 − · · · − Pk)nk−lk

–

=
“n1

l1

”

· · ·

“nk

lk

”

Z 1

0

Z 1−p1

0
. . .

Z 1−p1−···−pk−1

0
p

l1
1 (1 − p1)n1−l1

× · · · (p1 + p2 + . . . pk)lk (1 − p1 − · · · − pk)nk−lk

×
Γ(

Pk+1
j=1 αj)

Qk+1
j=1 Γ(αj)

p
α1−1
1 p

α2−1
2 · · · p

αk−1
k

(1 − p1 − · · · − pk)αk+1−1dpkdpk−1 · · · dp1
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=
“n1

l1

”

· · ·

“nk

lk

”Γ(
Pk+1

j=1 αj)
Qk+1

j=1 Γ(αj)

lk
X

j1=0

“lk

j1

”

B(αk + j1, αk+1 + nk − lk)

×

lk−1+lk−j1
X

j2=0

“lk−1 + lk − j1

j2

”

B(αk−1 + j2, αk + αk+1 + nk−1 + nk − lk−1 − lk + j1)

· · · ×

l2+···+lk
−j1−···−jk−2

X

jk−1=0

“l2 + · · · + lk − j1 − · · · − jk−2

jk−1

”

× B(α2 + jk−1, α3 + · · · + αk+1 + n2 + · · · + nk − l2 − · · · − lk + j1 + · · · + jk−2)

× B(α1 + l1 + · · · + lk − j1 − · · · − jk−1, α2 + · · · + αk+1

+ n1 + · · · + nk − l1 − · · · − lk + j1 + · · · + jk−1).

(7)
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It is possible to give a nice recursive representation of this joint

probability:

Proposition 3. Given k ∈ N rating classes with nj ∈ N0 companies
and lj ∈ N defaults for j ∈ {1, . . . , k}, and a Dirichlet distributed
random vector (P1, . . . , Pk) with parameters α1, . . . , αk+1 we have
P[N1 = l1, . . . , Nk = lk] = f(αk+1, k, 0, 0) where for
β > 0, n ∈ N0, l ∈ {0, . . . , n} we define

f(β, 1, l, n) =

(
n1

l1

)
B(α1 + l1 + l, β + n1 − l1 + n − l)

B(α1, β)
(8)

and recursively for j ∈ {2, . . . , k}

f(β, j, l, n) =

(
nj

lj

) lj+l∑

i=0

(
lj + l

i

)
B(αj + i, β + nj − lj + n − l)

B(αj , β)

× f(αj + β, j − 1, lj + l − i, nj + n) (9)
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• Same notation as for the previous scheme.

• The number of defaults in the best rating group r1 is determined with

a (Pólya) unidimensional urn scheme.

• The number of defaults in the worser ratings are then determined by
the number of firms that would have defaulted in the next better rating

plus a certain part of the group that would have survived in the next

better rating, and this additional part is determined again via

unidimensional urn scheme.

• Formally: take independent beta distributions

P̃1 ∼ beta(α1, β1), . . . , P̃k ∼ beta(αk, βk) and define the random
default frequencies in the following way:

• P1 = P̃1

• P2 = P1 + (1 − P1)P̃2

• . . .

• Pk = Pk−1 + (1 − Pk−1)P̃k
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• Using the (random) default frequencies we can compute the joint

distribution of the number of defaults.
• For example for the case of only two rating groups we have:

P[N1 = l1, N2 = l2] = E[P[N1 = l1, N2 = l2|P1, P2]]

= E

[(
n1

l1

)
P l1

1 (1 − P1)
n1−l1

(
n2

l2

)
P l2

2 (1 − P2)
n2−l2

]

=

(
n1

l1

)(
n2

l2

)

× E

[
P̃ l1

1 (1 − P̃1)
n1−l1(P̃1 + (1 − P̃1)P̃2)

l2((1 − P̃1)(1 − P̃2))
n2−l2

]

• Using then binomial expansion and the fact that P̃j ’s are

independent, we can obtain an explicit expression.
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• In the general case we have:

P[N1 = l1, . . . , Nk = lk]

=
“n1

l1

”

. . .
“nk

lk

” 1

B(α1, β1) · · ·B(αk, βk)
×

lk
X

j1=0

“lk

j1

”

B(αk + lk − j1, βk + nk − lk)

· · · ×

lk+1−i+ji−1
X

ji=0

“lk+1−i + ji−1

ji

”

B(αk+1−i + lk+1−i + ji−i − ji,

βk+1−i + nk + · · · + nk+1−i − lk+1−i − ji−1)

· · · ×

l2+jk−2
X

jk−1=0

“l2 + jk−2

jk−1

”

B(α2 + l2 + jk−2 − jk−1, β2 + nk + · · · + n2 − l2 − jk−2)

× B(α1 + l1 + jk−1, β1 + nk + · · · + n1 − l1 − jk−1)

(10)
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• Introducing the new random variables Q1 = P1 and
Qi = Pi − Pi−1 = (1 − Pi−1)P̃i for i = 2, . . . , k it is possible to write the

default frequencies as Pi = Q1 + · · · + Qi.
• Then we have again a mixture representation:

P[N1 = l1, . . . , Nk = lk]

= E

»

“n1

l1

”

Q
l1
1 (1 − Q1)n1−l1 . . .

“nk

lk

”

(Q1 + · · · + Qk)lk (1 − Q1 − · · · − Qk)nk−lk

–

(11)

• In this case (Q1, . . . , Qk) has a generalized Dirichlet distribution with density:

f(q1, . . . , qk) =
1

Qk
i=1 B(αi, βi)

(1 −

k
X

i=1

qi)
βk−1

×

k
Y

i=1

2

4q
αi−1
i (1 −

i−1
X

j=0

qj)
βi−1−(αi+βi)

3

5 .
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Again it is possible to give a recursive representation of this joint

probability:

Proposition 4. Given k ∈ N rating classes with nj ∈ N0 companies
and lj ∈ N defaults for j ∈ {1, . . . , k}, and a Generalized Dirichlet
distributed random vector (Q1, . . . , Qk) with parameters
α1, β1, . . . , αk, βk we have P[N1 = l1, . . . , Nk = lk] = f(k, 0, 0)
where for n ∈ N0, l ∈ {0, . . . , n} we define

f(1, l, n) =

(
n1

l1

)
B(α1 + l1 + l, β + n1 − l1 + n − l)

B(α1, β1)
(12)

and recursively for j ∈ {2, . . . , k}

f(j, l, n) =

(
nj

lj

) lj+l∑

i=0

(
lj + l

i

)
B(αj + lj + l − i, βj + nj − lj + n − l)

B(αj , βj)

× f(j − 1, i, nj + n) (13)
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• The Expectation-Maximization algorithm is a tool for the iterative

computation of maximum-likelihood estimates when the observations

can be viewed as incomplete data.

• Sample spaces X and Y , x → y(x) mapping.
• Observed data y ∈ Y ; corresponding unobserved

x ∈ X (y) = {x | y(x) = y}.
• Postulate sampling densities f(x|φ) and derive its corresponding

g(y|φ) through the relation:

g(y|φ) =

∫

X (y)

f(x|φ)dx. (14)

• EM algorithm tries to find a value of φ which maximizes g(y|φ)
using the associated family f(x|φ)
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• Assume f(x|φ) has the form

f(x|φ) = b(x) exp(φT

t(x))/a(φ)

• Let φ(p) be the values of the parameters after p iterations; then p + 1
values are computed in two steps:

• (E-step) estimate t(p) by:

t(p) = E[t(x)|y,φ(p)]. (15)

• (M-step) determine φ(p+1) solving the system of equations:

E[t(x)|φ] = t(p). (16)

• Why does the algorithm work?

• Denote with L(φ) = log g(y|φ), the log-likelihood.
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• The conditional density of x given y and φ is given in this case by:

k(x|y,φ) = f(x|φ)/g(y|φ) = b(x) exp(φT

t(x))/a(φ|y) (17)

where

a(φ|y) =

∫

X (y)

b(x) exp(φT

t(x))dx (18)

• We can then rewrite the log-likelihood as:

L(φ) = log f(x|φ) − log k(x|y,φ) = − log a(φ) + log a(φ|y)
(19)

• Then, differentiating (19) we get:

DL(φ) = −D log a(φ) + D log a(φ|y)

= −E[t(x)|φ] + E[t(x)|y,φ]
(20)
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• We see then that if the algorithm converges to φ(p) = φ(p+1) = φ∗,

we have then E[t(x)|φ∗] = E[t(x)|y,φ∗], so that DL(φ∗) = 0.

• We apply now the algorithm to the two scheme examined.
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• Observed data y = (y1, . . . ,ym), where yi = (li1, . . . , lik) for

i = 1, . . . , m and m is the total number of observations.

• Complete data x = (x1, . . . ,xm), where

xi = (pi1, . . . , pik, li1, . . . , lik) with pij the i − th (unknown)

realisation of the random variable Pj

• Goal: MLE of the parameters of g(y|α) =
∏m

i=1 gi(yi|α) where gi

is given by equation (7).
• Sampling density: f(x|α) =

∏m

i=1 fi(xi|α) where

fi(xi|α) =
Γ(
∑k+1

j=1 αj)
∏k+1

j=1 Γ(αj)
pα1−1

i1 · · · pαk−1
ik (1 − pi1 − · · · − pik)αk+1−1

×

(
ni1

li1

)
· · ·

(
nik

lik

)
pli1

i1 (1 − pi1)
ni1−li1

× · · · (pi1 + · · · + pik)lik(1 − pi1 − · · · − pik)nik−lik

(21)
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• We can rewrite f as:

f(x|α) = exp

 

m
X

i=1

log fi(xi|α)

!

=

„

Γ(
Pk+1

j=1 αj)
Qk+1

j=1 Γ(αj)

«m

exp

"

m
X

i=1

bi(pi1, . . . , pim, li1, . . . , lim)

#

× exp

"

(α1, . . . , αk+1)
T

 

m
X

i=1

log pi1, . . . ,

m
X

i=1

log pik,

m
X

i=1

log(1 − pi1 − · · · − pik)

!#

• The statistics of our interest are then tj(x) =
∑m

i=1 log pij for j = 1, . . . , k
and tk+1(x) =

∑m
i=1 log(1 − pi1 − · · · − pik).

• E-step: compute

E[tj(x)|y,α] =
m∑

i=1

E[log pij |y,α] for j = 1, . . . , k

E[tk+1(x)|y,α] =
m∑

i=1

E[log(1 − pi1 − · · · − pik)|y,α]

(22)
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• We have then to compute:

E[log pij |y,α] =

=

∫ 1
0

∫ 1−pi1

0 · · ·
∫ 1−pi1−···−pi,k−1

0 log pijki(x|α)dpik · · · dpi1∫ 1
0

∫ 1−pi1

0 · · ·
∫ 1−pi1−···−pi,k−1

0 ki(x|α)dpik · · · dpi1

(23)

where

ki(x|α) = pα1−1
i1 · · · (1−pi1−· · ·−pik)αk+1−1pli1

i1 · · · (1−pi1−· · ·−pik)
nik−lik .
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Key facts (analogous to (6)); defining D(α, β) := Γ′(α)
Γ(α) − Γ′(α+β)

Γ(α+β) , we

have:

∫ 1−a

0

log p ps−1(a + p)m(1 − a − p)t−1dp

=
m∑

j=1

(
m

j

)
(1 − a)s+j+t−1am−jB(s + j, t) [log(1 − a) + D(s + j, t)]

(24)

∫ 1−a

0

log(1 − a − p) ps−1(a + p)m(1 − a − p)t−1dp

=
m∑

j=1

(
m

j

)
(1 − a)s+j+t−1am−jB(s + j, t) [log(1 − a) + D(t, s + j)]

(25)
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As an example for k = 3 and j = 1 the numerator in (23) becomes:

C =

l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)

×

l2+l3−j1∑

j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)

×D(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)
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• M-step: compute the unconditional expectations E[tj(x)|α].
• Since the statistics don’t depend on the variables

(l11, . . . , l1k, . . . , lm1, . . . , lmk) we have for example that for
1 ≤ j ≤ k:

E[tj(x)|α] =
m∑

i=1

E[log pij |α]

=
m∑

i=1

∫ pi1

0

· · ·

∫ 1−pi1−···−pi,k−1

0

log pij

×
Γ
(∑k+1

j=1 αj

)

∏k+1
i=1 Γ(αj)

pα1−1
i1 · · · pαk−1

ik (1 − pi1 − · · · − pik)αk+1dpik · · · dpi1

= mD(αj , α1 + · · · + α̂j + · · · + αk+1)

(26)
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• Finally: suppose that (α
(p)
1 , . . . , α

(p)
k+1) are initial values of the parameters.

• Then new values (α
(p+1)
1 , . . . , α

(p+1)
k+1 )are given by the solutions of the following

system:






mD(α
(p+1)
1 , α

(p+1)
2 + α

(p+1)
3 + · · · + α

(p+1)
k+1 ) = f1(α

(p)
1 , . . . , α

(p)
k+1)

mD(α
(p+1)
2 , α

(p+1)
1 + α

(p+1)
3 + · · · + α

(p+1)
k+1 ) = f2(α

(p)
1 , . . . , α

(p)
k+1)

. . . . . .

mD(α
(p+1)
k+1 , α

(p+1)
1 + α

(p+1)
2 + · · · + α

(p+1)
k ) = fk+1(α

(p)
1 , . . . , α

(p)
k+1)

(27)

where fj(α
(p)
1 , . . . , α

(p)
k+1) are the values of the conditional expectations.
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• In an analogous way we obtain that for the iterative urn scheme the

new values of the parameters (α
(p+1)
1 , β

(p+1)
1 , . . . , α

(p+1)
k , β

(p+1)
k )

are given by the solutions of the following system:






mD(α
(p+1)
1 , β

(p+1)
1 ) = f1(α

(p)
1 , β

(p)
1 , . . . , α

(p)
k , β

(p)
k )

mD(β
(p+1)
1 , α

(p+1)
1 ) = f2(α

(p)
1 , β

(p)
1 , . . . , α

(p)
k , β

(p)
k )

. . . . . .

mD(α
(p+1)
k , β

(p+1)
k ) = f2k−1(α

(p)
1 , β

(p)
1 , . . . , α

(p)
k , β

(p)
k )

mD(β
(p+1)
k , α

(p+1)
k ) = f2k(α

(p)
1 , β

(p)
1 , . . . , α

(p)
k , β

(p)
k )

(28)

• Note that instead of solving a system of 2k equations in 2k unknowns

we have only to solve k independent systems of two equations in two

unknowns.
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• Data used: Standard & Poor’s 2005 report.

• Considered only the six rating class from AA to CCC (AAA shows

no default).

• Starting values of the parameters: moment estimated ones through
underlying distributions.

• For example, for multidimensional scheme, since the default

frequency of Nj is given by P1 + · · · + Pj , we can take, for nj large,

lj/nj as realization of P1 + · · · + Pj , 1 ≤ j, hence

(
l1
n1

,
l2
n2

−
l1
n1

, . . . ,
lk
nk

−
lk−1

nk−1

)

are realizations of (P1, . . . , Pk) ∼ Dk+1(α1, . . . , αk+1).
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• Implementation of the algorithm: first naive try using Mathematica 5.0r,
only feasible for groups of three rating classes.

• Better results using C++ code; libraries for the computation of Gamma and
related functions provided by GNU Scientific Library.

• For the solution of the system we used M. J. D. Powell hybrid method for
nonlinear equations.

• Stopping criteria based on stability of log-likelihood and moments of
underlying distributions.

• Improvememts on speed of computations for groups of 4 and 5 rating
classes for iterative urn scheme.

• We have been able to calibrate also multidimensional urn scheme for groups
of 4 and 5 rating classes.

• Sensibility with respect to starting values of the algorithm.
• Comparison with previous calibrations shows different values for

multidimensional urn scheme.
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figure 1: The distribution of the total number of defaults in the group of

27808 AA-, 4832 A- and 753 BBB-rated firms, calculated with inde-

pendent beta mixtures, the iterative urn scheme and the multidimensional

urn scheme. Each rating group has an expectation of 2 defaults
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figure 2: The distribution of the total number of defaults in the group of

6103 A-, 1379 BBB- and 404 BB-rated firms, calculated with indepen-
dent beta mixtures, the iterative urn scheme and the multidimensional urn

scheme. Each rating group has an expectation of 5 defaults
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figure 3: The distribution of the total number of defaults in the group of

1639 BBB-, 525 BB- and 124 B-rated firms, calculated with indepen-
dent beta mixtures, the iterative urn scheme and the multidimensional urn

scheme. Each rating group has an expectation of 7 defaults.
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figure 4: The distribution of the total number of defaults in the group of 772

BB-, 178 B- and 44 CCC-rated firms, calculated with independent beta

mixtures, the iterative urn scheme and the multidimensional urn scheme.
Each rating group has an expectation of 10 defaults.
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figure 5: Cumulative distribution of the total number of defaults in a group of 454 AA-,
794 A- and 594 BBB-rated firms (average portfolio). The probabilities are calculated
with independent beta mixtures, the iterative urn scheme and the multidimensional urn
scheme model, compared with the empirical from the scaled data.
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figure 6: Cumulative distribution of the total number of defaults in a group of 794 A-,
594 BBB- and 411 BB-rated firms (average portfolio). The probabilities are calculated
with independent beta mixtures, the iterative urn scheme and the multidimensional urn
scheme model, compared with the empirical from the scaled data.
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figure 7: Cumulative distribution of the total number of defaults in a group of 594 BBB-,
411 BB- and 427 B-rated firms (average portfolio). The probabilities are calculated with
independent beta mixtures, the iterative urn scheme and the multidimensional urn scheme
model, compared with the empirical from the scaled data.
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figure 8: Cumulative distribution of the total number of defaults in a group of 411 BB-
, 427 B- and 49 C-rated firms (average portfolio). The probabilities are calculated with
independent beta mixtures, the iterative urn scheme and the multidimensional urn scheme
model, compared with the empirical from the scaled data.



Further improvements

• Introduction
• Theory of
Exchangeable
Sequences
• Multidimensional
Scheme for Defaults
• Iterative Scheme for
Defaults

• EM Algorithm

• EM Algorithm appl. to
Mult. Scheme
• EM Algorithm appl. to
Iter. Scheme

• Calibration of models

• Further improvements

Urn based Credit Risk Models 42 / 42

• Biggest problem: huge amount of computations required.

• It implies time consuming numerical calculations both for the

estimation of the parameters and for the plotting of the graphics.

• One chance: sum only the relevant terms in equations (7) and (10),
that should correspond to sum only “in a neighbourhood” of the

expected number of defaults given the parameters.

• Try to see if EM continues to give good results with such

approximations.

• Another chance: try to find simpler analytical expression for (7) and

(10).


	Introduction
	Theory of Exchangeable Sequences
	Multidimensional Scheme for Defaults
	Iterative Scheme for Defaults
	EM Algorithm
	EM Algorithm appl. to Mult. Scheme
	EM Algorithm appl. to Iter. Scheme
	Calibration of models
	Further improvements

