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Abstract

In this paper we examine the relationship between a newly developed local depen-
dence measure, the local Gaussian correlation, and standard copula theory. We are
able to describe characteristics of the dependence structure in different copula models
in terms of the local Gaussian correlation. Further, we construct a goodness-of-fit
test for bivariate copula models. An essential ingredient of this test is the use of a
canonical local Gaussian correlation and Gaussian pseudo-observations which make
the test independent of the margins, so that it is a genuine test of the copula structure.
A Monte Carlo study reveals that the test performs very well compared to a commonly
used alternative test. We also propose two types of diagnostic plots which can be
used to investigate the cause of a rejected null. Finally, our methods are applied to a
”classical” insurance data set.
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1 Introduction

There are two interrelated issues of copula theory that we will look at in this paper: i)
visualizing and quantifying the non-linear dependence structure of a copula and ii) employing
this to recognize and specify a copula model from given data via a goodness-of-fit test. Both
of these issues will be explored using the new tool of local Gaussian correlation in Tjøstheim
and Hufthammer (2013). The local Gaussian correlation is a non-linear dependence measure,
but it retains the standard correlation interpretation based on a family of local Gaussian
approximations.

Typically a copula model contains a few (often only one) parameters that describe the
dependence structure. A problem is that the parameters are difficult to interpret. In what
way do they measure dependence? A very crude characterization of a copula model is
obtained by simulating observations from it and subsequently looking at the resulting scatter
diagram, but a scatter diagram is not a very precise quantification of dependence.

Tjøstheim and Hufthammer (2013) examine a local correlation measure that is meant
to give a precise mathematical description of non-linear dependence. A brief survey of this
measure is given in Section 2. In Section 3 it will be shown how it can be used to precisely
characterize and visualize the dependence structure for a number of standard copulas. This
measure is defined for bivariate variables, and consequently, with the exception of the brief
discussion in Section 7, we consider bivariate copula models in this paper. With the growing
interest in pair-copulae constructions (see e.g. Aas et al. (2009)) it is imperative to under-
stand the dependence structure of the bivariate copulas that forms the building blocks of
the multivariate model.

Many proposals have been made for goodness-of-fit-testing of copula models, which dates
back to Deheuvels (1979). Genest et al. (2009) review and perform a power study of avail-
able goodness-of-fit tests for copulas, and a similar study is undertaken by Berg (2009).
Further, in goodness-of-fit testing, when a model is rejected, a problem is to identify the
cause of the rejection. This problem has been recognized by Berg (2009): ”When doing
model evaluation. . . there is still an unsatisfied need for intuitive and informative diagnostic
plots.”

In this paper we introduce a new goodness-of-fit test for bivariate copula models based on
the local Gaussian correlation. The test is carried out using observations that are obtained
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via a rank-based transformation of the original observations. The test is based on calculating
the difference between the local Gaussian correlation estimated non-parametrically for the
transformed observations and estimated by using an analytical expression valid under the
null hypothesis of a specific copula. An important asset of the test is that diagnostic plots
that were asked for above can be obtained by plotting these estimates together. We also
propose a second type of diagnostic plot which displays the results of a ”local goodness-of-
fit” test. Implementation issues of the goodness-of-fit test are discussed in Section 4 where
a simulation study is conducted to assess the power and level of the proposed test, and the
diagnostic plots are discussed in Section 5. A practical data example is given in Section 6,
and finally, we conclude with possible extensions to the multivariate case in Section 7.

2 Local Gaussian approximation

Let X = (X1, X2) be a two-dimensional random variable with density f(x) = f(x1, x2). In
this section we describe how f can be approximated locally in a neighbourhood of each point
x = (x1, x2) by a Gaussian bivariate density

ψ(v, µ(x),Σ(x)) = 1
2π|Σ(x)|1/2 exp

[
−1

2(v − µ(x))TΣ−1(x)(v − µ(x))
]
, (2.1)

where v = (v1, v2)T is the running variable, µ(x) = (µ1(x), µ2(x))T is the local mean vector
and Σ(x) = (σij(x)) is the local covariance matrix. With σ2

i (x) = σii(x), we define the local
correlation at the point x by ρ(x) = σ12(x)

σ1(x)σ2(x) , and in terms of the local correlation, ψ may
be written as

ψ(v, µ1(x), µ2(x), σ2
1(x), σ2

2(x), ρ(x)) =

1
2πσ1(x)σ2(x)

√
1− ρ2(x)

exp

− 1
2(1− ρ2(x))×

(v1 − µ1(x)
σ1(x)

)2

− 2ρ(x)
(
v1 − µ1(x)
σ1(x)

)(
v2 − µ2(x)
σ2(x)

)
+
(
v2 − µ2(x)
σ2(x)

)2
. (2.2)

First note that the representation in (2.2) is not well-defined unless extra conditions
are imposed. We need to construct a Gaussian approximation that approximates f(x) in a
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neighborhood of x and such that (2.2) holds at x. In the case of X ∼ N (µ,Σ) this is trivially
obtained by taking one Gaussian; i.e., µ(x) = µ and Σ(x) = Σ for all x. In fact, these
relationships may be taken as definitions of the local parameters for a Gaussian distribution.

In Tjøstheim and Hufthammer (2013) it was demonstrated that for a given neigh-
bourhood characterized by a bandwidth parameter b the local population parameters
γ(x) = (µ(x),Σ(x)) or γ(x) = (µ1(x), µ2(x), σ2

1(x), σ2
2(x), ρ(x)) can be defined by minimizing

a likelihood related penalty function q given by

q =
∫
Kb(v − x) [ψ(v, γ(x))− logψ(v, γ(x))f(v)] dv, (2.3)

where again b is the bandwidth parameter, and Kb(v − x) = b−1K(b−1(v − x)) with K

being a kernel function. Such a penalty function was used in Hjort and Jones (1996) for
density estimation purposes. They argue that it can be interpreted as a locally weighted
Kullback-Leibler criterion for measuring the distance between f and ψ(·, γ(x)). We define
the population value γ(x) = γb(x) as the the minimizers of this penalty function. It then
satisfies the set of equations

∫
Kb(v − x) ∂

∂γj
logψ(v, γ(x)) [f(v)− ψ(v, γ(x))] dv = 0, j = 1, . . . , 5. (2.4)

It is assumed that there is a bandwidth b0 such that there exists a unique solution of the
minimization problem for any b with 0 < b < b0.

It is easy to find examples where (2.4) is satisfied with a unique γb(x). A trivial example
is when X ∼ N (µ,Σ) is Gaussian, where γb(x) = γ(x) = (µ,Σ). The next step is introducing
a piecewise linear function of a Gaussian variable Z ∼ N (µ,Σ), as defined in Tjøstheim and
Hufthammer (2013). Since it will be used later, we restate it here. We take µ = 0 and
Σ = I2, the identity matrix of dimension 2. Let Ri, i = 1, . . . , k be a set of non-overlapping
regions of R2 such that R2 = ∪ki=1Ri. Further, let ai and Ai be a corresponding set of vectors
and matrices in R2 such that Ai is non-singular and define the piecewise linear function

X = g(Z) =
k∑
i=1

(ai + AiZ)1(Z ∈ Ri), (2.5)

where 1(·) is the indicator function. Let Si be the region defined by Si = {x : x = ai +

4



Aiz, z ∈ Ri}. It is assumed that (2.5) is one-to-one in the sense that Si ∩ Sj = ∅ for
i 6= j and ∪ki=1Si = R2. To see that the linear step function (2.5) can be used to obtain
a solution of (2.4) let x be a point in the interior of Si and let the kernel function K have
a compact support. If v − x is in the support of Kb, then b can be made small enough so
that v ∈ Si. Under this restriction on b, γb(x) = γ(x) ≡ γi = (µi,Σi) where µi = ai and
Σi = AiA

T
i as defined in (2.5). Thus, in this sense, for a fixed but small b, there exists a

local Gaussian approximation ψ(x, γb) of f , with corresponding local means µi,b(x), variances
σ2
i,b(x), i = 1, 2, and correlation ρb(x).

It was shown in Tjøstheim and Hufthammer (2013) that once a unique population vector
γb(x) exists, under weak regularity conditions one can let b → 0 to obtain a local popula-
tion vector γ(x) defined at a point x. The population vectors γb(x) and γ(x) can both be
consistently estimated by using a local log-likelihood function defined by

L
(
X1, . . . , Xn, γb(x)

)
= n−1∑

i

Kb(Xi−x) logψ(Xi, γb(x))−
∫
Kb(v−x)ψ(v, γb(x)) dv, (2.6)

for given observationsX1, . . . , Xn. This likelihood is taken from Hjort and Jones (1996) where
it was used for density estimation. Here, the Xi’s are iid observations or more generally from
an ergodic time series {Xt}. In the latter case (2.6) could be thought of as a marginal local
likelihood function.

The numerical maximization of the local likelihood (2.6) leads to local likelihood estimates
γn,b(x), including estimates ρn,b(x) of the local correlation. It is shown in Tjøstheim and
Hufthammer (2013) that under relatively weak regularity conditions γn,b(x) → γb(x) for b
fixed, and γn,b(x) → γ(x) almost surely for b = bn tending to zero. In addition asymptotic
normality is demonstrated in that paper. Further, equation (2.6) is consistent with (2.3). An
R-package “localgauss” has been developed for finding the local likelihood estimates γn,b(x)
including ρn,b(x) and is publicly available for Linux and Windows at the Comprehensive
R Archive Network (CRAN, http://CRAN.R-project.org/). For a detailed description,
see Berentsen et al. (2014). Many examples of real and simulated data are given in that
paper, and in Tjøstheim and Hufthammer (2013), Støve and Tjøstheim (2014), Støve et al.
(2014) and Berentsen and Tjøstheim (2014). The quantity ρ(x) has a precise interpretation
as a local Gaussian correlation. A number of properties has been given in Tjøstheim and
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Hufthammer(2013, see especially Section 6).

3 Local Gaussian correlation for copula models

We start by a generalization of the so-called Rosenblatt (1952) transformation:

Lemma 3.1. Let X have a density fX(x) on R2 with cumulative distribution function
FX(x) =

∫ x1
−∞

∫ x2
−∞ fX(w1, w2) dw1 dw2. Then there exists a one-to-one function g such that

X = g(Z), where Z ∼ N (0, I2).

Proof. We have fX(x) = fX1(x1)fX2|X1(x2|x1). Then U1 = FX1(X1) is uniform. There also
exists a standard normal variable Z1 such that U1 = Φ(Z1), where Φ is the cumulative
distribution function of the standard normal density. Hence, X1 = F−1

X1 (Φ(Z1)). In the same
manner, there exists a uniform variable U2 independent of U1 (see Rosenblatt (1952)) such
that U2 = FX2|X1(X2|X1), and there exists a Z2 ∼ N (0, 1) independent of Z1 such that
U2 = Φ(Z2), and hence

X1

X2

 =
 F−1

X1 (Φ(Z1))
F−1
X2|X1

(Φ(Z2)|F−1
X1 (Φ(Z1))

 .= g(Z), (3.1)

where F−1
X2|X1

is interpreted as the inverse of FX2|X1 with X1 fixed (i.e., with U1, Z1 fixed).
Here g is one-to-one due to the strict monotonicity of FX .

As pointed out in Rosenblatt (1952) this representation is non-unique, since we also have
X1

X2

 =
F−1

X1|X2
(Φ(Z1)|F−1

X2 (Φ(Z2))
F−1
X2 (Φ(Z2))

 .= g′(Z ′), (3.2)

where in general g 6= g′ and Z 6= Z ′.
Assuming g to be continously differentiable at z and Taylor expanding, X = g(Z) =

g(z) + ∂g
∂z

(z)(Z − z) + op(|Z − z|), where ∂g
∂z

is the Jacobi matrix. For this representation it
is tempting to define the local mean µ(x) and Σ(x) of the density of X at the point x as
the mean and covariance of the Gaussian variable Uz(Z) = g(z) + ∂g

∂z
(z)(Z − z). These are

expressed as functions of x using z = h(x) = g−1(x). Since E(Z) = 0 and Σ(Z) = I2 this
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results in
µ(x) = g(z)− ∂g

∂z
(z)z = x−

(
∂h

∂x
(x)
)−1

h(x) (3.3)

and
Σ(x) = ∂g

∂z
(z)
(
∂g

∂z
(z)
)T

=
(
∂h

∂x
(x)
)−1((∂h

∂x
(x)
)−1)T

. (3.4)

It is an easy matter to verify that fUz(Z) = ψ(v, µ(x),Σ(x)) yields a representation of type
(2.1). The problem is that the non-uniqueness of the two Rosenblatt representations means
that in general µ′(x) 6= µ(x), Σ′(x) 6= Σ(x) and ρ′(x) 6= ρ(x).

We now look at (3.1) and (3.2) and examine under what conditions these two transforma-
tions will give rise to a unique local Gaussian correlation that can be expressed analytically
and can be used to recognize copulas. By (3.1) and (3.4) the matrix

∂h

∂x
(x) =

∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

 (3.5)

is lower triangular and

(
∂h

∂x
(x)
)−1

=
(
∂h1

∂x1

∂h2

∂x2

)−1
 ∂h2

∂x2
0

−∂h2
∂x1

∂h1
∂x1

 ,
which, using (3.4), results in the following local Gaussian correlation

ρ(x) = ρ(x1, x2) = Σ12(x)√
Σ11(x)Σ22(x)

=
−∂h2
∂x1√(

∂h1
∂x1

)2
+
(
∂h2
∂x1

)2
, (3.6)

where we return to its validity and uniqueness below. Next, consider a continuous random
variable X = (X1, X2) with joint cumulative distribution function F and margins FX1(x1) =
F1(x1) and FX2(x1) = F2(x2). Due to the representation theorem of Sklar (1959), F can be
written as

F (x1, x2) = C((F1(x1), F2(x2)), (3.7)

where the copula C : [0, 1]2 → [0, 1] is a unique bivariate distribution function with uniform
margins. Since any continuous distribution function F has the representation (3.7) we may
re-express (3.1) and thus ρ(x1, x2) in terms of the copula C and the margins F1 and F2. By
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standard theory, F−1
2|1 (x2|x1) may be written as

F−1
2|1 (x2|x1) = F−1

2

(
C−1

1 (F1(x1), x2)
)
,

where C−1
1 (u, v) is interpreted as the inverse of C1(u, v) = ∂

∂u
C(u, v) with u fixed. It follows

that (3.1) may be written as

g(Z) =
 F−1

1 (Φ(Z1))
F−1

2

(
C−1

1 (Φ(Z1),Φ(Z2))
) . (3.8)

Note that this transformation (only with Φ(Z1) and Φ(Z2) replaced by two independent
uniform [0, 1] variables) is a standard way of sampling from the distribution C(F1(x1), F2(x2))
(see e.g. Nelsen, 2006, page 35-37). In the continuous case, g is one-to-one if the copula
density c(u1, u2) satisfies c(u1, u2) > 0 for all points (u1, u2) ∈ [0, 1]2 (This guarantees the
invertibility of C1(u1, u2) with respect to u2). The inverse h = g−1 is then given by

h(X) =
h1(X1, X2)
h2(X1, X2)

 =
 Φ−1 (F1(X1))

Φ−1 (C1 (F1(X1), F2(X2)))

 . (3.9)

Towards finding an expression for ρ(x1, x2) using (3.6), let φ denote the standard normal
density function and let C11(u1, u2) = ∂2

∂u2
1
C(u1, u2). Then by using the two partial derivatives

of h, the local Gaussian correlation (3.6) for the model (3.7) may be written as

ρ(x1, x2) = −C11(F1(x1), F2(x2))φ (Φ−1 (F1(x1)))√
φ2 (Φ−1 (C1(F1(x1), F2(x2)))) + C2

11(F1(x1), F2(x2))φ2 (Φ−1 (F1(x1)))
. (3.10)

However, repeating the above argument with the Rosenblatt representation (3.2) as a
starting point instead of (3.1) leads to another local Gaussian correlation ρ′(x1, x2) given by

ρ′(x1, x2) = −C22(F1(x1), F2(x2))φ (Φ−1 (F2(x2)))√
φ2 (Φ−1 (C2(F1(x1), F2(x2)))) + C2

22(F1(x1), F2(x2))φ2 (Φ−1 (F2(x2)))
(3.11)

where C2(u1, u2) = ∂
∂u2
C(u1, u2) and C22(u1, u2) = ∂2

∂u2
2
C(u1, u2).

Since the two Rosenblatt representations are bases for any representation of fX(x), (in-
cluding a density generated by a general functional relationship X = g(Z)), we have unique-
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ness at points where they coincide. The local parameters along such curves are consis-
tent with the local parameters derived from the local penalty function (2.3). Indeed, for a
point x where the Rosenblatt representations give a unique γ(x) = (µ(x),Σ(x)) such that
f(x) = ψ(x, γ(x)), a local Gaussian approximation with γb(x) can be found that satisfies the
equations (2.4) and that converges to γ(x). Simply choose a linear stepwise representation
(2.5), such that x ∈ Si for some i, and take Ai = Σ1/2(x) and ai = µ(x). Then with a small
enough bandwidth, γb(x) = γi = (ai, AiATi ) = (µ(x),Σ(x)), and γb(x) → γ(x) trivially as
b→ 0. If for a point x there is not a unique Rosenblatt representation, then such an approach
is not possible since there is not a unique γ(x) that could serve as a starting point for the
construction. Nevertheless, for such points x, under the regularity conditions mentioned in
Tjøstheim and Hufthammer (2013), there does exist a limiting unique minimizer γ(x) and
resulting ρ(x) such that the local likelihood estimate γn,b(x) (or ρn,b(x)) converges towards
γ(x) (or ρ(x)) (see Tjøstheim and Hufthammer (2013), Theorem 1-3).

Inspecting (3.10) and (3.11) it is seen that in the copula case, when the copula is ex-
changeable (i.e. C(u1, u2) = C(u2, u1)), the points where ρ′(X1, X2) = ρ(X1, X2), are found
along the curve defined by F1(x1) = F2(x2). In the particular case of identical margins, which
is true when X1 and X2 are exchangeable, we have equality along the diagonal x1 = x2.

Note that since φ (Φ−1 (F1(·))) > 0, the sign of ρ(x1, x2) is determined by the sign of
−C11(F1(x1), F2(x2)). To see that this is reasonable, consider a random variable X1 positively
related to the variable X2 in the neighbourhood of (x1, x2), in the sense that m(s) .= P (X2 ≤
x2|X1 = s) = C1(F1(s), F2(x2)) is decreasing as s increases (in a neighbourhood of x1).
Then since m′(s) < 0, we have that −C11(F1(x1), F2(x2)) > 0 and thus ρ(x1, x2) > 0 in the
neighbourhood of (x1, x2).

When X1 and X2 are independent their copula is the independence copula C(u1, u2) =
u1u2. Then C11(u1, u2) = 0 which implies that ρ(x1, x2) = 0 along the curve F1(x1) =
F2(x2). In Tjøstheim and Hufthammer (2013) it is shown that independence implies ρ(x) = 0
everywhere and that a necessary and sufficient condition for independence is that ρ(x) ≡ 0,
µi(x) ≡ µi(xi), σ2

i (x) ≡ σ2
i (xi), i = 1, 2.

Tjøstheim and Hufthammer (2013) consider the connection between ρ(x1, x2) and the
upper and lower tail dependence index given by

λu = lim
q→1−

P (F2(X2) > q|F1(X1) > q) = lim
q→0+

C(q, q)
q

.= lim
q→0+

λu,q, (3.12)
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λl = lim
q→0+

P (F2(X2) ≤ q|F1(X1) ≤ q) = lim
q→0+

CS(q, q)
q

.= lim
q→0+

λl,q, (3.13)

where CS is the survival copula given by CS(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2). Let
U(x) = (U1(x), U2(x)) be the local Gaussian approximation of f(x) at the point x = (s, s),
then the lower tail dependence index of U(x) is given by

λl = λl(s, s) = 2 lim
u→−∞

Φ
u
√√√√1− ρ(s, s)

1 + ρ(s, s)

 ,
and if U(x) should approximate f(x) in the tail as s→ −∞, positive tail dependence would
require ρ(s, s) → 1. Thus by (3.10), ρ(x1, x2) for copula models with lower tail dependence
should satisfy

lim
s→−∞

ρ(s, s) = lim
q→0+

−C11(q, q)φ (Φ−1 (q))√
φ2 (Φ−1 (C1(q, q))) + C2

11(q, q)φ2 (Φ−1 (q))
= 1. (3.14)

For exchangeable copulas with lower tail dependence λl, it can be shown that
limq→0+ φ2 (Φ−1 (C1(q, q))) = φ2 (Φ−1(λl/2)) 6= 0. So for (3.14) to hold when λl 6= 0 we
must have that limq→0+ −C11(q, q)φ (Φ−1 (q)) =∞. This can for example be verified for the
Clayton copula. For the speed at which ρ(s, s)→ 1 for the Clayton copula we refer to Figure
1 in the case of standard Gaussian margins.

3.1 Canonical local Gaussian correlation

Above we derived an analytical expression of the local correlation for a variable (X1, X2)
with distribution function C(F1(X1), F2(X2)). In addition to the copula C, the resulting
local Gaussian correlation ρ(x) in (3.10) also depends on the margins F1 and F2. By Sklar’s
theorem (Sklar (1959)) the copula C contains all information on the dependence structure
between X1 and X2 and it is therefore unfortunate that the local correlation depends on the
margins when our goal is to characterize the copula and to use it in goodness-of-fit testing.
However, it turns out that this problem can be circumvented, and that the dependence
structure of the copula of X1 and X2 can be characterized by the local Gaussian correlation
of the variable

Z = (Z1, Z2) =
(
Φ−1(F1(X1)),Φ−1(F2(X2))

)
, (3.15)
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where, as before, Φ is the standard normal distribution function. Since the copula C of
a continuous random variable X = (X1, X2) is invariant to any continuous, strictly in-
creasing transformations of X1 and X2, Z and X share the same copula. Moreover, since
F1(X1) and F2(X2) are both marginally uniformly distributed, Z1 and Z2 are marginally
standard normal distributed. It follows that the distribution function of Z is given by
F (z1, z2) = C(Φ(z1),Φ(z2)). For a random variable Z = (Z1, Z2) with distribution function
C(Φ(z1),Φ(z2)) = Cθ(Φ(z1),Φ(z2)), (3.10) simplifies to

ρθ(z1, z2) .= −C11(Φ(z1),Φ(z2))φ(z1)√
φ2 (Φ−1 (C1(Φ(z1),Φ(z2)))) + C2

11(Φ(z1),Φ(z2))φ2(z1))
. (3.16)

Thus, for the variable Z defined by (3.15) the local Gaussian correlation is independent
of the margins F1 and F2, and we therefore define (3.16) as the canonical local Gaussian
correlation for the copula C. The subscript θ in ρθ(z1, z2) emphasizes that ρθ(z1, z2) only de-
pends on the parameter(s) θ of the copula C. Of course, the variable Z can not be observed
via the transformation (3.15) without knowledge of the margins F1 and F2. Nevertheless,
as will be seen in Section 4, given observations X1, . . . , Xn one can obtain an approximate
sample from C(Φ(z1),Φ(z2)) via an empirical version of the transformation (3.15). Using
this sample of Gaussian pseudo-observations, one can estimate ρθ(·) by the local likelihood
method described in Section 2 and subsequently compare this estimate with the analytic ex-
pression for ρθ(·) for different copulas. The choice of Gaussian margins in the transformation
(3.15) is not arbitrary. Since the copula of (X1, X2) is defined as the distribution function
of (U1, U2) = (F1(X1), F2(X2)) one could, in principle, consider the local Gaussian correla-
tion of the variable (U1, U2) directly. However, fitting a Gaussian density to finite support
variables requires special considerations of boundary effects, which makes this approach un-
practical and illogical. The choice of Gaussian margins is natural since we are dealing with
local Gaussian approximations, and also because this choice simplifies (3.10) into (3.16).
The point is that we choose to describe the dependence properties of different copulas C via
the dependence properties of the corresponding distribution function C(Φ(z1),Φ(z2)) (or via
an approximate sample from the same distribution). For this reason we will first derive the
canonical local Gaussian correlation ρθ(z1, z2) for variables (Z1, Z2) with distribution func-
tion C(Φ(z1),Φ(z2)) for several well known copulas C. We return to the topic of recognizing
copulas via a goodness-of-fit test in Section 4. In that section we will see that considering C
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on a scale C(Φ(·),Φ(·)) may have distinct advantages compared to the scale C(U(·), U(·))
with U(x) = x on [0, 1].

3.2 Examples

All copulas considered in the following examples are exchangeable and since Z1 and Z2

are standard Gaussian (i.e. F1 = F2 = Φ) ρθ(z1, z2) is well defined along the diagonal
z1 = z2. In practice, given a copula, the formula (3.16) often becomes quite complicated.
As a consequence, for the examples in Section 3.2.1 and Section 3.2.2, we only formulate
the functions C1 and C11 and refer to Figure 1 - 4 for the characteristics of ρθ(z1, z2) for
each copula. In Figures a) 1 - 4 we have plotted ρθ(s, s) against s. The copula parameters
in these plots are chosen so that they correspond to a specific value of Kendall’s tau (τ =
0.2, 0.4, 0.6, 0.8), which in general is uniquely related to the (one-parameter) copula C by
the formula

τ = m(θ) = 4
∫ ∫

[0,1]2
C(u, v) dC(u, v)− 1. (3.17)

We have not been able to find an analytic expression of the local Gaussian correlation valid
for general (z1, z2), but using the local likelihood algorithm the local correlation defined by
penalty function (2.3)) can be estimated for all (z1, z2) for which there are data. Figures b)
1 - 4 display this estimate based on one realization of n = 1000 samples from each of the
copula models C(Φ(z1),Φ(z2)) considered, with copula parameter corresponding to τ = 0.4
and with bandwidth b chosen according to the procedure outlined in Section 4. There is
some boundary bias in the estimation, but the estimated dependence patterns revealed in
Figures b) 1 - 4 are consistent with the theoretical ones along the diagonal in Figures a) 1 -
4.

3.2.1 Archimedean copulas

An important class of copulas is the class of Archimedean copulas, which have been exten-
sively studied. These copulas are completely defined by their so-called generator function
ϕ, see its properties in e.g. Nelsen (2006). In the following three examples we consider the
commonly used Archimedean copulas Clayton, Gumbel and Frank.

Example 3.1 (Clayton copula). The Clayton copula is an asymmetric copula, exhibiting
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greater dependence in the negative tail than in the positive (i.e. lower tail dependence and
no upper tail dependence).

CCl
θ (u1, u2) = (u−θ1 + u−θ2 − 1)−1/θ,

with derivatives

C1(u1, u2) =
(
1 + uθ1(u−θ2 − 1)

)− θ+1
θ

C11(u1, u2) = (θ + 1)uθ−1
2 (1− u−θ2 )(1 + uθ1(u−θ2 − 1))−1/θ−2

This implies that ρθ(s, s) → 0 as s → ∞ and ρθ(s, s) → 1 as s → −∞. These features
can be seen in Figure 1. This plot (and the subsequent plots for the other copulas) gives a
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(a) (b)

Figure 1: Local Gaussian correlation for C(Φ(z1),Φ(z2)) where C is the Clayton copula: (a)
along the diagonal z1 = z2; (b) estimated based on n = 1000 observations with τ = 0.4.

precise and interpretable characterization of the local dependence properties of the Clayton
copula. It replaces an informal scatter plot. It also gives a vastly more detailed picture of the
(asymmetric) dependence properties than the one-number characterization of the Kendall’s
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tau. The same values of Kendall’s tau have been used in Figures 2-4, but the other copulas
have very different local correlation curves associated with them, this difference forming the
basis for the formal goodness-of-fit test in Section 4.

Example 3.2 (Gumbel copula). The Gumbel copula is also an asymmetric copula, exhibit-
ing greater dependence in the positive tail than in the negative (i.e. upper tail dependence
and no lower tail dependence). The Gumbel copula can be written as

CGu
θ (u1, u2) = exp

[
− ((− ln u1)θ + (− ln u2)θ)1/θ

]
.

The functions C1 and C11 are quite complicated and are therefore not given here. The
characteristics of ρθ(z1, z2) for the Gumbel copula can be seen in Figure 2 where we clearly
see the upper tail dependence numerically quantified in terms of the local correlation.
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Figure 2: Local Gaussian correlation for C(Φ(z1),Φ(z2)) where C is the Gumbel copula (a)
along the diagonal z1 = z2; (b) estimated based on n = 1000 observations with τ = 0.4.

An alternative to modeling variables (X1, X2) with upper tail dependence by the Gumbel
copula is to model (−X1,−X2) by the Clayton copula. What separates the resulting depen-
dence structure in these two approaches? From Figure 1 and 2 we see that the dependence
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structure in the “non-dependent” tail of these two copulas is quite different. For the Clayton
copula ρθ(z1, z2) in the upper tail approaches zero faster than in the lower tail of for the
Gumbel copula with corresponding values of τ . This is consistent with a plot (not shown)
of the upper tail dependence coefficient λu,q given by (3.12) for the Clayton copula together
with the lower tail coefficient λl,q given by (3.13) for the Gumbel copula, where both copula
parameters are chosen to correspond to τ = 0.4. Then λu,q < λl,q as q → 0 indicating
that the upper tail dependence in the Clayton copula vanishes faster than the lower tail
dependence in the Gumbel copula. This distinction plays an important role in the empirical
example of Section 6.

Example 3.3 (Frank copula). Define qt = e−θt − 1. The Frank copula may be written as

CFr
θ (u1, u2) = −θ−1 ln {1 + qu1qu2/q1}

The derivatives C1 and C1 are

C1(u1, u2) = qu1qu2 + qu2

qu1qu2 + q1

C11(u1, u2) =
q′u1qu2(q1 − qu2)
(qu1qu2 + q1)2

Thus ρθ(z1, z2) goes to zero in both the upper and lower tail. This feature is reflected in
Figure 3; close to constant dependence in the center which vanish in the tails.

15



Frank

x

LG
C

0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3

Kendall.tau

0.2

0.4

0.6

0.8

(a) (b)

Figure 3: Local Gaussian correlation for C(Φ(z1),Φ(z2)) where C is the Frank copula: (a)
along the diagonal z1 = z2; (b) estimated based on n = 1000 observations with τ = 0.4.

3.2.2 Elliptical copulas

Elliptical copulas are the copulas of elliptical distributions. The key advantage of elliptical
copulas is that one can specify different levels of global correlation between the marginals,
but a disadvantage is that elliptical copulas typically do not have simple closed form ex-
pressions. The most commonly used elliptical distributions are the Gaussian and Student-t
distributions.

Example 3.4 (Gaussian copula). For a given correlation matrix Σ =
1 ρ

ρ 1

 the Gaussian

copula with correlation matrix Σ can be written as

CGauss
Σ (u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)) (3.18)

where ΦΣ is the joint bivariate distribution function of a Gaussian variable with mean vector
zero and correlation matrix Σ. In general, when (Z1, Z2) is Gaussian with mean vector zero
and correlation matrix Σ, then Z1|Z2 = z2 ∼ N(ρz2, 1−ρ2). It follows that for the Gaussian
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copula

C1(u1, u2) = P (U2 ≤ u2|U1 = u1) = P (Φ−1(U2) ≤ Φ−1(u2)|Φ−1(U1) = Φ−1(u1))

= Φ
(

Φ−1(u2)− ρΦ−1(u1)√
1− ρ2

)
.

Letting R = Φ−1(u2)−ρΦ−1(u1)√
1−ρ2

and differentiating this expression once more with respect to u1

we get
C11(u1, u2) = −ρ√

1− ρ2φ(Φ−1(u1))
φ(R).

Thus for a Gaussian copula model CGauss(F1(x1), F2(x2)) with arbitrary margins(!) F1 and
F2, the local Gaussian correlation is given by (3.10) and reduces to

ρ(x1, x2) = ρ√
1− ρ2 + ρ2 = ρ. (3.19)

This is of course valid for all (x1, x2), not only on a curve F1(x1) = F2(x2), and it shows that
a constant local Gaussian correlation is a feature of the Gaussian copula, i.e. more general
than for the bivariate Gaussian distribution. (It is in fact a consequence of the invariance
noted for (3.16)). Note that the local mean and local variance are not in general constant
for non-Gaussian marginals. It remains to prove the converse statement that ρ(x) = c,
(−1 < c < 1, c 6= 0) implies the Gaussian copula.

Example 3.5 (T-copula). In the case that (X1, X2) is t-distributed with ν degrees of freedom
and correlation coefficient ρ, we have that X1|X2 = x2 is t-distributed with ν + 1 degrees
of freedom, expected value ρx2 and variance

(
ν+x2

2
ν+1

)
(1 − ρ2). With tν as the standard t-

distribution function, a similar argument as for the Gaussian copula leads to

C1(u1, u2) = tν+1

t−1
ν (u2)− ρt−1

ν (u1)√
(ν+t−1

ν (u1)2)(1−ρ2)
ν+1

 .= tν+1(R),

and with ftv as the standard t-density function and d =
√

(ν+t−1
ν (u1)2)(1−ρ2)

ν+1

C11(u1, u2) = ∂R

∂u1
ftν+1(R) = −ftν+1(R)

ftν (t−1
ν (u1))d2

(
ρd+ 1− ρ2

ν + 1 t
−1
ν (u1)R

)
,
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No simple formula for ρθ(z1, z2) comes as a result of this. In Figure 4 a) we see that ρθ(s, s)
increases towards each tail which is consistent with the t-copula having both upper and lower
tail-dependence.
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Figure 4: Local Gaussian correlation for C(Φ(z1),Φ(z2)) where C is the Student t-copula:
(a) along the diagonal z1 = z2; (b) Estimated based on n = 1000 observations with τ = 0.4.
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4 Recognizing copulas

Given iid observations X1, . . . , Xn from F (x1, x2) = C(F1(x1), F2(x1)) consider the issue of
using local Gaussian correlation to test the null hypothesis

H0 : C ∈ C, C = {Cθ : θ ∈ Θ}, (4.1)

where Θ is the parameter space. This null hypothesis should not be confused with the
compound null hypothesis H0 ∩H

′
0, where H ′0 is the additional parametric assumption

H
′

0 : F1 ∈ F1, F2 ∈ F2.

that is, the margins also belong to some parametric class. In classical goodness-of-fit testing
for copulas, H ′0 is avoided by considering (uniform) pseudo-observations. In our approach
we avoid the additional assumption H

′
0 by considering a rank-based transformation of the

observations to Gaussian pseudo-observations.

4.1 Uniform pseudo-observations

Since we only consider one-parameter copulas in this paper we emphasize that the copula
parameter θ is a scalar. When estimating θ under H0, a full maximum likelihood approach or
the ”Inference Functions for Margins” (IFM) approach (see Joe, 1997) requires the additional
assumption H

′
0. This assumption can be avoided by replacing Fj in the likelihood by the

empirical distribution function (Xij being the ith observation of Xj, j = 1, 2.)

Fn,j(x) = 1
n

n∑
i=1

1(Xij ≤ x), j = 1, 2. (4.2)

This method is denoted the pseudo-likelihood (Demarta and McNeil, 2005) or the canonical
maximum likelihood (Romano, 2002). To avoid that the copula density blows up at the
boundary of [0, 1]2 one typically base the pseudo-likelihood estimation on the scaled ranks
Û1 = (Û11, Û12) . . . , Ûn = (Ûn1, Ûn2) where Ûij = nFn,j(Xij)/(n+1). This transformation can
be seen as an empirical version of the marginal probability integral transformation given by
Uij = Fj(Xij). Since the distribution function of U = (F1(X1), F2(X2)) is the very definition
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of the copula C, one can interpret Û1, . . . , Ûn approximately as a sample from the underlying
copula C. The observations Û1, . . . , Ûn are therefore often referred to as (uniform) pseudo-
observations. By using the pseudo-observations one could also estimate the copula parameter
using the relation to Kendall’s tau given by equation (3.17). For other rank-based estimators
see Tsukahara (2005) and Chen et al. (2006).

4.2 Gaussian pseudo-observations

Most copula goodness-of-fit tests are carried out using the pseudo-observations described
above to avoid the additional assumption H ′0 (See e.g. Genest et al. (2009) for an overview).
In our approach we first obtain “Gaussian pseudo-observations” Ẑ1 = (Ẑ11, Ẑ12) . . . , Ẑn =
(Ẑn1, Ẑn2) by applying Φ−1 to the pseudo-observations Û1, . . . , Ûn, that is

Ẑij = Φ−1 (nFn,j(Xij)/(n+ 1)) = Φ−1(Ûij). (4.3)

In the same sense that the pseudo-observations Û1, . . . , Ûn can be interpreted as a sample
from the underlying copula C, the Gaussian pseudo-observations Ẑ1, . . . , Ẑn can be inter-
preted as a sample from C(Φ(z1),Φ(z2)) for which we have defined the canonical local Gaus-
sian correlation ρθ(z1, z2) by (3.16). A non-parametric estimate of ρθ(z1, z2) can then be
obtained by replacing X1, . . . , Xn with Ẑ1, . . . , Ẑn in the local likelihood described in Sec-
tion 2. As before we denote this estimate ρn,b(z1, z2) for a point (z1, z2). From the results
of Section 3 and the fact that Ẑ1, . . . , Ẑn approaches a real sample from C(Φ(z1),Φ(z2))
as n → ∞ it follows that ρn,b(z1, z2) is consistent with estimating ρθ(z1, z2) along the line
z1 = z2 for an exchangeable copula C. A parametric estimate ρθn(z1, z2) of ρθ(z1, z2) can be
obtained by replacing θ in (3.16) with θn, where θn = θn(Û1, . . . , Ûn) is an estimate of the
copula parameter under H0 based on the pseudo-observations Û1, . . . , Ûn. Note that both
ρn,b(·) and ρθn(·) are based on the pseudo-observations, and thus (for any fixed bandwidth b)
only depends on the ranks of the original observations. This means that a copula goodness-
of-fit test based on ρn,b(·) and ρθn(·) does not require any additional assumption about the
marginal distributions F1 and F2 other than continuity.
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4.3 A Goodness-of-fit test based on local Gaussian correlation

Having established a non-parametric and parametric estimate of the canonical local Gaussian
correlation, we propose to base a goodness-of-fit test on the process

Pn(·) = ρn,b(·)− ρθn(·). (4.4)

(An alternative would have been to smooth ρθn with a kernel operator as in Härdle and
Mammen (1993)). Recall that ρn,b(·) is only consistent with ρθ(·) along the curve defined by
z1 = z2. We therefore aggregate P 2

n along the diagonal by

Tn =
∫ z1−α/2

zα/2

Pn(t, t)2 dt, (4.5)

where zα/2 and z1−α/2 are the α/2 and 1−α/2 quantiles of the standard normal distribution
(we typically use α = 0.05). Here large values of Tn lead to the rejection of H0. There has
been much work on the asymptotic theory of test functionals such as Tn in a goodness-of-fit
context, see e.g. Härdle and Mammen (1993) and Gao et al. (2009), but we do not pursue
this theory here. There are several reasons for this. By the construction of Tn it is clear
that its asymptotic distribution (when scaled properly by some function δ(n, b)) in general
depends on the underlying copula and the parameter θ, which in turns means that critical
values are difficult to tabulate by means of the asymptotic properties. Moreover, it is known
(see e.g. Härdle and Mammen (1993), Gao et al. (2009), Terasvirta et al. (2010) chapter
7.7) that in general the asymptotics of functional tests like Tn are not very accurate and
much better results are obtained by bootstrapping. In this paper we therefore directly adopt
the parametric bootstrap proposed by Genest et al. (2009) (see also Stute et al. (1993)) to
obtain approximate P-values. The bootstrap procedure is as follows:

Parametric bootstrap

1. Convert the observations X1, . . . , Xn into pseudo-observations Û1, . . . , Ûn.

2. Estimate θ under H0 by a pseudo-observation-based estimator θn = θn(Û1, . . . , Ûn).
Obtain ρθn(·) by replacing θ in (3.16) with θn.

3. Convert the pseudo-observations into Gaussian pseudo observations Ẑ1 =
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Φ−1(Û1), . . . , Ẑn = Φ−1(Ûn). Obtain ρn,b(·) by local likelihood using the Gaussian
pseudo-observations Ẑ1, . . . , Ẑn as observations.

4. Compute the value of Tn.

5. For some large integer R, repeat the following steps for every k ∈ {1, . . . , R}:

(a) Generate a random sample U∗1k, . . . , U∗nk from the copula Cθn , and compute the
associated pseudo-observations Û∗1k, . . . , Û∗nk.

(b) Compute T ∗n,k by repeating step 2-4 for the new pseudo-observations Û∗1k, . . . , Û∗nk.

The P-value for this test can then be approximated by R−1∑R
k=1 1(T ∗n,k > Tn).

In the Monte Carlo study in Section 4.5 we only consider one-parameter copulas so
we have chosen to estimate θ by θn = m−1(τ̂) where τ̂ is the sample Kendall’s tau and m is
defined by (3.17). A general framework for the validity of the parametric bootstrap can be
found in Genest et al. (2009). It is clear, however, that the process Pn(·) given by (4.4) does
not fall into the category of processes considered there due to the bandwidth parameter b
involved in the estimation of ρn,b(·). To establish a theoretical framework for the validity in
our case would require a separate investigation, possibly based on a decomposition of Pn(·)
into ρn,b(·) − ρθ(·) − (ρθn(·)− ρθ(·)). Still, the results of the Monte Carlo study in Section
4.5 for the level of the test indicate validity for our approach. See also Berg (2009), where
the parametric bootstrap has been used successfully in a number of different approaches.

The method described above can only be used when the analytic expression (3.16)
is available. It is in the examples considered in this paper, but since this is not always
the case, we provide a second bootstrap procedure which does not rely on the analytical
expression (3.16) but where we instead estimate ρθ(·) by Monte Carlo approximation:

Double parametric bootstrap

1. Convert the observations X1, . . . , Xn into pseudo-observations Û1, . . . , Ûn.

2. Estimate θ under H0 by a pseudo-observation-based estimator θn = θn(Û1, . . . , Ûn).

3. Obtain ρn,b(·) by local likelihood using the Gaussian pseudo-observations Ẑ1 =
Φ−1(Û1), . . . , Ẑn = Φ−1(Ûn) as observations.
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4. For some (preferable large) integer m ≥ n:

(a) Generate a random sample V ∗1 , . . . , V ∗m from Cθn .

(b) Approximate ρθn(·) by ρm,b(m)(·) where ρm,b(m)(·) is obtained by local likelihood
using the observations Φ−1(V ∗1 ), . . . ,Φ−1(V ∗m).

(c) Compute the corresponding value of Tn.

5. For some large integer R, repeat the following steps for every k ∈ {1, . . . , R}:

(a) Generate a random sample U∗1k, . . . , U∗nk from the copula Cθn , and compute the
associated pseudo-observations Û∗1k, . . . , Û∗nk.

(b) Compute T ∗n,k by repeating step 2-4 for the new pseudo-observations Û∗1k, . . . , Û∗nk.

The P-value for this test can then be approximated by R−1∑R
k=1 1(T ∗n,k > Tn). Note that this

procedure can be extended to functionals obtained by integrating not only on the diagonal
(t, t) but to points (t1, t2) with t1 6= t2.

In Genest et al. (2009) a similar bootstrap procedure is used for a number of test statistics
in the context of copula goodness-of-fit testing. There it is concluded that for the double
bootstrap to be efficient the number m of repetitions must be substantially larger than the
sample size n (minimum m = 2500 when n = 150). In our case we can expect that even
larger values of m is required since a larger m is balanced out by a smaller bandwidth
b = b(m). This makes the double-bootstrap computational demanding and, consequently,
we only considered the one-level parametric bootstrap in the simulation study in Section 4.5.

4.4 Choice of bandwidth

When testing H0 : C ∈ C we may choose the bandwidth such that it is optimal if H0 is true.
In general, for a variable Z with distribution function C(Φ(z1),Φ(z2)) the mean integrated
squared error of the local likelihood estimate ρn,b(·) along z1 = z2 is given by

MISE(ρn,b(·)) = E
(∫

(ρn,b(t, t)− ρθ(t, t))2 dt
)

(4.6)

where the expectation is with respect to the distribution function F (z) = Cθ(Φ(z1),Φ(z2)).
Since ρθn(·) has the ordinary parametric convergence rate it converges faster than ρn,b(·)
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(under H0). It is therefore reasonable to choose b as the minimizer of

M̂ISE(ρn,b(·)) = E∗
(∫

(ρn,b(t, t)− ρθn(t, t))2 dt
)

(4.7)

where the expectation E∗ is with respect to the distribution function F ∗(z) =
Cθn(Φ(z1),Φ(z2)) estimated under H0. The bandwidth b is chosen as the minimizer of (4.7)
which can be approximated by Monte Carlo integration.
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Figure 5: M̂ISE(ρn,b(·)) versus b for the Clayton copula.

Table 1 reports bandwidth estimates based on minimizing (4.7). For simplicity we
take b1 = b2 = b. The copula parameter and the re-sampling distribution F ∗(z) =
Cθn(Φ(z1),Φ(z2)) is estimated from the associated pseudo-observations of a single sample
from five different copulas. We consider two different sample sizes (n = 250, 500) and two
degrees of global dependence (Kendall’s tau τ = 0.2, 0.4). For comparison, the minimizer
of (4.6) (which can be computed knowing the real value of θ) is given in parentheses. To
avoid unreliable estimates of ρn,b(·) in the tails we used finite integration limits in (4.6) and
(4.7). We used the limit (−1.8, 1.8) for n = 250 and (−2, 2) for n = 500. Figure 5 displays
M̂ISE(ρn,b(·)) as a function of b when C is the Clayton copula.

Not surprisingly, neither (4.6) nor (4.7) has a minimum for the Gaussian copula (both
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decrease as b increases). This is a result of the local Gaussian likelihood being equivalent to
the global Gaussian likelihood when b→∞. However, it is not recommended to use a very
large bandwidth when testing for the Gaussian copula, since too much smoothing results in
poor power when the null hypothesis is false. Another alternative bandwidth algorithm is
the general likelihood cross-validation method proposed in Berentsen and Tjøstheim (2014).

Copula τ = 0.2 τ = 0.4
n = 250 n = 500 n = 250 n = 500

Clayton 0.9731(1.0536) 0.9710(0.9515) 0.8465(0.8525) 0.8116(0.7955)
Gumbel 1.1030(1.0674) 0.9198(0.9350) 1.0084(0.9602) 0.9116(0.8896)
Frank 1.4065(1.7846) 1.0166(1.0423) 0.8545(0.7824) 0.7165(0.7122)
Gaussian ∞ ∞ ∞ ∞
t4 0.9176(0.8728) 0.8290(0.7778) 0.8786(0.7977) 0.7675(0.7055)

Table 1: Estimated bandwidth based on minimizing M̂ISE(ρn,b(·)) for a single sample from
each copula model for n = 250, 500 and τ = 0.2, 0.4. The minimizer of MISE(ρn,b(·)) is given
in the parentheses.

4.5 Simulation study

A Monte Carlo study is performed to assess the finite-sample properties of the proposed
goodness-of-fit test (4.5) (based on the one-level parametric bootstrap). In order to examine
its performance, we compare it with a much used test proposed by Genest and Rémillard
(2008). This test is chosen because of its very good overall performance in the simulation
studies of Genest et al. (2009) and Berg (2009). It stands out as one of the best. Their test
is based on the empirical copula process

Cn(u) = 1
n

n∑
i=1

1(Ûi1 ≤ u1, Ûi2 ≤ u2), (4.8)

where Ûi = (Ûi1, Ûi2) i = 1, . . . , n are the pseudo-observations and u = (u1, u2) ∈ [0, 1]2. A
natural test consists in comparing a distance between Cn and an estimate Cθn of C obtained
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under H0. Then a goodness-of-fit test may be based on the Cramer-von-Mises type statistic

An = n
∫

[0,1]2
{Cn(u)− Cθn(u)}2dCn(u). (4.9)

Further one proceed by parametric bootstrap analogue to the first procedure described in
Section 4.3 to find an approximate P-value for the test. If an analytical expression for Cθ
is not available one may resort to a double parametric bootstrap analogue to the second
bootstrap procedure described in Section 4.3. For a more detailed description of these test
procedures we refer to Genest et al. (2009) or Berg (2009). The test based on (4.9) and similar
tests are good in discriminating between copulas with different asymmetries. They are not
so good in discriminating between copulas whose main difference is expressed in the tail
structure, such as a Gaussian copula versus a Student t4-copula. We believe that the reason
for this is that the tail behavior in (4.9) is measured on a [0, 1] scale where tail differences are
compressed. This is very different if Gaussian pseudo-observations and the local correlation
are used. Tail differences are expressed much more clearly and in fact lead to a very dramatic
increase of discriminatory power as will be seen in the simulation experiment reported in
Table 2. (Possibly the use of an analogue version of (4.9) with Gaussian pseudo-observations
instead of traditional pseudo-observations may also lead to an increase of power, but we have
not examined this).

In particular, we are interested in the test’s ability to maintain its prescribed level (arbi-
trarily fixed at 5 % throughout the study) and the power against a variety of fixed alterna-
tives. The simulation design is as follows:

• Five H0 copulas: Clayton, Gumbel, Frank, Gaussian and Student t with 4 degrees of
freedom

• Five H1 copulas: Clayton, Gumbel, Frank, Gaussian and Student t with 4 degrees of
freedom

• Two degrees of global dependence: Kendall’s tau τ = {0.2, 0.4}

• Two sample sizes: n = {250, 500}

For every combination of the above set-up 1000 samples of size n is drawn from the copula
C under H1 with dependence parameter corresponding to τ . The test statistic (4.5) and
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the alternative test statistic (4.9) are then computed under H0, and P-values are estimated
using the parametric bootstrap procedure described in Section 4.3. The number of bootstrap
samples was fixed at R = 1000. In the estimation of (4.5) the bandwidth b = b1 = b2 is
taken from Table 1, except when H0 is Gaussian in which case we put b1 = b2 = 1.

Table 2 reports the level and power of the test (4.5) and the An-based test (4.9) (in
parenthesis). Each line of the table shows the percentage of rejections of H0 associated
with the two tests for the different combinations described above. The nominal levels match
relatively well the prescribed size of 5%, but seems to be a little more volatile compared to
the nominal level of the An-based test. We did a rerun of the level for the Student test for
n = 500, τ = 0.4 (the case where the nominal level deviated the most from the prescribed
level) but based on 5000 test decisions and with R = 2000 bootstrap replicas for each test.
For prescribed levels 1%, 5% and 10% the corresponding nominal levels where 1.36%, 6.12%
and 10.84%. This indicates that 1000 bootstrap replicas may not quite be sufficient for
constructing the null distribution of Pn(·).

The power of our proposed test is very good compared to the An-based test, and the
power of the An-based test in our simulation study corresponds very well with the power
found in similar studies by Genest et al. (2009) and Berg (2009). Note that for testing
the Gaussian and Student hypothesis, powers are in general lower than for testing Clayton,
Gumbel and Frank hypothesis. This is also in line with the previously mentioned studies.

There were only two cases where the power did not increase with the level of dependence.
This happened when H0 was the Gaussian copula and H1 the t-copula with 4 degrees of
freedom, and when H0 was the t-copula with 4 degrees of freedom and H1 the Gaussian
copula. This can be explained by Figure 4 where we see that the local Gaussian correlation
for the Student t-copula becomes more constant as the level of dependence increase and thus
resembling more the Gaussian structure.
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Copula under H0 True copula τ = 0.2 τ = 0.4
n = 250 n = 500 n = 250 n = 500

Clayton Clayton 5.9(4.6) 5.4(5.0) 5.3(5.2) 4.1(5.0)
Gumbel 97.3(90.0) 100.0(99.8) 100.0(100.0) 100.0(100.0)
Frank 77.4(60.3) 95.9(88.8) 96.7(97.6) 99.6(100.0)
Gaussian 74.8(58.2) 93.4(77.8) 97.4(95.4) 100.0(100.0)
Student 4 df 83.3(69.2) 98.2(84.6) 99.5(97.8) 100.0(100.0)

Gumbel Clayton 98.3(81.2) 100.0(99.0) 100.0(99.8) 100.0(100.0)
Gumbel 6.1(5.8) 6.1(5.2) 6.1(5.2) 5.2(4.8)
Frank 65.7(20.2) 90.7(49.0) 90.9(50.2) 99.9(92.2)
Gaussian 55.6(11.4) 81.6(36.0) 76.2(27.8) 96.4(69.0)
Student 4 df 43.5(20.2) 74.0(54.6) 75.1(36.6) 97.8(80.4)

Frank Clayton 74.4(50.6) 94.0(85.6) 98.8(95.8) 100.0(100.0)
Gumbel 56.5(40.4) 90.2(62.8) 92.3(76.0) 99.8(97.4)
Frank 3.1(4.8) 3.8(4.6) 4.7(4.6) 4.6(5.0)
Gaussian 11.4(8.0) 25.1(15.6) 49.7(19.2) 76.3(49.6)
Student 4 df 84.4(27.8) 99.7(52.0) 97.2(46.0) 100.0(87.0)

Gaussian Clayton 66.0(44.2) 91.7(73.6) 98.4(93.4) 100.0(100.0)
Gumbel 31.1(33.2) 67.4(42.8) 56.0(58.2) 92.8(82.4)
Frank 7.7(7.6) 14.6(7.0) 29.5(21.4) 65.6(35.4)
Gaussian 6.3(5.2) 6.2(4.8) 5.8(5.0) 6.3(5.4)
Student 4 df 35.0(20.6) 82.5(26.6) 14.5(21.2) 66.2(23.8)

Student 4 df Clayton 81.8(35.8) 97.8(69.8) 98.9(88.4) 100.0(99.6)
Gumbel 55.7(23.0) 81.9(34.0) 67.5(45.8) 95.2(63.4)
Frank 81.6(9.2) 98.3(16.8) 94.1(26.8) 100.0(48.4)
Gaussian 72.4(5.2) 93.8(7.8) 66.3(4.0) 94.6(2.8)
Student 4 df 6.5(5.4) 5.7(5.0) 6.2(4.8) 7.6(4.8)

Table 2: Percentage of rejection of H0 by the Tn-based test and the An-based test (in paren-
thesis) for data sets of different sizes arising from different copula models with dependence
τ = 0.2 or τ = 0.4.
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5 Visualizing departures from H0

An advantage of using the local correlation is that if the null is rejected, the cause of the
rejection can be investigated by visually comparing the non-parametric estimate of ρθ(·) with
the corresponding estimate under the null hypothesis. Deviations between between these es-
timates can easily be interpreted since both measure local dependence. Below we present two
types of diagnostic plots, being based on the Gaussian pseudo-observations Ẑ1, . . . , Ẑn. This
means that we are comparing the local dependence properties of an approximate sample from
the distribution C(Φ(z1),Φ(z2)) with the local dependence properties of the corresponding
distribution Cθ(Φ(z1),Φ(z2)) under the null hypothesis. Our goal is to identify which regions
of the Gaussian pseudo-observations that deviates from H0, but also to pinpoint how the
local dependence in these regions deviates from H0.

Our first approach is a direct comparison between the non-parametric estimate ρn,b(·)
based on the Gaussian pseudo-observations and the estimate under the null hypothesis ρθn(·).
One possibility is to plot ρn,b(·) and ρθn(·) separately on a grid on R2. However, this requires
Monte Carlo estimation of ρθn(·) as in the double bootstrap procedure described in Section
4.3 since ρθ(·) is only valid along the curve z1 = z2. Thus for a direct comparison we have
opted for plotting ρn,b(·) and ρθn(·) together along the curve z1 = z2 as in Figure 6 (a).

To obtain diagnostic plots on R2 we suggest plotting the results of ”local goodness-of-fit”
tests performed over a grid on R2, not limited to a curve. The grid is selected using the
methodology of Jones and Koch (2003). First a regular grid is placed over the Gaussian
pseudo-observations Ẑ1, . . . , Ẑn. The regular grid is then screened by selecting the grid
points (z1, . . . , zp) satisfying f̂(zj) ≥ K, for some constant K and a density estimator
f̂(zj) = f̂(zj|Ẑ1, . . . , Ẑn) (we use an ordinary kernel estimator). In this way we can ensure
that the neighbourhood of each grid point contains a sufficient amount of observations
for estimating ρn,b(zj). We then proceed to estimate ρn,b(zj) for each grid point and
the null-distribution of ρn,b(zj) is subsequently computed using a parametric bootstrap
procedure similar to the one described in Section 4.3:

Local goodness-of-fit test

1. Convert the observations X1, . . . , Xn into pseudo-observations Û1, . . . , Ûn.
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2. Estimate θ under H0 by a pseudo-observation-based estimator θn = θn(Û1, . . . , Ûn).

3. Convert the pseudo-observations into Gaussian pseudo observations Ẑ1 =
Φ−1(Û1), . . . , Ẑn = Φ−1(Ûn). Obtain ρn,b(zj) by local likelihood using the Gaussian
pseudo-observations Ẑ1, . . . , Ẑn as observations.

4. For some large integer R, repeat the following steps for every k ∈ {1, . . . , R}:

(a) Generate a random sample U∗1k, . . . , U∗nk from the copula Cθn , and compute the
associated pseudo-observations Û∗1k, . . . , Û∗nk.

(b) Compute ρ∗,kn,b(zj) by repeating step 2 and 3 for this sample.

The bootstrap procedure above is carried out simultaneous for all grid points and the
second diagnostic plot is constructed as follows. For a given significance level α, grid
points zj with ρn,b(zj) larger than the (1 − α/2)% quantile of ρ∗,1n,b(zj), . . . , ρ

∗,R
n,b (zj) is as-

signed the color “magenta”; Grid points zj with ρn,b(zj) smaller than the α/2% quantile of
ρ∗,1n,b(zj), . . . , ρ

∗,R
n,b (zj) is assigned the color “cyan”; if neither, the grid point zj is assigned the

color white. Note that this gives us only information about the regions for which ρn,b(·) is
significantly larger (”magenta”) or smaller (”cyan”) in value than under H0. To interpret
what this means in terms of direction of dependence (positive or negative) one can confer
with the previous suggested diagnostic plot.

Figures 6 (a)-(b) illustrates how the diagnostic plots look when the n = 500 data comes
from C(Φ(x1),Φ(x2)), where C is the Clayton copula with parameter θ = 0.5, but the null
hypothesis is that C is the t-copula with 4 degrees of freedom. With a 5% significance level
this hypothesis is rejected by the Tn-test (P-value=0.002). Figure 6 (a) clearly shows that
the estimated ρn,b(·) is significantly smaller than that under the null hypothesis in the upper
tail. For this plot we have also added standard 95% bootstrap confidence intervals. This
is an indication that the estimated t-copula assigns to much dependence in the upper tail
compared to the data. This is indeed confirmed by the local goodness-of-fit tests displayed in
Figure 6 (b). Here we have used α = 0.05 and R = 1000 bootstrap samples. Also notice that
Figure 6 (b) reveals that the estimated ρn,b(·) is significantly larger than its estimate under
the null hypothesis in points of the 2nd and 4th quadrant. This is a result of the t-copula

30



(a) (b)

Figure 6: Evaluation of H0: t-copula when Clayton is the true copula: (a) Diagonal plot with
confidence intervals of ρn,b and ρθn where ρθn is estimated under H0: t-copula; (b) Pointwise
test, H0 : t-copula

having negative local dependence in these regions (See Berentsen and Tjøstheim (2014) and
Tjøstheim and Hufthammer (2013) for a more detailed study of the t-distribution.)
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6 A real data study

The Danish fire insurance claims data have been studied in actuarial science and extreme
value theory (see e.g. McNeil, 1997). The data consist of 2167 losses over one million DKK
from the years 1980 to 1990 inclusive. There were registered in total 604 cases where a loss
in both contents and profits occurred, and the log-transformed values of these claims can be
seen in Figure 7 (a). There were some ties present in the data, so before the analysis the
observations where jittered randomly by a small amount to break the ties. The correspond-
ing Gaussian pseudo-observation and the estimated values of ρn,b(·) based on the Gaussian
pseudo-observations can be seen in Figure 7 (b). From the latter Figure we see that the
dependence increases towards the upper tail. Indeed, in terms of AIC (Akaike Information
Criteria), the best ranked copula amongst Clayton, Frank, Gumbel, Gaussian and Student-t
was the Gumbel copula (-379.6), followed by the Gaussian copula (-327.9). Nevertheless,
the null hypothesis that the copula of the data is the Gumbel copula was rejected by the
goodness-of-fit test proposed in Section 4.3 (P-value ≈ 0) and also by the alternative test
discussed in Section 4.5. However, by using the diagnostic plots proposed in Section 5 we
now have the possibility to investigate the characteristics of the discrepancy between the
data and the null hypothesis. In Figure 8 (a) the parametric estimate of the local Gaussian
correlation is plotted together with the nonparametric estimate along the curve z1 = z2.
We see that the (fitted) Gumbel copula assigns too large local correlation in the lower tail
compared to the data. This is also supported by Figure 8 (b) which displays the result of
the local goodness-of-fit test.

In Section 3.2.1 we investigated the differences between modeling (X1, X2) with upper
tail dependence by the Gumbel copula with the alternative of modeling (−X1,−X2) by the
Clayton copula. The conclusion was that ρθ(·) in the ”non-dependent” tail approaches zero
faster with the Clayton copula than with the Gumbel copula. From the diagnostic plots
8 (a)-(b), we see that this approach could be useful since the Gumbel copula assigns too
large local correlation in the lower tail compared to the data. Indeed, the goodness-of-fit
test proposed in Section 4.3 did not reject the Clayton copula for the negative observations
(P-value = 0.56). Neither did the alternative test discussed in Section 4.5 ((P-value = 0.55)).
This illustrates the usefulness of pinpointing the discrepancies between the null-hypothesis
and the data: It can help us towards selecting a better model.
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(a) (b)

Figure 7: (a) Scatter plot of log-transformed values of loss on contents and loss on profits;
(b): Gaussian pseudo-observations overlain the estimated local correlation ρn,b(·).

(a) (b)

Figure 8: Diagnostic plots: (a) Parametric versus non-parametric estimate of ρθ(·); (b) Local
goodness-of-fit test.
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7 The multivariate case

Our paper is restricted to the bivariate case. In this section we will briefly discuss extensions
to the multivariate case. This is a subject of ongoing research.

7.1 Extension to the multivariate case of the local Gaussian cor-
relation

In principle the local Gaussian approximation of a multivariate density f(x), where x =
(x1, . . . , xd), can be set up immediately as

φ(x, µ(x),Σ(x)) = 1
(2π)d/2|Σ(x)|1/2 exp{−1

2(x− µ(x))TΣ−1(x)(x− µ(x))} (7.1)

with Σ(x) being the local covariance matrix. For d greater than 3-4, the local parameters
of (7.1) will be impossible to estimate due to the curse of dimensionality. This means that
a simplification has to be found, and in Otneim and Tjøstheim (2014, in progress) we use a
simplification where µi(x) = µi(xi), σii(x) = σ2

i (x) = σ2
i (xi) and σij(x) = σij(xi, xj), that is

the i-th component of the local mean and the local variance are just allowed to depend on
the i-th coordinate, whereas the i, j-element of the local covariance is just allowed to depend
on the coordinates (xi, xj). In this way the property of the global multivariate Gaussian,
where it is enough to compute all global means and global variances and all pairs of global
correlations, is retained for the local Gaussian case. This simplification is akin to the additive
approximation in a nonparametric regression analysis of the conditional mean.

In order to do statistical inference and obtain confidence intervals, the theory of
Tjøstheim and Hufthammer (2013) will have to be carried over to this case. One then
needs to find the asymptotic multivariate normal distribution of the estimated vector
(µ̂1(x1), . . . , µ̂d(xd); σ̂2

1(x1), . . . , σ̂2
d(xd); σ̂ij(xij), i, j = 1, ..., d, i 6= j), in particular the

asymptotic orders of all covariances between these quantities have to be found. Both in
theory and in practice the restricted model has the advantage that first the theory (and
practical modeling) can be carried out for the marginals using local means and variances
just depending on each marginal variable. In this first step the estimation is simplified, and
estimates converge faster. In the next step the local covariance analysis can be carried out
pairwise, analysing local correlations between each pair of marginals. In this step, subject
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to some regularity conditions, the local means and local variances of the marginal analysis
can be taken to be known and equal to the estimated values.

The analysis can be further simplified if each marginal variable is transformed to a stan-
dard normal distribution (instead of transforming to the uniform distribution as is done in
standard copula theory). This transformation is a main argument of the present article, and
it leads to substantial improvements in the copula goodness-of-fit test. It does lead to a local
Gaussian correlation that does not depend on the distribution of the marginals, but in some
situations this is an advantage. This ”canonical local Gaussian correlation” is invariant to
one-to one transformations of the marginals, thus giving an analogue to an important copula
property. All of this can be carried over to the multivariate case, but a limit theory of the
canonical local Gaussian correlation estimates should be derived.

The copula concept has been extended to the time series case, but not without difficulties.
One can extend the local Gaussian correlation concept to the time series case quite straight-
forwardly. Both the ordinary and the canonical local autocorrelation can be used and can
be employed to construct serial independence tests. Local autoregressive, AR(p), processes
can be defined and along the local diagonal can be compared to additive AR models and
possibly AR copula processes.

7.2 Vine copulas and local correlation

The vine copula is a very active field of copula research where, using successive conditioning,
the copula modeling in d dimensions is reduced to a series of pairwise conditional copula
constructions, see e.g. Aas et al. (2009). Each of these pairwise copulas can of course
be modeled by a local Gaussian approximation with ordinary local correlation or canoni-
cal Gaussian correlation. In a way the local Gaussian should be especially suited to this
conditional modeling task, because if one has a joint Gaussian distribution of d variables,
then conditioning on any subset of dc variables, the conditional distribution of the remaining
d − dc variables given the dc variables is still Gaussian with explicit formulas for the con-
ditional mean and conditional covariance matrix. This can be exploited in the conditional
local Gaussian distributions supposed to be describing conditional copula pairs and possibly
recognizing them. The restricted local Gaussian will have to be used to avoid the curse of
dimensionality.
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In the vine copula constructions it is not obvious in what sequence the conditioning
variables should be chosen or when to stop. Possibly the local Gaussian correlation can be
of help here. One suggestion (Aas 2014, private communication) is to use local Gaussian
approximation in the tail and use the tail properties to select an appropriate next stage and
to decide when to stop. Currently a Vuong-type test is used for this, but it is felt that a
criterion paying more attention to the tail would be more appropriate at least for variables
in econometrics or finance.
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Genest, C., Remillard, B., and Beaudoin, D. (2009), “Goodness-of-fit tests for copulas: A
review and a power study,” Insurance: Mathematics and Economics, 44, 199–213.
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