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Models

I Heston model

I Bates model

I Barndorff-Nielsen-Shephard model

I Variance-Gamma with the Cox-Ingersoll-Ross stochastic clock

I Variance-Gamma with the Gamma-Ornstein-Uhlenbeck
stochastic clock

I Normal Inverse Gaussian with the Cox-Ingersoll-Ross
stochastic clock

I Normal Inverse Gaussian with the Gamma-Ornstein-Uhlenbeck
stochastic clock
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Calibration setup

I Optimization method

I Regularization

I Weights assigned to each calibration instrument

I Market data

I Pricing method
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Challenges

I Accuracy

I Numerical stability

I Stability of the calibrated parameter time series

I Speed (without sacrificing previous three points)



Page 6

Challenges

I Accuracy

I Numerical stability

I Stability of the calibrated parameter time series
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Pricing methods

I Direct integration

I Fast Fourier Transform (FFT)

I Fractional FFT
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Pricing methods

I Irrelevant: one option

I Relevant: the whole set of liquid vanilla options
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How to choose?

Strategy A (fortunately we did not use this strategy)

I Compare unoptimized implementations

I Choose a pricing method

I Optimize this method (mathematical modifications as well as
implementation techniques)

Strategy B (we used it)

I Optimize all three methods

I Compare optimized implementations

I Choose a pricing method
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How to choose?

I Strategy A: fast implementation, wrong choice (fractional
FFT)

I Strategy B: right choice (modified direct integration method)
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Direct integration

One-dimensional numerical quadrature, for example Gaussian
quadrature.
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Direct integration

Formulas

I Attari (2004) : one integral, quadratic term in the
denominator - optimal for the calibration

I Lewis (2001) : one integral, quadratic term in the
denominator - also optimal for the calibration

I Heston (1993) : two integrals, linear term in the denominator
- not optimal for the calibration, good for calculation of delta
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Direct integration
Attari (2004) :

C(S0, T, K) = S0 − 1

2
e−rT K − e−rT K× (1)

×
0@ 1

π

Z +∞

0

(Re(φ(ω)) +
Im(φ(ω))

ω
) cos(ωl(K)) + (Im(φ(ω))− Re(φ(ω))

ω
) sin(ωl(K))

1 + ω2
dω

1A
where

l(K) = ln

�
Ke−rT

S0

�
,

St is the underlying price, K is the strike price, T is the maturity of the option, r is
the risk-free interest rate, the dividend yield is assumed to be zero, Q is the
risk-neutral measure and

φ(ω) = EQ(eiωx)

is the characteristic function of

x = ln

�
ST

S0

�
− rT.
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FFT
Carr and Madan (1999) :

C(S0, T, k) =
e−γk

π

∫ +∞

0
e−ikuψ(u)du (2)

where k denotes the log of the strike price, γ is a dampening
parameter and

ψ(u) =
e−rT φ̂(u− (γ + 1)i)

γ2 + γ − u2 + (2γ + 1)ui
, (3)

where
φ̂(ω) = EQ(eiωbx) (4)

is the characteristic function of the log price x̂ = ln(ST ).
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FFT

The integral in (2) is approximated using an integration rule

∫ +∞

0
e−ikuψ(u)du ≈

NFFT−1∑

j=0

e−ikujψ(uj)wjδ, (5)

uj = jδ, (6)

where NFFT is the number of grid points and the weights wj

implement the integration rule.
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FFT

The crucial limitation of the FFT method is that the grid points uj

must be chosen equidistantly. This limitation prohibits the use of
the most effective integration rules such as the Gaussian
quadrature.
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FFT

The FFT pricing method simultaneously computes the values of
the integral approximations (5) for the set of log-strikes
{km = −(NFFT λ

2 ) + mλ, m = 0, . . . , NFFT − 1}. The
simultaneous calculation for all strikes is not an exclusive
advantage of the FFT-based methods, because a slightly modified
direct integration method also has this advantage. This simple
modification is described in the section “Caching technique“.
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FFT
The second important restriction is that the grid spacings must
satisfy the condition

λδ =
2π

NFFT
. (7)

If this condition is satisfied, the sums in (5) can be expressed in
the form

NFFT−1∑

j=0

e−ikujψ(uj)wjδ =
NFFT−1∑

j=0

e−iλδjmhj =
NFFT−1∑

j=0

e
−i( 2π

NFFT
)jm

hj ,

(8)

which allows the application of the FFT procedure invoked on the

vector h = {hj = ei(Nλ
2

jδ)ψ(uj)wjδ, j = 0, . . . , NFFT − 1}.
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Fractional FFT

Chourdakis (2005) has shown how the method of Carr and Madan
(1999) can be accelerated using the fractional FFT algorithm. This
algorithm rapidly computes sums of the form

Dk(h, α) =
N−1∑

j=0

e−i2πkjαhj (9)

for any value of α.



Page 20

Fractional FFT

The fractional FFT method can be applied without the need to
impose the restriction

λδ =
2π

NFFT
. (10)
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Fractional FFT

However, the fractional FFT method does not overcome the crucial
limitation of the FFT method because the grid points ui still must
be chosen equidistantly.
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Fractional FFT
Fractional FFT is implemented by invoking three FFT procedures, i.e.,

Dk(h, α) = (e−iπk2α)N−1
k=0 ¯D−1

k (Dj(y)¯Dj(z)), (11)

where
y = ((hje−iπj2α)N−1

j=0 , (0)N−1
j=0 ), (12)

z = ((eiπj2α)N−1
j=0 , (eiπ(N−j)2α)N−1

j=0 ), (13)

Dk(h) denotes the FFT sum

Dk(h) =

N−1X
j=0

e−i 2π
N

kjhj , (14)

D−1
k (h) is the inverse FFT sum

D−1
k (H) =

1

N

N−1X
j=0

ei 2π
N

kjHj , (15)

and ¯ denotes element-by-element vector multiplication.
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Fractional FFT

The fractional FFT pricing method is faster than the FFT pricing
method, because the absence of the restriction

λδ =
2π

NFFT
(16)

allows the use of sparser grids. This effect is more important in
terms of computing time than the disadvantage of using three FFT
routines instead of one.
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Caching technique
The most time-consuming part of the computation is the
evaluation of the characteristic function. For example the
characteristic function of the Heston model

φ(ω) = exp{ηκθ−2((κ− ρθωi− d)T − 2 ln(
1− ge−dT

1− g
))

+ σ2
0θ
−2(κ− ρθωi− d)

1− e−dT

1− ge−dT
}, (17)

d = ((ρθωi− κ)2 − θ2(−iω − ω2))1/2, (18)

g =
κ− ρθωi− d

κ− ρθωi + d
, (19)

contains two complex exponents (we do not count identical
repeated terms), one complex logarithm and one complex square
root.
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Caching technique

Therefore an extremely important requirement for an effective
implementation of the calibration algorithm is the following: The
number of evaluations of the characteristic function should be as
low as possible. If the calibration algorithm uses the direct
integration method to compute the values of vanilla options, a
caching technique should be used to avoid unnecessary
recalculations of the characteristic function.
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Caching technique

If the caching technique is not used, the calculation of the values
of vanilla options at each iteration of the optimization algorithm
includes the following steps:
1. Loop over expiries of the vanilla options.
2. Loop over strikes of the vanilla options.
3. Loop over the points ωi, i = 1, . . . , U that are used to evaluate
the integral in (1) numerically.
4. Evaluate the characteristic function in ωi.
5. Evaluate the integrand in ωi.
6. Calculate the value of the vanilla option.
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Caching technique

However, the value of the characteristic function does not depend
on the strike. If we use the same grid ωi, i = 1, . . . , U for all
options and run the described algorithm, we recalculate the same
values of the characteristic function at each step of the strike-loop.
We can use the following modification of the algorithm in order to
avoid these recalculations:
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Caching technique

1. Loop over expiries of the vanilla options.
2. Loop over strikes of the vanilla options.
3. Loop over the points ωi, i = 1, . . . , U that are used to evaluate
the integral in (1) numerically.
4. If we are at the first step of the strike-loop, evaluate the
characteristic function in ωi and save this value in the cache.
5. If we are not at the first step of the strike-loop, read the value
of the characteristic function in ωi from the cache.
6. Evaluate the integrand in ωi.
7. Calculate the price of the vanilla option.
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Caching technique

The numerical evaluation of the integral in (1) requires a choice of
the numerical upper integration limit. Suppose a maximum
tolerable truncation error is given. Then the numerical upper
integration limit ω depends on the maturity T and the strike K of
the vanilla option: ω = ω(T,K). We can still use the same ω-grid
for all T and K - we just define the index of the last integration
point as an integer-valued function U(T,K) that satisfies the
condition

ωU(T,K) ≤ ω(T,K) < ωU(T,K)+1. (20)
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Caching technique

The grid at step 3 of the algorithm can now be defined as
ωi, i = 1, . . . , U(T,K). In most cases the function U(T,K) is an
increasing function of K. It leads to a different number of loop
iteration at step 3 for different K. Therefore, we have to modify
the described algorithm once more in order to take this fact into
account. We can use a reverse order of strikes or we can control at
each point ωi whether the characteristic function has been already
evaluated at this point. We can also combine these two solutions.
In this case the algorithm is:
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Caching technique

1. Loop over expiries of the vanilla options.
2. Loop over strikes of the vanilla options. Use a reverse order of
strikes.
3. Loop over the points ωi, i = 1, . . . , U(T,K) that are used to
evaluate the integral in (1) numerically.
4. If the value of the characteristic function in ωi is still not in the
cache, evaluate it and save this value in the cache.
5. If the value of the characteristic function in ωi is already in the
cache, use this precomputed value.
6. Evaluate the integrand in ωi.
7. Calculate the value of the vanilla option.
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Caching technique

There is a further possibility to accelerate this algorithm. Some
terms of the characteristic function do not depend on T . These
terms can be precomputed before starting the loop over expiries of
the vanilla options. For example, we recommend to compute the
term (18) only once and store it, because it contains a
time-consuming square root operator.
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Comparison

Simultaneous pricing for different strikes?

I FFT: yes (per definition)

I Fractional FFT: yes (per definition)

I Direct integration without caching technique : no

I Direct integration with caching technique : yes
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Comparison

Simultaneous pricing for different strikes?

I FFT: yes (per definition) ⇒ The most popular argument in
favour of FFT
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I Direct integration without caching technique : no
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Comparison

Simultaneous pricing for different strikes?

I FFT: yes (per definition) ⇒ The most popular argument in
favour of FFT

I Fractional FFT: yes (per definition)

I Direct integration without caching technique : no

I Direct integration with caching technique : yes ⇒ The
possibility of simultaneous pricing for different strikes cannot
be considered as a criterium for comparison of pricing methods
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Comparison

We have to define other criteria for the comparison.
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Comparison

The FFT algorithm reduces the number of multiplications in the
required NFFT summations from an order of N2

FFT to that of
NFFT ln2 NFFT (Carr and Madan (1999)). However the
computing time required for these multiplications is negligible in
comparison with the time required for the evaluations of the
characteristic function. Therefore we concentrate on the number of
the calculations of the characteristic function only.
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Comparison

We have to define other criteria for the comparison.
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Comparison

We have to define other criteria for the comparison:
The rate of decay of the integrand ? ⇒ No.
The formulas of Carr and Madan (FFT, Fractional FFT) of Attari
(Modified direct integration) and of Lewis(Modified direct
integration) have quadratic rate of decay of the integrand.
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Comparison

We have to define other criteria for the comparison.
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Comparison

We have to define other criteria for the comparison:
The speed of the numerical integration method ? ⇒ Yes.
Obviously, there are a lot of techniques of simple numerical
integration in the general case that are both faster and more
accurate than integration using FFT. They are designed to
minimize the number of integrand evaluations. One of these
techniques is the Gaussian quadrature formula. This section shows
that the grid for the numerical integration (1) with six-point
Gaussian quadrature is at least seven times more economical than
the FFT-grid in (2).
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Comparison

Numerical experiments

I As we have already pointed out, the number of the evaluations
of the characteristic function is the main factor driving the
calibration time. We have carried out a numerical experiment
to compare the influence of this factor in each pricing method.

I Then we have conducted a second numerical experiment
where we have compared the calibration time directly.



Page 43

Experiment 1

Accuracy
(implied
volatility

basis points)

FFT
Fractional

FFT

Modified
direct

integration

2.0 4096 1024 96

1.0 4096 2048 126

0.2 8192 2048 162

0.02 16384 4096 582

Table: Grid sizes that are needed to obtain some benchmark accuracy
levels
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Experiment 2

Model FFT
Fractional

FFT

Direct
integration

Heston 466 239 15

Bates 620 316 20

BNS 405 208 13

VG-CIR 540 281 17

VG-GOU 522 269 17

NIG-CIR 546 280 18

NIG-GOU 521 273 17

Table: Average calibration time (in seconds).
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Conclusion

I An efficient implementation of the direct integration method
results in a sizable speed up of the calibration of stochastic
volatility models.
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results in a sizable speed up of the calibration of stochastic
volatility models.

I This method even outperforms the calibration with the
fractional FFT.
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Conclusion

I An efficient implementation of the direct integration method
results in a sizable speed up of the calibration of stochastic
volatility models.

I This method even outperforms the calibration with the
fractional FFT.

I The simultaneous pricing of options with different strikes is
not an exclusive advantage of the FFT methods compared to
the direct integration method, because an application of a
cache technique leads to simultaneous pricing of options with
different strikes in the framework of direct integration.
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Conclusion

I The pricing methods differ in two aspects only: the numerical
integration technique and the pricing formula. The
combination of these factors results in higher calculation
speed of the direct integration method in comparison to the
FFT and fractional FFT methods.
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Conclusion

I The pricing methods differ in two aspects only: the numerical
integration technique and the pricing formula. The
combination of these factors results in higher calculation
speed of the direct integration method in comparison to the
FFT and fractional FFT methods.

I Specifically: (1) Gaussian quadrature is a much faster
numerical integration technique than the FFT, (2) The
transformed pricing formula of Attari (2004) provides
approximately the same rate of decay of the integrand in
comparison with the main formula of the FFT method.



Page 50

Conclusion

I The direct integration method is frequently criticized in the
literature. However this critique is valid only if we consider an
unoptimized implementation of the general formula.
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Conclusion

I The direct integration method is frequently criticized in the
literature. However this critique is valid only if we consider an
unoptimized implementation of the general formula.

I The use of the modified pricing formula and the caching
technique makes the direct integration method the best choice
for practical applications.
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Thank you!
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